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Spinons in more than one dimension: Resonance valence bond state stabilized by frustration
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For two spatially anisotropic, SU~2!-invariant models of frustrated magnets in arbitrary space dimension we
present a nonperturbative proof of the existence of neutral spin-1/2 excitations~spinons!. In one model the
frustration is static and based on fine tuning of the coupling constants, whereas in the other it is dynamic and
does not require adjusting of the model parameters. For both models we derive a low-energy effective action
that does not contain any constraints. Though our models admit the standard gauge theory treatment, we follow
an alternative approach based on Abelian and non-Abelian bosonization. We prove the existence of propagating
spin-1/2 excitations~spinons! and consider in detail certain exactly solvable limits. A qualitative discussion of
the most general case is also presented.
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I. INTRODUCTION

Excitations with fractional quantum numbers in gene
and neutral excitations with spin 1/2 in particular constitu
an essential ingredient of many theoretical approaches ai
to explain the non-Fermi-liquid behavior of quasi-tw
dimensional copper oxide materials. These approaches t
generalize for higher dimensions mechanisms such as s
charge separation and quantum number fractionalizat
phenomena well understood and adequately described
one-dimensional systems~see recent review articles,1–3 and
references therein!.

As a part of the general program to construct a theory
copper oxides, there have been many attempts to find ne
spin-1/2 excitations~spinons! in purely magnetic systems
that is, to find higher-dimensional analogs of the on
dimensional~1D! spin S51/2 Heisenberg antiferromagne
Such a generalization was qualitatively outlined
Anderson4 in the form of the famous resonant valence bo
~RVB! state. This is aspin-liquid state that breaks neithe
translational nor spin rotational symmetry. Building on th
proposal, Kivelson, Rokhsar, and Sethna showed5 that such a
state, if it exists, must support neutral spin-1/2 excitation

Despite more than a decade of strong efforts, no real
tion of a RVB state supporting excitations with fraction
spin inD.1 Heisenberg magnets with short-range excha
interactions has been found in models with interactions
the Heisenbergtype. We exclude from the consideratio
models ofquantum dimers, where such excitations have bee
shown to exist,6 and other recently suggested models w
fractionalized excitations that are not microscopic electro
models~see, for example Refs. 7 and 8!, as well as generali-
zations for symmetries higher than SU~2!. We also do not
consider magnets withincommensurateordering~such as a
spiral one! that also support spin-1/2 excitations.9,10 Strong
qualitative arguments against the RVB scenario have b
presented by Read and Sachdev,11 who argued that the mos
likely mechanism for disordering an antiferromagnetic st
is the spin-Peierlsone. Here, although spin rotational sym
metry is preserved, translational symmetry is broken si
the spin system undergoes an explicit dimerizationat finite
0163-1829/2003/67~2!/024422~19!/$20.00 67 0244
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temperature. That makes the existence of deconfined spino
in the low-T phaseimpossible.

An interesting byproduct of the RVB scenario is th
strong coupling compact quantum electrodynamics~cQED!
field theory. This gauge theory describes the so-calledp-flux
RVB state in the continuum limit12 ~see also Refs. 13 an
14!, under the assumption that the system does not dev
any spin-Peierls ordering. The gauge theory has infinite b
coupling and therefore is difficult to study. All existin
analysis relies on the results obtained for the SU(N) or
Sp(2N) generalizations of this theory based on the 1/N ex-
pansion, as in Refs. 11, 12, 15, and 16.

In this paper we describe twoD-dimensional (D.1)
models that exhibit neutral spin-1/2 excitations~spinons! and
apparently represent realizations of thep-flux RVB state.
The paper is organized as follows. In Sec. II we introduce
models. They are spatially anisotropic and actually repres
collections of weakly coupled chains. In all of these mode
the naively strongest interactions between the chains, nam
those that couple the antiferromagnetic~with momentum
close top) fluctuations on neighboring chains, are frustrat
and so can be set to zero in the Hamiltonian. In this case,
physics is governed by amarginally relevant interaction be-
tween the long-wavelength magnetic fluctuations. In Sec.
we discuss results we managed to obtain for infinite num
of chains. These can be summarized as follows:

~1! we give a proof of the existence of spin-1/2 excitatio
in the limit of infinite number of chains;

~2! we demonstrate that in the low-energy limit the effe
tive spin Hamiltonian decouples into two commuting pa
describing sectors with different parity;

~3! we show that the models are stable against an ant
romagnetic phase transition;

~4! for the models in question we demonstrate existe
of a zero-temperature phase transition~spontaneous trans
verse dimerization!.

~5! we show that the ground state is degenerate; for p
odic transverse boundary conditions the degeneracy is e
to 22N21, where 2N is the number of chains.

To achieve a more detailed understanding of the mo
its spectrum, and correlation functions, we study some l
©2003 The American Physical Society22-1



b
on
he
a

sp
o

t

na
a
he
t
er
a

ac
a

n

d-
f
ed
nc
m

e
fa
e

e
t a
o
tin

a
h
a
is

e

ip
f t

w-
net

he

n
iew

r
in
g-

on
e its

isfy

l;

A. A. NERSESYAN AND A. M. TSVELIK PHYSICAL REVIEW B 67, 024422 ~2003!
iting cases. Thus in Sec. IV we discuss two exactly solva
cases: two and four chains with periodic boundary conditi
in the transverse direction. In Sec. V we consider anot
solvable case: the model of three chains with open bound
conditions. In all these cases magnetic excitations carry
1/2, in agreement with the general result. Systems with m
than two chains also display nonmagnetic~singlet! modes
and a topological order. We show that this order is similar
the one that exists in the 1D quantum Ising model.

Furthermore, in Sec. V we introduce a two-dimensio
model with a hierarchy of interactions. We use this app
ently artificial but solvable model as a substitute for t
original ~spatially uniform! model with a hope to extrac
more detailed information about the structure of the Hilb
space. The hierarchical model is solved by a cluster exp
sion. The results indicate that about half of the Hilbert sp
is occupied by singlet modes. The ground state remains m
sively degenerate with the ground state entropy proportio
to the number of chains.

Having in view future numerical simulations for our mo
els, we discuss in Sec. VI finite-size effects for systems o
finite number of chains. In Sec. VII we use the acquir
knowledge to conjecture the properties of correlation fu
tions in the thermodynamic limit. Our conclusions are su
marized in Sec. VIII.

II. THE MODELS

As in the original suggestion by Anderson,4 the element
most essential for our construction is frustration. Anoth
ingredient of our approach is strong spatial anisotropy: so
we have only been able to deal with models where the
change interaction in one direction is much greater than
the others. Thus it is proper to describe our models as ass
blies of weakly coupled chains. Our results also sugges
alternative approach to strong coupling cQED. We will n
elaborate on this analogy, though, postponing this interes
question for future studies.

The first model is a spin-1/2 Heisenberg magnet on
anisotropic lattice. In what follows, we will be working wit
a two-dimensional version of this model. The interaction p
tern is depicted in Fig. 1~a!; one can easily generalize th
construction to three dimensions. The model Hamiltonian
given by

HACB5(
j ,n

H JiSj ,n•Sj 11,n1 (
m561

@JrSj ,n1Jd~Sj 11,n

1Sj 21,n!#•Sj ,n1mJ , ~1!

where Sj ,n are spin-1/2 operators, andJi ,Jr ,Jd.0. Since
the interchain couplings (Jr ,Jd) are much smaller than th
exchange along the chains (Ji) it is legitimate to adopt a
continuum description of individual chains. In this descr
tion, the local spin densities are represented as sums o
smooth and staggered parts:

Sj ,n /a0→Sn~x!5Mn~x!1~21! jNn~x!, x5 ja0 ~2!
02442
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a0 being the lattice spacing in the chain direction. The lo
energy dynamics of the spin-1/2 Heisenberg antiferromag

H1D5Ji(
j

~SjSj 11! ~3!

is described by the SU1(2) Wess-Zumino-Novikov-Witten
model. The latter Hamiltonian can be written in terms of t
so-called chiral vectorcurrent operators,J and J̄, satisfying
the levelk51 Kac-Moody algebra~this approach has bee
described in a vast number of publications; see for a rev
Ref. 17 or 18!:

H1D→ 2pv
3 E dx@ :~J•J!:1:~ J̄• J̄!:#1•••, ~4!

wherev5pJia0/2 is the spin velocity and the dots stand fo
a marginally irrelevant perturbation that will be discarded
what follows. It is remarkable that the smooth part of ma
netization

M5J1 J̄ ~5!

and the spin current

j5v~J2 J̄! ~6!

are locally expressed in terms of the chiral currents.
In the model, the exchange is frustrated in the directi

perpendicular to the chains and can be fine tuned to mak
Fourier transform vanish atqi5p. This is achieved when
the rung and plaquette-diagonal coupling constants sat

FIG. 1. ~Color! ~a! Exchange interactions pattern for the mode
the red lines correspond toJr and the green ones toJd . ~b! Lattice
of stripes for the Kondo-Heisenberg model.
2-2
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the relationJr52Jd , in which case the direct interchai
interaction between staggered magnetizatio
Nn(x)•Nn11(x), is completely eliminated. The absence
this strongly relevant perturbation is the most importa
property of our model. The triangular lattice is exclud
from the consideration. It was demonstrated in Ref. 19 t
the coupling of the staggered parts of magnetization can
be removed completely in that case: parity-break
~‘‘twist’’ ! terms surviving the continuum limit make th
analysis very complicated.

Apart from the collective spin excitations, the seco
model also involves charge degrees of freedom. It is a qu
one-dimensional Kondo-Heisenberg model@see Fig. 1~b!#,
which has been already discussed in the context of theor
stripes20,21 ~see also Ref. 22, where the two chain case
discussed!. It is assumed that neighboring chains have diff
ent band filling such that metallic chains are surrounded
insulating spin-1/2 magnetic chains. In order to eliminate
electron tunneling across the magnetic chain, one need
have magnetic stripes consisting of at least three chains
low energies one can consider such a stripe as an effe
single spin-1/2 chain. Here the frustration is dynamical:
electrons on metallic chains do not experience backscatte
on magnetic excitations due to incommensurability of
Fermi wave vectors: 2kFÞp. It is easy to demonstrate~see,
for instance, Ref. 20! that the charge excitations in th
model decouple and remain one-dimensional~this is true at
least in the first approximation when one discards vari
virtual processes!. On the other hand, the spin sector is d
scribed by the same effective Hamiltonian as in the mod

Using the continuum description of individual chains
the interchain exchange interaction, based on the asymp
representation~2! of the spin operators, we arrive at the fo
lowing effective Hamiltonian:

H5 (
n51

2N FH1D,n1
g

2 (
m561

~J1 J̄!n•~J1 J̄!n1mG , ~7!

whereH1D is given by Eq.~4!. Hereg is determined by the
lattice Hamiltonian; in the ACB model with interactions ch
sen as in Fig. 1~a! we haveg52Jra0 . For the Kondo-
Heisenberg model shown in Fig. 1~b!, Eq. ~4! is modified in
such a way that even~metallic! and odd chains~effective
spin-1/2 chains representing a stripe of three coupled Hei
berg chains! have different velocities. This detail, howeve
does not lead to any qualitative changes.

The model~7! is closely related to the gauge theori
extensively studied in the context of strongly correlated s
tems. This analogy is briefly discussed in Appendix A. In t
rest of this paper, however, we will follow a different rout
Namely, we will return to Eqs.~4! and ~7! and employ the
Abelian bosonization, which proves particularly useful in r
vealing the topological nature of elementary excitations a
determining their quantum numbers.

III. PROOF OF THE EXISTENCE OF THE SPIN-1 Õ2
EXCITATIONS: INFINITE NUMBER OF CHAINS

It is well known ~see, e.g., Ref. 18! that the chiral SU1(2)
currents can be faithfully represented in terms of holom
02442
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phic ~left! and antiholomorphic~right! scalar fields,w andw̄:

Jn
35

i

A2p
]wn , Jn

65
1

2pa
e6 iA8pwn, ~8!

J̄n
352

i

A2p
]̄w̄n , J̄n

65
1

2pa
e7 iA8pw̄n. ~9!

Here],]̄5 1
2 (v21]t7 i ]x), a is the ultraviolet cutoff of the

bosonic theory, and the fieldsw and w̄ are governed by the
chiral Gaussian actions23,24~the latter work used this form o
bosonization in the context of the theory ofedge statesin
quantum Hall effect!. The bosonized low-energy effectiv
action can then be suitably represented as

S5 (
n51

N E dt dx@L n
11L n

21L n
int#, ~10!

L n
15]xw2n~]xw2n2 iv21]tw2n!1]xw̄2n11~]xw̄2n11

1 iv21]tw̄2n11!1g (
m561

H ~2pa!22cos@A8p~w2n

1w̄2n1m!#1
1

2p
]xw2n]xw̄2n1mJ , ~11!

L n
25L n

1~w→w̄ !, ~12!

L n
int5g (

m561
H ~2pa!22cos@A8p~w2n2w2n1m!#

1
1

2p
]xw2n]xw2n1mJ 1~w→w̄ !. ~13!

This is the form of the action in which the requirement
vanishing charge current (Jc

m50), imposed in the gauge
field RVB approach, is explicitly resolved.

According to the definitions~8! and ~9!, the total spin
projectionSz is equal to

Sz5
1

A2p
(

n
E

2`

`

dx~]xwn1]xw̄n!. ~14!

This is a general definition that does not assume that
fields w and w̄ are independent. In fact, the interchain inte
action that flows to strong coupling in the low-energy lim
freezes certain combinations of the fields with oppos
chiralities and thus makes them coupled.

In the first loops the renormalization group equations
the model of infinite number of chains coincide with th
equations for two chains. Atg.0 the interaction of currents
with different chirality in Eqs.~11! and ~12! is marginally
relevant and reaches the strong coupling at an energy s

D5C~vg!1/2exp~2pv/g!, ~15!

where C is a number. At the same time, the~Lorentz-
noninvariant! perturbationL int, which is responsible for the
2-3
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velocity renormalization, is irrelevant and flows only in th
presence of the other interaction. Thus it is likely that t
interaction remains weak even when the relevant one rea
the strong coupling. For this reason, in the situation when
bare constantg!1, we deem it possible to neglectL int. This
results in an approximate Lorentz invariance in~111!-
dimensional space-time, which plays an important role in
analysis that follows. WithoutL int, the action splits into two
independent, chirally asymmetric sectors,S5S11S2. The
two sectors are mapped onto each other under the revers
the chiralities,wn↔w̄n , or a shift by one lattice spacing i
the transverse direction. Hence the total symmetry beco
@SU(2)#1 ^ @SU(2)#2 and the excitations in this model carr
two quantum numbers: spin and parity.

Notice that the multichain effective action~10! features a
local Z2 symmetry already mentioned for the two-cha
problem:25 as opposed to the original lattice model that d
plays global translational invariance, the effective Ham
tonian of the continuum theory~7! is fully expressed in terms
of the vector currents and, therefore, is invariant underinde-
pendenttranslations along the chains by one lattice spaci
These translations are generated by the shifts

wn→wn6Ap

2
, w̄n→w̄n ~16!

or

wn→wn , w̄n→w̄n6Ap

2
. ~17!

The development of the strong-coupling regime in the lo
energy limit leads to a spontaneous breakdown of this s
metry. Indeed, in the ground state the field combinatio
wn1w̄n1m get frozen at the values~see Appendix B for the
details!

wn1w̄n1m5Ap

8
1Ap

2
mn

(m) , mn
(m)50,61,62, . . . .

~18!

For an even number of chains and with periodic bound
conditions in the transverse direction the integersmn

(m) sat-
isfy

(
n

mn
(1)5(

n
mn

(2) . ~19!

The sets of integers$mn
(m)% subject to the condition~19! label

different degenerate ground states, each of them breakin
local translational symmetry~16! and ~17!. The existence of
stable degenerate minima of the potential implies the e
tence of massive topological excitations, solitons, interpo
ing between adjacent vacua. Using Eqs.~14! and ~18! one
can represent the spin of a given state as
02442
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Sz5
1

2 (
n

@mn
(1)~`!2mn

(1)~2`!#. ~20!

Thus, the minimal nonzero value of the spin is 1/2. This
the spin carried by the topological solitons.

We emphasize that this statement is based on the e
symmetries of the multichain Hamiltonian~10! and does not
depend on the adopted approximations. Within the appro
mation that neglectsL int there are solitons and antisoliton
with a well-defined~1! and ~–! parity.

We would like to briefly comment on the above resul
The factorA8p that appears in the arguments of the cosin
in Eqs.~11! and~12!, representing a marginal current-curre
interchain interaction, is crucial. Recalling the bosonizat
rules for the staggered magnetization of a single spin-
chain ~see, e.g., Ref. 18!

Nn;„cosA2p~wn2w̄n!,sinA2p~wn2w̄n!,2sinA2p~wn

1w̄n!…, ~21!

we realize that interchain coupling between staggered m
netizations would give rise to a strongly relevant perturb
tion containing cosines withA2p. If such terms were
present in the action, the period of the potential and he
the topological quantum numbers of the excitations would
doubled as compared to our case and thus the spinons w
be confined. However, by construction these terms do
appear in our models, and this is why the interchain inter
tions do not lead to spinon confinement. This argument d
not require neglectingL int because the latter term also co
tains onlyA8p cosines.

Thus we are confident that in the models in question sp
1/2 excitations do exist. We also may rest assured that th
excitations do not remain confined to individual chains, a
happens, for instance in the so-called ‘‘sliding’’ Luttinge
liquid phase in arrays of crossed chains.26,27 In that latter
case, the spinons survive due to irrelevance of the interch
interactions. Contrary to that scenario, in our case the in
chain coulings remain relevant making the system truly m
tidimensional.

A. A failure of the ‘‘most obvious’’ solution

The following calculation suggests that freezing of t
fields does not imply that one can expand around the vacu
configurations. Naively, one would adopt a self-consist
harmonic approximation~SCHA! in which the cosine term is
expanded around the minimum:

cos@A8p~wn1w̄n1m!#'const1
1

2
r@d~wn1w̄n1m!#2.

~22!

Here d denotes a deviation from the vacuum value. SCH
assumes that the transverse stiffnessr should be determined
self-consistently:
2-4
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r5
2g

pa2
^exp@ iA8p~wn1w̄n1m!#&. ~23!

We shall demonstrate, however, that such a procedure y
zeror.

The effective action for fluctuations around the minima
~here we setv51)

S5(
p

~ap* ,bp* !S q~q1 iv!1r r cosk

r cosk q~q2 iv!1r
D S ap

bp
D ,

~24!

wherea5dw, b5dw̄, p5(v,q,k), q andk being the lon-
gitudinal and transverse momenta, respectively. The s
consistency condition~23! becomes

ln r;2@Gaa1Gbb12Gab#~t50,x50!

;E dv dq dk
q21r~12cosk!

v2q21~q21r!22r2cos2k
;

2E dk dq

q

q21r~12cosk!

A~q21r!22r2cos2k
. ~25!

Since the latter integral diverges, the suggested naive s
tion is not self-consistent. Its failure originates from the c
ral structure of the Gaussian part of action~11!, which in-
cludes the first power of the time gradient. For t
conventional~nonchiral! Gaussian model a similar solutio
would be self-consistent. One immediate consequence w
be the appearance of an average staggered magnetiz
Thus the present calculation demonstrates stability aga
antifferomagnetism.

B. Order parameters

As we have already seen, the fact that the combination
the fieldsw2n1w̄2n1m and w̄2n1w2n1m get locked atAp/8
1Ap/2n (nPZ) implies that the ground state of the syste
is characterized by a spontaneously broken local translati
invariance~16! and~17!. Themost obviousorder parameters
~OP! in the two sectors of the model~10!, whose structure
directly follows from the form of the interaction, are give
by

T m
(1)5 i ^exp@ iA2p~w2n1w̄2n1m!#&,

~26!

T m
(2)5 i ^exp@ iA2p~w̄2n1w2n1m!#&.

The above OP’s are real@see Eq.~18!#, defined on the links
of the lattice and are nonlocal in terms of original spin
Moreover, since the OP’s include chiral fields, they are
pressed~nonlocally!! in terms of magnetization density an
spin currents. As is shown in Appendix B, for different pair
of neighboring chains, the signs of the order parameters
02442
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uncorrelated. This leads to a massive gound state degene
22N21 ~recall that 2N is the total number of chains!.

The nonlocality of the order parameter suggests a po
bility of topologicalorder. This supports the original idea b
Wiegmann that topological order exists in RVB states.29,30

Characteristic features of such order is nonlocality of
order parameter, ground state degeneracy~in a closed sys-
tem!, and the existence of edge states~in an open system!.
The ground state degeneracy depends on the topology o
manifold~hence the label ‘‘topological’’!. The relative stabil-
ity of the state with respect to perturbations is protected
the spectral gap. One well-known example of topologica
ordered states is provided by incompressible fractional qu
tum Hall states~see the discussion in Ref. 31 and referenc
therein!. In our case the degeneracy of the ground state
exponential in the number of chains. This fact alone indica
that these models have a topological order of a different ty
This order is closely related to that existing in 2D Isin
model, multichannel Kondo models and models with scat
ing matrices of the RSOS type.

The first examples of nonlocal order parameters are gi
by the disorder field of the 2D Ising model32 and the dual
field exponentials in the 2DXY model.33,28 These fields ac-
quire nonzero expectation values in disordered phases o
corresponding models. According to Refs. 34–37 and
such order parameters~also called ‘‘string’’ order param-
eters! exist in various massive phases of 1D spin liquids. A
these liquids are related to either spinS51 Heisenberg chain
or two-leg spin-1/2 Heisenberg ladders. As was demonstra
in Refs. 37–39~see also Ref. 18!, after the Wick rotation
these systems can be described as a collection of 2D I
models. The evidence that the order is really topological w
presented by Affleck and co-workers,40 who proved that 1D
spin liquids have edge, or rather, end states: open ch
have free spin-1/2 states located at the chain’s ends. We p
pone a more detailed discussion of the issue of topolog
nature of the order until sections.

Order parameters~26! change their sign on soliton con
figurations and therefore vanish at finite temperatures w
the densities of solitons and antisolitons are finite andequal.
This mechanism is sufficient~though not necessary! to de-
stroy the order parameter at finiteT. The sign changes ma
also originate from fluctuations in nonmagnetic channe
Later we will discuss an exactly solvable example of fo
coupled chains in which the latter scenario is realized. T
temperature dependence of the correlation length depend
what mechanism is realized. If the order parameter is
stroyed only by~anti!solitons, the correlation length is expo
nentially large in 1/T. This is because the topological exc
tations have a finite spectral gap and therefore their densi
exponentially small:n;exp(2D/T). In this case, the corre
lation length is defined as the average spacing between
solitons:j;n21/D (D is the space dimensionality!.

As we shall see, the singlet excitations either have a v
small gap or even no gap at all~we do not know whether the
latter is true!. Then the order parameter is governed by a
other correlation length quite distinct from the above. T
density of nonmagnetic excitations above their gap depe
2-5
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on T as a power law. Such a situation would correspond t
quantum critical point with a power law correlation length

Turning to physical fields, we note that the products of
staggered magnetizations on neighboring chains represe
the transverse dimerization order parameters~see Appendix
B! are expressed as bilinear combinations of the true o
parameters:
e

ns
t

et

e
ith

h

a

02442
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^N2n
z N2n1m

z &

5
1

8pa0
^cos$A2p~w2n1w̄2n1m1w̄2n1w2n1m!%&

5
1

4
@T m

(1)T m
(2)1c.c.#, ~27!
^N2n
x N2n1m

x &5^N2n
y N2n1m

y &5
1

8pa0
^exp@ iA2p~w2n1w̄2n1m!#exp@2 iA2p~w̄2n1w2n1m!#&5

1

4
$T m

(1)@T m
(2)#* 1c.c.%.

~28!
d

c-

r in

the
note

we
two-

nge
:

m-
or-
to
SinceT* 5T we have

^Nn
aNn1m

b &;dab,

implying that the SU~2! symmetry remains unbroken in th
ground state.

Now let us consider the magnetic correlation functio
The order parameter field of 1D spin-1/2 chain is not jus
staggered magnetization; it is a 232 SU~2! matrix ĝ whose
entries include not only vector components of the magn
zation na (a5x,y,z), but also the dimerization fielde
5(21)n(SnSn11):

ĝ~x!5e~x!I 1 isaNa~x!. ~29!

It can also be represented in a factorized bosonic form:

ĝss85
1

A2
Css8 :exp@2 iA2p~sw1s8w̄ !#:[Css8zsz̄s8 ,

Css85eip(12ss8)/4, ~30!

where

zs5exp@ isA2pw#, z̄s5exp@2 isA2pw̄# ~s561!.
~31!

As follows from the factorization of the low-energy effectiv
action, if we consider correlation functions on chains w
the same parity~for instance, both even!, z correlates only
with z’s and z̄ with z̄. For Green’s functions on chains wit
different parity,z correlates withz̄ and not withz. Therefore
the correlation functions of the staggered magnetizations
energy densities factorize:

^gab~t,x;2n!gcd
1 ~0,0;2m!&5^za~t,x;2n!zd* ~0,0;2m!&

3^z̄b~t,x;2n!z̄c* ~0,0;2m!&

[daddbcGnm~t,x!Gnm~t,2x!,

~32!
.
a

i-

nd

^gab~t,x;2n!gcd
1 ~0,0;2m11!&

5^za~t,x;2n!z̄c* ~0,0;2m!&^z̄b~t,x;2n!zd* ~0,0;2m11!&

[dacdbdDnm~t,x!Dnm~2t,x!. ~33!

Various components of thez’s are conveniently assemble
into vectors and covectors:

~zs,2n* ,z̄s,2n11* !, S zs,2n

z̄s,2n11
D ~34!

for the ~1! sector and

~zs,2n11* ,z̄s,2n* !, S zs,2n11

z̄s,2n
D ~35!

for the ~–! sector. Then the corresponding correlation fun
tions become matrix elements of the 232 Green’s function:

Ĝ5S G~v,kz;k'! D~v,kz;k'!

D~2v,kz;k'! G~v,2kz,k'!
D . ~36!

An important fact is that both the functionD andk' depen-
dence ofG are nonperturbative effects: they do not appea
any order of perturbation theory ing and, as we shall see
later, are proportional to exp(2pv/g).

IV. EXACTLY SOLVABLE CASES: TWO AND FOUR
CHAINS

From now on we will discuss the~1! and ~–! sectors
independently. To distinguish between the amplitude of
RVB order parameter and various mass gaps, we shall de
spectral gaps by the letterm.

To check the ideas outlined in the preceding section,
shall discuss some exactly solvable cases. Consider a
dimensional array of an even number (2N) of chains with
periodic boundary conditions. In this case we can arra
chains in pairs. Exact solution is possible in two casesN
51 andN52.

Throughout this section we shall use the so-called for
factor approach to calculate leading asymptotics of the c
relation functions. This method has been widely applied
2-6
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massive integrable field theories and there are excellen
view articles42 and even books43 about it. The form-factor
approach uses information extracted from the scatte
theory and symmetry properties of physical operators to
culate matrix elements of these operators between var
exact eigenstates. To estimate the correlation functions
uses the Lehmann expansion. This approach is well defi
for theories with massive excitations. In one dimension,
reasons of kinematics, matrix elements of multiparticle sta
become smaller and smaller when the number of excited
ticles increases. This feature greatly improves the con
gence of the Lehmann expansion and allows one to obtai
accurate description of the correlation functions with only
few ~sometimes even one! matrix elements involved.

A. NÄ1 „two chains…

Though the number of chains is really small, this ca
contains certain interesting features that may shed ligh
more general cases. ForN51 each sector with a given parit
is equivalent to the isospin sector of the SU~2! invariant
Thirring model, as it was shown in Ref. 25. The excitatio
are massive solitons with spin 1/2. There are no other mo
~singlet modes!, as it must be for the case of largeN. For this
reason this case is not representative, as we have alr
said. The massive modes correspond to amplitude fluc
tions of D.

The correlation functions of chiral bosonic exponents
the Thirring model can be extracted from the recent pape
Lukyanov and Zamolodchikov44 ~see also Ref. 41!. In par-
ticular, for the correlation functions of spinon fields~36! and
for the correlators of staggered magnetizations we have

G~t,x!5^eiA2pw(t,x)e2 iA2pw(0,0)&;
1

Aivt2x
exp~2mr12!,

^eiA2pF1(t,x)e2 iA2pF1(0,0)&;
1

r12
exp~22mr12!,

~37!
D~t,x!5^eiA2pw(t,x)eiA2pw̄(0,0)&;m1/2K0~mr12!,

^eiA2pF1(t,x)eiA2pF2(0,0)&5Z0mK0
2~mr12!,

wherer5At21(x/v)2 and the mass gapm5D given by Eq.
~15!. In writing down these formulas we used the sing
mode approximation for the spinon operators~for the details
we again refer the reader to Ref. 44!:

zs
1~t,x!5Z0

1/2m1/4E du eu/4e2 ixm sinhu@e2mt coshuẐs
1~u!

1emt coshuẐ2s~u!#, ~38!

z̄s~t,x!5Z0
1/2m1/4E du e2u/4e2 ixm sinhu@e2mt coshuẐs

1~u!

1emt coshuẐ2s~u!#, ~39!

whereZ6 (Z6
1) are annihilation~creation! operators of soli-

tons and antisolitons andZ0 is a numerical constant. Ap
02442
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proximation~39! fails at small distances; inclusion of term
with multiple soliton production removes the logarithm
singularity ofK0.

The two-point correlation function of currents were ca
culated in Ref. 45. Equation~37! supports the earlier claim
made at the end of the preceding section, that the interc
correlation function of the staggered magnetization is n
analytic ing and thus vanishes in all orders of perturbati
theory.

B. NÄ2 „four chains…

In the N52 case the interaction can be written as

~J11J3!~ J̄21 J̄4!1~J21J4!~ J̄11 J̄3!. ~40!

The sum of twok51 SU~2! currents is thek52 current;
moreover, according to Ref. 46 the sum of two SU1(2)
WZNW models~the central charge 2! can be represented a
the SU2(2) WZNW model with central charge 3/2 and plu
one massless Majorana fermion~a critical Ising model! with
central charge 1/2. Using the results of Ref. 46 we rew
the entire Hamiltonian density~4! as follows@here only the
~1!-parity part is written#:

H15Hmassless1Hmassive,

Hmassless52
iv
2

x0]xx01
iv
2

x̄0]xx̄0 , ~41!

Hmassive5
pv
2

~ :I•I :1: Ī• Ī : !1gI• Ī

5
iv
2

~2xa]xx
a1x̄a]xx̄

a!2
g

2
~xax̄a!2, ~42!

wherea51,2,3 and

I5J11J3 , Ī5 J̄21 J̄4 ,

J1,35
i

2 H 6x0x1
1

2
@x3x#J ,

J̄2,45
i

2 H 6x̄0x̄1
1

2
@ x̄3x̄#J . ~43!

The fieldsx and x̄ denote real~Majorana! fermions.
Equation~41! describes a critical Ising model; the corr

sponding excitations are gapless and nonmagnetic; they
pear in the sectors with both parities. The criticality is
artifact of the periodic boundary conditions in the transve
direction.

The massive sector can be described using three equ
lent representations. One of those is the SU2(2) WZNW
model perturbed by a current-current interaction~the ultra-
violet central chargeCuv53/2). Here the fundamental field
is the SU~2! matrix ĝ. Another representation is the O~3!
Gross-Neveu~GN! model where fundamental fields are M
jorana fermions~42!. The third representation is three critic
Ising models coupled by the energy density operatorse i :
2-7
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S5(
i 51

3

SIsing~s i !2g(
i . j

E dt dx e ie j . ~44!

In the latter case the fundamental fields are order param
fields of the Ising models or, via the duality relationships,
corresponding disorder parameter fields.

An external magnetic field couples to the sum of all c
rents and therefore only to the fermions of the O~3! GN
model:

Hmagn5 ih•~@x3x#1@ x̄3x̄# !. ~45!

Since this model has a spectral gap, the net magnetiza
does not appear until the magnitude of the field reaches
value of the gap.

The thermodynamic Bethe ansatz equations for the O~3!
GN model were obtained by one of the present author47

some of the correlation functions were calculated
Smirnov.48 A very illuminating discussion of the symmetrie
and the excitation spectrum of this model can be found in
recent paper by Fendley and Saleur.49

The massive magnetic excitations are particles with n
Abelian statistics, as in the Pfaffian state of quantum H
effect.50 An unusual fact about the O~3! GN model is that its
ground state is doubly degenerate. This degeneracy is oto-
pological nature, being related to properties ofzero modes
formed on solitons. The picture simplifies drastically if o
takes into account that the O~3! GN model is equivalent to
the supersymmetric sine-Gordon model47 ~SUSY SG!

L5
1

2
~]mF!21

i

2
x̄gm]mx1M2sin2~bF!1 iM x̄x cos~bF!,

~46!

with b254p. For the SUSY SG model there is a semicla
sical limit b2!1, where details are easier to grasp. In t
limit the spectrum is determined by the minima of t
bosonic part of the potential. There are two sets of minim
one where cos(bF)51 and one where it is21. This sign
difference does not affect the energy spectrum of the Ma
rana fermion but affects expectation values of the Is
model order and disorder parameters. Therefore vacua
different sign of cos(bF) are physically distinguishable. It i
clear that the fact of this degeneracy is related to~i! the odd
number of Majorana fermions species present and~ii ! the
existence of solitons. Both these features are very gen
and are likely to survive in a finite parameter domain. T
described situation should be opposite to what happens in
conventional sine-Gordon model, where the potential is
cos(bF) and the degeneracy between its minima is lifted
the ground state.

There are two descriptions of the spectrum. The first w
suggested by Zamolodchikov.51 This description abandon
the notion of asymptotic particle states and therefore lead
difficulties when being applied to the correlation function
The second approach was suggested in Ref. 52 and us
Ref. 48 to calculate the correlation functions. In this a
proach solitons are treated as particles carrying two quan
numbers—an SU~2! spin s5↑,↓ and an isotopic numberp
56. The isotopic part of theK-soliton Hilbert space is trun
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cated, that is, not all combinatorically possible 2K states are
allowed. The number of allowed states is 2[K/2]; in fact, the
isotopic space ofK solitons is isomorphic to the irreducibl
representation of aK-dimensional Clifford algebra~in other
words, one may say that each soliton carries ag matrix—a
zero mode of the Majorana fermion!. In particular, the two-
soliton wave function must be an isotopic singlet.

This approach allows one to use the conventional sca
ing matrix description at the end, projecting out unwant
states. The two-particleSmatrix is given by the tensor prod
uct

S~u12!5SITM~u12! ^ S4p~u12!, ~47!

where the firstS matrix corresponds to the SU~2! invariant
~isotropic! Thirring model~ITM ! and second is theS matrix
of solitons of the sine-Gordon model with the particular a
isotropy j54p @in Smirnov’s notations j5pb2/(8p
2b2)].

The order parameters are local operators both in the Is
and the WZNW representations:

T125exp@ iA2p~w11w̄2!#5eiApF1eiApF2

5~s0s31 im0m3!~s1s21 im1m2!5s0Trĝ1 im0Trĝ1,
~48!

T145exp@ iA2p~w11w̄4!#5eiApF1eiApQ2

5~s0m31 im0s3!~s1s21 im1m2!,

where s i and m i are order and disorder parameters of t
corresponding Ising models. The spontaneous mass gen
tion freezess i ( i 51,2,3), but leavess0 and m0 critical.
Therefore the most singular parts of the above order par
eters

T12;s0 , T14;m0 ~49!

still have power law correlations atT50. The correlation
length at TÞ0 is j;1/T and is not determined by th
solitons—a possibility we have mentioned in Sec. III B.

The chiral exponents entering in the expressions for
staggered magnetization are nonlocal:

exp@ iA2pw1#5Cabs
a~z!gb~z,z̄!, ~50!

where sa are chiral vertex operatorsof the critical Ising
model~see Ref. 53 for details!. The operatorsg in the ultra-
violet limit become vertex operators of theS51/2 tensor
operators ofk52 WZNW model.

In order to understand the subsequent calculations of
correlation functions the reader must keep in mind two pr
cipal facts about excitations in integrable models. The fi
fact is that these excitations cannot be unambiguously c
sified as fermions, bosons, semions, etc. Their commuta
relations are determined by theS matrix and therefore de
pend on the momenta of the particles~see, for example, Ref
56!. The second fact is that the creation and annihilat
operators of elementary excitations in integrable theories
usually strongly nonlocal in terms of the bare creation a
annihilation operators. Hence these excitations are exten
objects and therefore do not belong to any particular rep
2-8
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SPINONS IN MORE THAN ONE DIMENSION: . . . PHYSICAL REVIEW B 67, 024422 ~2003!
sentation of the Lorentz group. Therefore their Lorentz s
is not fixed and the same operator can represent phy
fields with different Lorentz spin depending on circum
stances.

1. Correlation functions of the currents

According to Eq.~43! there are two parts in a given cu
rent operator,J2 andI. The first, containing a product of th
gapless fermionx0 and the O~3! GN model fermion, is not
conserved. A GN fermion is a convolution of two soliton
each entering with Lorentz spin 1/4 to make the total s
1/2. Superficially it may appear that the second term~the
conserved current! is a convolution of four solitons, but thi
is incorrect: the minimal matrix element contains two so
tons that enter with Lorentz spin 1/2. Sincex0 remains mass-
less, the leading asymptotics of the correlation function
nonconserved currents^J2J2& with the threshold ats52m
@s25v22(vq)2# exists only for the currents with the sam
chirality ~here we setv51):

^J2
a ~t,x!J2

b ~0,0!&

5dab~t1 ix !21E du1du2uF1~u12!u2e~u11u2!/2

3exp@2mt~coshu11coshu2!

1 imx~sinhu11sinhu2!#, ~51!

which gives

~t2 ix !

~t1 ix !At21x2E duuF1~u!u2K1~2mr coshu!, ~52!

whereF1 can be calculated. The Fourier transform

Im ^J2J2& (v,q)5S v1q

v2qD 2

L~s2!,

Im ^J̄2J̄2& (v,q)5S v2q

v1qD 2

L~s2!, ~53!

L~s2!5s2E du

cosh3u
uH~s224m2cosh2u!uF1~u!u2

whereuH(x) is the Heaviside function.
Now let us consider the pair correlation function of t

conserved O~3! currentsI 5J11J3 , Ī 5 J̄21 J̄4. Their matrix
elements were calculated in Ref. 48. In the scheme ado
in that paper a soliton carries two quantum numbers—
SU~2! spin s5↑,↓ and an isotopic numberp56. The iso-
topic part of the multisoliton Hilbert space is truncated su
that the two soliton wave function must be an isotopic s
glet. Due to the SU~2! symmetry, it is sufficient to have a
expression for one component of the current, for exam
I 3. The matrix element into a state of two solitons with r
piditiesu1 andu2 and quantum numbers (s,p)1 and (s,p)2
is given by
02442
n
al

n

f

ed
n

h
-

e,
-

^u1 ,~s1 ,p1!;u2 ,~s2 ,p2!uI zu0&

5de(u11u2)/2
coth~u12/2!z`~u12!z4~u12!

~u121 ip!coshF1

8
~u121 ip!G @ u↑↓&1u↓↑&]

^ @ u12&2u21&], ~54!

where

zk~u!5sinh~u/2!z̃k~u!,

z̃k~u!5expF E
0

`

dx
sin2@x~ ip1u!#sinh@p~12k!x/2#

x sinhpx cosh~px/2!sinh~pkx/2!G ,
~55!

and

d5
1

64p3z`~ ip!z4~ ip!
.

Thus the leading asymptotics of^I aI b& and ^I aĪ b& are

^I a~t,x!I b~0,0!&52d2dabE du1du2uF2~u12!u2e(u11u2)

3exp@2mt~coshu11coshu2!

1 imx~sinhu11sinhu2!#, ~56!

^I a~t,x! Ī b~0,0!&5dab2d2E du1du2uF2~u12!u2

3exp@2mt~coshu11coshu2!

1 imx~sinhu11sinhu2!#, ~57!

where

uF2~u!u25
sinh2u

@cosh~u/4!1cos~p/4!#~u21p2!
u z̃`~u!z̃4~u!u2.

~58!

For the Fourier transform we have

^I m
a I n

b&5dab~dmn2qmqn /q2!D~s2!,
~59!

Im D~s2!5
4d2

As224m2
uF2~u!u2, cosh2~u/2!5s2/4m2

such that at the threshold we have the same behavior a
N51:

Im D~s2!;As224m2 ~60!

2. Single-electron Green’s function for the model of stripes

All correlation functions discussed so far exist for bo
models depicted in Fig. 1. Now we are going to discuss
single-electron function that exists only for the model
2-9
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A. A. NERSESYAN AND A. M. TSVELIK PHYSICAL REVIEW B 67, 024422 ~2003!
stripes@Fig. 1~b!#. For N51,2 we can calculate the spino
Green’s functionG and find the following expression for th
spectral function:

AR~v,q!;
1

v2vq S m2

v22~vq!22m2D 3/8

~61!

and for the tunneling density of states:

r~v!;E
0

cosh21(v/m) du cosh~3u/8!

~v/m2coshu!3/8
. ~62!

3. Correlation functions of the staggered magnetizations

As we have stated above, the correlation functions
staggered magnetizations factorize into a product of
kinds of correlation functions:G and D @see Eqs.~33! and
~36!#. The function D is essentially nonperturbative an
therefore especially interesting. We have demonstrated
for N51 this function is nonzero. ForN52 with periodic
boundary conditions this function vanishes. This is related
the fact that for periodic boundary conditions the singlet s
tor is critical. The operator exp@iA2pw# contains vertex op-
eratorss0; at criticality correlation functions of such opera
tors with vertex operators of different chirality alway
vanish:^s0s̄0&50.

To understand this better it is convenient to write the st
gered magnetizations in the appropriate basis. Thus we h

N1,35s0
(1)Tr@s~g1g1!#6 im0

(1)Tr@s~g2g1!#,
~63!

N2,45s0
(2)Tr@s~G1G1!#6 im0

(2)Tr@s~G2G1!#,

whereg andG are the SU~2! matrices. The fieldss0 andm0
remain critical. The fieldsg and G have to be decompose
into their vertex operators and the interaction involves s
tors with different chirality.

From Eqs.~63! we have

^^N1N1&&5~^^s0s0&&1^^m0m0&&!^^Tr@sg#Tr@sg1#&&,
~64!

^^N1N3&&5~^^s0s0&&1^^m0m0&&!$^^Tr@sg#Tr@sg#&&

1^^Tr@sg1#Tr@sg1#&&%,

where^^s0s0&&5^^m0m0&&;u(vt)21x2u1/8.
There are no reasons to think that correlation functions

the chains with the same parity vanish. Here solitons e
with Lorentz spin 3/16. The asymptotics of the correlati
function is given by

x~t,x!5^eiA2pF1(t,x)e2 iA2pF1(0,0)&

;^eiA2pF1(t,x)e2 iA2pF3(0,0)&

;r21/4U E du e3u/8e2mt coshu1 ixm sinhuU2

52r21/4E du K3/4~2mr coshu!, ~65!
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where r25(vt)21x2. The Fourier transform is@s25vn
2

1(vq)2#

4pE dr r3/4J0~sr!E du K3/4~2mr coshu!

;E du~coshu!27/4F~5/4,1/2,1;2s2/4m2cosh2u!. ~66!

After the analytic continuationiv5v1 i0 we get the imagi-
nary part@now s25v22(vq)2.4m2]

x9~v,q!;s23/4E
(2/s)

1 dx x3/4

~12x2!3/4~s2x2/4m221!1/2

3F~1/2,1/2,1/4;12x2!. ~67!

Close to the thresholds52m we have

x9~v,q!;~s224m2!21/4. ~68!

At s2@m2 Eq. ~67! gives the correct asymptoticsx9;s21,
which indicates that the two-soliton approximation may gi
a reasonable description throughout the entire range of e
gies. Recall that forN51 the power was21/2. It is tempt-
ing to speculate that the threshold singularity further dim
ishes with an increase ofN.

The case of four chains introduces some new featu
Some of them, as we believe, are accidental and some
generic. The generic feature that persists for a higher num
of chains~see above! is the presence of singlet degrees
freedom. Here they appear in the form of the critical Isi
model. The accidental features are the criticality of the la
model and the non-Abelian statistics of the massive kin
These two properties are closely related and are unst
with respect to a change in boundary conditions. In the m
general setting, as we shall see in the next section, the ga
the Ising model sector will be finite, but much smaller th
the magnetic gap.

V. TOWARDS AN INFINITE NUMBER OF CHAINS: A
TRIADIC CLUSTER EXPANSION

As the reader probably understands, the problem in qu
tion is difficult, naive attempts to develop a self-consiste
expansion schemes fail~see Sec. III A!, and we have to re-
sort to some other methods. The exact results for two
four chains discussed in the preceding section give a glim
of the complexity of the problem. Unfortunately, for a high
number of chains there are no exact solutions. Howeve
nonperturbative analysis can be imagined, though fo
somewhat modified model. In this modification the intera
tions are set up in such a way that the chains are assem
into clusters of three~triads!, nine ~enneads!, 27 chains, etc.
~see Fig. 2!.

The interaction inside a cluster of a given size is suppo
to be stronger than interactions between the clusters of la
sizes. We believe that the study of such a modified mo
sheds light on classification of the excitations and establis
the structure of the effective action for the collective mod
below the soliton mass gap.
2-10
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FIG. 2. ~Color! The hierarchi-
cal model for 36 chains. Differ-
ently colored circles denote cur
rents with different chirality. The
green bonds are the strongest, t
magenta ones are of intermedia
strength, and the yellow ones ar
the weakest.
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A. The fundamental triad „three chains…

The solution for two chains with one chirality~let it be the
left one! coupled with the current-current interaction to
chain with opposite chirality was described in Refs. 57 a
58 ~see also Ref. 59!. The Hamiltonian density is

H5F iv
2

x̄0]xx̄01
pv
2

: Ī Ī : G1
2pv

3
:JJ:1g Ī J, ~69!

where Ī a andJa are right SU2(2) and left SU1(2) currents,
respectively. The expression in the square brackets desc
a sum of two chiral SU1(2) WZNW models. Such a repre
sentation was already discussed in Sec. IV B. The rig
moving Majorana fermion does not participate in the int
action. In the ultraviolet regime the model is a sum of thr
chiral conformal field theories: thek52 SU~2! WZNW
model with the right central chargeCR53/2, the right-
moving free Majorana field withCR51/2, and the SU1(2)
WZNW model with the left central chargeCL51. The
current-current interaction generates a massless renorma
tion group~RG! flow to the infrared critical point. The theor
in the infrared is represented by two free Majorana fermio
with opposite chiralityx̄0 andx0 and the right-moving sec
tor of the SU1(2) WZNW model:

HIR5
2pv

3
: j̄ j̄ :1

iv
2

~ x̄0]xx̄02x0]xx0!. ~70!

Under the RG flow the fields transmute in the following wa

Ī→2 j̄ 1•••, i x̄0x̄→ i x̄0x0 j̄ 1•••, ~71!

where the dots stand for less relevant operators.
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B. The first ennead„nine chains…

Let us consider the case of nine chains with open bou
ary conditions, arranging them into three triads in such a w
that the bare coupling constant inside each triadg0 is greater
than the bare couplingg1 between the triads~see Fig. 3!.
Then we can have a situation when the ir fixed point fo
given triad is already achieved@the corresponding energ
scale isD;Jig exp(2p/g)], well before the renormalized

FIG. 3. ~Color! The renormalization scheme for three chains.
the infrared limit the system is equivalent to a single chiralC51
chain and a critical~nonchiral! Ising model. The circles with differ-
ent thicknesses denote currents with different chirality.
2-11
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coupling for the triad-triad interaction becomes of the ord
of 1.

According to Eq.~71!, the renormalized coupling betwee
any neighboring triads~denoted 1 and 2; recall also that the
always have different chirality! in the infrared is

g1~D!j1 j̄ 21g1~D!~ i x̄0x0!1~ i x̄0x0!2j1 j̄ 21•••. ~72!

FIG. 4. ~Color! A schematic picture of renormalization of nin
chains.
02442
r

The first term reproduces the original interaction~7!. Its pres-
ence in the Hamiltonian also converts the second term in
marginal operator:

g1~D!~ i x̄0x0!1~ i x̄0x0!2j1 j̄ 25g̃1~ i x̄0x0!1~ i x̄0x0!21g1~D!

3~ i x̄0x0!1~ i x̄0x0!2 : j1 j̄ 2 :,

g̃15g1~D!^ j1 j̄ 2&. ~73!

Thus by integrating out the high-energy degrees of freed
in the ennead of chains one generates at energies sm
thanD ~the new uv cutoff! the effective action that contain
the original action for a triad of chains with a renormaliz
coupling constantg1 plus the action for three critical Ising
models coupled by the products of energy density operat

HIsing5(
r 51

3 F i

2
~ x̄]xx̄2x]xx!r G1g̃1~ x̄x!2@~ x̄x!11~ x̄x!3#.

~74!

The Ising subsystem decouples from the magnetic one.
resulting model is similar to the O~3! GN model discussed
wn, the
s of various
FIG. 5. ~Color! The hierarchy of interactions and the renormalization process for 27 chains. The strongest bonds are bro
intermediate are green and the weakest ones are yellow. The Ising variables are shown as pink rectangles. The red and blue circle
sizes depict spin currents of different chirality. Their size increases with every step of the RG process.
2-12
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above@see the discussion around Eq.~47!#. The only differ-
ence is that the symmetry is broken down to U~1!. The in-
teraction can be written in terms of the currents

g̃1@~ x̄x!1~ x̄x!21~ x̄x!2~ x̄x!3#;g'@ I xĪ x1I yĪ y#1g iI
zĪ z,
~75!

which makes the model somewhat similar to the anisotro
Thirring model@ I a are SU2(2) currents made ofx r ’s and the
coupling constantsg';g̃1 andg i50 on the bare level#. We
believe ~the details will be given in a separate publicatio!
that this particular type of anisotropy vanishes in the stro
coupling regime in the same way as it does in theC sector of
the anisotropic Thirring model.54,55 In other words, in the
strong coupling regime the model~74! is equivalent to the
O~3! GN model.

Thus on each step of the triadic real space RG we ge
ate the O~3! GN models. Their number is equal to the num
ber of clusters on the given level. For example, if the init
number of chains is 3N and the first GN model appears for
cluster of 9 chains, the number of copies of GN models
the first level is 3N22. Then the next levels contain 3N23,
3N24, etc., copies such that the total number of such mod
in both parity sectors is 3N21. Taking into account that eac
of them has a twofold degenerate ground state, we get
ground state degeneracy 2N/3, whereN53N is the total num-
ber of chains. The resulting ground state entropy is th
times smaller than the one that was obtained for the unifo
case.

Now we can discuss the thermodynamics. In our clus
expansion we have the following energy scales. First, ther
a sequence of crossover scalesD0.D1.•••.DN21 ~mag-
netic gaps! corresponding to crossovers inside of each cl
ter. Then there are energy gaps of the interacting Ising m
els M2 ,M3 , . . . , which are formed by clusters of 9, 27, 8
etc., chains~see Figs. 4 and 5!. The first scale in this se
quence is of the order of

M2;D1exp@2p/g̃1#. ~76!

Sinceg̃1;g1
2 we deem these energy gaps to be much sma

than the magnetic gaps. We conjecture that this differe
survives even in the limit when all interactions becom
equal.

All these crossovers affect the temperature behavior of
specific heat~see Fig. 6!. The first crossover occurs at tem
peratureT;D0, which is the crossover temperature of a fu
damental triad. Above this temperature we have a bunc
noninteracting chiral Heisenberg chains, each having the
capacity linear inT:

C~T.D0!5SC, C5
pT

6v
, ~77!

whereS53NL i is the total area occupied by the system.
D0.T.D1 we effectively have 3N21 critical Ising chains
with central chargeC51/2 and the same amount of noni
teracting chiral Heisenberg chains. As a result the slope
the specific heatdrops by the factor of 2. When the entir
02442
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sequence of magnetic crossovers is passed, that is, atDN21
.T.M2, the specific heat is given only by the Ising mo
els:

C5
pT

6v S 1

3
1

1

9
1

1

27
1••• D5

pT

12v
, ~78!

that is, remains the same as after the first crossover. Thu
can say that in the thermodynamic limit the singlets occu
half of the original Hilbert space.

When the temperature falls below the first singlet gapM2,
one may say to the first approximation that the Ising mo
with the largest gaps cease to contribute. After a cert
crossover the linear slope in the specific heat drops b
factor of 9. The specific heat remains linear inT until M3 is
reached, where the slope falls by another factor of 3, etc
our scheme where the distribution of coupling constants
tween the clusters of different size is rather arbitrary,
makes little sense to do more detailed calculations. The o
thing we can say is thatC;T above a certain temperatur
and then experiences a fast decrease. In our cluster expa
there are two areas with linear specific heat characterized
slopes differing by the factor of 2. This due to the fact th
within this approach the gap for magnetic excitationsD is
different from the gaps for singlet excitations. Whether th
feature will survive in the limit of uniformly coupled chain
is open for debate.

VI. REMAINING CASES

It would make a lot of sense to study the models d
scribed in this paper numerically. Since numerical calcu
tions will probably be performed for systems with a r
stricted number of chains, we decided to describe cer
tractable cases in more detail.

A. An approximate solution for NÄ3 „six chains…

In this case the magnetic subsystem is equivalent toN
51 @that is, to the SU~2! Thirring model# and the Ising sub-
system contains two Ising models with thee1e2 interaction.
The latter is equivalent to the spinless Thirring model with

FIG. 6. A schematic picture of the temperature dependenc
the specific heat.
2-13
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truly marginal interaction. Thus the Ising sector is critic
and is described by theC51 Gaussian model.

B. An approximate solution for NÄ6 „twelve chains…

Applying the procedure outlined above to the system
twelve chains with periodic boundary conditions~see Fig. 3!,
we obtain theN52 model in the magnetic sector plus th
model ~74! with four chains~see Fig. 7!.

Thus the excitation spectrum includes the GN O~3! soli-
ton mode, one gapless Majorana fermion, and massive e
tations from the Ising sector.

VII. SINGLE-ELECTRON GREEN’S FUNCTION FOR THE
MODEL OF STRIPES AND THE SPINON PROPAGATOR

FOR NÄ`

Now we shall try to use the wisdom accumulated in t
exact solution of theN52 case to obtain results for the ca
of an infinite number of chains. Though our ultimate goa
to calculate the correlation function of staggered magnet
tions, the path to it lies through the single-electron Gree
function, which exists only for the model of stripes@Fig.
1~b!#. The reason for this will become clear in the process
calculation.

Let conduction electrons belong to even chains. Then
electron creation operator is

Rs,2n5eiA2pwc(2n)es iA2pw(2n),

Ls,2n5e2 iA2pw̄c(2n)e2s iA2pw̄(2n), ~79!

wherevc is the Fermi velocity. Though, in general,vc may
be quite different from the spin velocity, we shall not co
sider this possibility. Withvc5vs the model is ~111!-
dimensional Lorentz invariant. The charge fieldswc and w̄c
are free Gaussian fields and hence there are no correla
between the fields belonging to different chains,

GRR~t,x!5
1

~tvc1 ix !1/2
G2n,2n~t,x!,

GLL~t,x!5
1

~tvc2 ix !1/2
G2n,2n~t,2x!, ~80!

where the functionG was defined in Eq.~32! and can be
called the spinon Green’s function. Since the elect
Green’s function must be a single-valued function ofx at t

FIG. 7. A schematic picture of twelve chains. The thick lin
correspond to larger exchange interactions. The circles of diffe
sizes denote chains with different chirality.
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→0 and a single-valued function oft at x50, we conclude
that the spinon functionG must be a double-valued functio
to compensate for the double-valuedness of (tvc6 ix)21/2.
This suggests that the spinons are semions, as it was
gested by Laughlin.60

Now we shall use these facts to determine the asympto
of the single-fermion Green’s function in a similar way
was done for the~111!-dimensional Thirring model.41,44

Namely, we shall combine these arguments with the L
mann expansion for the Green’s function. In this expans
we shall take into account only terms with an emission o
single massive soliton. The spectrum of this soliton is

E~k,k'!5A~vk!21M2~k'!, ~81!

whereM (k');exp@2pv/g# is as yet an unknown function
~the soliton gap!. We believe that this gap always remain
finite for any momentum. A convenient parametrization
the energy and the momentum component along the c
direction is

E5M ~k'!coshu, vkx5M ~k'!sinhu. ~82!

In this notation a Lorentz rotation on an ‘‘angle’’g corre-
sponds to the shift of rapidityu→u1g since an operator
with Lorentz spinS transforms under such Lorentz transfo
mation as

AS→egSAS .

We generalize forN5` the formulas obtained for theN
51 andN52 cases, treating the vanishing of theD function
is theN52 as an artifact of periodic boundary conditions

G;~vt2 ix !21/2Z~k'!exp@2M ~k'!At21~x/v !2#,

D; f ~k'!M1/2~k'!K0„M ~k'!At21~x/v !2
…, ~83!

whereZ andf are yet unknown functions. Thef function may
vanish at some point in momentum space, as suggeste
the example of four chains. Notice that bothk' dependence
of G and the very existence ofD are effects exponential in
1/g. These equations dictate the following asymptotic fo
for the correlation function of the staggered magnetizatio

x1~t,x;q'!5r21E dk'

~2p!
Z~k'!Z~q'1k'!exp$2@M ~k'!

1M ~q'1k'!#r%, ~84!

x2~t,x;q'!5E dk'

~2p!
f ~k'! f ~k'1q'!

3@M ~k'!M ~q'!#1/2K0„M ~k'!r…K0„M ~k'

1q'!r…,

wherer25t21(x/v)2 and x1 is a correlation function be-
tween the chains with the same andx2 with different parities.

nt
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VIII. CONCLUSIONS

Let us make a summary of our results.
~1! We have found models of magnets with a short-ran

Heisenberg exchange that have neither magnetic nor s
Peierls order.

~2! We have given a formal proof that these models p
sess excitations with spin 1/2.

~3! We established the existence ofT50 critical point and
a massive ground state degeneracy. The ground state en
is proportional to the number of chains.

~4! We have also established that the low-energy Ham
tonian separates into two weakly interacting parts describ
sectors with different parity.

~5! We established that the correlation functions of st
gered magnetizations can be written as real space produc
correlation functions of nonlocal operators belonging to
sectors with different parity@see Eqs.~32! and ~33!#.

~6! We have solved the problem exactly for the case
two and four coupled chains~the latter one with periodic
boundary conditions!. The results are consistent with th
statements made for the case of infinite number of cha
The spectrum contains a massive amount of singlet exc
tions. In the language of gauge theory these excitations
scribe dynamics of Wilson loops.

A natural question is whether the models considered
our work can be realized. We believe that the the answe
positive. The model of stripes may well be relevant in
strongly underdoped regime of copper oxides.

We have already mentioned in the Introduction that th
are other models of fractionalization, such as suggeste
Refs. 7 and 8 together with the corresponding dimer mod
mentioned earlier. Though these works use Hamiltonians
based on any microscopic electron models, one might h
that they capture some features of the solution. In particu
it would be interesting to study in detail how singlet excit
tions, which in our model are associated with the O~3! GN
models emerging on each triad of chains, are related to2

vortices~visons! introduced in Refs. 7 and 61~see also the
recent work,62 which essentially clarifies the concept of v
son!. We leave this question, as many others, to future
search.
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APPENDIX A: GAUGE THEORY FORMULATION

The relationship with the gauge theories can be infer
from the fact that the levelk51 SU~2! Kac-Moody currents
can be identified with~iso!spin currents of massless Dira
fermions:

Ja5
1

2
Ra

†sab
a Rb , J̄a5

1

2
La

†sab
a Lb , ~A1!

sa being Pauli matrices. The Hamiltonian~4! and ~7! be-
comes

H5(
n
E dxF iv~2Ra

†]xRa1La
†]xLa!n1

g

8 (
m

~R†sR

1L†sL !n•~R†sR1L†sL !n1mG . ~A2!

As gauge theories of the RVB state, this theory posses
redundant charge degrees of freedom that do not partici
in the interactions. Since every approximation violates t
subtle property, dealing with the charge sector would beco
the same awkward problem as it is in the standard appro
to the RVB gauge theory, once one decides to adopt
fermionic representation. Let us, however, follow the we
trodden path for a while just to make sure that the model
are discussing does fall in the category of RVB liquids.
this end, we use the identity

s1
as2

a52P1221,

where P12 is the permutation operator, and apply th
Hubbard-Stratonovich transformation to rewrite the inter
tion term in Eq.~A2! as

(
m,n

E dxF uDm1n,n~x!u2

2g
1~Dn,n1mRa,n

† La,n1m1H.c.!G
1•••, ~A3!

where the dots stand for the terms we deem irrelevant.
procedure essentially coincides with the conventional dec
pling scheme in the RVB approach. The fact that such
coupling here is done only in one lattice direction is n
important provided one can justify that fluctuations ofuDu
may be neglected. As we shall see, excitations associ
with breaking of singlets carry the largest spectral gap. T
justifies the assumption about small fluctuations ofuDu. Once
the amplitudeuDu;Jiexp(2pv/g) is frozen, one is left with
the compact U~1! lattice gauge theory in the strong couplin
limit ~indeed, the gauge field has no bareFmn

2 term, which
corresponds to infinite bare charge!. The vector potentialAy
is represented by the phase ofDn,n1m . Since by omitting the
term with Ra

†RaLa
†La we violate the decoupling of the

charge degrees of freedom, we have to enforce the const
on the absence of charge fluctuations by introducing the t
componentA0 of the gauge field. In the mean field approx
mation ~that is, when fluctuations of the gauge fields a
neglected! we obtain the spectrum of thep-flux state:12
2-15
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E~p!5A~vki!
214uDu2cos2k', ~A4!

which has two Dirac-like conical singularities in the Bri
louin zone. From what we have done in this paper it appe
very dubious that this result will survive inclusion of fluc
tuations.

APPENDIX B: THE STRUCTURE OF STRONG
COUPLING REGIME AND THE GROUND-STATE

DEGENERACY

Let us assume that the system is two-dimensional and
number of chains is even, 2N. We will drop the Lorentz-
noninvariant part,L n

int , in which case one has a decompo
tion Ln5L n

11L n
2 .

Let us first consider(nL n
1 . In the strong-coupling

ground state, the following combinations of the chiral fiel
are locked:

w2n1w̄2n1m5Ap

8
@112m2n

(m)#, m561,

m2n
(m)50,61,62, . . . . ~B1!

Assuming that periodic boundary conditions are imposed
the transverse direction, the set of equations~B1! can be
rewritten as

w01w̄2N215Ap

8
@112m0

(2)#,

w01w̄15Ap

8
@112m0

(1)#,

w21w̄15Ap

8
@112m2

(2)#,

w21w̄35Ap

8
@112m2

(1)#,

•••

w2N221w̄2N235Ap

8
@112m2N22

(2) #,

w2N221w̄2N215Ap

8
@112m2N22

(1) #. ~B2!

Considering pairs of neighboring equations in Eq.~B2!, one
finds that the integersm2n

(m) satisfy the following condition:

(
k50

N21

m2k
(1)5 (

k50

N21

m2k
(2) . ~B3!

With this constraint, the number of independent fiel
locked in the ground state, is 2N21. To select these field
we first defineN scalar fields

xn5w2n1w̄2n11 , n50,1,2, . . . ,N21 ~B4!
02442
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together with theirN dual counterparts

qn5w2n2w̄2n11 . ~B5!

According to Eq.~B1!, the fieldsxn are locked at

@xn#vac5Ap

8
@112m2n

(1)#. ~B6!

On the other hand, there areN more combinations,w2n

1w̄2n21, that get frozen, again according to Eq.~B1!. We
can express them in terms ofxn andqn :

w2n1w̄2n215
1

2
~xn1qn1xn212qn21!

5Ap

8
@112m2n

(2)#. ~B7!

ThusN relative dual fields

un
(2)5

1

A2
~qn2qn11!, n50,1,2, . . . ,N21 ~B8!

are also locked:

@un
(2)#vac5

Ap

2
@m2n

(1)1m2n12
(1) 22m2n12

(2) #. ~B9!

Notice that transverse periodic boundary conditions im
that

(
n

un
(2)50

@which is actually the same condition as Eq.~B3!#, and so the
number of independent relative fields isN21. We choose
them to be

u0
(2) ,u1

(2) , . . .uN22
(2) ~B10!

The total field

u* 5
1

AN
(
n50

N21

qn ~B11!

remains unlocked and, hence, disordered.
Thus theN fields xn , Eq. ~B4!, are locked whileN their

dual counterpartsqn arenot; only their N21 combinations
~B10! are. The frozen values of these 2N21 independent
fields characterize the vacuum state of(nL n

1 .
The same can be done for(nL n

2 : we introduce

cn5w̄2n1w2n11 ,
~B12!

vn52w̄2n1w2n11

and selectN fields cn andN21 relative duals

v0
(2) ,v1

(2) , . . . ,vN22
(2) , ~B13!

where
2-16
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vn
(2)5

vn2vn11

A2
.

The total field

v* 5
1

AN
(
n50

N21

vn

remains disordered. Thecn fields are frozen at

@cn#vac5Ap

8
@112m2n11

(2) #, ~B14!

while vn
(2) at

@vn
(2)#vac5

Ap

2
@2m2n11

(1) 2m2n11
(2) 2m2n13

(2) #. ~B15!

We can now express the physical fields of individu
chains in terms of the locked fields and two extra fields t
remain disordered. We have

F2n5
1

2
~xn1cn1qn2vn!,

Q2n5
1

2
~xn2cn1qn1vn!,

~B16!

F2n115
1

2
~xn1cn2qn1vn!,

Q2n115
1

2
~2xn1cn1qn1vn!.

The elements of the Wess-Zumino matrix fieldĝn(x) contain
exponentse6 iA2pFn ande6 iA2pQn. According to Eqs.~B16!,
in the strong coupling phase these exponents are proport
to

expS iA2p

N
u* D , expS iA2p

N
v* D ,

respectively, and thus will have vanishing expectation v
ues. This effect, however, disappears in the thermodyna
limit.

Transverse dimerization and degeneracy of the ground state

Spontaneous transverse dimerization has been ident
for the case of two chains in Ref. 25. In the continuum lim
the corresponding order parameter is given by a simple
pression:Nn(x)•Nn11(x). For the 2N-chain model
02442
l
t

al

l-
ic

ed
,
x-

N2n•N2n11;cosA2p~Q2n2Q2n11!1
1

2
@cosA2p~F2n

2F2n11!2cosA2p~F2n1F2n11!#

5cosA2p~xn2cn!1
1

2
@cosA2p~qn2vn!

2cosA2p~xn1cn!#.

Using Eqs.~B6! and~B14! when averaging over the groun
state, one finds that

h2n[^N2n•N2n11&

;^cosA2p~xn2cn!&2
1

2
^cosA2p~xn1cn!&

}
3

2
~21!m2n

1
2 m2n11

2

. ~B17!

We observe the existence of two, doubly degenerate va
of this local order parameter; its sign depends on the pa
of the integerm2n

1 2m2n11
2 .

Similarly

N2n11•N2n12;cosA2p~Q2n112Q2n12!

1
1

2
@cosA2p~F2n112F2n12!

2cosA2p~F2n111F2n12!#

;cosAp

2
@~cn1cn11!2~xn1xn11!

1A2~un
21vn

2!#1
1

2
cosAp

2
@~cn2cn11!

1~xn2xn11!1~vn1vn11!2~un1un11!#

2
1

2
cosAp

2
@~cn1cn11!1~xn1xn11!

2A2~un
22vn

2!#.] ~B18!

The first and third terms in the right-hand side of~B18!
have nonzero expectation values. Using the locked value
the corresponding fields given above, we find that argume
of these two cosines arep@m2n11

(1) 2m2n12
(2) # and p@m2n11

(1)

1m2n12
(2) 11#, respectively. Therefore

h2n115^N2n11•N2n12&}
3

2
~21!m2n11

(1)
2m2n12

(2)
. ~B19!

Inspecting Eqs.~B17! and ~B19! we observe that the two
signs of local order parametershm reflect a spontaneousl
brokenZ2 symmetry. This is the symmetry related to ind
pendent translations by one lattice spacing along the cha
Notice, however, that for different pairs of chains the signs
the order parameters areuncorrelated. The only condition
imposed on theh ’s is
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)
n50

2N

hn}~21!Q51, ~B20!

where the integer

Q5 (
m56

(
m50

N21

m@m2m
m 2m2m11

m #

vanishes according to relations~B3! in the ~1! sector and
their counterparts in the~–! sector. Equation~B20! is not a
or

-

,

ev

,

.

02442
restrictive condition; it simply says that the numbers of po
tive and negativeh ’s should be even. Thus the ground sta
of the system exhibits a huge degree of degeneracy. Ta
the constraint~B20! into account, the number of the dege
erate ground-state configurations in a system of 2N chains is
estimated as

1

2 (
n50

2N

C2N
n 5

1

2 (
n50

2N
~2N!!

n! ~2N2n!!
522N21.
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