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Spinons in more than one dimension: Resonance valence bond state stabilized by frustration
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For two spatially anisotropic, S@)-invariant models of frustrated magnets in arbitrary space dimension we
present a nonperturbative proof of the existence of neutral spin-1/2 excitésipim®ng. In one model the
frustration is static and based on fine tuning of the coupling constants, whereas in the other it is dynamic and
does not require adjusting of the model parameters. For both models we derive a low-energy effective action
that does not contain any constraints. Though our models admit the standard gauge theory treatment, we follow
an alternative approach based on Abelian and non-Abelian bosonization. We prove the existence of propagating
spin-1/2 excitationgspinong and consider in detail certain exactly solvable limits. A qualitative discussion of
the most general case is also presented.
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[. INTRODUCTION temperatureThat makes the existence of deconfined spinons
in the low-T phasémpossible.

Excitations with fractional quantum numbers in general An interesting byproduct of the RVB scenario is the
and neutral excitations with spin 1/2 in particular constitutestrong coupling compact quantum electrodynanixED)
an essential ingredient of many theoretical approaches aimdi¢ld theory. This gauge theory describes the so-catidtiix
to explain the non-Fermi-liquid behavior of quasi-two- RVB state in the continuum limi (see also Refs. 13 and
dimensional copper oxide materials. These approaches try ), under the assumption that the system does not develop
generalize for higher dimensions mechanisms such as spiany spin-Peierls ordering. The gauge theory has infinite bare
charge separation and quantum number fractionalizatiorgoupling and therefore is difficult to study. All existing
phenomena well understood and adequately described femnalysis relies on the results obtained for the SJ(or
one-dimensional systenisee recent review articlés®and  Sp(2N) generalizations of this theory based on thd Bkx-
references therein pansion, as in Refs. 11, 12, 15, and 16.

As a part of the general program to construct a theory of In this paper we describe tw®-dimensional D>1)
copper oxides, there have been many attempts to find neutraiodels that exhibit neutral spin-1/2 excitatidspinons and
spin-1/2 excitationgspinong in purely magnetic systems, apparently represent realizations of theflux RVB state.
that is, to find higher-dimensional analogs of the one-The paper is organized as follows. In Sec. Il we introduce the
dimensional(1D) spin S=1/2 Heisenberg antiferromagnet. models. They are spatially anisotropic and actually represent
Such a generalization was qualitatively outlined by collections of weakly coupled chains. In all of these models,
Anderso# in the form of the famous resonant valence bondthe naively strongest interactions between the chains, namely
(RVB) state. This is aspin-liquid state that breaks neither those that couple the antiferromagnetigith momentum
translational nor spin rotational symmetry. Building on this close tor) fluctuations on neighboring chains, are frustrated
proposal, Kivelson, Rokhsar, and Sethna shovtlealt such a  and so can be set to zero in the Hamiltonian. In this case, the
state, if it exists, must support neutral spin-1/2 excitations. physics is governed by marginally relevant interaction be-

Despite more than a decade of strong efforts, no realizatween the long-wavelength magnetic fluctuations. In Sec. IlI
tion of a RVB state supporting excitations with fractional we discuss results we managed to obtain for infinite number
spin inD>1 Heisenberg magnets with short-range exchangef chains. These can be summarized as follows:
interactions has been found in models with interactions of (1) we give a proof of the existence of spin-1/2 excitations
the Heisenbergtype. We exclude from the consideration in the limit of infinite number of chains;
models ofquantum dimerswhere such excitations have been  (2) we demonstrate that in the low-energy limit the effec-
shown to exisf, and other recently suggested models withtive spin Hamiltonian decouples into two commuting parts
fractionalized excitations that are not microscopic electronidescribing sectors with different parity;

models(see, for example Refs. 7 and, &s well as generali- (3) we show that the models are stable against an antifer-
zations for symmetries higher than &) We also do not romagnetic phase transition;
consider magnets witincommensuraterdering (such as a (4) for the models in question we demonstrate existence

spiral one that also support spin-1/2 excitatioh¥) Strong  of a zero-temperature phase transiti@pontaneous trans-
gualitative arguments against the RVB scenario have beeverse dimerization

presented by Read and Sachdfewho argued that the most (5) we show that the ground state is degenerate; for peri-
likely mechanism for disordering an antiferromagnetic stateodic transverse boundary conditions the degeneracy is equal
is the spin-Peierlsone. Here, although spin rotational sym- to 22N~ where N is the number of chains.

metry is preserved, translational symmetry is broken since To achieve a more detailed understanding of the model,
the spin system undergoes an explicit dimerizatriinite  its spectrum, and correlation functions, we study some lim-
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iting cases. Thus in Sec. IV we discuss two exactly solvable
cases: two and four chains with periodic boundary condition:
in the transverse direction. In Sec. V we consider anothe
solvable case: the model of three chains with open boundat
conditions. In all these cases magnetic excitations carry spi
1/2, in agreement with the general result. Systems with mor
than two chains also display nonmagnetsingle) modes — — o o 5
and a topological order. We show that this order is similar tc

the one that exists in the 1D quantum Ising model. !

Furthermore, in Sec. V we introduce a two-dimensional™ * *
model with a hierarchy of interactions. We use this appar-
ently artificial but solvable model as a substitute for the
original (spatially uniform model with a hope to extract
more detailed information about the structure of the Hilbert
space. The hierarchical model is solved by a cluster expar
sion. The results indicate that about half of the Hilbert spact
is occupied by singlet modes. The ground state remains ma
sively degenerate with the ground state entropy proportione
to the number of chains.

Having in view future numerical simulations for our mod-
els, we discuss in Sec. VI finite-size effects for systems of
finite number of chains. In Sec. VIl we use the acquired
knowledge to conjecture the properties of correlation func-
tions in the thermodynamic limit. Our conclusions are sum- k)
marized in Sec. VIII.

a.)

FIG. 1. (Color) (a) Exchange interactions pattern for the model;
the red lines correspond th and the green ones thy . (b) Lattice
Il. THE MODELS of stripes for the Kondo-Heisenberg model.

As in the original suggestion by Andersbithe element
most essential for our construction is frustration. Anothe
ingredient of our approach is strong spatial anisotropy: so faf
we have only been able to deal with models where the ex-
change interaction in one direction is much greater than in H1D=JHZ (5S+1) 3
the others. Thus it is proper to describe our models as assem- ]

blies of weakly coupled chains. Our results also suggest af described by the Sig2) Wess-Zumino-Novikov-Witten
alternative approach to strong coupling cQED. We will notmodel. The latter Hamiltonian can be written in terms of the

elabo_rate on this analogy, though, postponing this interestingo_ca”ed chiral vectocurrent operators,) andJ, satisfying
guestion for future studies. the levelk=1 Kac-Moody algebrdthis approach has been

The f|r§t quel is a spin-1/2 He|sen.berg magnet on AYescribed in a vast number of publications; see for a review
anisotropic lattice. In what follows, we will be working with Ref. 17 or 18

a two-dimensional version of this model. The interaction pat-

Ao being the lattice spacing in the chain direction. The low-
nergy dynamics of the spin-1/2 Heisenberg antiferromagnet

tern is depicted in Fig. (&); one can easily generalize this 200 o
construction to three dimensions. The model Hamiltonian is Hip— TJ dx[:(J-3):+:(3-I): ]+, (4)
given by

wherev = mJjay/2 is the spin velocity and the dots stand for

B a marginally irrelevant perturbation that will be discarded in
HACB_J_Z; [Jsj,n' Sj+1,n+MZ:l [3:S,n+ Ja(S 410 what follows. It is remarkable that the smooth part of mag-
netization

TS-10) ] Sinsups @) M=J+J (5

where S, , are spin-1/2 operators, anlj,J,,J4>0. Since and the spin current

the interchain couplingsJ(,J4) are much smaller than the ) —
exchange along the chaing|J it is legitimate to adopt a j=v(3=J) ©®)
continuum description of individual chains. In this descrip- are Iocally expressed in terms of the chiral currents.
tion, the local spin densities are represented as sums of the |n the model, the exchange is frustrated in the direction
smooth and staggered parts: perpendicular to the chains and can be fine tuned to make its
. . Fourier transform vanish ai=. This is achieved when
Sjnlao—=Si(X)=M(x)+(—1))Ny(x), X=jag (2)  the rung and plaquette-diagonal coupling constants satisfy
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the reIationJr=2Jd, in which case the direct interchain ph|c (|eft) and antiho]omorphi@right) scalar ﬁe|dS(,D andz:

interaction between staggered magnetizations,

NL(X)-Np;1(X), is completely eliminated. The absence of i . -

this strongly relevant perturbation is the most important JF:’:\/——fﬁPn- J,T=27_r—ae_w8wn, (8)
property of our model. The triangular lattice is excluded 2m

from the consideration. It was demonstrated in Ref. 19 that ,

the coupling of the staggered parts of magnetization cannot P I—E J—::Le:i\m;, (9)
be removed completely in that case: parity-breaking n 27 TN 27a '

(“twist” ) terms surviving the continuum limit make the _

analysis very complicated. Hered,o=3%(v '9.Fid,), « is the ultraviolet cutoff of the

Apart from the collective spin excitations, the secondbosonic theory, and the fields and ¢ are governed by the
model also involves charge degrees of freedom. It is a quasthiral Gaussian actioR$?*(the latter work used this form of
one-dimensional Kondo-Heisenberg modisée Fig. 10)],  bosonization in the context of the theory efige statesn
which has been already discussed in the context of theory @juantum Hall effegt The bosonized low-energy effective
stripe§°*21 (see also Ref. 22, where the two chain case isction can then be suitably represented as
discussefl It is assumed that neighboring chains have differ-
ent band filling such that metallic chains are surrounded by N .
insulating spin-1/2 magnetic chains. In order to eliminate the S= Z drdX{L,+L,+ L7, (10)
electron tunneling across the magnetic chain, one needs to =t
have magnetic stripes consisting of at least three chains. At , , Y — —
low energies one can consider such a stripe as an effective’ n = 9x®2n(IxPan =1V "d:@2n) + Ix@2n+1(IxPan+a
single spin-1/2 chain. Here the frustration is dynamical: the o
electrons on metallic chains do not experience backscattering +iv 0,00 ) Ty D :(Zwa)‘zcos{ V87 (o
on magnetic excitations due to incommensurability of the p==1
Fermi wave vectors: R-# 7. It is easy to demonstratsee, o 1 L
for instance, Ref. 20that the charge excitations in this +(pzn+M)]+2—c9qu2nz9ng2n+M], (12)
model decouple and remain one-dimensiofthis is true at m
least in the first approximation when one discards various B . —
virtual processes On the other hand, the spin sector is de- Lo=L,(e—0), (12
scribed by the same effective Hamiltonian as in the model.

Using the continuum description of individual chains in int_ -2 _
the interchain exchange interaction, based on the asymptotic Ln'= yﬂ;ﬂ :(zqm) cog VB(¢on—e2n+y)]
representatioii2) of the spin operators, we arrive at the fol-

lowing effective Hamiltonian: —
g +(p—@). (13

1
. +Z‘9x§02n‘9x¢2n+;¢
H=> |Hip,+ 24 > (3+In-(3+Ini,|, (D This is the form of the action in which the requirement of
n=1 T2 45 L _ : ;
vanishing charge current3f=0), imposed in the gauge
whereH 5 is given by Eq.(4). Herey is determined by the field RVB approach, is explicitly resolved.
lattice Hamiltonian; in the ACB model with interactions cho-  According to the definitiong8) and (9), the total spin
sen as in Fig. (B we have y=2J,a,. For the Kondo- projectionS* is equal to
Heisenberg model shown in Fig(k, Eq. (4) is modified in

such a way that evefmetallic and odd chaingeffective , 1 o —

spin-1/2 chains representing a stripe of three coupled Heisen- S :E En: J:de(WPnJF Ix@n)- (14)

berg chains have different velocities. This detail, however,

does not lead to any qualitative changes. This is a general definition that does not assume that the

The model(7) is closely related to the gauge theories fields ¢ and ¢ are independent. In fact, the interchain inter-
extensively studied in the context of strongly correlated sysaction that flows to strong coupling in the low-energy limit
tems. This analogy is briefly discussed in Appendix A. In thefreezes certain combinations of the fields with opposite
rest of this paper, however, we will follow a different route. chiralities and thus makes them coupled.

Namely, we will return to Egs(4) and (7) and employ the In the first loops the renormalization group equations for
Abelian bosonization, which proves particularly useful in re-the model of infinite number of chains coincide with the
vealing the topological nature of elementary excitations anéquations for two chains. A¢>0 the interaction of currents
determining their quantum numbers. with different chirality in Egs.(11) and (12) is marginally

relevant and reaches the strong coupling at an energy scale
IIl. PROOF OF THE EXISTENCE OF THE SPIN-1 /2

EXCITATIONS: INFINITE NUMBER OF CHAINS A=C(vy)Y%exp — mvly), (15)

It is well known (see, e.g., Ref. 3&hat the chiral S(2)  where C is a number. At the same time, th&orentz-
currents can be faithfully represented in terms of holomornoninvariant perturbationZ ™, which is responsible for the
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velocity renormalization, is irrelevant and flows only in the 1

presence of the other interaction. Thus it is likely that this =5 > [m{P () —m{F(—o)]. (20

interaction remains weak even when the relevant one reaches "

the strong coupling. For this reason, in the situati_o? when th
. . N .

bare cor}stam/<1, we _deem it possmlg to n_eglef:t b the spin carried by the topological solitons.

results in an approximate Lorentz invariance (ib+1)-

: . ; . . . We emphasize that this statement is based on the exact
dimensional space-time, which plays an important role in th% mmetries of the multichain Hamiltonid0) and does not
analysis that follows. Without ™, the action splits into two Y

independent, chirally asymmetric sectos=S*+S-. The depend on the adopted approximations. Within the approxi-

mfation that neglect£ ™ there are solitons and antisolitons
two sectors are mapped onto each other under the reversal o, well-defined(+) and (-) parity

the chiralities,¢n— ¢y, or a shift by one lattice spacing in - \we would like to briefly comment on the above resullts.

the transverse direction. Hence the total symmetry becomeg, o tactor 87 that appears in the arguments of the cosines

[SU(2)]+ ®[SU(2)]- ar.1d the excitations in this model cary j, gqs.(11) and(12), representing a marginal current-current
two quantum numbers: spin and parity. interchain interaction, is crucial. Recalling the bosonization

Notice that the multichain effective actid0) features a 1 }je5 for the staggered magnetization of a single spin-1/2
local Z, symmetry already mentioned for the two-chain chain (see, e.g., Ref. 18

problem?® as opposed to the original lattice model that dis-

plays global translational invariance, the effective Hamil-

tonian of the continuum theoiy) is fully expressed interms N~ (cos\2 (¢, — ¢p),SiNV27(@n— @), — Sin27( @,
of the vector currents and, therefore, is invariant uridee-

pendentranslations along the chains by one lattice spacing. +Zn)), (21)
These translations are generated by the shifts

q’hus, the minimal nonzero value of the spin is 1/2. This is

we realize that interchain coupling between staggered mag-
netizations would give rise to a strongly relevant perturba-
\/E o tion containing cosines withy27. If such terms were
2 present in the action, the period of the potential and hence
the topological quantum numbers of the excitations would be
or doubled as compared to our case and thus the spinons would
be confined. However, by construction these terms do not

\/; appear in our models, and this is why the interchain interac-
2

v P Pn (16)

en— Pnt

(17) tions do not lead to spinon confinement. This argument does
not require neglectind ;,; because the latter term also con-

. L tains only y8r cosines.
The development of the strong-coupling regime in the low- Thus we are confident that in the models in question spin-

ene:[rgy ll'rg't Izac_is tt?] a spontznetOL:s ?rr]ealljd%/vn of S?'S E’ymilz excitations do exist. We also may rest assured that these
metry. Indeed, In the ground state the he _com INalioNSycitations do not remain confined to individual chains, as it
@nt @ne,, get frozen at the valuesee Appendix B for the  happens, for instance in the so-called “sliding” Luttinger

Pn—Pny P P

detaily liquid phase in arrays of crossed chaffid’ In that latter
case, the spinons survive due to irrelevance of the interchain
interactions. Contrary to that scenario, in our case the inter-
Pt Ensu= \/£+ \/Em%u)' mW=0+1+2, . ... chain coulings remain relevant making the system truly mul-
8 2 tidimensional.
(18)
For an even number of chains and with periodic boundary A. A failure of the “most obvious” solution
conditions in the transverse direction the integef) sat- The following calculation suggests that freezing of the
isfy fields does not imply that one can expand around the vacuum
configurations. Naively, one would adopt a self-consistent
harmonic approximatioSCHA) in which the cosine term is
> mI=> m(). (190  expanded around the minimum:
n n

The sets of integefam{*)} subject to the conditiofiL9) label — _ 1 —
different degenerate around states, each of them breaking the cog ‘/g((p'# @n+ ) ]~ CONSHE Ep[‘s((P”Jr n w1

local translational symmetr§l6) and(17). The existence of (22
stable degenerate minima of the potential implies the exis-

tence of massive topological excitations, solitons, interpolatHere § denotes a deviation from the vacuum value. SCHA
ing between adjacent vacua. Using E¢s4) and (18) one  assumes that the transverse stiffneshould be determined
can represent the spin of a given state as self-consistently:
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2y . uncorrelated. This leads to a massive gound state degeneracy
p=——(exdi V8m(on+ ens,)])- (23)  22N71 (recall that N is the total number of chaihs
ma The nonlocality of the order parameter suggests a possi-
bility of topologicalorder. This supports the original idea by
We shall demonstrate, however, that such a procedure yieldgiegmann that topological order exists in RVB state¥

Zerop. . . _ ~_ Characteristic features of such order is nonlocality of the
The effective action for fluctuations around the minima isgyder parameter, ground state degeneréicya closed sys-
(here we sev =1) tem), and the existence of edge statés an open systejn
The ground state degeneracy depends on the topology of the
S (ot Bt q(q+iw)+p p cosk ap manifold (hence the label “topological The relative stabil-
S= - (ap.Bp) p cosk aa—iw)+p/ | B,)" ity of the state with respect to perturbations is protected by

(24) the spectral gap. One well-known example of topologically
ordered states is provided by incompressible fractional quan-

wherea= 8¢, B= ¢, p=(w,q,k), q andk being the lon-  tum Hall stategsee the discussion in Ref. 31 and references

gitudinal and transverse momenta, respectively. The selftherein. In our case the degeneracy of the ground state is

consistency conditioi23) becomes exponential in the number of chains. This fact alone indicates
that these models have a topological order of a different type.
O y— This order is closely related to that existing in 2D Ising
INp~—[G,.+Gzs+2G =0x=0 . .
P~ [Cuat Gpp as](7 ) model, multichannel Kondo models and models with scatter-
g%+ p(1—cosk) ing matrices of the RSOS type.
Nf do dqdk—; 2 (Pt 02— S2oodk The first examples of nonlocal order parameters are given
@°q"+(q7+p)"—p7co by the disorder field of the 2D Ising mod&land the dual
dkdq o2+ p(1—cosk) field exponentials in the 2DXY model?é*ZBThese fields ac-
—J > — . (25 quire nonzero expectation values in disordered phases of the
4 J(g*+p)*—pZcosk corresponding models. According to Refs. 34—37 and 18,

such order parameter@lso called “string” order param-
Since the latter integral diverges, the suggested naive solieterg exist in various massive phases of 1D spin liquids. All
tion is not self-consistent. Its failure originates from the chi-these liquids are related to either sggirr 1 Heisenberg chain
ral structure of the Gaussian part of acti@ii), which in- o two-leg spin-1/2 Heisenberg ladders. As was demonstrated
cludes the first power of the time gradient. For thej, Rrefs. 37-39(see also Ref. 18 after the Wick rotation
conventional(nonchira) Gaussian model a similar solution {hese systems can be described as a collection of 2D Ising
would be self-consistent. One immediate consequence wouldhodels. The evidence that the order is really topological was
be the appearance of an average staggered magnetizatigfesented by Affleck and co-workefswho proved that 1D
Thus the present calculation demonstrates stability againghin liquids have edge, or rather, end states: open chains

antifferomagnetism. have free spin-1/2 states located at the chain’s ends. We post-
pone a more detailed discussion of the issue of topological
B. Order parameters nature of the order until sections.

f Order parameter§26) change their sign on soliton con-

As we have already seen, the fact that the combinations (} ) ; -
he field s nd oo+ t locked at/m78 igurations and therefore vanish at finite temperatures when
the fields@an+ @0+, aNd @an+ @20+, get locked atyar the densities of solitons and antisolitons are finite aqdal

+ Vm/2n (ne Z) implies that the ground state of the systemThis mechanism is sufficierthough not necessaryo de-

is characterized by a spontaneously broken local translationgkroy the order parameter at finife The sign changes may
invariance(16) and(17). Themost obviousrder parameters 4is6 originate from fluctuations in nonmagnetic channels.

(OP) in the two sectors of the modeL0), whose structure | arer we will discuss an exactly solvable example of four
directly follows from the form of the interaction, are given ¢qypled chains in which the latter scenario is realized. The

by temperature dependence of the correlation length depends on
what mechanism is realized. If the order parameter is de-
7'(M+)zi<exp[i \/E(<p2n+ oans )], stroyed only by(antisolitons, the correlation length is expo-

(26) nentially large in 1T. This is because the topological exci-
o ] — tations have a finite spectral gap and therefore their density is
T(M =i(exdiV2m(@on+ P20t 4)])- exponentially smalln~exp(—A/T). In this case, the corre-
lation length is defined as the average spacing between the
The above OP’s are refdee Eq(18)], defined on the links  solitons:é~n~*P (D is the space dimensionaljty
of the lattice and are nonlocal in terms of original spins. As we shall see, the singlet excitations either have a very
Moreover, since the OP’s include chiral fields, they are exsmall gap or even no gap at &lte do not know whether the
pressednonlocally) in terms of magnetization density and latter is trug. Then the order parameter is governed by an-
spin currentsAs is shown in Appendix B, for different pairs other correlation length quite distinct from the above. The
of neighboring chains, the signs of the order parameters amensity of nonmagnetic excitations above their gap depends
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onT as a power law. Such a situation would correspond to aNg

guantum critical point with a power law correlation length.

Turning to physical fields, we note that the products of the
staggered magnetizations on neighboring chains representing

the transverse dimerization order parametsee Appendix

B) are expressed as bilinear combinations of the true order

parameters:

PHYSICAL REVIEW B 67, 024422 (2003

n §n+u>
1 — —
- 87Ta0<cos{ V27 (pont Pon+put Pont §02n+,u)}>

= %[ﬁﬁﬂguc.cj, 27

1 — — 1
(N3, )2(n+,u>:<N¥nN)2/n+,u,>: ﬁ(exqi \/E((PZn"' ®on+p)]exd —i \/E((PZn"' §02n+,u)]>: Z{T(;)[T(,;)]* +c.cl.

SinceT* =7 we have

<Nra‘Ier?l+,u,>N5ab’
implying that the S2) symmetry remains unbroken in the
ground state.

Now let us consider the magnetic correlation functions

(28)

<gab( 7,X; zn)gg—d(oio1m+ 1))
=(z4(7,X;2n)Z* (0,0;2M) }(z,( 7,X;2n)Z% (0,0;2m+ 1))
= 02c0pdD nml 7,X) Dnm(—7.X). (33)

Various components of the's are conveniently assembled

‘into vectors and covectors:

The order parameter field of 1D spin-1/2 chain is not just a

staggered magnetization; it is &2 SU(2) matrix g whose

entries include not only vector components of the magneti-

zation n® (a=x,y,z), but also the dimerization field

=(=1D)(S:Sh+1):

g(x)=e(x)| +iN3(x). (29

It can also be represented in a factorized bosonic form:

- 1 — _
Joo’ :ECUU, exd —iV2m(oe+to' ¢)]:=C,pZ,2Z, ,

Co_o_,:eiﬂ-(l—aa')/ll' (30)

where
z,=exio\2me], z,=exd—ioc\2me] (o==1).
(31

As follows from the factorization of the low-energy effective
action, if we consider correlation functions on chains with
the same parityfor instance, both evenz correlates only

with z’s andz with z. For Green’s functions on chains with
different parity,z correlates witlz and not withz. Therefore

« % er,Zn
(ZU',Zn ’Zo',2n+ 1)' - (34)
Zo’,2r‘l+1
for the (+) sector and
. = Zson+1
(ZU,2n+l’Za',2n)' - (35)
er,2n

for the () sector. Then the corresponding correlation func-
tions become matrix elements of th&x2 Green’s function:
G(w,k%k)) D(w,k%k,)

D(—w,k%k)) G(w,—kzyk¢)>'

An important fact is that both the functidb andk, depen-
dence ofG are nonperturbative effects: they do not appear in
any order of perturbation theory i and, as we shall see
later, are proportional to exp(mv/y).

(36)

IV. EXACTLY SOLVABLE CASES: TWO AND FOUR
CHAINS

From now on we will discuss thé+) and (—) sectors
independently. To distinguish between the amplitude of the
RVB order parameter and various mass gaps, we shall denote
spectral gaps by the letten.

the correlation functions of the staggered magnetizations and To check the ideas outlined in the preceding section, we

energy densities factorize:
(9an(7.X;21)9cq(0,0;2M)) =(za(7,X;2) 2§ (0,0;2m) )
X(zy(7,%;2n)Z (0,0;2m))

= 0200 Cnm( 7.X) G 7, — X),
(32

shall discuss some exactly solvable cases. Consider a two-
dimensional array of an even numberNR of chains with
periodic boundary conditions. In this case we can arrange
chains in pairs. Exact solution is possible in two cagés:
=1 andN=2.

Throughout this section we shall use the so-called form-
factor approach to calculate leading asymptotics of the cor-
relation functions. This method has been widely applied to
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massive integrable field theories and there are excellent rggroximation(39) fails at small distances; inclusion of terms
view article4? and even booKs about it. The form-factor with multiple soliton production removes the logarithmic
approach uses information extracted from the scatteringingularity ofK,.

theory and symmetry properties of physical operators to cal- The two-point correlation function of currents were cal-
culate matrix elements of these operators between variousulated in Ref. 45. Equatio(87) supports the earlier claim
exact eigenstates. To estimate the correlation functions onaade at the end of the preceding section, that the interchain
uses the Lehmann expansion. This approach is well definecbrrelation function of the staggered magnetization is non-
for theories with massive excitations. In one dimension, foranalytic iny and thus vanishes in all orders of perturbation
reasons of kinematics, matrix elements of multiparticle statetheory.

become smaller and smaller when the number of excited par-

ticles increases. This feature greatly improves the conver- B. N=2 (four chains)

gence of the Lehmann expansion and allows one to obtain an
accurate description of the correlation functions with only a
few (sometimes even ohenatrix elements involved.

In the N=2 case the interaction can be written as

(I1+33)(Jo+3g) + (I 34) (31 +J5). (40)

A. N=1 (two chains) The sum of twok=1 SU2) currents is thek=2 current;
gnoreover, according to Ref. 46 the sum of two ;§2)

ZNW models(the central charge)Zan be represented as
the SU(2) WZNW model with central charge 3/2 and plus
one massless Majorana fermicancritical Ising modelwith
central charge 1/2. Using the results of Ref. 46 we rewrite

e entire Hamiltonian densiti4) as follows[here only the
+)-parity part is writter:

Though the number of chains is really small, this cas
contains certain interesting features that may shed light o
more general cases. Fdi=1 each sector with a given parity
is equivalent to the isospin sector of the (@Winvariant
Thirring model, as it was shown in Ref. 25. The excitations
are massive solitons with spin 1/2. There are no other mod
(singlet modek as it must be for the case of larlye For this

reason this case is not representative, as we have already H.=H +H
said. The massive modes correspond to amplitude fluctua- 7 [ massless Timassive
tions of A. iv v _
The correlation functions of chiral bosonic exponents for Hmassless — EXoﬁxXo+7Xo(9xXo, (41

the Thirring model can be extracted from the recent paper by

Lukyanov and Zamolodchikd{ (see also Ref. 41 In par-

ticular, for the correlation functions of spinon fiel@36) and Ho :ﬂ(.l _|.+.rr)+y| I
for the correlators of staggered magnetizations we have massver g o

v S Yy _
G(T,X)=<e”ﬂ“’(7’x)e_i“‘Jﬂ“’(o’o)>~;exq—mplz), :7(_Xa07xXa+XaaxXa)_E(XaXa)z, (42
ivT—X
wherea=1,2,3 and

o - 1
elQZW‘l’l(T,X)e*I\s“ZﬂTCDl(O,O) ~ exp —2m , -
( )~ o EX—2mps) 1=3,+35, 1=3,+34,

37

D(7,X)= <ei Zme(rX) gl «E$(0,0)> ~mY2K o(Mp1y),

1
* Xox+ §[x><x]

i
31,3:5

<ei \s"ﬂq)l(r,x)ei Qﬁ®2(0,0)> — Zom Ké( mplz) ,

_ i 1 -
wherep= 72+ (x/v)? and the mass gap=A given by Eq. 32,4251 *xox+5 XX xl;- (43
(15). In writing down these formulas we used the single-
mode approximation for the spinon operatthe the details  The fieldsy and y denote rea(Majorana fermions.
we again refer the reader to Ref.)44 Equation(41) describes a critical Ising model; the corre-
sponding excitations are gapless and nonmagnetic; they ap-
z*(r,x)=Z(1)’2ml’4f d g e¥l4gxmsinh o g ~mrcoshoZ + (g pear in the sectors with both parities. The criticality is an
v o artifact of the periodic boundary conditions in the transverse
N direction.
+emTeNIZ_(0)], (38) The massive sector can be described using three equiva-
lent representations. One of those is the,&) WZNW
z,( r,x)=Zé’2m1’4j dg e #/4g=ixmsinhf g=mr coshdZ+ g model perturbed by a current-current interactitime ultra-
violet central chargeC,,=3/2). Here the fundamental field
+emrcosh62_(r( 01, (39) is the SU2) matrix <j Another representation is the(®)

Gross-Nevel{GN) model where fundamental fields are Ma-
whereZ.. (ZX) are annihilation(creation operators of soli- jorana fermiong42). The third representation is three critical
tons and antisolitons and, is a numerical constant. Ap- Ising models coupled by the energy density operagprs
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3 cated, that is, not all combinatorically possiblé &ates are
= SendT)— 7>, f drdxeje; . (44  allowed. The number of allowed states &2 in fact, the

= =] isotopic space oK solitons is isomorphic to the irreducible
In the latter case the fundamental fields are order parametégpresentation of &-dimensional Clifford algebréin other
fields of the Ising models or, via the duality relationships, thewords, one may say that each soliton carrieg matrix—a

corresponding disorder parameter fields. zero mode of the Majorana fermiprin particular, the two-
An external magnetic field couples to the sum of all cur-soliton wave function must be an isotopic singlet.
rents and therefore only to the fermions of thé3DGN This approach allows one to use the conventional scatter-
model: ing matrix description at the end, projecting out unwanted
L states. The two-particl8 matrix is given by the tensor prod-
Hmagn:ih'([xx x1+IxxXx))- (45) uct
Since this model has a spectral gap, the net magnetization S(012) = Sitm(012) @ Sy (012), (47

does not appear until the magnitude of the field reaches the
value of the gap.

The thermodynamic Bethe ansatz equations for tk@ O
GN model were obtained by one of the present authbrs;
some of the correlation functions were calculated by
Smirnov?® A very illuminating discussion of the symmetries
and the excitation spectrum of this model can be found in the
recent paper by Fendley and Sal&lr.

The massive magnetic excitations are particles with non- . D = D D
Abelian statistics, as in the Pfaffian state of quantum Hall Tip=exfiV2m(eyt¢p)]=€" " re
effect® An unusual fact about the(@ GN model is that its - , A -y

. . . = +i +i =oolrg+iugTrg™,
ground state is doubly degenerate. This degeneracy tis- of (0003 ¥ 1 opa) (7102 F THa2) =00 TIG T i kg 9(48)
pological nature, being related to properties z#ro modes _ Lo i AP, i (7O
formed on solitons. The picture simplifies drastically if one T=exiiv2m(eitey) =€ e
takes into account thf_;\t the(8® GN model is equivalent to =(ooustipmeos)(T1op+ipips),
the supersymmetric sine-Gordon mddésUSY SQ

where the firstS matrix corresponds to the $2) invariant
(isotropig Thirring model(ITM) and second is th& matrix
of solitons of the sine-Gordon model with the particular an-
|sotr20py &=4m [in Smirnov’s notations &€= wB%/ (87
B)]-
The order parameters are local operators both in the Ising
and the WZNW representations:

where o and u; are order and disorder parameters of the
corresponding Ising models. The spontaneous mass genera-

_—(3 D)%+ 2)(7# 3, x+MZSi(BD) +iMyx codSP),  tion freezeso, (i=1,2,3), but leavesr, and uq critical.
(46) Therefore the most singular parts of the above order param-
eters
with B2=4. For the SUSY SG model there is a semiclas-
sical limit B2<1, where details are easier to grasp. In this Tio~09, Tia~ o (49

limit the spectrum is determined by the minima of the
bosonic part of the potential. There are two sets of minima;
one where cog®)=1 and one where it is-1. This sign
difference does not affect the energy spectrum of the Majo-
rana fermion but affects expectation values of the lIsin
model order and disorder parameters. Therefore vacua wit
different sign of cosg®) are physically distinguishable. It is - _ a b/o on
clear that the fact of this degeneracy is relatedi xahe odd exil \/E(’Dl]_cabg (2)9°(2.2), (50
number of Majorana fermions species present éndthe  where o® are chiralvertex operatorsof the critical Ising
existence of solitons. Both these features are very generahodel(see Ref. 53 for detailsThe operatorg in the ultra-
and are likely to survive in a finite parameter domain. Theviolet limit become vertex operators of tHg=1/2 tensor
described situation should be opposite to what happens in th@perators ok=2 WZNW model.
conventional sine-Gordon model, where the potential is just In order to understand the subsequent calculations of the
cos(B®) and the degeneracy between its minima is lifted incorrelation functions the reader must keep in mind two prin-
the ground state. cipal facts about excitations in integrable models. The first
There are two descriptions of the spectrum. The first wasact is that these excitations cannot be unambiguously clas-
suggested by ZamolodchikdV. This description abandons sified as fermions, bosons, semions, etc. Their commutation
the notion of asymptotic particle states and therefore leads trelations are determined by tf&matrix and therefore de-
difficulties when being applied to the correlation functions. pend on the momenta of the particisge, for example, Ref.
The second approach was suggested in Ref. 52 and used36). The second fact is that the creation and annihilation
Ref. 48 to calculate the correlation functions. In this ap-operators of elementary excitations in integrable theories are
proach solitons are treated as particles carrying two quantumsually strongly nonlocal in terms of the bare creation and
numbers—an S(2) spino=1,] and an isotopic numbgr  annihilation operators. Hence these excitations are extended
= =*. The isotopic part of th&-soliton Hilbert space is trun- objects and therefore do not belong to any particular repre-

still have power law correlations d&t=0. The correlation
length at T#0 is £&~1/T and is not determined by the
solitons—a possibility we have mentioned in Sec. 1l B.

The chiral exponents entering in the expressions for the
taggered magnetization are nonlocal:
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sentation of the Lorentz group. Therefore their Lorentz spin

fields with different Lorentz spin depending on circum-
stances.

1. Correlation functions of the currents

According to Eq.(43) there are two parts in a given cur-

PHYSICAL REVIEW B 67, 024422 (2003

: 8 X ﬂely(glapl);02!(0-21p2)||2|0>
is not fixed and the same operator can represent physica

=delf1t62)2 COth(015/2) {.(012) {4(012)

(912+i7T)COSV{§(012+i7T)

}[|T1>+ILT>]

sf+-)=[=+), (54)

rent operatorJ_ andl. The first, containing a product of the \yhere

gapless fermiory, and the @3) GN model fermion, is not
conserved. A GN fermion is a convolution of two solitons,
each entering with Lorentz spin 1/4 to make the total spin
1/2. Superficially it may appear that the second tdthe
conserved curreiis a convolution of four solitons, but this
is incorrect: the minimal matrix element contains two soli-
tons that enter with Lorentz spin 1/2. Singgremains mass-
less, the leading asymptotics of the correlation function o
nonconserved currentd~J ™) with the threshold as=2m
[s?=w?—(vq)?] exists only for the currents with the same
chirality (here we seb=1):

(32 (7,%)3°(0,0))
= ab(7-+ix)‘1J d6,d0,|F1(6;,) |26 frt 0212

X exd —mr(coshé, + coshé,)

+imx(sinh#,+sinh6,)], (52
which gives
(7—ix)

fde|F1(9)|2Kl(2mpcoshe), (52

L(0)=sinN(0/2)7,(6),

(55

- °° Vsinz[x(iq-r+ 6)]sinH 7(1—k)x/2]
£ 6)=exp{f d'\x sinharx cosh wx/2)sinh wkx/2)

fand

1
d= .
64m°¢..(i ) Lalim)

Thus the leading asymptotics Gf21°) and(121P) are

<Ia(7-,x)lb(0,0)>=2d253bf d6,d 6| F(0,,)|%elf1 02

X ex{d —mr(coshéd,+ coshd,)

+imx(sinhé;+sinh6,)], (56)

(1% 0T%(0,0) = 50,20 | 0100100

H 2 2
(TH+iX)Vr7+x X exf[ — m7(coshé; + coshé,)
whereF; can be calculated. The Fourier transform +imx(sinh@;+sinh6,)], (57)
w+q\? where
Im(J’J’)(w,q)= (w—_q> L(SZ),

2 Fa0)]2 Sifo 2.0 2(0)?
— - 2 = % 4 :

M@ T Y= | (), (53) [cost 6/4) + cog w/4) (62 + 72)
‘ o+q (58

For the Fourier transform we have
L(52)=52J a0 60,4 (s*>—4m?costt 6)|F,(6)|? aib o o
cosi g (I19) = an(6,,—0,9,/9%)D(s%),

(59

where 6,4(x) is the Heaviside function.
Now let us consider the pair correlation function of the

conserved ©8) currentsl =J; +J,1 =J,+J,. Their matrix

402
ImD(s?)= —4|F2( 0)|%, cosh(6/2)=s?4m?
m

V&= am

glements were calcglated |n.Ref. 48. In the scheme adopteschch that at the threshold we have the same behavior as for
in that paper a soliton carries two quantum numbers—a -1

SU(2) spino=1,] and an isotopic numbgy= *. The iso-
topic part of the multisoliton Hilbert space is truncated such
that the two soliton wave function must be an isotopic sin-
glet. Due to the S(2) symmetry, it is sufficient to have an
expression for one component of the current, for example,
I3, The matrix element into a state of two solitons with ra-

Im D(s?)~ \/s?>—4m? (60)

2. Single-electron Green'’s function for the model of stripes

All correlation functions discussed so far exist for both

pidities #; and 6, and quantum numbersr(p), and (o,p),  models depicted in Fig. 1. Now we are going to discuss the
is given by single-electron function that exists only for the model of
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stripes[Fig. 1(b)]. For N=1,2 we can calculate the spinon where p?=(v7)?+x2. The Fourier transform i§s?= w2
Green’s functiorG and find the following expression for the + (vq)?]

spectral function:

m2 3/8 47Tf dp p3/4Jo(Sp)f d o Kz 4(2mp coshb)
Ar(©,0)~ 2) (61)

w—vq ( w’=(vq)*—m
~J dé(coshd) ~"*F(5/4,1/2,1— s*/4m’costt ). (66)
and for the tunneling density of states:
After the analytic continuationw= w+i0 we get the imagi-
(@) fcosh_l(w/m) dé cosh{36/8) nary partfnow s?= w?— (vq)%>4m?]
p(w)~ —

e (62
/4
x”(w,0|)~s*3"‘f1 e
(255) (1_X2)3/4(SZX2/4m2_ 1)1/2

(w/m—coshd

3. Correlation functions of the staggered magnetizations

As we have stated above, the correlation functions of X F(1/2,1/2,1/4; 1 x?). (67)
staggered magnetizations factorize into a product of two
kinds of correlation functionsG and D [see Eqgs(33) and  Close to the threshold=2m we have
(36)]. The function D is essentially nonperturbative and " 2 o —1/4
therefore especially interesting. We have demonstrated that X'(@,q)~=(s7=4m?) = (68)
for N=1 this function is nonzero. FaN=2 with periodic At s?>m? Eq. (67) gives the correct asymptotigg' ~s ™2,
boundary conditions this function vanishes. This is related tavhich indicates that the two-soliton approximation may give
the fact that for periodic boundary conditions the singlet seca reasonable description throughout the entire range of ener-
tor is critical. The operator exp/2m¢] contains vertex op- gies. Recall that foN=1 the power was-1/2. It is tempt-
eratorsoy; at criticality correlation functions of such opera- ing to speculate that the threshold singularity further dimin-
tors with vertex operators of different chirality always ishes with an increase o\.
Vanish;<aogo>:0_ The case of four chains introduces some new features.
To understand this better it is convenient to write the stagSome of them, as we believe, are accidental and some are

gered magnetizations in the appropriate basis. Thus we ha@eneric. The generic feature that persists for a higher number
of chains(see aboveis the presence of singlet degrees of

N; 5= PT o(g+g ") ] xi DT o(g—g ™)1, freedom. Here they appear in the form of the critical Ising
’ (63) model. The accidental features are the criticality of the latter
N, = e PT o(G+G )] xi uPTH{ (G- GT)], model and the non-Abelian statistics of the massive kinks.

These two properties are closely related and are unstable
whereg andG are the SW(2) matrices. The fieldsy andu,  with respect to a change in boundary conditions. In the most
remain critical. The fieldg and G have to be decomposed general setting, as we shall see in the next section, the gap in
into their vertex operators and the interaction involves secthe Ising model sector will be finite, but much smaller than
tors with different chirality. the magnetic gap.

From Egs.(63) we have

V. TOWARDS AN INFINITE NUMBER OF CHAINS: A

((N1Np)) = ({({0000)) +{{ moro)) ) (T ag] T a9 " 1)), TRIADIC CLUSTER EXPANSION
(64) :
(NN = (({a0o0)) + ({ oo N IUTI og] T og])) As the reader probably understands, the problem in ques-
tion is difficult, naive attempts to develop a self-consistent
+{(TrLog™ 1T g™ 1))}, expansion schemes faisee Sec. Ill A, and we have to re-
28 sort to some other methods. The exact results for two and

_ _ 2
where((oo00)) =({ror0)) ~|(v7)*+x four chains discussed in the preceding section give a glimpse

There are no reasons to th'F‘k that _correlatlon fu_nctlons Oyt the complexity of the problem. Unfortunately, for a higher
th_e chains with _the same parity vams_h. Here solitons €N mber of chains there are no exact solutions. However, a
with .Lorgntz_ spin 3/16. The asymptotics of the Correlat'onnonperturbative analysis can be imagined, though for a
function is given by somewhat modified model. In this modification the interac-
tions are set up in such a way that the chains are assembled

X(7,x) = (e ZPalre 1 2m1(00)) into clusters of threétriads, nine (enneadg 27 chains, etc.
~<ei \fﬁ(bl(r,x)efiv?_w<b3(0,0)> (see Fig. 2 S _ o
The interaction inside a cluster of a given size is supposed
—1d 3018, mr cosha+ ixm sinh ¢ 2 to be stronger than interactions between the clusters of larger
~p f doe’""e sizes. We believe that the study of such a modified model
sheds light on classification of the excitations and establishes
o s the structure of the effective action for the collective modes
=2p f d6'Kg(2mp coshd), (69 below the soliton mass gap.
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FIG. 2. (Color) The hierarchi-

Sizrmed e Indcarciu: cal model for 36 chains. Differ-
ently colored circles denote cur-
rents with different chirality. The
green bonds are the strongest, the
magenta ones are of intermediate
strength, and the yellow ones are
the weakest.
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A. The fundamental triad (three chaing B. The first ennead(nine chaing
The solution for two chains with one chiralitiet it be the Let us consider the case of nine chains with open bound-

left ong coupled with the current-current interaction to a ary conditions, arranging them into three triads in such a way
chain with opposite chirality was described in Refs. 57 andhat the bare coupling constant inside each tiigds greater
58 (see also Ref. 59 The Hamiltonian density is than the bare coupling/; between the triad¢see Fig. 3.
Then we can have a situation when the ir fixed point for a
iv— — @wv —| 27 — given triad is already achievefdhe corresponding energy
H=| S X0dxxot 51+ =130+ 910 (69 scale isA~J)y exp(—m/y)], well before the renormalized

wherel? andJ? are right SY(2) and left SY(2) currents,
respectively. The expression in the square brackets describes
a sum of two chiral SY(2) WZNW models. Such a repre-
sentation was already discussed in Sec. IVB. The right-
moving Majorana fermion does not participate in the inter-
action. In the ultraviolet regime the model is a sum of three
chiral conformal field theories: th&=2 SU2) WZNW
model with the right central charg€gr=3/2, the right-
moving free Majorana field witlCg=1/2, and the S{(2)
WZNW model with the left central charg€ =1. The
current-current interaction generates a massless renormaliza-
tion group(RG) flow to the infrared critical point. The theory

in the infrared is represented by two free Majorana fermions

with opposite chirality}o and y, and the right-moving sec-
tor of the SU(2) WZNW maodel:

| +
2mv v

HlR:T3ﬁ+ 5(?0&&0—)(0&)(0)- (70)

Under the RG flow the fields transmute in the following way:
FIG. 3. (Color) The renormalization scheme for three chains. In

1— 2j_+ cee i;(,;—ﬂzo)(oj_-k cee (71 the infrared limit the system is equivalent to a single chat 1
chain and a criticajnonchira) Ising model. The circles with differ-
where the dots stand for less relevant operators. ent thicknesses denote currents with different chirality.
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The first term reproduces the original interacti@ Its pres-
ence in the Hamiltonian also converts the second term into a
marginal operator:

y1(A) (i xox0)1(i Xox0) 2 1) 2= ¥1(i Xox0)1(i Xoxo) 2+ Y1 (A)
X (i xoxo)1(ixoxo)2:i1i 21

Y1=71(A)(j1i2)- (73

Thus by integrating out the high-energy degrees of freedom
in the ennead of chains one generates at energies smaller
FIG. 4. (Color) A schematic picture of renormalization of nine than A_ (fthe new uv cutoff '_[he effectl\_/e acFlon that conta_lns

chains. the original action for a triad of chains with a renormalized
coupling constanty; plus the action for three critical Ising
coupling for the triad-triad interaction becomes of the ordelmOdeIS coupled by the products of energy density operators:
of 1. 3
According to Eq(71), the renormalized coupling between =
any neighboring triadé&enoted 1 and 2; recall also that they = °"9 /&4
always have different chiralijyin the infrared is

+ 3100 2L (xx) 1+ (xx)3)-

P
E(Xﬁxx—xﬁxx)r

(74)
o o o o The Ising subsystem decouples from the magnetic one. The
yi(A)jjo+y1(A)(ixoxo)1(ixoxo) 22t (72 resulting model is similar to the @) GN model discussed
- o . i ;
- & -‘“"\‘ (BT (=R
~ o

. i Isimg 2 ,|'

FIG. 5. (Color) The hierarchy of interactions and the renormalization process for 27 chains. The strongest bonds are brown, the
intermediate are green and the weakest ones are yellow. The Ising variables are shown as pink rectangles. The red and blue circles of various
sizes depict spin currents of different chirality. Their size increases with every step of the RG process.
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above[see the discussion around Ed7)]. The only differ-
ence is that the symmetry is broken down t6lJJ The in-
teraction can be written in terms of the currents

VL0010 2+ (o0 20xx)]~ v [T+ ]+ yHIZ;_;,S)

which makes the model somewhat similar to the anisotropic
Thirring model[1? are SY(2) currents made of,’s and the

coupling constanty, ~7; and ¥=0 on the bare level We

believe (the details will be given in a separate publicajion

that this particular type of anisotropy vanishes in the strong|.

coupling regime in the same way as it does in@sector of

the anisotropic Thirring modéf>° In other words, in the

strong coupling regime the modér4) is equivalent to the

O(3) GN model. FIG. 6. A schematic picture of the temperature dependence of
Thus on each step of the triadic real space RG we genetfbe specific heat.

ate the @3) GN models. Their number is equal to the num-

ber of clusters on the given level. For example, if the initialSequence of magnetic crossovers is passed, that X, at

number of chains is"8and the first GN model appears for a >T>M,, the specific heat is given only by the Ising mod-

cluster of 9 chains, the number of copies of GN models orfls:

the first level is 372, Then the next levels contain“33,

3N~4 etc., copies such that the total number of such models _ “_T<E+ E+ i+ o ) _ 7T (79

in both parity sectors is"$ 1. Taking into account that each 6v\3 9 27 12’

of them has a twofold degenerate ground state, we get th% . ins th fter the fi Th
ground state degeneracy’, whereA’=3N is the total num- that is, remains the same as after the first crossover. Thus we

ber of chains. The resulting ground state entropy is thre&an Say that in the thermodynamic limit the singlets occupy
alf of the original Hilbert space.

times smaller than the one that was obtained for the unifor . .
When the temperature falls below the first singlet &g

case. ) C .
Now we can discuss the thermodynamics. In our clusteP€ May say to the first approximation that the Ising modes

expansion we have the following energy scales. First, there &/ith the largest gaps cease to contribute. After a certain
a sequence of crossover scaleg>A,> - -->Ay_; (mag- crossover the linear slope in the specific heat drops by a

netic gaps corresponding to crossovers inside of each clus{actor of 9. The specific heat remains linearTiintil M is

ter. Then there are energy gaps of the interacting Ising mod&2ched, where the slope falls by another factor of 3, etc. In
elsM,,Ms, . .., which are formed by clusters of 9, 27, 81 our scheme where the distribution of coupling constants be-

etc., chains(see Figs. 4 and)5The first scale in this se- twel?n :hT clusters Odf d|ffererc11t S'ﬁed's Ifat:‘e'f arbl_trrﬁry, '}
quence is of the order of makes little sense to do more detailed calculations. The only
thing we can say is tha€~T above a certain temperature
and then experiences a fast decrease. In our cluster expansion
there are two areas with linear specific heat characterized by
§Iopes differing by the factor of 2. This due to the fact that
er. " . . NN
within this approach the gap for magnetic excitatiahss
different from the gaps for singlet excitations. Whether this
feature will survive in the limit of uniformly coupled chains
Eas open for debate.

M,~Aexf — /y;]. (76)

Sincey; ~ yf we deem these energy gaps to be much small
than the magnetic gaps. We conjecture that this differenc
survives even in the limit when all interactions become
equal.

All these crossovers affect the temperature behavior of th
specific heatsee Fig. 6. The first crossover occurs at tem-
peratureT~ A, which is the crossover temperature of a fun- VI. REMAINING CASES
damental triad. Above this temperature we have a bunch of ; \\5.id make a lot of sense to study the models de-

noninteracting chiral Heisenberg chains, each having the he@[:ribed in this paper numerically. Since numerical calcula-

capacity linear in: tions will probably be performed for systems with a re-
T stricted number of chains, we decided to describe certain

C(T>Ag)=SC, C= 767_0 77 tractable cases in more detail.

whereS=3NL is the total area occupied by the system. At A. An approximate solution for N=3 (six chaing

Ao>T>A, we effectively have 871 critical Ising chains In this case the magnetic subsystem is equivalent to
with central chargeC=1/2 and the same amount of nonin- =1 [that is, to the S(2) Thirring model and the Ising sub-
teracting chiral Heisenberg chains. As a result the slope ofystem contains two Ising models with thee, interaction.
the specific headrops by the factor of 2. When the entire The latter is equivalent to the spinless Thirring model with a
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—0 and a single-valued function aefat x=0, we conclude
foe s that the spinon functio® must be a double-valued function
— + to compensate for the double-valuedness af(-ix) Y2
This suggests that the spinons are semions, as it was sug-
gested by Laughlif®

Now we shall use these facts to determine the asymptotics
of the single-fermion Green’s function in a similar way as
FIG. 7. A schematic picture of twelve chains. The thick lineswas done for the(1+1)-dimensional Thirring modét*
correspond to larger exchange interactions. The circles of differeiNamely, we shall combine these arguments with the Leh-
sizes denote chains with different chirality. mann expansion for the Green’s function. In this expansion
we shall take into account only terms with an emission of a
truly marginal interaction. Thus the Ising sector is critical single massive soliton. The spectrum of this soliton is

and is described by the=1 Gaussian model.
E(k,k)=(wk)*+M?(k,), (81)

Applying the procedure outlined above to the system of)(/\’hereM(ki)Nqu_m/ﬂ Is as yet an unknown function

/ . o " ) the soliton gap We believe that this gap always remains
twelve Chams with perlodlc_boundary con(jltlo(rxee Fig. 3, finite for any momentum. A convenient parametrization of
we obtain theN=2 model in the magnetic sector plus the

model (74) with four chains(see Fig. 7. the energy and the momentum component along the chain

o ) . direction is
Thus the excitation spectrum includes the GKB)Gsoli-
ton mode, one gapless Majorana fermion, and massive exci-
tations from the Ising sector.

B. An approximate solution for N=6 (twelve chaing

E=M(k,)coshd, vk,=M(k,)sinhé. (82

In this notation a Lorentz rotation on an “angley corre-

VII. SINGLE-ELECTRON GREEN'S FUNCTION FOR THE sponds to the shift of rapidity— 6+ y since an operator
MODEL OF STRIPES AND THE SPINON PROPAGATOR with Lorentz spinS transforms under such Lorentz transfor-
FOR N=c mation as

Now we shall try to use the wisdom accumulated in the
exact solution of thé&N=2 case to obtain results for the case
of an infinite number of chains. Though our ultimate goal is . )
to calculate the correlation function of staggered magnetiza- Ve generalize foN=c the formulas obtained for thi
tions, the path to it lies through the single-electron Green’s= L andN=2 cases, treating the vanishing of dunction
function, which exists only for the model of strip§Big. IS theN=2 as an artifact of periodic boundary conditions:

1(b)]. The reason for this will become clear in the process of

As—> eySAs.

calculation. G~(vr—ix)"Y2Z(k, )exd —M(k, )7+ (x/v)?],
Let conduction electrons belong to even chains. Then the
electron creation operator is D~f(k MYk Ko(M(K,) [Z+(xIv)D), (83

Ry on= € ZTecl2NgriZme(zn), whereZ andf are yet unknown functions. THeéunction may

_ o vanish at some point in momentum space, as suggested by
Ly =g 2Tec@me=aiZmen (790 the example of four chains. Notice that bdth dependence
. . . . of G and the very existence @ are effects exponential in
wherev, is the Fermi velocity. Though, in general, may 1/, These equations dictate the following asymptotic form
be quite different from the spin velocity, we shall not con- ¢, the correlation function of the staggered magnetizations:
sider this possibility. Withv,=vs the model is(1+1)-
dimensional Lorentz invariant. The charge fieldsand ¢,
are free Gaussian fields and hence there are no correlation,{;l(r,x;ql)zpflf
between the fields belonging to different chains,

dk,

1 +M(a, +k,)1p}, (84)
Grr(7,X)= —————=Gonan(7,X), dk
(Tvc+ix) XZ(T,x;qL)=f(z—wi)f(ki)f(ki"'(h)
GLL(T.X):( 1- )1/2'Gzn,2n(r,—x), (80) X[M (k)M (g,) "KM (ky)p)Ko(M (K,
TUc—IX

. . . +QL)p)1
where the functionG was defined in Eq(32) and can be

called the spinon Green’s function. Since the electronwherep?= 72+ (x/v)? and x; is a correlation function be-
Green'’s function must be a single-valued functiorxadt = tween the chains with the same apgwith different parities.
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VIIl. CONCLUSIONS APPENDIX A: GAUGE THEORY FORMULATION

Let us make a summary of our results. The relationship with the gauge theories can be inferred
(1) We have found models of magnets with a short-rangdrom the fact that the levet=1 SU2) Kac-Moody currents
Heisenberg exchange that have neither magnetic nor spigan be identified withliso)spin currents of massless Dirac

Peierls order. fermions:
(2) We have given a formal proof that these models pos- 1 1

sess eXC|tat|ons_ with spin 1{2. N _ Ja:—RLUipRm T"=—|—Zaiﬁ|-,3, (A1)
(3) We established the existenceTf 0 critical point and 2 2

a massive ground state degeneracy. The ground state entrogx being Pauli matrices. The Hamiltonia#) and (7) be-

is proportional to the number of chains. comes
(4) We have also established that the low-energy Hamil-
tonian separates into two weakly interacting parts describing
sectors with different parity. H=>, f dx

n

(= RIGR,+LIaL)n+ 5 > (RT0R
(5) We established that the correlation functions of stag- ®
gered magnetizations can be written as real space products of
correlation functions of nonlocal operators belonging to the +LToL), (RToR+LTol )y, |. (A2)
sectors with different paritysee Eqs(32) and(33)].

(6) We have solved the.problem exactly fqr the case of As gauge theories of the RVB state, this theory possesses
two and four coupled chainghe latter one with periodic o4 nqant charge degrees of freedom that do not participate
boundary conditions The results are consistent with the i, he interactions. Since every approximation violates this
statements made for the case of infinite number of chaingypyle property, dealing with the charge sector would become
The spectrum contains a massive amount of singlet excitahe same awkward problem as it is in the standard approach
tions. In the language of gauge theory these excitations dep the RVB gauge theory, once one decides to adopt this
scribe dynamics of Wilson loops. fermionic representation. Let us, however, follow the well-

A natural question is whether the models considered inrodden path for a while just to make sure that the model we
our work can be realized. We believe that the the answer iare discussing does fall in the category of RVB liquids. To
positive. The model of stripes may well be relevant in athis end, we use the identity
strongly underdoped regime of copper oxides.

We have already mentioned in the Introduction that there oio5=2P 1,
are other models of fractionalization, such as suggested in . .
Refs. 7 and 8 together with the corresponding dimer model hglr)e zlé is the .pk(]armutaftmn operator, af‘d ﬁpply the
mentioned earlier. Though these works use Hamiltonians n(%tu ard-stratonovich transformation to rewrite the interac-

. . . lon term in Eq.(A2) as
based on any microscopic electron models, one might hope
that they capture some features of the solution. In particular,
it would be interesting to study in detail how singlet excita-z dx
tions, which in our model are associated with the8\OGN s
models emerging on each triad of chains, are related,to Z +..
vortices (visong introduced in Refs. 7 and 6(see also the
recent worké? which essentially clarifies the concept of vi- Where the dots stand for the terms we deem irrelevant. The
son. We leave this question, as many others, to future reProcedure essentially coincides with the conventional decou-
search. pling scheme in the RVB approach. The fact that such de-
coupling here is done only in one lattice direction is not
important provided one can justify that fluctuations | af
may be neglected. As we shall see, excitations associated
with breaking of singlets carry the largest spectral gap. This

We are grateful to Alexander Abanov, Boris Altshuler, justifies the assumption about small fluctuationfdf Once
Claudio Castellani, Andrey Chubukov, Fabian Esslerthe amplitudeA|~Jjexp(—mv/y) is frozen, one is left with
Michele Fabrizio, Vladimir Fateev, Eduardo Fradkin, Levthe compact (1) lattice gauge theory in the strong coupling
loffe, Dmitrii Khveshchenko, Vladimir Kravtsov, Feodor limit (indeed, the gauge field has no ba&g, term, which
Smirnov, Peter Fulde, Maurice Rice, Nic Shannon, Olegcorresponds to infinite bare chajg&he vector potentiah,
Starykh, and Arkadii Vainshtein for valuable discussions ands represented by the phaseXf ,, , . Since by omitting the
interest to the work. A.M.T. is also grateful to Steve Kivelsonterm with RZRQLZLQ we violate the decoupling of the
for sending him his work before publication. A.A.N. and charge degrees of freedom, we have to enforce the constraint
A.M.T. are grateful to Brookhaven National Laboratory andon the absence of charge fluctuations by introducing the time
the Abdus Salam ICTP, respectively, for their hospitality. WecomponentA, of the gauge field. In the mean field approxi-
also acknowledge the support from U.S. DOE under Conmation (that is, when fluctuations of the gauge fields are
tract No. DE-AC02 -98 CH 10886. neglectedl we obtain the spectrum of the-flux state!?

|A,u.+n,n(x)|2
2y

+ (A”v”+MRL,nLa,n+M+ H.c.)
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E(p)= \/(vk|‘)2+4|A|2COS7'kL, (A4)  together with theiN dual counterparts

Wh[ch has two Dirac-like conical singular'ities in the Bril- ﬁn:%n_;znﬂ_ (B5)
louin zone. From what we have done in this paper it appears _ )
very dubious that this result will survive inclusion of fluc- According to Eq.(B1), the fieldsy, are locked at

tuations.
7 (+)
[Xn]vac_ §[1+2m2n ] (BG)

On the other hand, there al more combinationsg,,

+ ¢,,_1, that get frozen, again according to E&®1). We
Let us assume that the system is two-dimensional and thean express them in terms gf, and J,,:

number of chains is even,\2 We will drop the Lorentz-

noninvariant part£ ™, in which case one has a decomposi-

tion L,=L,+L, .

APPENDIX B: THE STRUCTURE OF STRONG
COUPLING REGIME AND THE GROUND-STATE
DEGENERACY

— 1
‘P2n+<P2nfl:§(Xn+ It xXn-1— 1)

Let us first considerS,L. . In the strong-coupling
ground state, the following combinations of the chiral fields = \/E[lJr 2mé 1. (B7)
are locked: 8

- ThusN relative dual fields
Pont @on+u= \[g[l"'zm(zﬁ)], p==*1, 1
gg*):_

(93— 9ns1), n=012...N—1 (B8
mi=0,+1,+2,.... (B1) V2

Assuming that periodic boundary conditions are imposed irfi'® also locked:
the transverse direction, the set of equatigB&) can be

: . Jm _
rewnitien as [0 Nuac= - [mby) T mby ), 2mb )] (BY)
o+ Pan_1= \/§[1+ 2m§ 7], Notice that transverse periodic boundary conditions imply
that
o Kl (+) (-)
ot 1= §[1+2m0 1, > 6)=0
n
. p [which is actually the same condition as EB3)], and so the
Qo+ 1= §[1+2m(2’)], number of independent relative fieldsNs—1. We choose
them to be
— T (=) (=) (=)
(102+(P3: \/;[1+2m(2+)], 00 ,01 g an e GN*Z (BlO)
The total field
1 N—1
,__—
B - . g "R ngo 9, (B1))
Pon-2F Pon-3= §[1+2m2N—2], _ _
remains unlocked and, hence, disordered.
- Thus theN fields x,,, Eq. (B4), are locked whileN their
[ — \ﬁ 1+2méH) 1. (82)  dual counterparts}, arenot only theirN—1 combinations
PoN-2 T PNt 8[ 2N-2 (B10) are. The frozen values of theséN2 1 independent
: ; +
Considering pairs of neighboring equations in E82), one  f1€lds characterize the vacuum stateXgil , .
finds that the integer{) satisfy the following condition: The same can be done faRL,, : we introduce
N—1 N—1

‘//n:;2n+¢2n+lv
> my)=2> mb). (B3) B (B12)
k=0 k=0
on=—¢nt Poni1
With this constraint, the number of independent fields, , _ .
locked in the ground state, iN2-1. To select these fields and selecN fields i, andN—1 relative duals
we first defineN scalar fields wg—),w(l—), o ,w(N—)Z, (B13)

Xn=@ont @oni1, N=0,1,2... N—1 (B4)  where
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_ 1
w(ﬁﬂz“’n_é’n“_ NanNan 1~ €0SV2(O20= @ n1.1) + 5[ COSV2m(Pa

-d —cos\2m(®,,+ P
The total field 2n+1) V27 (P o+ Py )]

1 N—-1 :COS\/Z(Xn_Ir/fn)_'—%[Cosﬂ(ﬂn_wn)
N ”ZO “n —cos\27(xn+ ¥n)]-

Using Eqgs.(B6) and (B14) when averaging over the ground

remains disordered. Thg, fields are frozen at state, one finds that

= N N N
[ ¥nlvac— \/§[1+2m(2;)+1]1 (B14) M2n < 2n* Nan 1>
1
~<COS\/E(Xn_‘//n)>_§<COS\/Z(Xn+(//n)>

while () at

3 _

o= (—1)Mon~ Mans1, (B17)
O VT ) o 2
[wh ]vac:7[2m2n+1_m2n+1_m2n+3 . (B1H) .
We observe the existence of two, doubly degenerate values
of this local order parameter; its sign depends on the parity
We can now express the physical fields of individual of the integerm;n

chains in terms of the locked fields and two extra fields that = Similarly

remain disordered. We have

—Mypiq-

Nan+1°Nant2~COSV2m(O 2041~ O 2)
1
1 _ 1
Pan=7 (Xt gt Do ). + 508\ 2P0 1~ Pon )

1 —CosV2m (P11 +Ponyio)]
®2n:§(Xn_ Unt Iyt op),

(B16) ~COS\/g[(¢n+¢n+l)_()(n+)(n+l)

1
- _ 1
Ponr1=5 (nt ¥n— It wn), +2(0, +w;)]+ 5005\@[(%— Yn+1)

1 +(Xn—Xn+1) T (0pt @) = (0n+ 0niq)]
®2n+1:§(_)(n+wn+ﬂn+wn)- 1
ar
- ECOS\@[((ﬂn'I' o)+ (Xnt Xni1)

The elements of the Wess-Zumino matrix figlg(x) contain

exponente™27*n ande™27On, According to Eqs(B16), —V2(6, —w:;)1.] (B18)
in the strong coupling phase these exponents are proportional
to The first and third terms in the right-hand side (8f18)
have nonzero expectation values. Using the locked values of
the corresponding fields given above, we find that arguments
exp(i \ /2_770* ) exr(i \ /Z_Ww* ) of these two cosines are[m$’),—mb, )] and #[mb)
N N +mé, ) ,+1], respectively. Therefore

respectively, and thus will have vanishing expectation val- +) ()

ues. This effect, however, disappears in the thermodynamic ~ 72n+1={Nan-1- N2n+z>°‘§(_1)m2””7m2"+2- (B19

limit.

Inspecting Eqs(B17) and (B19) we observe that the two

signs of local order parameterg, reflect a spontaneously

brokenZ, symmetry. This is the symmetry related to inde-
Spontaneous transverse dimerization has been identifiggendent translations by one lattice spacing along the chains.

for the case of two chains in Ref. 25. In the continuum limit, Notice, however, that for different pairs of chains the signs of

the corresponding order parameter is given by a simple exhe order parameters awencorrelated The only condition

pression:N,(x)-Np; 1(X). For the 2N-chain model imposed on they’s is

Transverse dimerization and degeneracy of the ground state
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2N

I me=(-1)°=1, (B20)

where the integer

N—-1

Q= z 2 M[mgm_m§m+1]
mw=%x m=0

vanishes according to relatioriB3) in the (+) sector and
their counterparts in thé-) sector. EquatioriB20) is not a

PHYSICAL REVIEW B 67, 024422 (2003

restrictive condition; it simply says that the numbers of posi-
tive and negative;'s should be even. Thus the ground state
of the system exhibits a huge degree of degeneracy. Taking
the constrain{B20) into account, the number of the degen-
erate ground-state configurations in a systemldfchains is
estimated as

2N 2N

1 S o 1 (2N)!
2 &y N2 & nl(2N—n)!
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