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Pair Fermi contour and repulsion-induced superconductivity in cuprates
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The pairing of charge carriers with a large pair momentum is considered in connection with high-
temperature superconductivity of cuprate compounds. The possibility of pairing arises due to some essential
features of quasi-two-dimensional electronic structure of cupréite$he Fermi contour with strong nesting
features (i) The presence of an extended saddle point near the Fermi [@veThe existence of some ordered
state (for example, antiferromagnetic) close to the superconducting one as a reason for the appearance of a
“pair” Fermi contour resulting from carrier redistribution in momentum spade an extended vicinity of the
saddle point, the momentum space has hyperijpieudoeuclidearmetrics; therefore, the principal values of
the two-dimensional reciprocal reduced effective mass tensor have unlike signs. At small momenta of the
relative motion of a pair with a large pair momentum, the pairing is sensitive just to the sign and value of the
effective mass and not to only the value of the Fermi velocity as in the case of Cooper pairing. The nesting of
the Fermi contour results in an increase of the statistical weight of the pair with a large total momentum due
to an extension of the momentum space domain which corresponds to permissible values of the relative motion
momentum. The rearrangement of holes in momentum space results in the rise of a “pair” Fermi contour
which may be defined as the zero-energy line for the relative motion of the pair. The superconducting gap
arises just on this line. The pair Fermi contour formation inside the region of momentum space with hyperbolic
metrics results in not only superconducting pairing but in a rise of a quasistationary state in the relative motion
of the pair. Such a state has rather small decay, and may be related to the pseudogap regime of underdoped
cuprates. It is concluded that pairing in cuprates may be due to screened Coulomb repulsion. The pairing
mechanism and the pair Fermi contour conception may provide a qualitative interpretation for the key experi-
mental facts relating to cuprates.
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[. INTRODUCTION and such an interaction results in a gain in total energy, a FS
arises corresponding to the ground state of the system. We
Recently, we proposed a mechanism for superconductingelieve that there is more than one possibility to obtain such
(SO pairing in an anisotropic quasi-two-dimensior{@D)  a gain besides the one particular case, relating to SC pairing
electron system typical of high-temperature superconductingiith a large total pair momentum in cuprates with a stripe
(HTSCO) cuprate compounds.* Pairs with large momentum  structure, that we considered in our previous papers.
K (K pairg are considered; heté~ 2kr, andkg is the value In this paper, we consider the problem of pairing with a
of the Fermi momentum directed alokg It is well knowr? large total pair momentum under essentially more general
that the Cooper channel of pairing becomes inefficient wheronditions following from some key features relating to elec-
the pair momentum exceeds a value of the ordeAbfr; tronic structure of cuprates. In this connection, we introduce
hereA is the SC gap aK=0, andv is the Fermi velocity. the conception of the “pair Fermi contour” being, in a sense,
The same relatively small value of the pair momentum cora generalization of the conventional Fermi surface concep-
responds to the wavelength of a spatially inhomogeneous Sfion when one takes into account the relative motion of a
phase arising in a weakly ferromagnetic electron syS@s pair. We obtain the solution of the SC gap equation and cor-
well. The Cooper channel &+ 0 is suppressed due to Pau- responding condensation energy in a rather general case
li's exclusive principle, which restricts the phase volume ac-which is, one can believe, typical of cuprates.
cessible for the electron states contributing to Hwpair The electronic structure and physical properties of HTSC
state. This phase volume decreases Wiftand SC pairing cuprates were studied in detafl Angle-resolved photoemis-
becomes impossible &~ A/vr because of a decrease of a sion spectroscopyARPES measurements® result in the
dimensionality of the locus in momentum space of zero-unambiguous conclusion that, in the norngll) state, any
energy quasiparticle states. Therefore, pairing with a largelTSC cuprate has a large FS. In the case of hole-doped
pair momentum may be possible under the condition thacompounds, the Fermi conto(FC), that is the cross section
some rearrangement in the electron system provides finitef the FS which is parallel to conducting layers is a square
(and sulfficiently largephase volume for the states forming with rounded corners. The FC of holes is centeredmtx(),
the K pair, and zerdor sufficiently small excitation energy and exhibits a strong nesting feature al¢tg0]-type direc-
corresponds to a finite piece of the Fermi surfde®). Any  tions. At approximately half-filling, long parts of the FC are
rearrangement of electrons in momentum space which transituated close to the saddle points of the hole dispersion.
fers a part of them across the FS results in an increase of thdole doping moves the Fermi level toward the saddle point,
energy. If the electron subsystem interacts with some othewhereas electron doping acts in the reverse direction. There-
one, for example, an antiferromagneffF) spin subsystem, fore, in a hole-doped compound, the nesting feature of the
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SC state?* Therefore, the observed momentum dependence
~ of the SC gap may correspond to either anisotrapior
\NT* d-type orbital symmetry® The same orbital symmetry and
AN the same energy scale &f and A* enable one to suppose
Y N Normal metal that the SC gap and the pseudogap are of the same &figin.
N However, there are two different points of view relating to
\ the origin of the pseudogdapee, for example, Ref. 1Wwhich
p \ can be interpreted either as a precursor of the superconduc-
seudogap siate S . . .
AF \\ tivity (the p;eudogap regime as an mcoherent state of paired
\ charge carrief$) or a gap of nonsuperconducting nattté?
I In the theory by Bardeen, Cooper, and Schrief®€S),?*
attraction due to virtual phonon exchange is the driving force
doping leading to pairing of carriers. In principle, the phonon
mechanism of Cooper pairing should not be excluded as a
FIG. 1. Phase diagrarfiemperature vs doping levetypical of  mechanism of HTSE? although it is difficult to explain
hole-doped HTSC cuprates. some essential features of the HTSC state satisfactorily, for
example, the symmetry of the SC gap. In view of the fact
hole FC appears in a relatively wide concentration rangethat the phase diagram of any HTSC cuprate has a region
Weak dispersion along the nesting directions results in theith long-range AF order, the AF fluctuation exchange as a
fact that the longitudinalalong the nested straight-line parts mechanism of pairig seems quite naturgheutron scatter-
of the FQ component of the Fermi velocity is sufficiently ing experiments exhibit broadened Bragg peaks up to the
smaller than the transversal ofeThis corresponds to an optimal doping. The other point of view is founded on the
effective enhancement of the 2D density of states in the vistatement that the ground state energy gain at the SC transi-
cinity of the logarithmic van Hove singularity due to the tion in HTSC cuprates is due to a lowering of the kinetic
saddle [Z)Oinf’.2 Thus there is an extended vicinity of the energy arising when two like-charged carriers form a ff‘air_
saddle point in which the principal values of the 2D tensor ofin such a case, generally speaking, one needs no attraction
the reversed reduced effective mass have unlike signs. Ongstween carriers, and screened Coulomb repulsion remains a
can say that, in such a vicinity, the momentum space hagatural essential interaction in the electron system.
hyperbolic(pseudoeuclideammetrics. Due to nesting feature AF fluctuations(short-range AF ordémay lead to a spe-
of the FC, the absolute values of the principal effectivecific quasi-one-dimensional self-organization in 2D electron
masses differ strongly from each other: the positive longitusystem of HTSC cuprates. An elastic neutron scattering study
dinal mass is essentially more than the absolute value afnables one to assume that holes doped into a crystal are
negative transversal mass. In the case of any hole-doped cgituated in 1D antiphase boundarieharge stripesseparat-
prate compound, long straight-line parts of the FC are situing hole-depleted domains with AF ord@The rise of such
ated mainly just in such “flat-band” or “extended van Hove a static stripe structure may be described as a transfer of
singularity” vicinities.” excess holes from the AF part of a stripe into the antiphase
In HTSC cuprates, the SC state appears in some dopingoundary the K part of a stripg& The dynamic stripe mag-
interval x,, <x<x*, bounded both above and below. Both nitude, just like the magnitude of AF fluctuations, decreases
the superconducting transition temperatligeand the super-  with doping and, ak>X,,, the neutron scattering technique
fluid density(or phase stiffnegps may demonstrate a highly does not make possible a resolution of strongly broadened
complicated dependence on doping in this intefvBhe ab-  stripe peaks of rather low intensity. A stripe structure may
solute maximum ofT ¢ corresponds to the optimal doping, exist independent of superconductivity, but such a structure
Xopt- The phase diagram typical of hole-doped HTSC cu-(just like AF fluctuationg and superconductivity are closely,

sC

X, underdoped  x,, overdoped X

L3

prates is presented in Fig. 1. in a nontrivial way, connected with each other. As an indirect
In underdoped X<X,p) compounds, the one-particle confirmation of this statement one may take into consider-
density of states is suppressed essentialyf @ T<T*.  ation the fact that at=1/8, when the static stripe magnitude

Such a suppression may be interpreted as a rise of a so-call&dmaximal, there is a local minimum on the doping depen-
pseudogap in the excitation spectriiithe temperaturd* dence of the SC transition temperatéteConversely, it is
corresponding to a crossover between khetate atT>T* possible that dynamic stripes stimulate superconducfivity.
and the “pseudogap regime” 8i<T<T* decreases with Available experimental data make it possible to determine
the doping increase, and becomes approximately equigd to the main features and details of the electronic structure
at x=X,p;. The pseudogaph™*, just like the SC gap, is  which are essential to understand the character of the SC
strongly anisotropic, and the character of the anisotropy istate of HTSC cuprates, and to interpret their physical prop-
the sam@for bothA* andA. The maxima of their absolute erties qualitatively. First, all doped HTSC compounds have a
values correspond to antinodfl00}-type directions. The 2D electronic structure with a strong nesting of the FC situ-
minimal values(which, possibly, are equal to zerof both  ated in an extended vicinity of the saddle point of the hole
A* andA correspond to nodfl10]-type directions. Knight dispersion. Second, in all doped HTSC compounds, doping
shift measurements indicate that there is singlet pairing ofegions corresponding to AF and SC phases are close to each
carriers when the electron system of HTSC cuprates is in thether and, in the SC region, there is a short-range AF order
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resulting in a stripe self-organization of spin and charge sub-
systems of the crystal. The theory developed here takes into
account these principal features of the electronic structure, k,
and can qualitatively explain the key experimental facts re-
lating both to N and SC state of HTSC cuprates. X

The paper is organized as follows: Section Il is dedicated K |42
to a formulation of the conditions under which pairing with 2
large pair momentum may be possible; in addition, we intro-
duce the concept of the “pair” Fermi contour being a piece ©-® Nodal
of the full Fermi contour on which the kinetic energy of the directions
relative motion of the pair with a given total momentum ><[”°1
turns out to be equal to zero. Thus, in the case of pairing with ‘ FC

: ; Antinodal

nonzero total momentum, the pair Fermi contour plays the E, | directions
same role that the full Fermi contour plays in the case of (100]
Cooper pairing of carriers with zero total momentum. In this '—[_E)’m]
connection, we discuss the peculiarities of the form of the (g .0)

domain in momentum space containing the momenta of the . .
particles composing a pair. Also, we discuss the simple FIG. 2. Typical of hole-doped HTSC cuprates, the hole Fermi
mechanism of an opening of the pair Fermi contour due to &ontour(FC) as a square with rounded cornétabeled the Fermi
rise of the stripe structure. In Sec. il we consider the prob-SNer9Y:Er) centered at ,m) . The domain of definition of mo-
lem of a single pair in momentum space with hyperbolicmenta of the relative motion df andK'’ pairs are denoted &y

. . . and E,, respectively. Each such domain consists of two parts,
metrics, and discuss the symmetry properties of the paiL -y =} —(-) = (+) . ; .
. . Sk .Exand B’ By, respectively. Inside the subdomains
wave function. It is shown that, due to crystal symmetry, the_ ) = (-) (2,5
=K

f . fth . b lated ith . =P =P ,E "), the energy of the relative motion of cor-
wave function of the pair may be related to either an'SOIrOp'Qesponding pair measured from the pair chemical potential value

s or d-type orbital symmetry. In this section, we present an, , ‘is negative(positive. The total pair momentum is directed
equation which determines two poles of the scattering ampliajong an antinodal direction. The lines separating the subdomains of
tude corresponding to the relative motion of the pair. Sectiomegative and positive relative motion energy form the pair Fermi
IV contains a discussion of the character of the two poles otontour(PFQ. A doping decrease results in an opening of the PFC
the scattering amplitude corresponding to a quasistationargt two points,a anda’, on thek; axis, corresponding to a doping
state(QS9 of the pair and superconducting instability. We level x,. Then there is a rise and an extension of the subdomains
consider both attractive and repulsive interactions betweef«’ and E(. accompanied by a corresponding decrease of the
the components of the pair. It is stated that, in the case ofubdomainsZ(”’ andZ(,’. The PFC shrinks at two pointsand
repulsion, the pole having the larger energy corresponds to & ©on thek; axis, corresponding to a doping level<x,.

QSS with infinitesimal positive decay, whereas the second

pole with smaller energy has a finite negative decay so tha®ropose a qualitative interpretation of available experimental
this pole may be related to a SC instability. Such a disposidata in the scope of the theory developed here.

tion of the poles and the definite sign of their imaginary parts

are in agreement with a phase diagram typical of cuprates. || g ECTRON AND HOLE PAIRS. PAIR FERMI

The approximate solutions of the equation which defines the CONTOUR

SC order parameter are presented in Sec. V both in the case

of attraction and repulsion between the components of the Let us consider two electrons or two holes with a total
pair. In the latter case, the solution exists under the conditiomomentumK=k, +k_ wherek, andk_ are momenta of
that the SC order parameter is not a function of a constarthe particles composing a pair. This is a pair of noninteract-
sign. Assuming that, crossing the pair Fermi contour, thigng particles. Thus, now and below in this section, we do not
parameter changes sign like a step function, we study thall outside the limits of the usual one-particle approxima-
system of equations for two corresponding components ofion, and the pair introduced here may be called asage

the order parameter. It is shown that the solution of such @air. Further, taking account of the screened Coulomb inter-
system exists inside a doping interval bounded both abovaction between particles, we use such pairs to construct a SC
and below. In Sec. VI, we discuss the chemical potential shifgtate. Filling the states inside the FC results in the fact that
due to SC condesation. This shift arises due to the essentigermissible values of a momentum of the relative motion of
asymmetry between the domains in momentum space corréie K pair, k= (k. —k_)/2, belong to a certain domain of
sponding to filled and vacant states and separated by the pairomentum space. Such a domain, which we denotg as
Fermi contour. Just such a shift mainly determines the valubas a form dependent dhand on a shape of the FGis in

of the SC transition condensation energy which is studied irthe case when the pair momentum is directed aldt@f]
Sec. VII. Section VIl is dedicated to a brief discussion of andK <2k ; this is represented schematically in Fig. 2. It is
some key experimental results related to bdthand SC  clear from Fig. 2 how one can define such a domain at any
states of HTSC cuprates; also, we discuss some other pogivenK. The aredlabeled with the same symbgly) of the
sible reasons for an opening of the pair Fermi contour, andlomainZ= k tends to zero wheK — 2kg . Thus the statistical
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weight of states which compose pairs wikh= 2k is equal
to zero even in a case of perfect nestfhét should be noted h
that the model used in Ref. 27 did not take into account the |*
existence of an extended saddle point and hyperbolic metrics
of momentum space. For an arbitrary directionkgf there

are, generally speaking, eight domains corresponding to thel . . A”“ﬁ""'""g”"”mpemw Mataihe

pair momenta which are equivalent to given vedtoifor

special, antinodal, or nodal directions there are four equiva- density of pair states
lent vectorg. However, at a preassigned deviationkofrom 2. I

2k, the statistical weightthe area= ) depends on th& J_

direction, decreasing from a maximal value for antinodal di-
rections to a minimal one for nodal directions. It is quite
obvious that the binding energy of tiepair has to increase
with Z; therefore, one may expect that a rise of the SC [<4s.. .
condensate should be due to pairs with momenta correspond{=\f

ing to antinodal directions.

There is experimental evidence in behalf of the consider-
ation of hole pairs with large total momentum. As an ex-
ample, one may consider the so-called “commensurate” neu- {::
tron resonancé4l me\) peak belowT which is usually '
associated with a rise of the resonance collective triplet
modé? corresponding to the saddle point. Recently, “incom- _ _
mensurate” magnetic fluctuations in HTSC cuprates were F!/G- 3. Top panel: a sketch of the domaifig and = and

observed® The incommensurate mode transforms continu-h°|e distribution in the cases corresponding to a homogeneous state

ously into a commensurate oﬁ%demonstrating a negative of the electron systertieft top panel and a stripe statéhe AF part

(downward away from the commensurate momer)tumOf a Str.ipe’ middle top pa.nel; e part of a stripe, right top pangel .
dispersior?o Such a tendency toward softening of this triplet Occupied and vacant pair states are separated by the PFC. Occupied

states inside the domains are shadowed. Bottom panel: relative-

m m°_°.'e can bg !r)terpreteq as md,'reCt eVIder_lce of the phaﬁﬁotion band diagram for homogeneous st bottom panel AF
transition possibility associated with a softening of a certain, 4\ parts of a stripeimiddle and right bottom panel, respec-
singlet mode corresponding to a large and “incommensuﬁvely)_
rate” pair momentum.

Almost straight-line parts of the FC belong to the region
of momentum space with hyperbolic metrics. Therefore, théhegative and positive energies of the relative motiorkof

energy of the relative motion of a pair insi@ , pair as well. Excitations composing tiepair inside the FC
are electrons whereas the excitations which compose the
K K K K’-pair outside of the FC are holes.
er(Kk)=¢ §+k te §_k _28(5)' oy In the case of hyperbolic metrics, thépair density of

states exhibits a logarithmic van Hove singularity corre-
at relatively smalk, may be approximately represented as sponding to the zero energy of the relative motion, shown
schematically in Fig. 3. Weak dispersion along one of the
directions in 2D momentum spadéhe k; axis in Fig. 2
leads to the fact tha-pair density of states has almost 1D
charactef?
whereg(K) is hole dispersion and, as follows from a sym- By definition of the ground state of the electron system,
metry consideration, the coordinate axes are directed parallgll pair states insidé&S« are occupied, whereas the states
(the k, axis) and perpendiculafthe k, axis) to the FC(Fig.  inside =, are vacant. Such a filling of states in momentum
2). These coordinate axis directions correspond to the prinspace corresponds to a spatially homogeneous state of the
cipal directions of the 2D tensor of the reciprocal reducecelectron system. At a givel, states of the relative motion of
effective mass#/m and —1/m are dependent on principel  theK pair are characterized by the relative motion density of
values of this tensor Due to the strong nesting of the FC, statesg,(¢). The upper edge of pair density of states in the
the absolute values of the effective masses differ considerdomainEK corresponds to the Fermi levétig. 3). There is
ably from each other, namely, a dimensionless parameter 3 finite energy ga@s . between the upper edge 0f(¢)
<1. and the lower one relating to pair density of statgs,(¢),

The domain= ¢ consists of two partsS () andE{", in  in the domainE . . Therefore, any transfer of a pair from
which the energy of the relative motion of th€ pair is =, into 2. is necessarily connected with an energy in-
negative and positive, respectively. The domaip,, also  crease due to an increase of center-of-mass energy. However,
shown in Fig. 2, corresponds to a pair with total momentumit should be noted that the pairs having positive energy of the
K’ (K’ pain outside of the FC; thuk’ > 2k . This domain  relative motion leave the domaif, whereas the pairs with

consists of two partsEf{,) and Ef:,), corresponding to negative energy arrive at the domaty. .

ﬁZ
er(K )~ 5 (vki—K)), @
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Such transfers of pairs from the domatk into a region the pairing problems ifEx and Ex. independently from
of momentum space outside of the FC may bear a relation teach other. In the following, we consider just the case when
well-known spatially inhomogeneousstripe structure in  |K—K'[> k..
which there is an alternation of hole-enriched and -depleted

1D regions® The region of momentum space into whith IIl. PROBLEM OF A SINGLE PAIR
pairs may transfer is either that pagy , of the domaing , ) .
which is situated outside of the FC or the dom&gp. cor- Now let us consider & pair, taking into account two-

responding to the total pair momentuth (Fig. 2). As far as particle potential interaction between the particles compos-

the relative motion of the density of states which correspond'd the pair. As stated above, the momenta of interacting
to aK’ pair belonging to the subdomaifg !, is consider- par'ucle_s are cpnfmed inside the d_omﬁrk. We suppose
K that this domain belongs to a region of momentum space

ably greater than density of states corresponding to the SUt\)I\_/i'[h hyperbolic metrics. A wave function of thé pair can

domainE « we may restrict ourselves to a consideration ofpe written as

the transfersE(K*):>Ef<_,) only. Suppose that a number of

pairs, 5N, passes fronE{") into £¢,’, so that, in the sub- _

domainZ ("), vacant pair states arise in a certémall in Wi(re ro)= ﬁ‘PK(r)e'KR- 4
comparison withdsky:) energy interval near B-. The

same number of pairs occupies a small energy intervaHerer, andr_ are radius vectors of the particleR=(r
(which may be determined using pair number conservation, r_)2,r=r.—r_, ex(r) is a wave function of the relative
condition) near the lower edge of the band corresponding tamotion, andSis a normalizing area.

the subdomairEf{,). Thus the energy increase due to pair On account of the crystal symmetry, all wave functions

transfers from E¢7) into E{,) may be estimated as ¢y corresponding to the momeng turn out to be equiva-

ONSeyy: . lent. Therefore, thek-pair wave function should be repre-
Transfers of pairs,E(K+)=>Ef{,), in momentum space Sented as a linear combination of the form
may be related to transfers of holes from AF parts of stripes
into metallic(M) parts in real space. An enhancement of AF (r)_ (D)agr
: . . V=2 eV (5)
correlations due to such transfers results in some reducing of ok °

the energy which might compensate for the energy increase

due to the excitation of hole pairs leading to transfersA choice of the coefficientsél;) is determined by the irre-
E(K*):E(K’,). An energy gain due to a removal &f pairs  ducible representatiohi of the crystal symmetry group ac-
from E{", that is from AF parts of stripes, may be esti- cording to which the wave functiofEg. (5)] transforms un-

mated phenomenologically if one introduces a paramieter der the action of crystal symmetry operatorsit should be

=1(x) which may be treated as a nearest-neighbor spin comoted especially that the wave functidgq. (5)] corresponds

relation function being a measure of AF short-range ordero a currentless state in view of the fact tRgK=0.

Let us assume that each hole pair transferring from the sub- Taking account of the fact that the domaifgy , corre-
() = (<) o ; : : P
domainZ (") into the subdomaifE} ,’ gives an energy gain sponding to equivalent momeng&, either do not overlap at

equal tol. Then total decrease in the energy of holes due tall or overlap in a small wayFig. 2) and, also, that a scat-
such transfers oféN hole pairs may be estimated as tering of aK pair from any such domain into an equivalent
—oNI. Thus a rise of the stripe structure lowers the grouncbhne corresponds to a rather large change in the total momen-
state energy provided that tum of the pair, one can, in a first approximation, neglect any
inter-domain scattering. Then, the equivalent Hamiltonian of
| > Ser - (3) ']Ehe rlelative motion of the&K pair may be presented in the
orm

The existence in the doma of the hole filled part={ ", )
and the vacant parE ("), makes possible pairing of carriers A= L
in the vicinity of the lines separating filled and vacant sub- 2m
domains. The energy of the relative motion of #pair with

respect to the value of the chemical potential is negativavherer = WX2+x2, Uk (r) is an effective potential energy of
inside Z{ ) and positive inside=("; therefore, the lines the particles composing th¢ pair. This energy depends on
separating these subdomains play role of a peculiar “pair'the domainZy in which scattering due to interaction is per-
Fermi contourPFQ on which the SC gap may arise. Such amitted. When the are&( is large enough, one can suppose
conclusion is related both to the domaiisc and E., that U%(r)~Ex.

therefore, PFC is situated both inside and outside of the par- Generally speaking, all of the eigenfunctions of the opera-
ent FC. If the value of the vectd¢— K’ which may be con- tor [Eq.(6)] belong to a continuous spectrum. Therefore, it is
sidered as a reciprocal spatial scale of the stripe structurguite natural to represent such a function in the form of a
appreciably exceeds a character scale,~A, of nonzero sum of an incident wave with the momentunand scattered
SC order parameter in momentum space, one may considéexpanding wave:

#? 9
VST TS +U;(I’), (6)
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goK(r):>gqu(r)=e‘qr+XKq(r). (7) In the case of a tetragonal crystal, one can separate all of

. ~ ] the equivalent vectorgK into two subsets. One of them,
The Fourier transform of the scattered waygyq(k), is @  \which contains the vectoK itself, also contains all of the

solution of the integral equatich vectorsgK related to each other by reflections with respect to

27 the coordinate axes. The other subset is generated in a simi-
w—o(K)Tve (K =u(k— +f U(k=K)) 5w (K’ _ lar way by the vector resulting from the reflectionKfwith
[ (0 ]xg(k) =utk=a) ( Xkl )(277)2 respect to a diagonal of the square Brillouin zone. The coef-

(8 ficientscglilg), corresponding to the trivial irreducible repre-
Here o(k) = vki—k3, #2w/2m is an energy of the incident sentationA,, are equal to each other. In the case of the
wave, andu(k) =2mUz (k)/42, U% (k) is the Fourier trans-  irreducible representatioB,, the coefficientscgilg) have
form of the effective interaction energy. In E®) one hasto  one and the same absolute value, and differ in sign for the
integrate over the domaii , which is the domain of defi- two above-introduced subsets. Taking into account the ex-
nition of momente andk’. As far as this domain is small in_ plicit form of the functions}éKq(k) one can easily conclude

comparison with the 2D Brillouin zone, one can approXi-ihat, in the case of an appropriate choice of coordinate axis
mately takeu(k—Kk’)~ug. This approximation leads to the directions,w(k) = Vki—kg for any §K belonging to the first

solution of the Eq(8) in the fornt S -
subset, whereas (k) = vk5—k7 whengK belong to the sec-
Ug 1 ond one. Thus the wave function corresponding to the irre-

Xkq(K)=— T+ UpBr(®) ©(K)—w@—10 sgne’ (9 ducible representatioA,, has the form
where the signum function provides a necessary condition in (Are) 2w
order that Eq(9) is an expanding wave. The functi@®y (w) q’qug ~ (0+ k) (w+K2) (14)
is defined as (0Fkp)(0+ks)
5 provided thatv<<1. The full symmetry of this function with
B (w)=J 1 d°k respect to the crystal group enables one to relate it to an
K (20 @(K)—0—i0sgnw (24)2 stype orbital symmetry. Under the same conditiong1,
_ the wave function corresponding to the irreducible represen-
=By1(w) +iBka(w). (10 tation By, may be written as
At a real argument, the functiom;(w) andBg,(w) can be K2— K2
written in the forms g (Big) _ 1 ™ 1
Kq 2 2y " ( 5)
(w+k])(w+k5)
Bk1(w) f ! & This functi b ditionally related tbt bital
ki(w)= — is function may be conditionally relate ype orbita
Epe—o (2m)? symmetry.
2
k
BKz(w)=wsgnwf(_ )qw(k)_w](z o (11) IV. QUASISTATIONARY STATES
2K aa

One can calculate the functiofgg. (11)] which define
where the integral definingy;(w) has the meaning of the the scattering amplitude. For the sake of simplicity, we sup-
Cauchy principal value. pose that the domai& g is a long and narrow rectangular
A denominator, 3 uoBy (), of the scattering amplitude, strip which is roughly similar to a real domay in the case
genera”y Speaking, is not equa| to zero at any real value dﬁf the antinodal direction. We denote the Iength and width of
the argumentw. In the special case, when the function the strip asAk; and Ak,, respectively. The coordinate,
Bk.(w) is equal to zero identically inside some interval of axis is directed along one of the principal directions of the
w, scattering amplitude poles, which are solutions of the2D reciprocal effective mass tensor which corresponds to the

equation positive effective massn;=m/v. Another axis,k,, is di-
rected along the principal direction corresponding to the
1+ upBk1(w)=0, (120  negative effective mass,= —m. Taking into account that

v<<1 andAk;>Ak, one may assume, for the sake of sim-
correspond to bounded states. o _ plicity, that @ _;=(Ak,)2=w, ,=r(Ak;)?=w,. This as-
When some complex value= w{’—iT' is a solution of sumption, used later on, is sufficient to study the main fea-
Eq. (12) and, in additionBy,(w%”) #0, wherew’ makes tures of the scattering amplitude. Using such an
sense of the energy of QSS provided thatl0c<w{® . At approximation, one can represent the funcByy(w) in an

lo—0@)<wl?, the QSS decay can be written as explicit form at anyw:
Tk~Bya(0)/Biy (o). (13 sgnw | Vo, —|w|+ “’1‘
. . - . Bkao(w)= In : (16)
Here the prime denotes differentiation with respectto 2mv N3] ‘
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Here O<|w|<w;. It should be noted that, dtv|>w,, we
haveBy,(w)=0.

The functionBg,(w) is connected with the density of
states of the relative motion &f pair inside the domai&  ,

BK 1 @)
V¥

Bko(e)=meoQk(e)sgne, (17

where go= (42w, /m) is the energy width of the domain
Ex, a2=S/N, N is the number of unit cells in conducting
plane, ande=(%2w/m). The averagginside the domain 0,
E k) density of states per unit cell can be written in the form

1 E¢a®> ma 1
(18)

Ceo(2m? wPh? v gt

gk

Due to the condition that<1, the average density of pair '

states inside the domaifx may be considerably more in _ o

comparison with the total averagiaside 2D Brillouin zong FIG. 4. Plots of the functiomBy,(w): solid line[Eq. (22)] and
density of states, which is equal ta?/7%42. This is a dashed Ilne{Eq.(Zl)].An illustration of the graphic solution of Eq.
consequence of peculiar features of saddle point vicinity in(lz)' schematically.

HTSC cuprates associated with hyperbolic metrics and

strong effective mass anisotropy. B 1
The function defined by Eq16) has a logarithmic singu- Bri(w)~— > |w|— o0, (23
larity at|w|—0, (2m)° @
Ssgnw (4w,

In

(199 At @—=*0, we have from definitior20),

’
w

Byo(w)~ 47T\/;

corresponding to a logarithmic van Hove singularity in the

1 _
density of states due to saddle points. Near the edges of the g _.(+0)==+ 1 | ! X’ d_X: i_l 24
; . k1(£0) 2 n . (29
energy band~ w;<w<w;; this function behaves as fol- 2m2wlo 114X x T8y
lows: Byo(w)~sgnwyw;—|o| at|w;—|o||<o;.
Now, let us consider the functioBy(w) defined in Eq. S ) ) .
(11). Taking into account Eq17), we have Thus a logarithmic singularity of density of states appears in
Bk1(w) as a finite discontinuity ab— *+0. At o= * w4, the
1 (o1 Byo(w')sgne’ function Bk, (w) has the finite values
BKl(w):_J —do’. (20
TJ—w; o' —w
i i i 0.164
First of all, let us estimat8y(w) using the average value Buy(*wy)~T (25)

[Eq. (18)], of the pair density of states. We obtain

Nl

Byi(w)~ . (21)  with |Bgi(* wq)|>|Bk1(=0)|. The functionBy;(w) [Eq.

(22)], is plotted in Fig. 4(solid line).

Function(21) is presented in Fig. 4dashed ling It should The obtained functionByy(w), allows us to analyze
be noted that just the function of the form E@1) was qualitatively the solg'uons of !50[12) which determines the.
used? to analyze the ARPES experiment. Such a self-energp®les Of the scattering amplitude. In the case of repulsion
structure was studied in detail using the analysis of energfp€tween particles composing tkepair (u,>0), solutions
and momentum distribution curvé$The explicit expression ~corresponding to a positive energy$0) exist provided

! I
n
2772\/;

of Byy(w), that —ugBk (w;)<1. One of the solutionswgss, corre-
sponding to greater energy, exists as the desired value of the
. B + . .
e ® fxln [o1— o' + /—wl‘ de’ Eoupl(;ng?JI gotnstar;uo].c The ?econd S(t)IUttlom)lscéi)Elfzigﬂa
w)= ) ounded interval of coupling constant valu¢B;
K1 N g ‘wrz_wz pling K1

(22 <uo+<|B,211(w1)|. The first solution takes place whan,

<wgss<> and the second one exists in an energy interval
in the form of a combination of elementary or special func-bounded both above and below<®{ < w;. At >0, we
tions, is unknown. It is obvious that, hb|— o, haveBy,(w)>0; therefore, the sign of decay which corre-
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sponds to both poles of the scattering amplitude is deter- o
mined by the behavior of the functidBy (). In the inter- :
val w,<w<w, this function increases wit; therefore, a N
positive decay,I'js¢>0, corresponds to the polegss.
Hence this pole may be associated with a QSS. But, in fact, M
as it follows from the definition[Eq. (11)], I'§ss= +0; ot e
therefore, the approximation used here leads to the pole ‘
wgssbeing a real stationary state. Indeed, one can see that.
due to hyperbolic metrics of momentum spacewat w1,

any decomposition of & pair becomes impossible because
of the restrictions connected with momentum and energy
conservation.

At 0<w<w; the functionBy,(w), on the contrary, de-
creases withw; therefore, the finite and negative decay
I'$-<0 corresponds to the pole. This fact may be considered
as evidence of an instability with respect to a ris&qgfairs,
and the imaginary part of the pol€s., may be directly
connected with a SC gap. However, the presence of a posi-
tive real part of the polews>0, indicates that a rise of the
SC state becomes possible only if an energy increase con-
nected with the finite value abs. is compensated for by a
sufficient energy decrease produced by a corresponding rear- : .
rangement of the electron system which does not bear a di- Xy -.x@,;w Xt x
rect relation toK-pair formation. As an example of such a
rearrangement in HTSC cuprates, one may consider the FIG. 5. A comparison of a typical HTSC cuprate phase diagram
above-mentioned rise of a spatially inhomogeneous spin anahd the graphic solution of E412), determining the poles of the
charge structure because of a partial restoration of AF ordesgcattering amplitudéschematically.

Thus, because of the positive sign of the real part of the

scattering amplitude, the SC pole without any renormalizajomp potential, one can write the coupling constant in the
tion of the ground state may be considered to correspond m up=r,=ama* wherea*=#2/mée is an effective

a metastable state. The QSS state has to be related not t%ghr radiust An increase of the carrier concentration due to

minimum but a maximum of to_tal energy. . doping leads to a decrease of the screening length and, as a
In the case when the attraction between particles compos-

ing aK pair dominates §o<0), at 0<|ug|<By,(— ), as result, to a decr.easfe of the cqupling cons'tant. In Fig. 5, we
A . o . represent a qualitative comparison of a typical HTSC cuprate
seen in Fig. 4, there is a solutiong: of Eq. (12) which . . . . .
L L . _ : phase diagrarfFig. 1) and Fig. 4 which we consider to show
exists in an infinite energy regiom; *<wgc<— w4, and, in . . . .
S P the dependence of thépair energyw, when increasing with
the approximation used here, has an infinitesimal deca)a ) the i | £ th i 1
F'sc= 0. Another poleuigss, exising nside the energy (BT, B0 8 BH8E 8 8 B rating normal
interval —w;<wgss<0, corresponds to a real QSS with d q tates in ph di » SEPA g d ith
finite and rather large decay. Therefore, in spite of the fac nd pseudogap states in pnase diagram, 1S In accordance wi
that, due to the assumption that ;= w . ;, there is a sym- he I|-ne. vyh|c-h determ|nes+the energy.o.f the QSS W|th a posi-
metry of the functiorBy () with respect to a change of the tive infinitesimal decaywqgss. In ad(_jmon, there is accor- _
sign of the argument, namel@y,(— ») = — By, (), there dance.between the SC phase region boungled by thg line
is an essential asymmetry in the character of solutions of Eqlc(X) in the phase diagram and the line which determines
(12) with respect to the sign of the coupling constant. the solution leading to the SC inStabi"Ttng. Indeed, both
The point of view* that there are incoherent electron or functions of dopingT¢(x) andwd(x), have finite domains
hole pairs in the pseudogap regime leads to a definite coraf definition bounded above and below.
clusion concerning the sign of the interaction energy which  An evaluation of Coulomb repulsion in an electron system
governs the pairing in HTSC cuprates. That is, neglecting thgyith and without QSS’s indicates that, provided that the QSS
Friedel oscillations, one may propose that the only essentiadoncentration exceeds a certain value, an energy gain is pos-
interaction between electrons is a screened Coulomb repuiple, and thus incoherent QSS's with different total mo-
sion, menta may exist not only as excitations but in the ground
state, resulting in some suppression of one-particle density of
states- Therefore, a rise of such QSS’s may be directly re-
lated to the pseudogap state. A spatial separation of the do-
mains in which one can observe either a SC gap or a
wherer, is the screening length. Taking into account thepseudogafy can be interpreted as an alternation of the re-
explicit form of the Fourier transform of the screened Cou-gions with increased and decreased doping, respectively.

N, Normal metal
Psendogap state

5

: (26)

e? r
U(r)= Tex;{ -—

o
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V. SUPERCONDUCTING PAIRING large total momenta, is similar to a conventional Cooper pair;

Th tive-d les in th tteri litud however, it is clear that the internal structure of pair states
€ negative-decay poles In e scatlering ampitude Colg;se 5o here differs essentially from the rather simple

responding to the relative motion of an electron or hole P&t cture of Cooper pair

with a large total momentum bears evidence of the possibil- . 4 simple one-dimensional stripe structurd-aK’-)

ity of SC pairing both during attraction and repulsion be'pair state arises due to a mixing of only tWostates corre-
tween the particles composing the pair. A consequence of tr@ponding to eithef100] (k, axis or [010] (k, axis direc-

rise of a stripe structure is that a number of ré&apairs  tions. Thus one may expect a rise of an array of alternating
belonging to the domairEx must leave this domain and conducting planes with 1D stripes which are perpendicular to
form real pairs with a momentuid’ (K’ pairg in a domain  each other in the neighboring planes. Pair states formed by
E outside of the FC. The states insiffig andZ , hav-  quadruples oK pairs correspond to a more complicated pe-
ing become vacant and remaining filled, are separated fromodic 2D stripe structure.

each other by a line which is, by our definition, the PFC. The |n the zero-temperature limit, the equation determining
values of the areaE(K” andE(KT) are dependent on the AF the SC order parameter is similar to the conventional BCS
energy which determines the position of the chemical potenequation, and can be written in the form

tial 2 of pairs with respect to the edges of the energy bands

corresponding to the domairEx and Z.. These energy 1 D’,;(k—k’)AKk,
bands and relevant densities of statggc) andgg(e), are Age=—— >, 5 (27
represented schematically in Fig. 3. One part of the PFC, 25 Ve T Ak

which is situated in the domaiBk (the boundary between . _ . .
2() and ("), may be related to the AF part of a stripe, It is obvious that, in the case of repulsion between particles

whereas another part, separat:TaQ_,) andEf;T), belongs to composing & pair, a BCS-like solution, independent lof

the M part of a stripe. An excitation of carriefa rise of is absent. . .

holes E\bove and eplectrons below the chemical potential The SC?|U'[ICLHS of Eq(27) for a S,C energy gap in the cases
level) leads to the possibility of their pairing. Formally, one Of attraction Ug <0) and repulsion i >0) between par-
can considef1) a scattering of pairs in the AF part of a stripe ticles composing & pair differ from each other essentially.
(in the domairE ), (2) a scattering of pairs in thel part of First of all, we consider the case of attraction and restrict
a stripe(in the domainZ /), and alsa3) a scattering which ourselves to the simplest approximation, naméM(k)
includes transfers of pairs between the AF part of a stripe=Uy=const. Such an approximation, like the BCS approxi-
(the domainEy) and theM part of a stripe(the domain  mation, enables one to obtain an explicit expression for the
Ek+). In such a casé3) pairs are spatially separated, and theSC energy gap. A magnitude of the coupling constdpt
interaction leading to their scattering is reduced. As alreadylepends on the pairing mechanism, which is not under dis-
mentioned, the conditiofk’ —K|> k. allows us, in a first cussion here. The only circumstance we have to take into
approximation, to consider pairing in the domafg and account is that one may neglect the predominance of repul-
E - independently of each other, thus restricting ourselvesion as compared to attraction in a comparatively narrow
to one of the case&l) or (2). In this section, we restrict energy region corresponding to a vicinity of the PFC. Lét 2

ourselves to casél) and consider SC pairing near the part of be the characteristic energy width of such a region and sup-
the PFC belonging to the AF part of a stripe. Thus we SUp'pose, for the sake of simplicity, o

h her thim ¢ st d p h thdtis more less than any
pose that rather thitM parts of stripes do not affect the ., 5 teristic energy scale relating to each of the subdomains

superconductivity, essentially due to the proximity effect. _ ) —(+) R .
In the general case, considering a pairing of carriers with~K and=’ . The approximatiot) (k) =const results in

the momentunK along an antinodal direction, it is necessarythat there is a solution of Eq27) independent of the mo-

to take into account all excited states arising due to transfe entum of the re_Iatlve motion of th‘K_ paur, that is,
of carriers across the PEC nameES()H:E(H- As a re- kk=Ax . We restrict ourselves to a consideration of such a

sult, we have a pair with a large total momentum along onesilu“rorll Osly} Reduc:}gg,ireiltsr udsu:?Ir; thensur\T/] 'p Bi)(;m: ﬁn f
of the antinodal directions. As mentioned above, in the casgl (?[g alo EI" SK(; ,t a i oducing a ab? ?‘gfh € Z y 0
of antinodal directions, there exists a quadruple of equivalen? atesgy related to unit area, one can obtain the order pa-

. . - rameter in the form
pairs with total momentagK where, due to symmetry,

Eé{:}KzO. The interaction leading to a scattering of such _ 1

equivalent pairs turns out to be weaker as compared to the AK~§GXF< ~avU ) (28)
interaction which results in a rise of a bound state of a pair Ikk

with given K. This may mainly be due to an essential in- That is, a solution which formally coincides with the BCS
crease of the scattering momentum in spite of the fact thago|ution. It should be noted thgy is more less as compared
the scattering region in the momentum space also increasagith the total density of states on the Fermi level. Therefore,
The Scattering Of pairs with eqUiValent total momenta |ead$n the case Of a typicai phononic pairing mechanism Coupling
to a state of the form of EC{S) which, due to the condition constant Vaiue, one obtains the energy B_ﬂp (28)]’ which
that EQQKZO, corresponds to a currentless state. In thishould be certainly more or less in comparison with the gap
sense, a pair state, such as quadruple pairs with equivaletitat arises due to conventional Cooper pairing on the full FC.
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Now, let us consider the case when a repulsion betweenected to the PFC length, one can qualitatively explain both
particles composind(-pair dominates. In this case, one hasthe rather small superfluid density and the peculiar doping
not to take into account the existence of any bosonic degredependence of c observed in cuprates. One can take such a
of freedom (phononic, electronic, magnetic or somethingdependence into account by assuming that it is explicitly
else as a necessary condition of a rise of a bound state oncluded in AF energyl(x) and the screening lengtiy(x).

K-pair. Screened Coulomb repulsion becomes the only edin evolution of the PFC length with a variation of doping
sential interaction. has to determine, in the main, the doping dependence of both

As one can see from Ed27) there is no solution of the superconducting transition temperature and the superfluid

constant signs inside the domaly, provided thatu,  density. N
>0. Therefore, to obtain an approximate solution of EQq. F?r the ?aket_of S|mfpl(|jC|ty_ we suppo_se thal dand8K+
(27), we suppose that the order parameter dependence on tRES fInear functions o opingei—(y) =#qy and e (y)

. . o =¢eo(1—y). Herey=(x—x1)/(X,—X;) is a “reduced” dop-
momentum of the relative motion of thépair is given by a . 2ol . L e /
discontinuous function changing its sign on the PFC. W Ing level varying within the limits of interval &y=1 when

restrict ourselves to a consideration of the simplest casal=X=X2: As another simplification, we assume that the
: urselv : ! simp 8ensity of states is constant inside the whole of the domain

when the order parameter is independenk @nd different S, Ok=Ex/(27)%,. From this assumption, it follows

inai =d—) =(+) : ) R .
from pther yglues inside thg subdom'alp..i and 5. immediately thatif( )/:KZSK—/SOa that isa=y.
That is, omitting the labeK in the definition of the order Reducing the summation over momenta in E2f) to an
parameter, we assume thak=—A_<0 inside 2 and  integration over the energy of the relative motion of the
A=A.>0 |nS|deE§<+). pair, one can rewrite the system of equatid@3) in the

This assumption allows us to rewrite E@7) in the form  forms
of a system of two equations fax_ and A, . In this con-
nection, one should take into account the above-mentioned (1-y)6_+ 6, =wy(y)h,é_In Yy
remark that the effective interaction matrix elemduf J-
~2E(") when bothk andk’ belong to the subdomai& ', (1-y)
that is, a scattering due to the interaction is restricted to this 6_+yo,=wg(y)hyo,In 5
subdomain(the factor 2 takes into account the fact that the +
scattering is possible both frokinto k' and fromk’ into  whereh,=(1/2-y)?, 5.=A. /e, [we suppose, for the sake
k). However, ifk belongs toZ{ ) andk’ belongs to={"  of simplicity, thaty>¢_,(1-y)>é.], and
and hence the scattering is possible in the whole of the do-

: (30

2 =2
main E¢, we haveUf~E (scattering fromZ{ ) into WK(y)=w. (31
E(K+) only). One can rewrite Eq.27) in the forms goa"(2m)
The screening lengthy=r(y) is a decreasing function of
(- a)A_+A UxEkah, A_ the doping level; therefore, we use a linear approximation for
—a)A_ - T the coupling paramete =wg(1-y/ where
55 b JeZ+ Al e pling p Wi (Y) =Wk (1—Yy/yp) Yb
It should be noted that the chemical potenjiahs a point
U Eah, A, of yeference of kinetic energy of the relative motion of e _
A_+aA =——FF71— S (29 pair changes due to a rise of the SC order as compared with
2S ke=(") VEHAYL its value in the normalnonsuperconductingtate. However,
the corresponding shift of the chemical potential is quite
Here we denoté,,=(1/2— «)? and aEEE{)/EK. small (of the order of the SC gapThus, calculating the

The dependence of the AF energy on the doping levelalues of the paramete®. and 6. one need not consider
allows us to hunt down the evolution of the PFC due to athe chemical potential shift arising due to the SC condensa-
variation of doping. Ifl (x) < Sexx =, the PFC is absent tion of K pairs. Thus we assume approximately thatis
and the energy width of the subdomainds ), ex_ =z, determined by the only parametgrand equal to a value
whereas the energy width of the subdomairEiS), - which corrgsponds to the PFC at givem the normal state.
—0 wheres, is an energy width of the domai, . At However, in contrast to BCS theory, in our case just the

- 0= ; 9y . K- chemical potential shift determines the SC condensation en-
[(X5) =1, there is an “opening” of the PFC at two poinds

anda’, which are situated on tHg axis, as shown in Fig. 2. ?r;ggéi?gr? ttr?m?)(jr;tﬁfg.lg dependence of the superconducting
A decrease of doping<Xx,, leads, first of all, to a rise, and By definition, both unknown quantitie$  and 8. in Eq.

then to an extension, of the subdomaif”) which is accom- (30 “are non-negatives_ =0 and 8, =0. Nontrivial solu-
panied by a corresponding decrease of the subdoBin.  tions turn out to be possible under the condition that the
Thus the PFC length increases and then, after reaching tlsupling parametefEq. (31)], is large enough. The depen-
maximal length value corresponding to a certain dopingdence of this parameter on dopifgqg. (31)] leads to an
level, begins to decrease, shrinking at two pom&édb’ on  asymmetry of the functiond_(y) and 8, (y), that s, in the
thek, axis (Fig. 2). Such a shrinking corresponds to a valuegeneral caséexcept as some special values of doping lgvel

of the doping level related to, the AF enerbfx,) =1y, . If 6_(y)#6.(y). The doping dependence of_(y) and

one assumes that the pair condensate density is directly con- (y) are represented schematically in Fig. 6.
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ing average number of particles inside the donijp, pro-

8. vided that the AF energy has a certain given value. In the
normal statesZ,=1, whenke 2{), andv2,=0, when
ke Z(") in zero-temperature limit, therefore, the condition

5, that (N )= const can be rewritten in the fofm

ki
1- 1= — 33
° k;E:(K” k;E:{() k;;K Vit Ak %9

Let us consider the case of repulsion between particles com-
posing theK pair. SinceA_<egx_ and A, <gg, in any

FIG. 6. Solutionss_ and &, of the system of equationi€q.  case, and the chemical potential shift measured from the
(29)] and the condensation enerfyg. (41)], plotted schematically PFC position at\ : —0 is small together witlA -, one can,
as functions of the reduced doping level. reducing the summation over the momentum to an integral
over &k, approximately rewrite Eq.33) as

0 05 vy

VI. CHEMICAL POTENTIAL SHIFT

In a spatially homogeneous system, the vallg 2f the \/M’2+ A% — \/M'2+ Aiwzﬂ’ —_—
chemical potential of pairs indicates that the whole of the
domain E is filled, whereas all of the states inside any (34)
domain=, are vacant. A rise of a stripe structure leads to aAssuming thafu’ = u;+ uy Whereu] (us) is a quantity of
hole redistribution betweeE ¢ andZ ., , with the result that  the first(second order with respect ta -, Eq.(34) may be
the PFC arises. Thus the PFC may be treated, in the zer@olved with the use of the method of successive approxima-
temperature limit, as a line separating filled and vacant paitions. Two values of the order parametér, and$. , are not
states in momentum space. The possibility of pairing itselindependent, as follows from the E¢B0). Their ratio y
resulting in an opening of the SC gap on the PFC arises just 5, /5_ is a function of doping,y=y(y). The chemical
as a result of such a redistribution which may be, for ex-potential shift can be written as
ample, due to above discussed partial restoration of AF order.

The numbers of vacant states insiglg and, on the other ' =ggd N+ 7165], (35

hand, filled states insid€ . are governed by the valueof
AF energy which determines the positiop 2f the chemical
potential of pairs with respect to the edges of the energy

where we denoté_= 6, and

2
bands corresponding to the domatfig and = . The den- A= i 4 ) (36)
sities of stategyx(e) and gg:(g), corresponding to these 2\2 1+ ¥

domains, are represented in Fig. 3.
To evaluate the chemical potential shift due to a con-
densation oK pairs belonging to the domat , one has to parameter from Eq. (34).

. o It should be noted that in the case of attraction between
gzkreolp Loaﬁfgggr;;;?;}aa formal definition of an average numbarticles composing K pair, we have only the value of the
K

order parametgEq. (28)], which is independent of the mo-
£ mentum of the relative motion. Therefore, to obtain the
(Ng)=2 > Ve = > (1_ $> (32  chemical potential shift due to SC condensation one should
ke Ek

One can easily obtain an explicit expression of the second

keEZk \/fﬁk+ Aﬁk ’ formally write §, = —6_ . Then we have
takes into consideration the particles which may pass from o (1—2y)
Bk into E¢,. Such a passage is compensated for by the u=- VIRV 2, (37
particles passing fror& ¢ into Z¢ . Therefore, the conserv- y(1=y)

ing quantity is a suniNy)+ (N ), where the second termis Thus the approximation we use here leads to the absence of
an average number of particles insifig, . The condensa- a term which is linear in5, and the chemical potential shift
tion may be considered in each of the domatisand=x,  turns out to be proportional té2.

independently if, as accepted aboi€; —K|> k.. In such It should be noted that the necessity of thdependence

a case, one has to take into account only the passages ¢f the SC gap and a corresponding displacement of the
particles from={ ) into E{") if one considers a condensa- chemical potential from its value in the normal state was
tion of K pairs only, bearing in mind that the position of the established phenomenologically by Hirdtin his theory of
PFC in the normal state is determined by the AF endrgy hole superconductivity. It is clear that “the gap slope” intro-
which is considered here as an external parameter. As far aiced by Hirsch is directly related to our simple discontinu-
the chemical potential shift due to SC condensation of paireus solution of the gap equation, whereas the linear term in
is also small together with ., such an approximation only the chemical potential shift, arising just in the case when
slightly affects the introduced below coefficientsand 7. A_#A ., corresponds to Hirsch’s “electron-hole symmetry-
Thus(Ng) may be considered as an approximately conservbreaking term” the difference.’ being between the chemi-
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cal potential values in the superconducting and the normadnergy of the relative motion d€ pairs, being a result of SC
state. One can see quite easily that, in the case of electrogondensatiorit should be noted, however, that both contri-
hole asymmetry observed in tunnel current-bias characterigyutions vanish when the coupling constant tends to)zero
tics, such a chemical potential shift is a direct consequence As it follows from Eq.(39), an energy gain due to the
of the particle conservation law. Indeed, if one considers &ondensation oK pairs is possible when
redistribution of particles due to SC condensation inside the
domainZk only, it becomes obvious that in the case when N+C5>0. (40)
A_#A,, the value 1/2 of the factar, cannot correspond
to the position of the chemical potential relating to the nor-It can be seen from E¢39) that this gain is mainly due to a
mal state. Thus some chemical potential shift is needed teenormalization of the kinetic energy of the relative motion
satisfy the condition that the number of transfers of holef the K pair. Indeed, the chemical potential shift due to a
from Z{ ) must be equal to the number of transfers intorise of a condensate df pairs results in a corresponding
E(KH_ The sign of such a shift is determined by the sign ofshift of the position of the PFC. Provided that the condition
the differenceA_—A. . Thus Hirsch’s statement that’ (40 is satisfied the PFC is shifted in a way that there is an
>0 is valid, generally speaking, in the case whan  extension of the parE{ " of the domainZ in which the
>A_ . One can also note that the so-called superconductingnergy of the relative motion of thi€ pair is negative. The
“Fermi surface,” introduced in Ref. 35 as the locus kn ground state energy decreases due to a filling of the states
space of quasiparticle states of minimum energy, in a sens#hich arise as a result of such a PFC shift.
plays the role which, indeed, the PFC plays in the analysis of In this connection, one relevant optical experinféobn-
ARPES spectra and some other phenomena typical of HTSE/stent with the conception elaborating here should be noted.
cuprates. An estimation of the superfluid densipy, which is directly
connected with the IR reflection, indicates that, in several
VII. CONDENSATION ENERGY HTSC cupratesps significantly exceeds the value ot_)tained
from optical conductivity by means of Kramers-Kronig rela-
The existence of the solution of E(28) for a SC order tions under the condition that one takes into account an en-
parameter in a doping intervaj <x<x, does not mean that ergy interval comparable to the SC g&prhis contradiction
the SC state arises throughout, or at least in some part of, thmay be eliminated if one considerably extends the interval of
interval. A phase transition from the state into the SC state integration. In conventional superconductors, as follows
occurs under a necessary condition: namely, the condensiiem the BCS theory, each Cooper pair leads to an energy
tion energy defined as a difference betwé&éand SC state gain of the order ofA. The energy width of the condensation
values of the ground state energy must be positive. region in the vicinity of the FC is of the same order. There-
A contribution into the ground state energy which is as-fore, the condensation energy turns out to be of the order of
sociated with a condensation &f pairs inside the domain AZ2. This explains the fact that, using Kramers-Kronig rela-

=« may only be written, as usual, in the form tions, we can restrict ourselves to a finite interval of integra-
tion having a character energy width of abdut The pres-
1 zgﬁk+ Aﬁk ence of the linear term~A) in the condensation energy in
Eos= Z §kk— 5 Z T (38  Eq. (39 clearly indicates that eack pair also leads to an
keEk 2B kit Ak

energy gain of the order ok, but that the contribution to
this gain is due to the vicinity of the PFC, giving a character
energy width of aboui.’ which is usually larger compared
to A.

Let us define the condensation energy per unit area as

Reducing the summation over momentum in E2B) to
the integration oveéy,, one has to take into account that the
energy éx measured from the chemical potential of tNe
phase varies within the intervat ey <é&g<eg. . There-
fore, taking into account the above-discussed chemical po-
tential shift due to SC condensatiqi), and the fact that the
SC order parameter has a discontinuity on the PFC, the co
densation energy, correct to the terms of the ordex%fcan
be represented in the form

ec=(Eoqn— Eos)/4gxe2S= 8(\ +¢6), (41)

Und qualitatively study its dependence on the doping level. In
Fig. 6, we represent a plot of the functipBq. (41)] calcu-
lated numerically for some values of the coupling parameter.
90— It is obvious that there exists a certain minimal value of this
Eos=Eon—$49kepd(A +C9), (39 parameter which corresponds to the beginning SC condensa-
tion. This conclusion is in agreement with a finite value of
the scattering amplitude ai= w, obtained in Sec. IV.
= _ _ . As one can see from Fig. 6, the calculated condensation
A andc are connected with. and 7 in Eqg. (35), in accor-  energy has a negative sign inside some region of the doping
dance with the relations=2y\ andc=2y7+ (1+ y?)/4. level. This fact is due mainly to the negative sign of the
The term (1 y%)/4 may be formally related to a direct chemical potential shifi.’, leading to a kinetic energy in-
contribution of the pairing interaction into the condensationcrease. One may believe that such a result is a consequence
energy, whereas the contributions associated with the coeffef a special choice of the gap equation solution being dis-
cientsA andr may be related to a renormalization of kinetic continuous on the PFC and leading to an energy gain in a

where Eo,\lz—Sngﬁy2 is the corresponding contribution
into the ground state energy of thephase. The parameters
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doping region where the condensation energy turns out to beompanied by a rise of the phase coherence of the “antin-
positive. At another choice of the gap equation solutionodal” K pairs. Thus, as a final result, the zero-energy line for
which varies with a momentum of the relative motion con-pair excitations arises inside the dom&n (similarly, such
tinuously within an energy scale of the orderdfnear the 3 line arises inside the corresponding donfgip outside of
PFC inside bottE{ ) andZ{", the values oA _ andA,  the FC as wejl Just this line may be treated as “pair” Fermi
are supposed to be unaffected; therefore, one may expectcantour(PFQ).
gain in the condensation energy in the whole of the reduced The conception of the PFC and hyperbolic pairing enables
doping interval, 62y<1, in which the solution of the gap one to explain qualitatively some general features of phase
equation exists. In this connection, it should be noted thadliagrams and many surprising experimental data relating to
such a choice of the parameteis and A, has to corre- HTSC cuprates. In particular, the rise of both SC and
spond to more symmetric tunnel current-bias characteristicGseudogap states may be considered as a manifestation of
in an extremely underdoped regime in comparison with thehyperbolic metrics of momentum space and screened Cou-
optimal one. lomb repulsion between holes. Therefore, both the SC gap
The condensation energy and the transition temperaturgnd the pseudogap must have one and the same energy scale,
corresponding to an extremely underdoped regime are rath@id theird-type “orbital” symmetry, in fact, is determined
small, whereas the superconducting gap value is finite angy the crystal symmetry. A character spatial scale of a pair
large enough. Therefore, one must not consider as strikingoth in QSS and SC statéthe coherence lengths of the
the large value of the ratio&/ T observable in underdoped order of a few interatomic distancés.
HTSC cuprates’ Thus we believe that the SC gap and the pseudogap have
one and the same origin in the sense that they may be asso-
ciated with pairs with large total momentum. Nevertheless,
one can think that the pseudogap regime has a nonsupercon-
The total energy increase which is due to a rise of PFQucting character because it is due to a rise of pairs with
and a corresponding redistribution of carriers in momentuntifferent total momenta, whereas the SC regime arises after
space may be compensated for whags appears to be just the condensation of these pairs into a state with a definite
the case related to hole—doped HTSC cupjatiesre is an  total momentum and a rise of the phase coherence. In this
energy decrease due to a partial restoration of AF ordering igonnection, it should be emphasized that our point of view
hole-depleted regions. An alternation of hole—depleted ancelating to the origin of the pseudogap does not contradict
-enriched regions in real space forms charge and spin spatitie conclusiof? concerning the different natures of the SC
structures. Under definite conditiofig particular, in an un- gap and the pseudogap.
derdoped regime this structure, associated closely with  As evidence in favor of the PFC conception, one may
short-range AF order fluctuations, becomes apparent as @nsider an interpretation of two interesting experiments, re-
quasiregular static or dynamic 1D stripe structure. Such #ating to an examination of the electronic spectrum of several
phase separatiofi,accompanied by a change in the filling of HTSC cuprates with the help of the ARPES technique. In
hole states in momentum space, may correspond to the minthis case, when the energy of an excited electron is near the
mum of total energy of the electron system. Short-range ARFermi level Ex (less than about 100 méVARPES datd
ordering, stabilizing stripes due to a redistribution of holeindicate unequivocally that the electronic structure has a 2D
pairs, is an intrinsic but possibly not unique attribute of suchcharacter and the FC remains in the well-known form of a
a self-organization. For example, long-range orbital magnetisquare with rounded cornefdf an electron is excited far
ordering>® known as a flux phase state, may play the samdrom Er (about 500 meY the electronic structure becomes
role as well. This phase is perhaps associated with the s@D rather than 2D. It should be noted that a simple cross-
called hidden-order-parameter region in the phase diaé‘?am.shaped form of the FC, in fact, is derived not directly from
Aredistribution of carriers in momentum space may resultexperimental data but offered as a result of motivated specu-
in the rise of a zero-excitation-energy line separating occutations based on the simplest 1D stripe model. Such a fairly
pied and vacant states in a 2D Brillouin zone. We believesurprising conclusion is entirely consistent with the concept
that, first of all, a rise of vacant states inside and occupie@f the PFC introduced here. In fact, if the SC pairing condi-
states outside of the parent FC must lead to the formation afons are satisfied on the isoline of the kinetic energy of the
pairs with total momenta corresponding to the largest areaslative motion of theK pair as a continuation of the PFC,
Hx and 2, with K andK' along the antinodal directions. and if some piece of this isoline is situated close enough
Such pairs have the largest binding energies and exist up t@bout 500 meVto the FC, just this piece provides an exci-
the temperaturd™* of the beginning of the pseudogap re- tation energy minimum outside the FC.
gime. Then the lowering of the temperature frdmh to T One can believe that the so-called “dip-hump structure”
results in a gradual rise of electron and hole pairs with totaln the ARPES spectfa is more evidence in favor of the
momenta having different values and directions and correeoncept of the PFC: a hump, arisifigst in the case of the
sponding to some set of domaifs and E, . Finally, at  antinodal direction corresponding to the maximal value of
T=Tc, there is the beginning of a SC condensation of pairsEy) at energies which are essentially more than the energy
into the state with the largest binding energy. SC condensaelated to the quasiparticle peak, may be associated with the
tion gives a start to transfers of differeidtpairs into the the excitations in the form of pairs near the PFC.
state corresponding to the “antinodal” domaty , only ac- Another one unusual feature of HTSC cuprates with a

VIIl. SUMMARY AND CONCLUSIONS
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d-type symmetry of the SC gap can be qualitatively inter-Thus one can assume the possibility of the existence of crys-
preted in the framework of the PFC conception. It is believedals with such a form of the FC which optimally conforms to
that impurity scattering has to lead to an essential reductiothe form and energy position of a line of zero kinetic energy
of T¢, because the scattering of a pair into regions of mo-of the relative motion of a hole pair with certain large total
mentum space corresponding to nodal directions means, imomentum(one can consider simple hyperbolic lines used
fact, a break of the pair. In this sense, nonmagnetic impurihere as a certain limiting casé\s a simple example in be-
ties play a role similar to that which play magnetic impurities half of such a statement, one can consider a two-band model
in conventional superconductors. However, the experimentaf a cuprate compoufidlin which the FC consists of two
fact is that the HTSC cuprates are weakly sensitive to impusimply connected parts. If one part of a doubly connected FC
rity content. Thus there are no experimental data which werés the same as a piece of the boundary of the dorEairfor
confirmed such a “destructive” influence of impurities on a certaink, this mutual line just is the PFC for gives . As
the SC state. In this connection, it should be noted that, ta result, in such crystals, the pairing mechanism discussed
reconcile such a statement with the experiment, one has teere may dominatéossibly even without the AF state in the
suppose that any interaction resulting in a scattering of Cooneighborhood of the SC state, and thus without a rise of
per pair in ad-type superconductor, including the interaction stripes as may occur in cuprate compounds with more than
which leads to a binding in the pair itself, must possess @ne CuQ plane in the unit ceff). Note that, in the frame-
peculiar feature, namely, the scattering into “nodal regions”work of the modef?® the order parameter changes sign at a
has to be more weak in comparison with the scattering intaransfer between the bands. In real space it corresponds to
“antinodal regions” (the so-called “forward scattering®®  different signs of the order parameter on the two conducting
Using the PFC conception, it is not necessary to consider anglanes, taking into account in the model. Apparently, this is a
peculiar feature of scattering as far as there are kinematigeneral property of any two-band model with repulsion be-
constraints which forbid the scattering into the region of mo-tween particles composing a péirlt should also be noted
mentum space outside the doma#y, in particular, into  that the consideration of the so-calleg pairing® in the
regions which correspond to the nodes of the SC gap. framework of a one-dimensional Hubbard model with pair
A problem connected with a strong anisotropy of reversedhopping interactior(the Penson-Kolb-Hubbard mod! re-
relaxation times, that is the existence of so-called “hot” andsults in a sign alternation of SC order parameter defined on
“cold” spots on the Fermi surfac&** can also be qualita- the sites of atomic linear chain.
tively solved in the framework of the PFC conception. In- It should be noted that a superconducting state with a
deed, a rise oK pairs results in their free in-plane motion large (K~2kg) total pair momentum was previously
without a change of charge density, whereas a character studied® in the framework of the microscopic model of the
the interaction of paired carriers may be changed essentiallgoexistence of superconductivity and antiferromagnetism or
this interaction, being inside antinodal regions, turns out tadhe charge-density-wavéa structural phase transition; in
be more weak as compared to the interaction of unpaireguch a case, the momentin= 2k turns into a vector of the
carriers inside nodal regioris. reciprocal latticg In this model, a state with a large pair
The idea we use here is based, in the main, on the fact thatomentum arises as a result of the coexistence of AF order-
the PFC should be “opened”; that is, due to a rise of stripedng and Cooper pairs with zero total momentum. Phenom-
and hyperbolic metrics of momentum space, some piece anologically, such transitions may be considered as a break
the FC turns out to be the same as a line of zero kinetiof corresponding symmetry. Zhatgassembled AF and
energy of the relative motion of a hole pair with a large d-wave SC order parameters into a five-dimensional vector,
momentum. If such a line corresponding to a certidins  and postulated the symmetry of order parameter unified in
close enough to a rather large piece of the real(§i@h a such a way under rotations of an &Dgroup. However, to
case may occur, for example, just a1l and|2kg—K]| obtain the closed Lie algebra of fermion pairing and particle-
<kg) the pairing mechanism discussed here may also bhole operators describing antiferromagnetism and supercon-
possible even without any hole redistribution both in mo-ductivity, one has to consider a more general symmetry than
mentum spacébetween the domaing, andZ,) and in  SQ(5) symmetry, for example, the $4) symmetry>® Such a
real spacdthat, is without a rise of a stripe structiwrén this  more general approach leads directly to a rise of the compo-
case, the value of, plays the role of a cutoff parameter, nents of the unified order parameter corresponding to pairs
since it must appear in the arguments of the logarithmiowith large (of the order of the AF vectdrtotal momentun??
functions in Eq.(30) together with the SC gap parameters Thus one may conclude that tle pairs introduced in our
A_andA, . In a sense, the pairing problem becomes analopaper in a microscopic way are fully consistent with rather
gous to that which arises in the case of Cooper pairing irgeneral symmetry constraints. Note that if the vedfoco-
weak ferromagnets.This statement is consistent with the incides with the AF vector exactly, the SC order parameter,
results presented in Secs. Il and IV. That is,»at0 and  due to the rise oK pairs, and the ARtriplet) order param-
w1— 0 (it is obvious that the parameter,— 0 plays the role eter turn out to be connected to another SC order parameter
of an energy distance between the FC and the line of zeroorresponding to pairs with zero total momentum. A small
energy of pair relative motionthe imaginary part of the SC difference betweeK and the AF vector leads to a small total
pole of the scattering amplitudevhich is proportional to the momentum of these pairs. Such pairs may be a in singlet spin
SC gap parametenecessarily exceeds the real part of thestate(conventional Cooper pairsr in a triplet spin state.
pole due to a logarithmic singularity @y,(w) at w—0. The case we discuss in this paper corresponds just to the
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latter of the two possibilities, namely, triplet AF order coex- the t-J modeP® with regard for next-nearest-neighbor inter-
ists with singlet SC order due 6 pairs and triplet SC order actions(the so-called-t’'-J modeP?.
due to the pairs with small total momentum.

The phenomenological approach used here to take ac-
count of the influence of AF fluctuations on carrier pairing
enables one to interpret qualitatively the key experimental We are deeply grateful to A. F. Andreev, A. M. Dykhne, V.
data relating to HTSC cuprates. We believe that the principal. Ginzburg, Yu. Kagan, L. V. Keldysh, and Yu. E. Lozovik
conception of hyperbolic pairing and a rise of the pair Fermifor fruitful discussions. The work was supported, in part, by
contour is an inherent feature of a cuprate electron systenthe Russian scientific-educational program “Integration”
which has become apparent both in the band scheme and {Rroject Nos. AO133 and AO1%%nd the Russian founda-
appropriate models of strongly correlated systems, such &#on for basic research.
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