PHYSICAL REVIEW B 67, 024511 (2003

Phase phonon spectrum and melting in a quantum rotor model with diagonal disorder
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We study the zero temperatur@€0) quantum rotor model with on-site disorder in the charging energy.
Such a model may serve as an idealized Hamiltonian for an array of Josephson-coupled small superconducting
grains or superfluidHe in a disordered environment. In the approximation of small-amplitude phase fluctua-
tions, the Hamiltonian maps onto a system of coupled harmonic oscillators with on-site disorder. We study the
effects of disorder in this harmonic regime, using the coherent potential approximation, obtaining the density
of states and the lifetimes of the spin-wave-like excitations for several choices of the parameters which
characterize the disorder. Finally, we estimate the parameters characterizing thquantum melting of the
phase order, using a suitable Lindemann criterion.
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[. INTRODUCTION gate the conditions for the destruction of phase order in this
model arising from such quantum fluctuations in the phase
The quantum rotor model is a widely studied Hamiltonianvariables. This model includes a particularly simple form of
which may serve as an idealized representation of manglisorder. In the case of a Josephson junction a(day), it
physical systems. It consists of two parts: a potential energyvould correspond to fluctuations in the self-capacitance of
which represents the coupling between two-component spithdividual grains, but no significant randomness in the Jo-
variables of fixed lengtkan XY Hamiltoniar) and the kinetic ~ sephson coupling between the superconducting grains. In the
energy of those spins. The model is quantum mechanic&iase of superfluid helium, the diagonal disorder might corre-
because the potential and kinetic energies do not commutespond to randomness in the pore geomefr a three-
One possible realization of this model is a Josephsoslimensional systejror arising from surface roughneéfsr a
junction array, i.e., a collection of superconducting islandgthin film).
with Josephson or proximity effect tunneling between the In the present paper, we are primarily interested in the
islands. Such arrays can be produced experimenta”y in gpectrum of elementary excitations in this model at low tem-
wide range of geometries and with a great variety of indi-peratures. We therefore adopt a simple mean-field approxi-
vidual junction parameters. They may be described by th&ation which has been successfully used to treat elementary
quantum rotor model in the limit of small grains. In this caseexcitations in other systems. This is the coherent potential
the potential energy corresponds to the Josephson couplif@PProximation(CPA), as described originally by Sovén,
and the kinetic energy corresponds to the charging energyaylor and co-worker§, and Velickyet al? For the present
Such arrays can serve as model systems for studying quaRtoblem, the CPA may be adequate at very low temperatures
tum phase transitioAsunder conditions such that the experi_ under conditions such that the Original Hamiltonian can be
mental parameters can be readily tuRdRkcently, it has also @pproximated as harmonic. At higher temperatures or under
been proposed that Josephson junctions may serve as a qu&anditions such that the harmonic approximation is inad-
tum bit (qubif) in quantum information technology, where eduate, it will be necessary to consider a more sophisticated
the quantum logic operations would be performed by conapproximation, such as the self-consistent harmonic approxi-
trolling gate voltages or magnetic fields. mation(SCHA) (Refs. 9—11 or a field-theoretic treatment in
The quantum rotor model may also be realized in othetvhich the charging energy is mapped onto a coupling in the
physical systems. For example, in liquftHe the potential imaginary time directiort?
energy may represent a discretized form of the gradient en- The remainder of this paper is organized as follows. In the
ergy term in the Ginzburg_Landau free energy of Superﬂuid]ext SeCtion, we present the model Hamiltonian and its rela-
4He and favors a state in which all parts of the Superﬂuidtion to a set of COUpIed harmonic oscillators. In Sec. I, we
have the same phase, while the kinetic energy term is theéescribe how the CPA may be used to study the disorder-
energy associated with the time variation of the order paramaveraged properties of the model Hamiltonian in the har-
eter phase. The model may be particularly useful for heliunfnonic approximation. Our numerical results based on the
films and helium in confined geometries such as porou$PA are presented in Sec. IV, followed by a concluding dis-
glasses. The spectrum of elementary excitations in such co§ussion in Sec. V.
fined geometries has recently been studied extensivihys
spectrum may be treatable by the quantum rotor model. Il. MODEL HAMILTONIAN
In this paper, we study a special kind of quantum rotor
model, namely, the two-dimensional model with diagonal
disorder in the kinetic energy. Our emphasis in this study is
to qnd.ersta.nd what happens to.the_ spectrum of elementa_ry H= EE UAn,2+E Ju[1—cog 6, — 6,)]. (1)
excitations in the presence of this disorder. We also investi- 2494 VR )

We will consider the following model Hamiltonian:
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Here 0; is the phase of the quantum rotor amds a variable  spectra, except that the “phase phonon” excitations have
which is quantum mechanically conjugate to the argglen; only one possible polarization. This problem has previously

and 6, are assumed to have commutation relations been studied by SovetiTaylor and Elliott and Taylof, us-
. ing the coherent potential approximatidif. In the present
[nj, 6= —i0jk, (2)  paper, we shall use the same approach to study the effects of

disorder in the “phase phonon” spectrum. Note that because
the entire Hamiltonian is invariant under a global rotation of
phases, the long-wavelength phase phonons are Goldstone
sons with frequencies that go to zero linearly in the wave
ectork, even in the presence of disorder and even in two

where;y is a Kronecker delta function arid - - | represents

a commutator. In Eq(1), the first sum runs over sit¢sand
the second sum runs over all distinct pairs of sjtaadk. If
this model is assumed to describe a Josephson junction arr
then the first term represents the capacitive energy of th

array in the diagonal approximation. The most general for Imensions.

of this capacitive energy would b= ;,U;xn;ny; in Eq. (1),

we make the approximatidd = U; 8j, whereU; is related . COHERENT POTENTIAL APPROXIMATION
to the diagonal capacitan€® or, alternatively, to an effec- A. General equations

tive “mass” My, . _ .
The CPA provides an approximate way of calculating the

4e%2 42 disorder-averaged Green’s function
U= c M (3
The second term represents the sum of the Josephson cou- _<Z_Hharm> i ' ®)
pling energies between graipandk. In Eq. (1), it is implic- °
ity assumed that there is no contribution toarising from  wherezis a complex variableid 4, IS the Hamiltonian op-
dissipation. In this paper, we shall assume tha£ 0 only if  erator, and - - - )4is represents an average over disorder real-
i andj are nearest-neighbor grains and that, furthermoreizations. Of particular interest is the diagonal matrix element
there is no disorder in this nearest-neighbor coupling, i.e.pf this operator, which we write
that J;;=J for all nearest-neighbor paiisandj. Hereafter, . o
we shall refer to this model Hamiltonian as describing a Jo- F(2)=(j|G(2)|j)=G(j,j;2). (6)
sephson junction array, although, as noted above, the model _
is also applicable, in principle, to other physical systems. Because the operat@ is disorder averageds(z) is inde-
For sufficiently low temperatures, we assume that thgoendent of]. .

above Hamiltonian can be approximated by its harmonic Also, sinceG(z) is disorder averaged, it can be expressed
form in terms of a periodic operatdi .4 by the relation

1 1 —
Hharmzig anjz_l—EJ(jEk) (ej_ak)25K+V, (4) G(2)= %)

Z— Heff '
where the second sum runs over distinct nearest-neighb@or the present case of “site-diagonal” disorder,; can be
pairs. While one can go beyond the harmonic approximationyritten

by using a self-consistent phase phonon appréathwe

shall here consider only the harmonic approximation, which Her=Kegt V, 8
is more easily combined with a treatment of disorder. The

Heisenberg equation of motion of the phase variable i¥vhereKeq can be expressed as

iﬁ€j=[¢9j ;H]=iU;n;, where the last equality follows from 52
the commutation relatiof). This equation makes clear that Ke=5— 2 n]?_ 9)
Hparm is formally analogous to an array of “masseM; 2Meit ]

harmonically coupled by springs of “spring constani” . « .
However, in contrast to a real lattice of masses and springg‘.—Iere Meff(.z) 'S a complex, frequency-depend_gnt_ effective
rhass” which is, however, the same for each itk is con-

there is no polarization degree of freeddfnandV represent venient to expresM . in terms of two other quantities—the
the kinetic and potential energy terms in this Hamiltonian. A, . p” eff q
irtual-crystal” mass

disordered array of such oscillators can thus be treated by the
same methods used to treat disordered arrays of coupled os-
cillators.

In this paper, we shall consider a bimodal distribution ofand a dimensionless, complex self-energy funclida) de-
the U;’s. Thus we takeU;=U; or U, with probabilitiesp  fined by
and 1-p, respectively. We also assume that the type-1 and

Myca=pMi+(1-p)M, (10

type-2 grains are randomly distributed on an ideal lattice, Mei(Z) =Mycal 1-2(2)]. (11
with no correlation between the occupancies of neighboring
sites. With this choice, the Hamiltonigd) is analogous to In the CPA, it is found thaF (z%) and2(z) are connected

the classic problem of substitutional mass disorder in phonoby the complex scalar equatith
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_ p(1—p)(SM)?z°F(z?)
C14727(1-2p) M+ My S (2)JF(22)
(12

Here SM=M;—M,=—-eM,, where e=1-M;/M,=1
—C,/C,, and we have adopted the convention ti@Gt
<C,.

MycaZ(2)
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Herev = \J/Myca is the speed of the “phase phonon” ex-

citations in the virtual crystal an® (wp— %) is a unit step

function. The Debye cutoff frequency
wp=(4mv%)Y?=(47IIMycp) Y2 (19

follows from requiring that the number of phase phonon
states be normalized to one per grain. The quaftiiy,(z)

In order to complete the approximation, we need to eX{ollows readily from Eq.(16):

pressF(z%) in terms of3(z). This is readily accomplished

as follows. First, we consider the analogous virtual-crystal

Green’s functionGyca(z)=1/(z—Kyca— V), whereKyca
=3n?/[2Mycal. SinceKycatV is periodic, Gyca(Z?) is

ZZ

Fuca(Z?)= > 2| (20)
7’— wp

> In{
VCA®WpD

diagonal in momentum space. In particular, the diagonal magquationsg(12), (17), and(20) constitute a self-consistent set

trix element is given by

1

(AlGvea(Z)| )= 5——=GCvcal®;2%), (13

Z°— oy
where o is the frequency of a “phase phonon” of wave
vectorq in the virtual crystal andq) and|i) are related by
|gy=N"Y23e'9Ri|i), R; being the position of théth grain
andN being the number of grains in the lattié@hich may
be assumed to have periodic boundary condijiohke cor-
responding diagonal matrix elemeR{(z?) is given by

1

Fyca(zd)= INMycn Eq: Gyeal(a,2%), (14

where the sum runs oveys in the first Brillouin zone of the

grain lattice. Next, we introduce the virtual-crystal density of

statesgyca(7) by
1

Ovcalm) =55 2 S(n— g, (15
q
in terms of whichFyca(2%) takes the form
1 * Gveal( )
Fyea(Z2) = dy. 16
vea(z®) Mycalo 22— 12 Y (16)

Finally, we can obtainF(z%) for the actual disordered
crystal in terms ofFyca(z%) simply by making the replace-
mentz?—z*[1—3(z)], so that

F(z%)= FVCA(Zz[l_E(Z)])

_ 1 J“’ Gveal(7)
Mveado Z2[1-3(2)]— %2

17

Equations(12) and(17) represent two coupled equations for

F(z?) andX(z) which can be solved simultaneously, given a

In the present paper, we will consider a two-dimensionalgg;aP)A(w): - i|
(2D) lattice with a simple Debye-like density of states de-

fined by

n
O(wp—17).
Py (wp—7)

Gvealn) = (18

of equations which can now be explicitly solved to give the
properties of the phase excitations in the disordered system,
within the CPA.
B. Lattice properties
1. Density of states

The density of phase phonon excitations within the CPA is
2
7°Gvcal7)

given by
mfo W 1-S(w)]— 7

Using Eq.(18) for gyca(7), this expression can be further
simplified to

2

Ocpa(w) =— %'

(21)

2 2

Icpa(w) = lem[h(x )1, (22
wherex?= (0% w3)[1-3 ()] and h(x?) = x2In[x%/(x*—1)]
—1. Thus, once we have obtained the self-energy from Eq.
(12), we can find the density of vibrational stat@gpa(®),
from Eq.(22).4

The CPA can also be used to give the component densities
of statesg{%\(w) («=1,2), defined to be the average den-
sity of the phase phonon density of states on grains of type
a. This is obtained in terms of the average diagonal matrix
elementG{¥(j,j;z?) for a grain of typea. In the CPA, this
matrix element takes the fofm

F(Z%)

1—(Myca—M = MycaS)2%F(2%)
(23

where F(Z?) is defined in Eq.(6). The average density of
states at a grain of type (normalized so as to integrate to
unity over positive frequencigss given by

G%j.j;2%)=

h(x?)

m 1
1-(Myca—M,— MVCAE)wzF(wZ)
(24

mTw

wherex? andh(x?) were defined below Eq22).
Within the CPA, the component densities of states have
the pleasing property

024511-3



W. A. AL-SAIDI AND D. STROUD PHYSICAL REVIEW B 67, 024511 (2003

POERA(@) + (1= )9 @) =gcpa(@). (257  where we have used the definition B{z’) in Eq. (6). The
] operatorsy; are computed at times=0 (though this average
Thus, the total phase phonon density of states equals the suygtime independeint

of the properly weighted partial densities of states on the two e first consider the virtual crystal lattice, in whi)
species of grains. In our calculations, we have confirmed that c, ., for all j. In this case,<|0j|2> is readily calculated
this property is, indeed, satisfied for our particular choice ofrom Eq. (28), usingFyca(z) from Eq. (20), with the result
the Debye model.

f

_— 29
opMyca 9

2. Spectral function ( | 0; |2>VCA:

Our self-consistent set of equations permits calculation of

- : : where wp = 47w/ Myca= 167e?J/(%°C .
another useful quantity: the spectral function, defined by Forat)hDe a\{:tljral disv(?r/aer\éd IZttice(we \ég/?\) calculate within

the CPA not only the full disorder average @¥;|?) s, but

ey 2
ImG(q, ) also the disorder average ()|f6j|2) over sites of typew,
B WM (0?)] which we denot€|6;|%(®). The result is
- 2(1—RES(02)])— 022+ L 02Im[ S (w?) V2 5 o
{0?(1-REE ()]~ 02 +H{o M2 (0?) ]} o -t |mf I 30
(26) m 0
The spectral function gives the frequency distribution of the P
o . —h ® F(x%)
excitations of wave numbeyin the array and, for our Debye :_|mf
model, depends only on the magnitugleThe full width at ™ 0 1—(Myca—M,—Myca) 0?F(x?)
half maximum(FWHM) of the spectral function is inversely q
proportional to the decay time of the spin-wave-like excita- xdo, (3D
tions at wave vectog. wherex?= (0% w3)[1—3(w)]. The full (|6;|?)4sp) in the
CPA satisfies
3. Mean-square phase fluctuations
Finally, we can use our CPA calculations to infer the 0:12) . (p)= 9:12y(@ 32
mean-square phase fluctuations at jtte grain. We denote (16 asp) ; Pall %) (32

I 1 . 2 ... -
tmh:escr?:r?izgfy;\l/g]r S)Lé‘ W(hgr(ejénoté Sdtehr;otehsase qolﬁ'pja;m where the sum runs over the two speciesnd, in our no-
ge ant P tation,p;=p andp,=1—p.

ot Aol s s sproprad” 0 2 S0 ofaions t0compte s s,
P : b ’ Y such as(| 0;1%)ais(p)/{| 6;1*)vca, and hence to see how the

out both alquantum and. a ther”.‘a' average. However, such a}ﬂean-square phase fluctuations increase with increasing dis-
average diverges a0 in two dimensionsd=2), because order

of contributions from the long-wavelength phase phonons. In
the present discussion, therefore, we discuss onlyTth®
limit.

We will consider the quantity| 6;(t)|?) for a lattice with We have solved the model described in the preceding sec-
Josephson coupling and self-capacitanc€;, within the  tjon to obtain the self-energy, density of states, spectral func-
harmonic apprOXimation. In this case, one can Slmply adamon, and mean-square phase fluctuations of a two-
the discussion of Ref. 15 for lattice vibrations in maSS'dimensiona| |attice’ using a Debye phase phonon Spectrum_
disordered systems. In fact, the present problem is slightlyhe numerical solutions are obtained from a straightforward
easier since there are no polarization degrees of freedom. Fgrative solution of the three self-consistent equatitis,
obtain this quantity, we first use a result from Ref. 15 that (17), and (20). It is important to take care that the resulting

solutions are the proper physical ones, withdifw)<0 and
(6;(1)6,(0))=— i |mf°° eG(j k:w?)dw, (27) with bo'th F(z?) andX(z) varying smqothly withz,
™ — In Fig. 1 we show the real and imaginary parts of the
self-energy,> (w) (dotted and dashed curves, respectiyely
plotted against the scaled frequeney wp, where wp
=(4mwJIMyca)Y?is the virtual crystal Debye frequency. We
'

IV. NUMERICAL RESULTS

where, afT=0,

have carried out our calculations for two concentrations of
the low-mass defectdype 1, p=0.25 andp=0.75; the re-
sults are shown in Figs.(d and Xb). The three different
The desired quantity is actually limo( 6;(t) #;(0)) averaged panels correspond to different values of the ratie1

w?’—H

G(j,k;w2)=<i‘

over disorder realizations, which we write as —C,/C,=0.1, 0.5, and 0.9. These ratios range from small
5 . deviations in capacitance between type 1 and typee2 (
<|¢9j|2>dis= _ = |mf F(0?)dw, (28) =0.1) to large deviationse(=0.9). Note the differences in
™ 0 the scales of the plots.
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FIG. 2. (a) Normalized density of states of the phase phonon
g excitations, plotted as a function of the scaled frequeatyp
calculated for a concentratign=0.25 of low-capacitance defects
and three different values of the disorder parameterl1
—C,/C,, as indicated in the figure. The total density of states for
phase phonon excitationggpa( @), is the solid line, while the com-
ponent density of statag,(w) andg),(w) associated with low-

: 3 : ... capacitance and high-capacitance grains are the dashed and dotted
Given the self-energy, several other physical quantltle%nes, respectively. The concentration of light defetype 1) is p

can be calculated, as explained in Sec. lll. For example, the ~ (b) Same aga) except thap=0.75. As in Fig. 1wp is a
averaged density of states of phase phonon excitations can be. ..~ bothp and e [Eq. (19)].
obtained within the CPA from Eq22), while the averaged
component densities of states follow from E24). In Fig. 2 eter: ¢=0.1, 0.5, and 0.9(Note in particular the vertical
we show the average density of staiggea(w) obtained scale changes in the figurp$or wy/wp<1, the spectral
within the CPA(solid line), as well as the component densi- functions in all cases exhibit single shaffunction-like
ties of statesgiy(w) (dashed ling and g{3\(w) (dotted  peaks centered ai=w,. However, foro,/wp>1, there is
line). The sum rule given in Eq25) is evidently satisfied by some spectral strength which shows up as weak peaks at
these three densities of states. higher frequencies; these are presumably due to the localized
These results show characteristic features expected fromodes in the light-mass bands. Note also that der0.1
CPA calculations. For the case where the capacitance of typgere is almost no spectral weight fog/wp>1.
2 is close to that of type 1e¢=0.1), the full and the two In each of the cases of Fig. 3, we have also calculated the
component densities of states are all very similar and alfull width of the spectral function peak at half-maximum
resemble the virtual-crystal result. Asincreases, there start (FWHM). This width is inversely proportional to the lifetime
to be more conspicuous differences between the partial dewf the phase-phonon-like excitations. In Fig. 4, we plot this
sities of states on the light-mastype-1) and heavy-mass FWHM as a function ofwy/wp for e=0.2 and for several
(type-2 grains. In particular, there is a clearly developedconcentrations of the light defects as indicated in the legend.
band gap between the two classes of states#00.9. This  Evidently, for a givenw,, the excitation lifetimes decrease,
behavior is well known as the “split-band” regime in the as expected, ap increases from 0 to 0.5, then increases
phonon problem. The light-mass phase phonons presumabgain ag increases from 0.5 to 1. This behavior is consistent
correspond to localized modes, though this localization is noith the well-known result of second-order perturbation

FIG. 1. (8) The real(dotted ling and imaginary(dashed ling
parts of the self-energ¥ (w), plotted as a function of the scale
frequencyw/ wp for three different caseg=0.1, 0.5, and 0.9, at a
concentratiompp=0.25 of light defects. Note thaip is a function of
p ande [cf. Eq.(19)]. (b) Same aga) except thap=0.75. Note the
different vertical scales on different portions of the figure.

probed in the CPA. theory that this lifetime should vary approximately as
In Fig. 3, we plot the spectral function defined in E86)  1/[p(1—p)] in the weak-disorder reginfe.
as a function of the scaled frequeney wp for several Finally, we turn to the transition from phase coherence to

choices of parameters. Our calculations are carried out gshase incoherence in this system. If the model Hamiltonian
three different mode frequencies,/wp=0.2, 0.8, and 1.2, is assumed to represent an array of small Josephson junc-
which are shown in the three different panels, and for twations, this corresponds to a superconductor-insulégsl)
different defect concentratiors=0.25 andp=0.75, which transition. It is believed that superconductivity in Josephson
are shown in Figs. @) and 3b). In each of these cases, we junction arrays is destroyed when the ratio of the charging
have also considered three values of the mass ratio pararenergy to the Josephson coupling energy exceeds some char-
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_ 05 \ 2 p FIG. 4. The full width at half maximuntFWHM) of the spectral
g 15 2 25 3 0.5 function, plotted vs scaled frequeney wp for e=0.2 and for sev-
§_ eral concentrationp of the small-capacitance grains, as indicated in
@2 wgetgep | 025 the legend
. ' w,=1.2 e legend.
1 \ 02f | =Een
0.8 / ! 0.15( # /A ,
0.6 0.4 l| / i averaged over the two types of grains, should exceed the
0.4 i ! A same critical value as in the ordered case.
o2 A ‘ 0.05 Il};\ i In Fig. 5 we plot the calculated ratio
05 1 15 2 25 3 05 1 15 2 25 3 (16113 1(|6:|?)vca, which gives the mean-square phase
Frequency o/wp fluctuations on grains of type= 1,2 with respect to those of

o the virtual crystal(dashed and dotted linesNVe also show
FIG. 3. (@) Spectral function In6(q,w?), plotted against the (| 6;|?)is/(] 6i|?)vca Which represents the average for the en-

scaled frequencw/wp, for three different mode frequencies, as  tire lattice (solid line). All quantities are calculated in the
indicated in each panel. The concentration of light defectp is CPA as a function ot=1—C,/C, for several different val-
=0.25. For eaclw, we have consideree=1—C,/C,=0.1(solid  yes ofp, as indicated in the figure. As expected, and as is
line), 0.5 (dotted ling, and 0.9(dashed ling corresponding to in-  clear from the figure, for all values op, <|9i|2>(1)
creasing amounts of disorder. Fog/wp<<1, the spectral function >(]6]2)® because component 1 represents the light de-
always exhibits a single sharp peak centeredatw,. (b) Same as  fopts.
(a) except thap=0.75. In principle, one might make an estimate of the critical
e o value of (U/J)Y? at which melting occurs, as a function pf
acteristic limiting valué. In fact, the S/I transition is a stan- 4 e, by assuming that melting occurs whéw|2)=1.3,
dard example of &=0 guantum phase transitiorin two- as in the ordered lattice. Thus, given the properties of the

dimensional square arrays with nearest-neighbor coupling, {Lice one can easily extract an estimate of the melting pa-
has been found experimentally that the S/I transition OCCUr$,y meters from this figure

nearU/J=1.7=(U/J).?
In our discussion, we will assume a simple Lindemann

melting criterion, namely, that superconductivity is destroyed V. SUMMARY
when the mean fluctuations in the phase, given in (£8),
exceeds some limit to be determined bel@w.d=2, such a
criterion can be plausible only ak=0, since the mean-
square phase fluctuation diverges at any fifitelf all the
grains have the same charging energy, then the mean—squé
fluctuation is given by Eq(29), which implies a critical
value of

In this paper we have considered the behavior of a 2D
quantum rotor model with diagonal disorder. In the case of
Josephson junction arrays, this model corresponds to an ar-

of small Josephson junctions with diagonal capacitive
iSorder. We have used the CPA to estimate the effects of
disorder on the phase phonon density of states, the spectral
functions, and the self-energy, all within the harmonic ap-

(1613 e=(U13)5P~1.3. (33  Proximation to the original Hamiltonian. Finally, we ob-
tained a crude estimate of the parameters governing the tran-
Herej can be any lattice site and we have us&#/J),,  sition from coherence to incoherence in the disordered
=1.7. system, using a simple Lindemann criterion which may be

How can this Lindemann criterion be extended to a latticeapplicable aff=0.
with diagonal disorder in the charging energy? We speculate Viewed as a representation of a Josephson junction array
that a modified Lindemann criterion may still be usable, in(or a thin superconducting filmour model and our approxi-
the following way. Let us consider the model studied in thismations used to treat it are both very simplified representa-
paper, in which there are two types of grains: “light” and tions of a real superconducting array. For example, a bimodal
“heavy” (or small and large capacitanc&Ve suggest that a distribution of charging energies is oversimplified, as is our
possible Lindemann criterion for destruction of superconducassumption of diagonal charging energies and diagonal
tivity in this case is that the mean-square phase fluctuationgharging disorder. In addition, we have not considered dissi-
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FIG. 5. (@) Mean-square phase fluctuatiffd;|*)4s/{| 6;|*)vca . as evaluated in the CPA, plotted as a functioreefl—C,/C, for p
=0.1. The solid line shows the CPA average value, the dashed line shows the mean-square phase fluctuations on a type-1 grain, and the
dotted line on a type-2 grairib) Same aga) except thap=0.3. (c) Same aga) except thap=0.5.

pation, which is known to have important effects on S/I tran-Obviously, a more refined model, aimed specifically at the

sitions in Josephson arraysNevertheless, our results may geometries of these porous glasses, is needed before any

provide some useful insights for understanding the S/I traneomparison to experiment can be contemplated.

sition in such arrays, as well as the spectrum of excitations to Finally, we briefly comment on the quality of the approxi-

be expected in disordered arrays. mation itself. While the CPA is an excellent mean-field ap-
Would it be possible to measure experimentally the phaseroach, it is still based on a harmonic approximation to the

phonon spectrum we have calculated in this paper? It is nainderlying Hamiltonian. Ideally, it would be preferable to

clear what experiment would be directly sensitive to thisobtain the desired spectral functions using a more accurate

spectrum in a superconducting array or film. A more prom-approach, such as a quantum Monte Carlo technigee,

ising direction might be the excitation spectrum of a Bosee.g., Ref. 20 or a version of the self-consistent phonon

superfluid(e.g., “He) in a porous medium. Such spectra haveapproximation:®! suitably generalized to treat a disordered

been extensively studied experimentally, primarily using in-system. We hope to return to such approaches in a future

elastic neutron scattering techniqdé§-**While the behav- publication.

ior of “He in such porous media is certainly more complex

than the relatively simple m_odel discusse_d here, some as- ACKNOWLEDGMENT
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