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Phase phonon spectrum and melting in a quantum rotor model with diagonal disorder

W. A. Al-Saidi* and D. Stroud†

Department of Physics, The Ohio State University, Columbus, Ohio 43210
~Received 10 August 2002; published 22 January 2003!

We study the zero temperature (T50) quantum rotor model with on-site disorder in the charging energy.
Such a model may serve as an idealized Hamiltonian for an array of Josephson-coupled small superconducting
grains or superfluid4He in a disordered environment. In the approximation of small-amplitude phase fluctua-
tions, the Hamiltonian maps onto a system of coupled harmonic oscillators with on-site disorder. We study the
effects of disorder in this harmonic regime, using the coherent potential approximation, obtaining the density
of states and the lifetimes of the spin-wave-like excitations for several choices of the parameters which
characterize the disorder. Finally, we estimate the parameters characterizing theT50 quantum melting of the
phase order, using a suitable Lindemann criterion.
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I. INTRODUCTION

The quantum rotor model is a widely studied Hamiltoni
which may serve as an idealized representation of m
physical systems. It consists of two parts: a potential ene
which represents the coupling between two-component
variables of fixed length~anXY Hamiltonian! and the kinetic
energy of those spins. The model is quantum mechan
because the potential and kinetic energies do not comm

One possible realization of this model is a Joseph
junction array, i.e., a collection of superconducting islan
with Josephson or proximity effect tunneling between
islands. Such arrays can be produced experimentally
wide range of geometries and with a great variety of in
vidual junction parameters. They may be described by
quantum rotor model in the limit of small grains. In this ca
the potential energy corresponds to the Josephson cou
and the kinetic energy corresponds to the charging ene
Such arrays can serve as model systems for studying q
tum phase transitions1 under conditions such that the expe
mental parameters can be readily tuned.2 Recently, it has also
been proposed that Josephson junctions may serve as a
tum bit ~qubit! in quantum information technology, wher
the quantum logic operations would be performed by c
trolling gate voltages or magnetic fields.3

The quantum rotor model may also be realized in ot
physical systems. For example, in liquid4He the potential
energy may represent a discretized form of the gradient
ergy term in the Ginzburg-Landau free energy of superfl
4He and favors a state in which all parts of the superfl
have the same phase, while the kinetic energy term is
energy associated with the time variation of the order par
eter phase. The model may be particularly useful for heli
films and helium in confined geometries such as por
glasses. The spectrum of elementary excitations in such
fined geometries has recently been studied extensively.4 This
spectrum may be treatable by the quantum rotor model.

In this paper, we study a special kind of quantum ro
model, namely, the two-dimensional model with diagon
disorder in the kinetic energy. Our emphasis in this study
to understand what happens to the spectrum of elemen
excitations in the presence of this disorder. We also inve
0163-1829/2003/67~2!/024511~7!/$20.00 67 0245
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gate the conditions for the destruction of phase order in
model arising from such quantum fluctuations in the ph
variables. This model includes a particularly simple form
disorder. In the case of a Josephson junction array~JJA!, it
would correspond to fluctuations in the self-capacitance
individual grains, but no significant randomness in the
sephson coupling between the superconducting grains. In
case of superfluid helium, the diagonal disorder might cor
spond to randomness in the pore geometry~for a three-
dimensional system! or arising from surface roughness~for a
thin film!.

In the present paper, we are primarily interested in
spectrum of elementary excitations in this model at low te
peratures. We therefore adopt a simple mean-field appr
mation which has been successfully used to treat elemen
excitations in other systems. This is the coherent poten
approximation ~CPA!, as described originally by Soven5

Taylor and co-workers,6,7 and Velickýet al.8 For the present
problem, the CPA may be adequate at very low temperatu
under conditions such that the original Hamiltonian can
approximated as harmonic. At higher temperatures or un
conditions such that the harmonic approximation is ina
equate, it will be necessary to consider a more sophistica
approximation, such as the self-consistent harmonic appr
mation~SCHA! ~Refs. 9–11! or a field-theoretic treatment in
which the charging energy is mapped onto a coupling in
imaginary time direction.12

The remainder of this paper is organized as follows. In
next section, we present the model Hamiltonian and its re
tion to a set of coupled harmonic oscillators. In Sec. III, w
describe how the CPA may be used to study the disord
averaged properties of the model Hamiltonian in the h
monic approximation. Our numerical results based on
CPA are presented in Sec. IV, followed by a concluding d
cussion in Sec. V.

II. MODEL HAMILTONIAN

We will consider the following model Hamiltonian:

H5
1

2 (
j

U jnj
21(

jk
Jjk@12cos~u j2uk!#. ~1!
©2003 The American Physical Society11-1
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Hereu j is the phase of the quantum rotor andnj is a variable
which is quantum mechanically conjugate to the angleu j . nj
anduk are assumed to have commutation relations

@nj ,uk#52 id jk , ~2!

whered jk is a Kronecker delta function and@•••# represents
a commutator. In Eq.~1!, the first sum runs over sitesj and
the second sum runs over all distinct pairs of sitesj andk. If
this model is assumed to describe a Josephson junction a
then the first term represents the capacitive energy of
array in the diagonal approximation. The most general fo
of this capacitive energy would be12 ( jkU jknjnk ; in Eq. ~1!,
we make the approximationU jk5U jd jk , whereU j is related
to the diagonal capacitanceCj or, alternatively, to an effec
tive ‘‘mass’’ M j ,

U j5
4e2

Cj
[

\2

M j
. ~3!

The second term represents the sum of the Josephson
pling energies between grainsj andk. In Eq. ~1!, it is implic-
itly assumed that there is no contribution toH arising from
dissipation. In this paper, we shall assume thatJi j Þ0 only if
i and j are nearest-neighbor grains and that, furthermo
there is no disorder in this nearest-neighbor coupling,
that Ji j 5J for all nearest-neighbor pairsi and j. Hereafter,
we shall refer to this model Hamiltonian as describing a
sephson junction array, although, as noted above, the m
is also applicable, in principle, to other physical systems

For sufficiently low temperatures, we assume that
above Hamiltonian can be approximated by its harmo
form

Hharm5
1

2 (
j

U jnj
21

1

2
J(̂

jk&
~u j2uk!

2[K1V, ~4!

where the second sum runs over distinct nearest-neig
pairs. While one can go beyond the harmonic approxima
by using a self-consistent phase phonon approach,9,10 we
shall here consider only the harmonic approximation, wh
is more easily combined with a treatment of disorder. T
Heisenberg equation of motion of the phase variable
i\u̇ j5@u j ,H#5 iU jnj , where the last equality follows from
the commutation relation~2!. This equation makes clear tha
Hharm is formally analogous to an array of ‘‘masses’’M j
harmonically coupled by springs of ‘‘spring constant’’J.
However, in contrast to a real lattice of masses and spri
there is no polarization degree of freedom.K andV represent
the kinetic and potential energy terms in this Hamiltonian
disordered array of such oscillators can thus be treated by
same methods used to treat disordered arrays of couple
cillators.

In this paper, we shall consider a bimodal distribution
the U j ’s. Thus we takeU j5U1 or U2 with probabilitiesp
and 12p, respectively. We also assume that the type-1
type-2 grains are randomly distributed on an ideal latti
with no correlation between the occupancies of neighbor
sites. With this choice, the Hamiltonian~4! is analogous to
the classic problem of substitutional mass disorder in pho
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spectra, except that the ‘‘phase phonon’’ excitations ha
only one possible polarization. This problem has previou
been studied by Soven,5 Taylor,6 and Elliott and Taylor,7 us-
ing the coherent potential approximation.5–8 In the present
paper, we shall use the same approach to study the effec
disorder in the ‘‘phase phonon’’ spectrum. Note that beca
the entire Hamiltonian is invariant under a global rotation
phases, the long-wavelength phase phonons are Golds
bosons with frequencies that go to zero linearly in the wa
vector k, even in the presence of disorder and even in t
dimensions.

III. COHERENT POTENTIAL APPROXIMATION

A. General equations

The CPA provides an approximate way of calculating t
disorder-averaged Green’s function

Ḡ~z![ K 1

z2Hharm
L

dis

, ~5!

wherez is a complex variable,Hharm is the Hamiltonian op-
erator, and̂ •••&dis represents an average over disorder re
izations. Of particular interest is the diagonal matrix elem
of this operator, which we write

F~z!5^ j uḠ~z!u j &[Ḡ~ j , j ;z!. ~6!

Because the operatorḠ is disorder averaged,F(z) is inde-
pendent ofj.

Also, sinceḠ(z) is disorder averaged, it can be express
in terms of a periodic operatorHeff by the relation

Ḡ~z!5
1

z2Heff
. ~7!

For the present case of ‘‘site-diagonal’’ disorder,Heff can be
written

Heff5Keff1V, ~8!

whereKeff can be expressed as

Keff5
\2

2Meff
(

j
nj

2 . ~9!

Here Meff(z) is a complex, frequency-dependent ‘‘effectiv
mass’’ which is, however, the same for each sitej. It is con-
venient to expressMeff in terms of two other quantities—th
‘‘virtual-crystal’’ mass

MVCA5pM11~12p!M2 ~10!

and a dimensionless, complex self-energy functionS(z) de-
fined by

Meff~z!5MVCA@12S~z!#. ~11!

In the CPA, it is found thatF(z2) andS(z) are connected
by the complex scalar equation13
1-2
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MVCAS~z!5
p~12p!~dM !2z2F~z2!

11z2@~122p!dM1MVCAS~z!#F~z2!
.

~12!

Here dM[M12M2[2eM2, where e[12M1 /M251
2C1 /C2, and we have adopted the convention thatC1
,C2.

In order to complete the approximation, we need to
pressF(z2) in terms ofS(z). This is readily accomplished
as follows. First, we consider the analogous virtual-crys
Green’s functionGVCA(z)[1/(z2KVCA2V), where KVCA

5( jnj
2/@2MVCA#. SinceKVCA1V is periodic,GVCA(z2) is

diagonal in momentum space. In particular, the diagonal
trix element is given by

^quGVCA~z2!uq&5
1

z22vq
2
[GVCA~q;z2!, ~13!

where vq is the frequency of a ‘‘phase phonon’’ of wav
vectorq in the virtual crystal anduq& and u i & are related by
uq&5N21/2( ie

iq•Riu i &, Ri being the position of thei th grain
andN being the number of grains in the lattice~which may
be assumed to have periodic boundary conditions!. The cor-
responding diagonal matrix elementFVCA(z2) is given by

FVCA~z2!5
1

2NMVCA
(

q
GVCA~q,z2!, ~14!

where the sum runs overq’s in the first Brillouin zone of the
grain lattice. Next, we introduce the virtual-crystal density
statesgVCA(h) by

gVCA~h!5
1

2N (
q

d~h2vq!, ~15!

in terms of whichFVCA(z2) takes the form

FVCA~z2!5
1

MVCA
E

0

` gVCA~h!

z22h2
dh. ~16!

Finally, we can obtainF(z2) for the actual disordered
crystal in terms ofFVCA(z2) simply by making the replace
mentz2→z2@12S(z)#, so that

F~z2!5FVCA„z
2@12S~z!#…

5
1

MVCA
E

0

` gVCA~h!

z2@12S~z!#2h2
dh. ~17!

Equations~12! and~17! represent two coupled equations f
F(z2) andS(z) which can be solved simultaneously, given
model forgVCA(h).

In the present paper, we will consider a two-dimensio
~2D! lattice with a simple Debye-like density of states d
fined by

gVCA~h!5
h

2pv2
Q~vD2h!. ~18!
02451
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Here v5AJ/MVCA is the speed of the ‘‘phase phonon’’ ex
citations in the virtual crystal andQ(vD2h) is a unit step
function. The Debye cutoff frequency

vD5~4pv2!1/25~4pJ/MVCA!1/2 ~19!

follows from requiring that the number of phase phon
states be normalized to one per grain. The quantityFVCA(z2)
follows readily from Eq.~16!:

FVCA~z2!5
1

MVCAvD
2

lnF z2

z22vD
2 G . ~20!

Equations~12!, ~17!, and~20! constitute a self-consistent se
of equations which can now be explicitly solved to give t
properties of the phase excitations in the disordered sys
within the CPA.

B. Lattice properties

1. Density of states

The density of phase phonon excitations within the CPA
given by13

gCPA~v!52
2

pv
ImE

0

` h2gVCA~h!

v2@12S~v!#2h2
dh. ~21!

Using Eq.~18! for gVCA(h), this expression can be furthe
simplified to

gCPA~v!52
2

pv
Im@h~x2!#, ~22!

wherex25(v2/vD
2 )@12S(v)# and h(x2)5x2ln@x2/(x221)#

21. Thus, once we have obtained the self-energy from
~12!, we can find the density of vibrational states,gCPA(v),
from Eq. ~22!.14

The CPA can also be used to give the component dens
of states,gCPA

(a) (v) (a51,2!, defined to be the average de
sity of the phase phonon density of states on grains of t
a. This is obtained in terms of the average diagonal ma
elementḠ(a)( j , j ;z2) for a grain of typea. In the CPA, this
matrix element takes the form8

Ḡa~ j , j ;z2!5
F~z2!

12~MVCA2Ma2MVCAS!z2F~z2!
,

~23!

where F(z2) is defined in Eq.~6!. The average density o
states at a grain of typea ~normalized so as to integrate t
unity over positive frequencies! is given by

gCPA
(a) ~v!52

2

pv
ImF h~x2!

12~MVCA2Ma2MVCAS!v2F~v2!
G ,

~24!

wherex2 andh(x2) were defined below Eq.~22!.
Within the CPA, the component densities of states ha

the pleasing property
1-3
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pgCPA
(1) ~v!1~12p!gCPA

(2) ~v!5gCPA~v!. ~25!

Thus, the total phase phonon density of states equals the
of the properly weighted partial densities of states on the
species of grains. In our calculations, we have confirmed
this property is, indeed, satisfied for our particular choice
the Debye model.

2. Spectral function

Our self-consistent set of equations permits calculation
another useful quantity: the spectral function, defined by

Im Ḡ~q,v2!

5
v2Im@S~v2!#

$v2
„12Re@S~v2!#…2vq

2%21$v2Im@S~v2!#%2
.

~26!

The spectral function gives the frequency distribution of
excitations of wave numberq in the array and, for our Debye
model, depends only on the magnitudeq. The full width at
half maximum~FWHM! of the spectral function is inversel
proportional to the decay time of the spin-wave-like exci
tions at wave vectorq.

3. Mean-square phase fluctuations

Finally, we can use our CPA calculations to infer t
mean-square phase fluctuations at thej th grain. We denote
this quantity ^uu j (t)u2&, where ^•••& denotes a quantum
mechanical average andu j (t) denotes the phase of thej th
grain at timet. A quantum-mechanical average is appropri
at temperatureT50. At finite temperatures, one should car
out both a quantum and a thermal average. However, suc
average diverges atTÞ0 in two dimensions (d52), because
of contributions from the long-wavelength phase phonons
the present discussion, therefore, we discuss only theT50
limit.

We will consider the quantitŷuu j (t)u2& for a lattice with
Josephson couplingJ and self-capacitanceCj , within the
harmonic approximation. In this case, one can simply ad
the discussion of Ref. 15 for lattice vibrations in mas
disordered systems. In fact, the present problem is slig
easier since there are no polarization degrees of freedom
obtain this quantity, we first use a result from Ref. 15 tha

^u j~ t !uk~0!&52
\

p
ImE

2`

`

eivtG~ j ,k;v2!dv, ~27!

where, atT50,

G~ j ,k;v2!5K jU 1

v22H
UkL .

The desired quantity is actually limt→0^u j (t)u j (0)& averaged
over disorder realizations, which we write as

^uu j u2&dis52
\

p
ImE

0

`

F~v2!dv, ~28!
02451
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where we have used the definition ofF(z2) in Eq. ~6!. The
operatorsu j are computed at timest50 ~though this average
is time independent!.

We first consider the virtual crystal lattice, in whichCj
5CVCA for all j. In this case,̂ uu j u2& is readily calculated
from Eq. ~28!, usingFVCA(z) from Eq. ~20!, with the result

^uu j u2&VCA5
\

vDMVCA
, ~29!

wherevD5A4pJ/MVCA5A16pe2J/(\2CVCA).
For the actual disordered lattice, we can calculate wit

the CPA not only the full disorder average of^uu j u2&dis, but
also the disorder average of^uu j u2& over sites of typea,
which we denotê uu j u2& (a). The result is

^uu j u2& (a)5
2\

p
ImE

0

`

Ḡa~ j , j ;v2!dv ~30!

5
2\

p
ImE

0

` F~x2!

12~MVCA2Ma2MVCAS!v2F~x2!

3dv, ~31!

wherex25(v2/vD
2 )@12S(v)#. The full ^uu j u2&dis(p) in the

CPA satisfies

^uu j u2&dis~p!5(
a

pa^uu j u2& (a), ~32!

where the sum runs over the two speciesa and, in our no-
tation, p15p andp2512p.

We can use these equations to compute various ra
such aŝ uu j u2&dis(p)/^uu j u2&VCA , and hence to see how th
mean-square phase fluctuations increase with increasing
order.

IV. NUMERICAL RESULTS

We have solved the model described in the preceding
tion to obtain the self-energy, density of states, spectral fu
tion, and mean-square phase fluctuations of a tw
dimensional lattice, using a Debye phase phonon spectr
The numerical solutions are obtained from a straightforw
iterative solution of the three self-consistent equations~12!,
~17!, and~20!. It is important to take care that the resultin
solutions are the proper physical ones, with ImS(v)<0 and
with both F(z2) andS(z) varying smoothly withz.

In Fig. 1 we show the real and imaginary parts of t
self-energy,S(v) ~dotted and dashed curves, respectivel!,
plotted against the scaled frequencyv/vD , where vD
5(4pJ/MVCA)1/2 is the virtual crystal Debye frequency. W
have carried out our calculations for two concentrations
the low-mass defects~type 1!, p50.25 andp50.75; the re-
sults are shown in Figs. 1~a! and 1~b!. The three different
panels correspond to different values of the ratioe[1
2C1 /C250.1, 0.5, and 0.9. These ratios range from sm
deviations in capacitance between type 1 and type 2e
50.1) to large deviations (e50.9). Note the differences in
the scales of the plots.
1-4
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Given the self-energy, several other physical quanti
can be calculated, as explained in Sec. III. For example,
averaged density of states of phase phonon excitations ca
obtained within the CPA from Eq.~22!, while the averaged
component densities of states follow from Eq.~24!. In Fig. 2
we show the average density of statesgCPA(v) obtained
within the CPA~solid line!, as well as the component dens
ties of statesgCPA

(1) (v) ~dashed line! and gCPA
(2) (v) ~dotted

line!. The sum rule given in Eq.~25! is evidently satisfied by
these three densities of states.

These results show characteristic features expected
CPA calculations. For the case where the capacitance of
2 is close to that of type 1 (e50.1), the full and the two
component densities of states are all very similar and
resemble the virtual-crystal result. Ase increases, there sta
to be more conspicuous differences between the partial
sities of states on the light-mass~type-1! and heavy-mass
~type-2! grains. In particular, there is a clearly develop
band gap between the two classes of states fore50.9. This
behavior is well known as the ‘‘split-band’’ regime in th
phonon problem. The light-mass phase phonons presum
correspond to localized modes, though this localization is
probed in the CPA.

In Fig. 3, we plot the spectral function defined in Eq.~26!
as a function of the scaled frequencyv/vD for several
choices of parameters. Our calculations are carried ou
three different mode frequenciesvq /vD50.2, 0.8, and 1.2,
which are shown in the three different panels, and for t
different defect concentrationsp50.25 andp50.75, which
are shown in Figs. 3~a! and 3~b!. In each of these cases, w
have also considered three values of the mass ratio pa

FIG. 1. ~a! The real~dotted line! and imaginary~dashed line!
parts of the self-energyS(v), plotted as a function of the scale
frequencyv/vD for three different cases,e50.1, 0.5, and 0.9, at a
concentrationp50.25 of light defects. Note thatvD is a function of
p ande @cf. Eq.~19!#. ~b! Same as~a! except thatp50.75. Note the
different vertical scales on different portions of the figure.
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eter: e50.1, 0.5, and 0.9.~Note in particular the vertica
scale changes in the figures.! For vq /vD,1, the spectral
functions in all cases exhibit single sharpd-function-like
peaks centered atv5vq . However, forvq /vD.1, there is
some spectral strength which shows up as weak peak
higher frequencies; these are presumably due to the loca
modes in the light-mass bands. Note also that fore50.1
there is almost no spectral weight forvq /vD.1.

In each of the cases of Fig. 3, we have also calculated
full width of the spectral function peak at half-maximu
~FWHM!. This width is inversely proportional to the lifetim
of the phase-phonon-like excitations. In Fig. 4, we plot th
FWHM as a function ofvq /vD for e50.2 and for several
concentrations of the light defects as indicated in the lege
Evidently, for a givenvq , the excitation lifetimes decrease
as expected, asp increases from 0 to 0.5, then increas
again asp increases from 0.5 to 1. This behavior is consist
with the well-known result of second-order perturbati
theory that this lifetime should vary approximately
1/@p(12p)# in the weak-disorder regime.8

Finally, we turn to the transition from phase coherence
phase incoherence in this system. If the model Hamilton
is assumed to represent an array of small Josephson j
tions, this corresponds to a superconductor-insulator~S/I!
transition. It is believed that superconductivity in Josephs
junction arrays is destroyed when the ratio of the charg
energy to the Josephson coupling energy exceeds some

FIG. 2. ~a! Normalized density of states of the phase phon
excitations, plotted as a function of the scaled frequencyv/vD

calculated for a concentrationp50.25 of low-capacitance defect
and three different values of the disorder parametere51
2C1 /C2, as indicated in the figure. The total density of states
phase phonon excitations,gCPA(v), is the solid line, while the com-
ponent density of statesgCPA

(1) (v) andgCPA
(2) (v) associated with low-

capacitance and high-capacitance grains are the dashed and d
lines, respectively. The concentration of light defects~type 1! is p
50.25. ~b! Same as~a! except thatp50.75. As in Fig. 1,vD is a
function of bothp ande @Eq. ~19!#.
1-5
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acteristic limiting value.2 In fact, the S/I transition is a stan
dard example of aT50 quantum phase transition.1 In two-
dimensional square arrays with nearest-neighbor couplin
has been found experimentally that the S/I transition occ
nearU/J51.7[(U/J)cr .

2

In our discussion, we will assume a simple Lindema
melting criterion, namely, that superconductivity is destroy
when the mean fluctuations in the phase, given in Eq.~28!,
exceeds some limit to be determined below.~In d52, such a
criterion can be plausible only atT50, since the mean
square phase fluctuation diverges at any finiteT.! If all the
grains have the same charging energy, then the mean-sq
fluctuation is given by Eq.~29!, which implies a critical
value of

^uu j u2&cr5~U/J!cr
1/2'1.3. ~33!

Here j can be any lattice site and we have used (U/J)cr
51.7.

How can this Lindemann criterion be extended to a latt
with diagonal disorder in the charging energy? We specu
that a modified Lindemann criterion may still be usable,
the following way. Let us consider the model studied in th
paper, in which there are two types of grains: ‘‘light’’ an
‘‘heavy’’ ~or small and large capacitance!. We suggest that a
possible Lindemann criterion for destruction of supercond
tivity in this case is that the mean-square phase fluctuati

FIG. 3. ~a! Spectral function ImḠ(q,v2), plotted against the
scaled frequencyv/vD for three different mode frequenciesvq as
indicated in each panel. The concentration of light defects ip
50.25. For eachvq we have considerede[12C1 /C250.1 ~solid
line!, 0.5 ~dotted line!, and 0.9~dashed line!, corresponding to in-
creasing amounts of disorder. Forvq /vD,1, the spectral function
always exhibits a single sharp peak centered atv5vq . ~b! Same as
~a! except thatp50.75.
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averaged over the two types of grains, should exceed
same critical value as in the ordered case.

In Fig. 5 we plot the calculated ratio
^uu i u2& (a)/^uu i u2&VCA , which gives the mean-square pha
fluctuations on grains of typea51,2 with respect to those o
the virtual crystal~dashed and dotted lines!. We also show
^uu i u2&dis/^uu i u2&VCA which represents the average for the e
tire lattice ~solid line!. All quantities are calculated in the
CPA as a function ofe512C1 /C2 for several different val-
ues ofp, as indicated in the figure. As expected, and as
clear from the figure, for all values ofp, ^uu i u2& (1)

.^uu i u2& (2) because component 1 represents the light
fects.

In principle, one might make an estimate of the critic
value of (U/J)1/2 at which melting occurs, as a function ofp
and e, by assuming that melting occurs when^uu i u2&>1.3,
as in the ordered lattice. Thus, given the properties of
lattice, one can easily extract an estimate of the melting
rameters from this figure.

V. SUMMARY

In this paper we have considered the behavior of a
quantum rotor model with diagonal disorder. In the case
Josephson junction arrays, this model corresponds to an
ray of small Josephson junctions with diagonal capacit
disorder. We have used the CPA to estimate the effect
disorder on the phase phonon density of states, the spe
functions, and the self-energy, all within the harmonic a
proximation to the original Hamiltonian. Finally, we ob
tained a crude estimate of the parameters governing the
sition from coherence to incoherence in the disorde
system, using a simple Lindemann criterion which may
applicable atT50.

Viewed as a representation of a Josephson junction a
~or a thin superconducting film!, our model and our approxi
mations used to treat it are both very simplified represen
tions of a real superconducting array. For example, a bimo
distribution of charging energies is oversimplified, as is o
assumption of diagonal charging energies and diago
charging disorder. In addition, we have not considered di

FIG. 4. The full width at half maximum~FWHM! of the spectral
function, plotted vs scaled frequencyv/vD for e50.2 and for sev-
eral concentrationsp of the small-capacitance grains, as indicated
the legend.
1-6
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FIG. 5. ~a! Mean-square phase fluctuation^uu j u2&dis /^uu j u2&VCA , as evaluated in the CPA, plotted as a function ofe512C1 /C2 for p
50.1. The solid line shows the CPA average value, the dashed line shows the mean-square phase fluctuations on a type-1 gra
dotted line on a type-2 grain.~b! Same as~a! except thatp50.3. ~c! Same as~a! except thatp50.5.
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pation, which is known to have important effects on S/I tra
sitions in Josephson arrays.11 Nevertheless, our results ma
provide some useful insights for understanding the S/I tr
sition in such arrays, as well as the spectrum of excitation
be expected in disordered arrays.

Would it be possible to measure experimentally the ph
phonon spectrum we have calculated in this paper? It is
clear what experiment would be directly sensitive to t
spectrum in a superconducting array or film. A more pro
ising direction might be the excitation spectrum of a Bo
superfluid~e.g., 4He) in a porous medium. Such spectra ha
been extensively studied experimentally, primarily using
elastic neutron scattering techniques.4,16–19While the behav-
ior of 4He in such porous media is certainly more comp
than the relatively simple model discussed here, some
pects of the observed behavior~e.g., the persistence of rathe
sharp excitation peaks even in highly disordered syste!
seems to be mirrored in our calculated spectral functio
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Obviously, a more refined model, aimed specifically at
geometries of these porous glasses, is needed before
comparison to experiment can be contemplated.

Finally, we briefly comment on the quality of the approx
mation itself. While the CPA is an excellent mean-field a
proach, it is still based on a harmonic approximation to
underlying Hamiltonian. Ideally, it would be preferable
obtain the desired spectral functions using a more accu
approach, such as a quantum Monte Carlo technique~see,
e.g., Ref. 20! or a version of the self-consistent phono
approximation,10,11 suitably generalized to treat a disorder
system. We hope to return to such approaches in a fu
publication.
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