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Nature of the quantum phase transition in clean itinerant Heisenberg ferromagnets
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A comprehensive theory of the quantum phase transition in clean itinerant Heisenberg ferromagnets is
presented. It is shown that the standard mean-field description of the transition is invalid in spatial dimensions
d=3 due to the existence of soft particle-hole excitations that couple to the order parameter fluctuations and
lead to an upper critical dimensiaj =3. A generalized mean-field theory that takes these additional modes
into account predicts a fluctuation-induced first-order transition. In a certain parameter regime, this first-order
transition in turn is unstable with respect to a fluctuation-induced second-order transition. The quantum ferro-
magnetic transition may thus be either of first or of second order, in agreement with experimental observations.
A detailed discussion is given of the stability of the first-order transition and of the critical behavior at the
fluctuation-induced second-order transitiondls 3, the latter is mean field like with logarithmic corrections
to scaling, and ird<3 it can be controlled by means of a-% expansion.
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I. INTRODUCTION M leads to the conclusion that at zero external magnetic field
the magnetic transition is continuous with mean-field or Lan-
The study of quantum phase transitiof@PT’s) is cur-  dau critical exponents. Fluctuations invalidate Landau theory
rently an important and very active field of research in con4n sufficiently low dimensions, while the mean-field critical
densed matter physics; see, e.g., Ref. 1. Although, strictipehavior is exact in dimensiomklarger then an upper criti-
speaking, these transitions occur only at zero temperatureal dimensiond; . For the thermal phase transition in a
(T=0), they are important for understanding the behavior oHeisenberg ferromagnet, it is well established that=4.
many systems at low, but routinely accessible, temperaturefor the corresponding QPT, it was argued tHat=4—z,
Understanding QPT'’s is also important for gaining insightwith z the dynamical scaling exponehthis reduction of the
into the possible phases of systems at zero temperature. lopper critical dimension is a result of the coupling between
deed, QPT’s are thought to be relevant for understandingtatics and dynamics in quantum statistical mechanics, which
phenomena as diverse as high-superconductivity, quan- leads to an effective dimension for fluctuations given by
tum Hall effects, various magnetic phenomena in both med.; =d+z. Mean-field theory suggests=3 for the quan-
tallic and insulating systems, the transport properties ofum Heisenberg transition of clean itinerant electrons, so the
doped semiconductors, and superconductor-metal angbnclusion was that this QPT should havea= 1, resulting
superconductor-insulator transitions; see, e.g., Refs. 2-5. in mean-field-like critical behavior for both thin films and
Perhaps the most obvious, and one might naively thinkulk systems. From a theoretical statistical mechanics point
almost trivial, QPT is the ferromagnetic transition that takesof view, the itinerant quantum ferromagnetic transition there-
place in a cledhitinerant electron system as the exchangefore did not appear to be very interesting.
coupling is varied at zero temperature. Indeed, this was one This conclusion was recently challenged by what amounts
of the first QPT’s to be considered; see Ref. 7 and referenceg a generalized mean-field description of the transitiGhe
therein. The traditional arguments and results for this QPhasic physical argument, which is general and applies to
can be paraphrased as follows. IMtbe the order parameter other phase transitions as well, is as follows. In the disor-
vector, i.e., the magnetization, with compones (i dered phasef, contains contributions from fermionic soft
=X,y,z). Landau theor§,which as a mean-field description modes, viz., particle-hole excitations. Some of these acquire
is suitable for both thermal and quantum phase transitionss mass in the ordered phase, which decreases the contribu-
says that the free energst T>0) or energyat T=0), as a tjon of these fluctuations to the free energy and thus leads to
function of M, for small magnetization and small magnetic a negative term in the free energy function that has a nonana-

field h is of the form lytic dependence on the order paraméfelf this mode-
mode coupling effect, which is neglected in the usual Landau
F=Fy+tM?+uM*—h-M. (1.1 or mean-field theory, is strong enough, it clearly can lead to

a modification of phase transition predicted by Ef.1).
Here Fq is a background contribution that reflects the de-Reference 9 showed that in the case of an itinerant ferromag-
grees of freedom other than the order parameteerns out  net, the soft modes that couple most strongly to the order
to be the distance from the mean-field transition—i.e., thgarameter, viz., spin-triplet particle-hole excitations, do in-
transition takes place dt=0—andu is a constant that is deed develop a mass in the ordered phase and lead to a
assumed to be positive. Minimizing E(..1) with respect to  Landau energy function that has the form,dis 3,
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F=Fo+tM2+uM*In M2+ uM*—h-M. (1.2  initially.’® Later, a renormalization-group description of
fluctuation-induced thermal phase transitions was
The presence of thm*In M? term, compared to Eql.1), developed® Part of our goal here is to do the same for the
changes the nature of the transition from a continuous one tquantum ferromagnetic transition.
a discontinuous one. The same is true for dimensionsl 1 In addition, we perform a renormalization-group analysis
<3, due to a similar nonanalytic term in the Landau func-of the stability of the first-order transition predicted by the
tion. The fact that the nature of the phase transitiordin generalized mean-field theory. It turns out that the first-order
=3 changes qualitatively upon improving on Landau theoryransition is stable if it occurs at a sufficiently large value of
is not consistent with the traditional notion of a three-the paramtet in Eq. (1.2). However, if it occurs at small
d|mer?3|on+al(3D) system being above its upper critical di- yajyes oft, then the first-order transition can in turn become
mensiond; =1. In contrast to the traditional prediction of a ypstaple with respect to fluctuations. The final result in that
continuous transition with mean-field exponents, the genergase is a second-order transition that is induced by fluctua-
alized mean-field theory predicts the transitioratwaysbe  {jons by a mechanism that is similar to the one discussed in
of first order provided thal<3. _ _ _the context of classical Potts models by Fucito and P&fisi.
Experimentally, the situation is seemingly inconclusive.This second-order transition is distinct from Hertz's mean-
In some ferromagnets with low Curie temperatures, whergg|q transition and belongs to a different universality class.
the quantum phase transition can be triggered by hydrostati§epending on microscopic parameter values, the ferromag-
pressure or composition, the observed transition is of firshegic QPT in itinerant electron systems can thus be either of
order, in agreement with the generalized mean-field theoryst order or of second order, in agreement with the experi-
This is the case, for instance, in Mn{ef. 12 and in UGe  mental observations mentioned at the beginning of this sec-
(Ref. 13. In others, for instance, Zrzn(Ref. 12 and  t{ion. Moreover, the critical behavior in the continuous case in
Ni,Pd; _, (Ref. 14, however, the transition is observed to be 43 js mean field like with logarithmic corrections to scal-
continuous. Moreover, the critical behavior observed injng Within the current experimental accuracy, this is indis-
NixPd, _ is in good agreement with mean-field exponents.inguishable from mean-field exponents, again in agreement
This is surprising, given the above conclusion that meanyith the experimental observations.
field theory cannot be correct h=3. _ _ The outline of this paper is as follows. In Sec. Il we give
In this paper we provide new insights into this QPT andg pasic field theory describing coupled magnetization fluc-
additional understanding of the discontinuous transition thaf,ations and soft fermionic degrees of freedom. In Sec. Il
results from the generalized mean-field theory, as well as ofye derive and discuss the generalized mean-field theory that
the stability of the latter. In the general theory of phase trantesylts from integrating out the fermionic modes and that
sitions, transitions that are predicted to be continuous b(fredicts a first-order transition. In Sec. IV we perform a one-
Landau theory but are in fact discontinuous are calledoop renormalization-group analysis of the field theory. We
fluctuation-induced first-order phase transitionaVe will  show that the renormalized quartic coupling constant can
show that the first-order transition in itinerant quantum fer-pecome negative at large scales, leading to the first-order
romagnets can indeed be understood as being fluctuation ihase transition described by the generalized mean-field
duced. The novel feature is that although the order parametefieory. However, in a certain parameter regime fluctuations
fluctuations are above their upper critical dimension, in a&eep the quartic coefficient positive, which results in a con-
well-defined sense the soft fermion fluctuations are not, angnyous phase transition. In Sec. V we further discuss our
it is the effect of these fluctuations that drives the transitionggyts, compare them with previous work, and comment on

first order ford<3. ~ the experimental situation. Parts of the results presented here
Their are many similarities between the fluctuation-haye been previously announced in two short

induced first-order phase transition discussed here and thgplications’®
thermal first-order transition that occurs in conventional su-
perconductors or the nematic—to—smectic-A transition in lig-
uid crystal system&1®1n all of these systems there are soft
or massless excitationdn superconductors, these are the
gauge or vector potential fluctuations; in liquid crystals, the Recently we have derived and discussed a local field
director fluctuations; while in the electron system consideredheory describing the quantum ferromagnetic transition in
here, fermionic particle-hole fluctuationghat couple to the disordered itinerant electron systefig® This field theory
order-parameter fluctuations and become massive in théescribes the coupling between the soft or massless fermi-
broken-symmetry phase. Because of the latter property, thenic degrees of freedoifwhich in a disordered electron sys-
fluctuation contribution to the free energy decreases, whictem are diffusive; i.e., the frequency is a quadratic function
ultimately leads to a fluctuation-induced first-order transi-of the wave numberand the magnetization fluctuations.
tion. If these fluctuations are integrated out in some approxiHere we give the analogous theory for clean electronic sys-
mation, then a nonanalytic Landau-like theory can be derivedem. In this case the fermionic soft modes have a linear dis-
which predicts a discontinuous phase transition. The modipersion; i.e., the frequency is a linear function of the wave
fied mean-field theory for the magnetic transition mentionechumber. There are numerous ways to construct field theories
above results from such a procedure. For the superconducttirat describe these soft modes; here we choose the method
and liquid crystal transitions, a similar technique was usedleveloped in Refs. 21 and 22.

Il. COUPLED FIELD THEORY
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A. Soft mod 7 .
oft modes — Y — Yt Y Y
A generalized Landau-Ginzburg-WilsofLGW) theory o A SR 3 i
that keeps all of the soft modes in the problem will be de- 5 ' Ya1d2 Vv HrE e

scribed in terms of an actiod that depends on a fielil 1272

o . e ! b1 2 Y1 i b o)
describing the fluctuating magnetization and on a feelte- — —_ _ — —
scribing the soft fermionic two-particle mod&sAll other —Ynt Yo Yz Yudy
modes we imagine have been integrated out in order to arrive (2.49
at the effective theory. The partition function can then be
written in terms of a functional integral with respect tb
andq,

Here theys and ¢ are the fermionic, i.e., Grassmann-valued,
fields that provide the basic description of the electrdns,
and all fields are understood to be taken at posikoihe
indices 1, 2, etc., denote the dependence of the Grassmann
fields on fermionic Matsubara frequenci<fa§11=27rT(nl
+1/2), etc., and the arrows denote the spin projection. It is
convenient to expand the>44 matrix in Eq.(2.43 in a

The action will consist of a part that depends only on theSPin-quaternion basfs,
magnetization, a part that depends only on the fermionic de-
grees of freedom, and a coupling between the two,

z=f D[M,qJe”M.al, (2.1a

3

Qu¥)= 2 (7,95)iQ1X), (2.4b

ri=0

AM,q]=Au+Agt+Awmq- 21D it To=Sg=l, the 2X2 unit matrix, andrj=—s;= —io;
(j=1,2,3), with o, 3 the Pauli matrices. In this basis,
The various pieces of the action in E&.1) can be derived =0 andi=1,2,3 describe the spin-singlet and spin-triplet
starting from a microscopic fermionic action or, more gener-degrees of freedom, respectively. The0,3 components

ally, written down on the basis of symmetry argumefits. correspond to the particle-hole chanfiet., productspy or

Here we choose the latter approach, with occasional refer E) while r = 1,2 describe the particle-particle chanfied.,

ences to the miscroscopic theory as a check. For a complete —
derivation from a microscopic action, the techniques of RefsprOduCtS Yy or gy). For our purposes the latter are not

19 and 21 can be used important, and we therefore drop tihe=1,2 from the spin-
Ay, is just a static, local, LGW functional for the magne- quaternion basis. In terms of the remaining fields, the spin

tization fluctuations. It is local because no massless mode‘lens‘Ity can be expressed as

that couple to the magnetization have been integrated out,

and it can be chosen static because the relefirthe long- NG Q) =VTY 2 ma(¥) Thtimnp(X)
wavelength, low-frequency limitdynamical part will be m ab

shown to be provided by the coupling to thdluctuations;

see Eq(2.99 below. Neglecting terms that are irrelevant for =T S (V=D tr[(7,98) Qe n(X)]
our purposesA,, is given by m r=03 '

(i=1,2,3. (2.49
AM:—f dxM(x)[t—aVz]M(x)—uJ' dxM4(x).
The matrix elements of) are bilinear in the fermion

(2.2 fields, soQ-Q correlation functions describe two-fermion

excitations. In a Fermi liquid, th® fluctuations are massive
Here x=(x,7) comprises the real-space positisrand the and soft, respectively, depending on whether the two fre-
imaginary timer. fdx:fdxfgdr with 8=1/kgT, whereT  quencies carried by th@ field have the same sign or oppo-
is the temperature. is the dimensionless distance from the site signs, respectively. We therefore separateQtfkictua-
bare LGW critical point, anc andu are positive constants. tions into massless modeg, and massive modeB,, by
The physical magnetizatiom is proportional to the expecta- splitting the matrixQ into blocks in frequency space,
tion value of the fieldM. For later reference we also define a

temporal Fourier transform of the fied by Qnm(¥) =0 (NM)P,(X) +O(N)O(—m)+06
(=MO(M)gg (). (249
B )
Mn(X)=\/ff0 dre'n"M(x), (2.3 In what follows, we will incorporate the frequency con-

straints expressed by the step functions into the fiEldsd
g, respectively. That is, the frequency indicesPomust al-

with ,=27Tn a bosonic Matsubara frequency. ways have the same sign, and thosg ahdq® must always
The soft fermion fieldq originates from the composite have opposite signs.
fermion variable&' Finally, we define spatial Fourier transforms by
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3
1 .
(k)= [ a0, @5 Auom2onT[ &3 3 My
\/v n i=1
and analogously for the fieldgandq?. X > (=)™ tr[(7,95)Qmmen(X)],
r=0,3 m '
B. Soft-mode field theory (2.79

The massive modeB can be formally integrated out to With a model-dependent coefficietyt. In a technical deriva-
obtain an effective action for the soft modes,,. This can tion from a model with a pointlike spin-triplet interaction
be done perturbatively, as tiedependent part of the action amplitude K, , this term also is produced by a Hubbard-
takes the form of a stable Gaussiéire., quadratic inP) Stratonovich decoupling of the spin-triplet interaction téfm,
piece, and terms of higher order fhas well as terms cou- and c;=+7K,/2. Defining a symmetrized magnetization
pling P andg, andP and M, respectively, starting with bi- field by
linear coupling terms. As can be seen from Ef49, theq
are part|cle—hqle excitations, which in a} _cIean electron sys- blZ(X):_E (1,©5) byoX), .70
tem have a linear dispersion relation; i.e., the frequency ir
scales linearly with the wave number. The Gaussian part of ith i
the fermionic action will therefore have the form with components

012) = (=)"22 8y, [M(¥)+ (=) "ML (0],

"y . . .
AEP=EJ dxdy 2, 2 1100 T X—Y)1034(). 270

(2.63 allows to rewrite Eq(2.78 in a more compact form
The vertex functiod () is most easily written in momentum
space, AM_chl\/Tf dxtr[b(x)Q(x)]. (2.70
ir(122),34(k): 513524F(122'°)(k)+ 8132 40,027 TGKs, Using Eq.(2.4d in Eq. (2.7a or (2.7d and integrating out

(2.6b the massiveP fluctuations obviously leads to a series of
' terms couplingMl andg, M andg?, etc. We thus obtainly 4

with in the form of a series
AM q:AM,q‘i‘AM,qZ‘}'"' . (ZSa
29k =k +GHQ; . 2.6 ’
15(K)=[K] 1-2 (2.69 The first term in this series is obtained by just repladngy

Here G and H are model-dependent coefficieAfslf one qin Eq.(2.79,

derives Eq.(2.6b from the microscopic model of Ref. 21,
one findsG= 7?Ng/2vr andH=1/7Ng , with v the Fermi AM_q:clTl’zf dxtr[b(x)q(x)]
velocity andNg the density of states per spin at the Fermi

surface. More generally, howevés, andH will be arbitrary s ,

coefficients with the appropriate dimensio, is a spin- =8¢, T2, f dx>, > hif(X)hgiaX).
singlet interaction amplitude that we include in our Gaussian 12 roi=t

theory in a random-phase-approximaidRPA-) type fash- (2.8b

ion. InvertingI'® shows that its presence does not chang
the frequency-momentum structure of theropagator; see
Egs.(2.10 below. There is no spin-triplet interaction in the
bare action since its effects are includedA4g . In a formal
derivation from a microscopic action, this can be achieved AM,qzocj dxtr[b(x)q(x)q’(x)].
by means of a Hubbard-Stratonovich decoupling of the spin-
triplet interaction, withM the Hubbard-Stratonovich fiefd!®  The details require information about the structure of the
However, as long aK is nonzero, it generates a spin-triplet massive modes that were integrated out in going f@@to g.
interaction in perturbation theory. This has importantFrom the derivation of the nonlinear model that results in
consequences—see Sec. Il A below—and it is the reason wie disordered case if one integrates out the mad3ifhec-
includeKs . tuations in the tree approximatitit! it is known that the
The part of the action couplinl andq originates from a  resulting effective fermion matrix field is traceless; i.e.,
term Ay that couplesM and Q. Such a term must be (9%)nm in the above expression enters with different signs
present since in the presence of a magnetization the fermidepending on whethem and m are both positive or both
onic spin density will couple linearly to it. Using ER.40, negative. This feature carries over to the clean case and
we thus obtain yields

eI'he next term in this expansion must have the overall
structure
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3
AM—qZICZﬁ dXE 2 2 % irblz(X)

123 rst i=1
X [Lapa(X)faua(X)tr (7, 77T (S;S;S})
—L95(X) Kqa100tr (7, 7L 7)tr (siszsk)],
(2.80

with ¢, another positive constant. The bare valuespénd
c, are relatedc,=c4/16. Terms of higher order ig in this

expansion will turn out to be irrelevant for determining the

behavior at the quantum phase transition.

C. Gaussian propagators

PHYSICAL REVIEW B57, 024419 (2003

1
Dn(k)=—|k|+GHQn, (2.100

1

(s) _
Do (= 1rremrkoa,” (2109
Notice thatT'(?~1 is actually the inverse ofT"® given by
Eq. (2.6b), while the analogous statement f&#(?)~1 is
not true. This is because the coupling betwbtandq gives
an additional contribution to the fermionic spin-triplet propa-
gator.

Finally, due to the coupling betwedvi and g, we also
have a mixed propagator

<irQ12(k)jsb34(p)>: =6 -plO1-23 4t (— ) 181 24-3]

We WI||. be interested in .the renlormallzatlon—g'roup flows X 8,56;GCy JTD;_o(K) My _(K).
of the various parameters in the field theory defined above.
We will need the Gaussian propagators of the theory in the (2.13
paramagnetic phase. These are easily determined from the . .
quadratic form given by then2, qz, andMq parts of the D. Higher-order terms and diagram rules for a loop expansion
above action. Performing a spatial Fourier transform and us- The action defined by Eq$2.6)—(2.8) suffices to extract
ing the symbok - - -) for the Gaussian average, we find for the information we are interested in, but it is incomplete

the order parameter correlations

. A 1
(Ma(K)ME(P)) = 8¢~ pon, - mij 3Mn(K), (293
<irb12(k)jsb34(p)>
== 0 pl 0123 4= (=) 8124 3]6ij 6rsM1_2(K),
(2.9p
in terms of the paramagnon propagator
M(k)= ! 2.9
(k)= (4Gcim)| Q] (299
t+ak’+ ————
[kl+GH|Q,|

from a calculational point of view. Namely, in order to set up
a loop expansion and renormalize the vertices in our action
to one-loop order, one needs the term of orgérAlthough
it is possible to determine the desired renormalizations with-
out knowing this term explicitlysee below, for complete-
ness and later reference we here give such a term that satis-
fies basic symmetry requirements.

On general grounds and by analogy with the disordered
case?! this term must have the structure

1
(€O
Ay'=

G dx,dx,dx;dx,

T t t T
X2 2 2 tr(n, 7l n (s s s s,
1,2 rq,rpiq,ip
34 r3,r'g i3,i4

4
X F(lz)(xl_ X4, X2 = X4,X37 X4)

Notice that the coupling between the order parameter field

and the fermionic degrees of freedom has produced the dy-
namical piece ofM that is characteristic of clean itinerant

ferromagnets.
For the fermionic propagators we find

_ . G ..
(1912(K)La34(P)) = 8k — 6 5rs§|F(122),341(k)a (2.10a
with
T3 (K) = 813054D1—5(K) = 81— 3 227 TGKy
XDy (k) D (), (2.100
L3 (122),§41(k) = 013024D1-2(K) — 5172,37481—(3(%
X (D1-5(K))2My_5(K), (2.100

whereD and Dy are the propagators

><irll(hz(xl)irzz%z(xz)i,iQ34(X3)iriQ14(X4)- (2.123

The vertex function¥ can be expressed in terms of the
two-point vertexI'®, Egs. (2.6 and (2.69.2° In Fourier
space and neglecting, , it reads

1
LK1 ko kg) = ST Kyt ko) +T 5 ko + ko).
(2.12h

In addition there are terms of ordgf andqg* that are pro-
portional toKg, as well as terms of higher order @ but
they will not be important for our purposes.

As the last step in defining our effective field theory, we
need to remember that setting umdield theory requires a
Lagrange multiplier field\ that constrains bilinear products
of the underlying fermion fields to the classical matrix field
Q. In clean systems, the field is soft with a propagator that
is given by minus the noninteracting part of theg
propagatof:
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can be evaluated exactly within a generalized mean-field ap-
r@o -  +

proximation, which is defined as follows. First, we ignore
temporal and spatial variations bf,

X+ >/\/\/\/< Mp(X) = 8i38,0m/T. (3.2

_ _ _ Second, we restrict ourselves to Gaussian or quadratic order
FIG. 1. The noninteracting part of the two-poigtvertex to  jp g. That is, we replace the full actiod by Egs.(2.2), (2.6),
one-loop order. Solid lines denote the interacting part of ghe gzn(g (2.8, and in these expressions we replabk by
propagator, and the wave line denotesXxharopagator. See the text Eq. (3.2
for further explanation. With the bare Gaussian action as given in Sec. Il B and
G taking into account the diagram rules mentioned at the end of
i - Sec. Il D, there is no coupling between the soft modes and
I ] [ - . ]
(12 K)rad(P)) = = O - Ors 12024 g P1-2(K)- the order parameter. However, one needs to acknowledge
(2.13  that under renormalization, the actigly will acquire a spin-
This field couples ta@ in a way that results, upon integrating triplet mteractlon.that IS generated ailongas#o. Let th?
out\, in the following diagram rule&: suph genergted interaction constantkhe Then the ferm|-
Rule 1.For calculating propagators in a loop expansion,ONic two-point vertex function, Eq2.6b), gets generalized
all internal q propagators must be taken as the interacting}0

part of the Gaussian propagator, i.e., as the second term
the right-hand side of Eq2.100 or (2.100. q%g%?34k): 013024(|K|+ GH[ Q1 2[) + 8155451027 T GKs

Rule 2.For calculating vertex functions, rule 1 also ap-
plies. In addition, one needs to consider all reducible dia-

grams (which normally do not contribute to the vertiges This renormalization-generated spin-triplet interaction
with all reducible propagators replaced by theropagator,  |eads to a coupling between the soft fermionic modes and the

+81 35 4(1— 80)27TGK, . (2.6br)

Eq. (2-13)_- ) o . order parameter in the free energy. In the resulting general-
As an illustration, we show in Fig. 1 the diagrams for thejzey mean-field approximation one obtains for the free en-
renormalization of" (%), Eq.(2.60, to one-loop order. ergy densityf(m)=—T.Ay /V

This completes the definition of our effective action, and
we will now proceed to discuss the ferromagnetic transition

it describes. f=f[m=0]+tm?+um*+ T InN(k,Q,;m),
n

(3.39

<InN

k<A

Il. GENERALIZED MEAN-FIELD THEORY _ )
AND THE FIRST-ORDER PHASE TRANSITION whereA is an ultraviolet momentum cutoff, and

In this section we derive a generalized mean-field theory N(k,Q,;m)=16c3G*K2m2Q2+ (k| + GHQ,,)?
for the ferromagnetic transition in low-temperature itinerant
electron systems. It structurally maps onto the generalized X[k +G(H+K)Q,]2 (3.3b
mean-field theory for the superconducting transition at finite ) o )
temperaturéS The transition predicted by these theories is ofMinimizing f with respect to the magnetization gives the
first order. We then discuss the conditions under which thi€quation of state
result is stable. We will see that, contrary to the usual con- 1 w 02
cepts concerning first-order phase transitions, the mean-field, _ 3 2n4027 n
description can be invalidated by fluctuation effects that h=2tm-+4um’+ mé4c;G KtV kZ‘A Tz‘l N(k,Q,;m)’
drive the transition second order. Physically, the first-order (3.30
transition turns out to be unstable when it is too close to a . -
second-order transition with sufficiently strong quctua’cions;V\”th h an external magnetic field.

otherwise it is stable.
B. Discussion of the generalized mean-field equation of state

A. Generalized mean-field theory We start with some general comments regarding the re-

An effective actionA.«[M] involving only the magneti- su_lt, Egs.(3.3. Th_e l‘_"‘St term ir_‘ both Eq¢3.39 _and(_?:.S(‘)
arises from fermionic fluctuations, namely, thg with r

zation order parameter can be obtained by integrating out th . . . .
fermion fields, =0,3 andi=1,2, which are massless in the paramagnetic

phase, but become massive in the ordered pffass. dis-
cussed elsewheré these fluctuations lead to long-range cor-
eAe“[M]ZJ D[qgleAt™al, (3.1  relations in paramagnetic metals and to nonanalyticities in
either the temperature or wave number depence of correla-
Here A is the action given by Eq(2.1b. In general the tion functions, for example, the magnetic susceptibility. It is
evaluation of this expression is very difficult. However, it also interesting to note that Eq&.3) are identical to the

024419-6



NATURE OF THE QUANTUM PHASE TRANSITION IN . .. PHYSICAL REVIEW B57, 024419 (2003

t>t

TCP

t=t1

<ty

|
- 0 t

FIG. 2. Schematic form of the free energy as a function of the ~F!G- 3. Schematic form of the phase diagramhat0. The
order parameter. dashed line denotes a second-order transition, the solid line denotes

a first-order transition, and TCP denotes the tricritical point.

equations describing the first-order phase transition in con-

ventional superconductors at finite temperaffirds men-  dratic in K, or cf, so in strongly correlated systensis

tioned in the Introduction, the physics of the respective phastarger than in weakly correlated ones.

transitions is very similar as well. In d=3, these equations predict the phase diagram shown
With some work, the integrals or sums in E@3.3) can  in Fig. 3. There is a tricritical point at

be explicitly performed. However, the most important fea-

tures can be obtained by inspection and simple asymptotic T=T=exp—u/2). (3.53

analysis. At zero temperature and for small the leading ¢ 70, there is a first-order phase transitiort att;, with

nonanalyticm dependence is a negative tergn_ on the right-e magnetization changing discontinuously from zero to a
hand side of Eq(3.30, which is of orderm® in generic valuem,. One finds

dimensions and of orden®In 1/m in d= 3. At low but finite

temperatures this nonanalyticity is effectively replaced by a 1
negative term of order m;=expg — 5(14— u/v)|, (3.5b
m(m?+ constx T2)(d-1)/2 )
t1: U ml . (35@

in generic dimensions or ) . .
In d=2, there is no finite-temperature magnetic phase tran-

m® In 1/(m?+ constx T2)1/2 sition. However, at zero temperature there is a QPT, which is
predicted by Eqs(3.4) to be discontinuous. The discontinu-

in d=3.™ Here const is a positive constant proportional toity in the magnetization and the transition point are given by

H2(1+H/K,)?/c3. Analogous terms, with an extra factor of

m, appear in Eq(3.39. As T—0 Eq. (3.39 thus has the m,=(3v/4u)?, (3.6

standard form of a free energy or effective potential, which

leads to a discontinuous phase transition at sbmg >0; u o,

see Fig. 2. Schematically, this free energy functional in the t1=§m1. (3.6b

presence of an external magnetic fidlccan be written, in

1<d<3, as In d>3 the nonanalyticitic terms produced by the soft modes
are subleading, and the transition is described by ordinary

f=f(m=0)+tm’—om?(m*+ T2 V2 ym*—hm+- - - mean-field theory. The generalized mean-field theory thus

(348 suggests an upper critical dimensidh=3. As we will see

and, ind=3, as in the next section, a more sophisticated analysis confirms

this result.

f=f(m=0)+tm’+vm*In(mM?>+ T2 +um*~hm+- - - .
(3.4b C. Validity of the mean-field description

In this schematic representation, the mean-field equation of Normally, first-order phase transitions are not sensitive to
state in the most interesting cade 3 takes the form fluctuation effects. We now argue, however, that in the
present case of a first-order transition driven by fluctuations
(viz., soft fermion modes additional fluctuation effects can
. destabilize the mechanism underlying the first-order transi-
(3.40 tion an_d lead to a_flu_ctuation-driven se_cond-order transi_tion.
' This will happen if, in a sense described below, the first-
In these equations we use units such thah, and T are  order transition is too close to an unrealized second-order
measured in terms of a microscopic energy, e.g., the Fernune. To illustrate this point, consider the two schematic free
energy.t, v, andu are then all dimensionless>0 is qua- energy functionals shown in Fig. 4. In Fig(a} the first-

2

h=2tm+4vm®In(m?+T2)+m3| 4u+2v

m?+ T2
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IV. RENORMALIZATION-GROUP FLOWS

f (a) AND THE SECOND-ORDER PHASE TRANSITION

A. Renormalization of the effective action
The parameters, a, u, G, H, ¢;, andc, as well as the

fieldsM andq in the theory defined above are renormalized
under renormalization-groufRG) transformations. We will

f m employ a differential momentum-shell RG and integrate over
(b) all frequencies. Ibis the RG length rescaling factor, then we
rescale the wave numbers and two fields via
k— bk, (4.1
m M, (x) —b@=2F )2\ (), (4.1b
FIG. 4. Schematic forms of the free energy as a function of the Onm(X)— 0727 7)/2q (). (4.10

order parameter. lifa) the first-order transition is not affected by

fluctuations: in(b) it may be. Here 5, and ny are exponents that characterize the spatial

correlations of the fermion and order-parameter fields, re-
N ] spectively. The rescaling of imaginary time, frequency, or
Order transition occurs far fr0m=0, and f|UCtuatI0n effects temperature iS |ess Straightforward_ We need to acknow|edge
are negligible. However, for the case shown in Fih)4he  the fact that there are two different time scales in the prob-
fluctuations near théunrealizedl second-order transition at |em: namely, one that is associated with the critical order-
t=0 can affect the first-order transition that preempts theparameter fluctuations and one that is associated with the soft
second-order one and needs to be taken into account. fermionic fluctuations. Accordingly, we must allow for two

Before presenting technical details in the next section, ledifferent dynamical exponents, and z;, and imaginary
us elaborate on this general point. First, we note that as lontyme and temperature may get rescaled either via
as one is far from any continuous transitigvhich brings in
new fluctuation effecisthe functional forms of the free en-
ergy funtions given by Eqg3.4) are exact for small magne- or via
tizations. This follows from the properties of a Fermi-liquid
fixed point and the corrections to scaling nedtithe mean- T—b7 %7, T—Db&AT. (4.1
field description above suggests a second-order, or Continlf—iow these various exponents should be chosen is discussed
ous, phase transition da=0, which is preempted by the below® P
first-order transition. The latter results from fluctuations that '
are germane to a Fermi liquid and have nothing to do with
any critical point. These observations imply that the first-
order transition discussed above will take necessarily take In the tree, or zero-loop, approximation the RG flow
p|ace |f(1) m; is small enough an&) ty is not too small, so equations for the parameters in our field theory are eaS”y
that additional fluctuation effects due to the underlying criti- determined by power counting from the action given in Sec.
cal point att=0 can be ignored. Examining Eq®.4) and !l B. With £=Inb we find
(3.5 we see that this can occur when bath(which de-
scribes correlation effedgtandu/v are large. More generally, ﬂ — (72—
> . I . (2= u)t, (4.23
it is reasonable to expect a first-order phase transition, with d¢
no restrictions orm, whenever correlation effects are large.

Second, the next natural question is, what happens if this d_a
is not the case? In particular, we note the following. Equa- d¢
tions (3.3) imply that the coefficienv is inversely propor-
tional toH. As explained in Sec. IV below is proportional u
to the specific heat coefficient. Sint¢ is expected to be ge~ —WdFrzut2nu—4u, (4.29
sensitive to critical fluctuations and perturbation theory sug-
gests a logarithmic divergence at a continuous transition in dG
d=3, this suggests that might be suppressed close to, and qr - —(1-174G, (4.20
at, a continuous transition. To examine this possibility one
needs to go beyond simple perturbation theory. In the next dH
section renormalization-group methods are used to untangle ——=(2—24— nH, (4.20
the possibilities. We find that a continuous transition does de
indeed occur ift; is sufficiently small and if the bara is
sufficiently large to stabilize the effects of critical fermionic &_ }(4_2_ e (4.2)
fluctuations that are otherwise suppressed. ) q™ /)1 |

T—b™ ™7, T—b™T, (4.109

1. Zero-loop flows

= — 77Ma, (42b)
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da

C

FIG. 5. Example of a fermionic loop renormalizing the para- ™ .
magnon propagator, with the dashed line representing the magneti- 61,1
zation field. Since the loop integral is over fermionic propagators
only, thec, associated with the vertices carry a time scale given

by z,.
dc, 1 =

Now we examine these flow equations in order to see FIG. 6. Diagrams that give the leading renormalizatiora,of,

whether the allow for a criticali.e., unstable in only one andH, to one-loop order ini=3. The quartic vertex in the diagram

direction fixed point, at least above some upper critical di-for sH was defined in Fig. 1.

mension. This will amount to an analysis of the stability, or

otherwise, of Hertz’s critical fixed poirtNote that in giving ~ With the result of the generalized mean-field theory; see Sec.

Egs.(4.2f) and(4.29, the particular choice af was not yet Il B. Physically, this surprising result means that soft or gap-

specified because it is not obvious izaor azy should be |€ss fermion excitations play an important role in determin-

used for these terms that describe a coupling betgeamd ~ ing the phase transition behavior at, and below, three spatial

M fields. For the analogous disordered electron problem, thi§imensions even though naive power counting suggists

point has been discussed in detail in Ref. 19. =1. This is further examined in the next subsection, as well

If we assume the Fermi-liquid degrees of freedom to be ags in Sec. IV B.

a stable Fermi-liquid fixed point, we must chods@ndH to

be marginal, which implies 2. One-loop flows

In this subsection we examine the effectsmfon the
19=1, zg=1. (43 phase transition. We will be mainly concerned with the be-

HertZ further chose(in our languagea andc, to be mar- havior in three dimensions; the behavior @3 will be

ginal, which implies discussed using other techniques in Sec. IV B below.
In d=3 the relevant diagrams can, in principle, give loga-
7v=0 (443 rithmic corrections or renormalizations to the various cou-
and pling constants. Taking into account that there are two time

scales, it is easy to show by power counting that there will be
Zy=3. (4.4b no logarithmic corrections to;, ¢,, G, andt. This implies
that for these coupling constants, the flow equations given in
OEqs.(4.2) remain valid to one-loop order. Motivated by the
" disordered case, we will be looking for a fixed point whére
is marginal, which implies

The latter choice is motivated by the paramagnon propagat
Eqg. (2.909, which yields appropriate mean-field critical be
havior only for a marginat,, given thatG andH are mar-
ginal. This also implies that=z,, in Eq. (4.2f).

With these choiceg, is the relevant variable characteriz- nq=1. (4.53
ing the critical fixed point, and Ed4.29 yields a correlation ) . .
length exponent'=1/2. The variableu is irrelevant ford ~ We further require; (with z=2zy) andc, (with z=z,) to be
>1, suggesting an upper critical dimension equal to unitymarginal, which implies
Indeed, Hertz's conclusion was that the mean-field fixed

point characterized by the above exponent was stable Zut =3 (4.5
for d>1. and

However, we still need to examine the behaviorcef It
is irrelevant ford>1 if we usez=z,, in Eq. (4.29. How- Zqt gv=1. (4.50

ever, as already emphasized in Ref. 19, one also has t0 COByt the various scale dimensions introduced above, this

sider the c:;se= Zq 1N this equljatmn. Th||§ becomes 0bvious if |04y e5 only one, .95y , as independent. For the irrelevant
one uses th&/-q° vertex, whose coupling constantds, to | oo ofc, (with z=zy), Eqs.(4.53 and (4.50 imply
construct loops. Clearly, pure fermion loops appear, the sim-

plest example of which is shown in Fig. 5, and in this case dc,
z=12, is the appropriate choice. We illustrate this point below rTAR Co. (4.6
by means of an explicit calculation.

Using z=z, in Eq. (4.29, we see that, becomes rel- For the remaining quantities, power counting shows that they
evant with respect to Hertz's fixed point fd<3, giving an  do allow for logarithmic renormalizations ithi=3. The dia-
actual upper critical dimensiot, =3. This is in agreement grams that give rise to these are shown in Fig. 6. A crucial
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feature is thatu is renormalized by aegativelogarithmic  For later reference we note that, /A,=27>1, but for now
term. In a purely perturbative treatment, this implies that we consider the general case. The valueAgfwill not be
changes sign, which in turn implies a fluctuation-driven first-needed, other than that it is positive.
order phase transition, and the existence of a tricritical point Next we solve the Eq<4.7), first for the caseé=0. It is
at finite temperatures, consistent with the generalized mearconvenient to first construct flow equations for the quantities
field theory. However, the renormalization-group flow equa-
tions resum perturbation theory in a specific way, and in this f=c/H, g=aH. (4.119
subsection we show that this “tricritical” behavior does not
necessarily persist to all orders.

The explicit flow equations are obtained by evaluating the dg
diagrams shown in Fig. 6. Determining the general structure ﬂ:AH—Aa, (4.11b
of the flow equations does not require a detailed calculation,
but can be achieved by power counting. At zero temperature,

The flow equations for these objectsds 3 are

X df
we find g7~ @+ mof-Auflg. (4.110
d_a:_ ma— E 4.79 Solving these equations and using the result in @qrb
d¢ ME R gives
du c5 o Afo 1
— = —A, — uf)=e “*yug— 1- ,
ae (2+77M)U AUH, (47b) ( ) 0 A(k_l) (1+A€)K_1
(4.129
dH A with
AR A (4.79
AH_Aa AH
where theA; are positive constants. In giving Edg..7) we k=2+ny, A= g K= AL_AL
have absorbed the marginal coupling cons@aaind the mar- 0 H T (4.12H
ginal version ofc, into these constants. '
The prefactorsA; can be determined by a detailed calcu-and
lation of the diagrams. In the case Af and Ay, one can o
also obtain the result by the following alternative methad. 90=9(£=0)=1/96mvE, (4.129
is the coefficient of the gradient-squared term in the spin fo=f(£=0)=m/16. (4.129

susceptibility of a nonmagnetic reference system. The loga-
rithmic renormalization of the latter id=3 has been calcu- SinceK=1 andA>0 for A,>A,, we see that in contrast to
lated in Ref. 32, and we can thus find the renormalization othe perturbative resulti(€) does not necessarily become
a from that paper. FoH, we notice that it is related to the negative ag — . Rather, the term in braces in E@.129

specific heat coefficien,,=Cy /T by asymptotically approaches a valug—A,fogo/A,. De-
pending on microscopic parameter valuesthus may or

yw=8mH/3. (48 may not become negative for large scales. We con-

lude that a nontrivial continuous phase transition may exist

This relation between the frequency coupling constant an§Or d=<3
the specific heat was first established for disordered electron We n&)te though, that if the opposite inequality were to
systems by _ngstellani and Di CastfoA proof by means of hold AH<A"a then,’A would be negative and would be-
Ward identities” applies to clean systems as well. One cany, e complex at large scales. These two features would in-

g}et[]eefosreezit;itg'ﬁggf &i?g;?ﬁgj?g'?é}lgxgof%a ?ﬁ;cggﬂggiandicate a first-order phase transition. This suggests that the
b ' actual first-order phase transition occurs:a0 whereA is

free energy densitys . From Sec. Il C we find, at criticality, effectively smaller: cf. Eq(4.70

3T
fo =5y > > In(ap?+4Gc?/|p), (4.9 B. Critical behavior
p iy

1. Critical behavior in d&=3
and the specific heat coefficient is obtained by differentiating
twice with respect to temperature.

We have chosen the second method to calcugtend
Ay, and obtaif’

We are now in a position to determine the critical behav-
ior at the second-order transition that we have shown in the
previous subsection to exist in a certain regime of parameter
values. Ind=3 we do so by using the explicit solution of the
flow equations given in Sec. IV A 2 above.

— 2/0-3

Aq=G5f9m, (4.109 Let us consider the paramagnon propagator in the critical
2 3 regime. Sincd, ¢,, andG are not singularly renormalized at

Ay=3Gcy/ 7. (4.10D  one-loop order, while the coefficieatacquires a nontrivial
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renormalization, it has the forfisee Eq.(2.90] The result fory is valid to leading logarithmic accuracy; the
) values ofy, B, ands, as well as the relations betwegrand
Mi(k)=1[t+a(k)ke+[Q,|/[K]]. (4133 3 z ande, respectively, are exact.

k and ), have been made dimensionless by means of suit-
able microscopic scales. Theadependence & follows from
Egs.(4.6) and(4.11) once )y, has been choséh.In writing In dimensions less than 3, the critical behavior can be
Eq. (4.133 we have tacitly assumed that there is no “wave-controlled by means of an expansion éx3—d. We are
function renormalization” that would give the numerator a again looking for a fixed point whet® andc, are marginal,
scale dependence. Singg, determines the scale dimension so Eqs.(4.53 and(4.5b still hold. Equation(4.50 gets gen-

of the magnetization fieldsee Eq.(4.1b] and, hence, the eralized to

wave function renormalization, we need to choage=0 in

order to be consistent with this assumption. From E4s) gt gu=1+e, (4.19

and (4.1 in the limit {~In 1/k| —°= we then obtain which guarantees that, with z=z, is still marginal. We

a(k—0)o(In 1/k|) /28 (4.13H then look fo-r a-fixed point whera f';de are both mgrginal.
nw then coincides with the physical exponept as it does

Such logarithmic corrections to power-law scaling can ben the alternative treatment of the case 3 given in Appen-

conveniently expressed in terms of scale-dependent criticalix A. We find

exponents. For instance, with~1//k| a RG length scale

factor*? we can writea(k)k?x|k|2~ 7, with a scale-dependent n=—€l(Ay/A—1)=—€l26+0(e?). (4.163

critical exponenty given by

2. Critical behavior in d<3

The other exponent follow from this:, z, y, 8, and § are

-1 still given by Eqgs.(4.14bh and (4.1409, and for the specific
7= %6 Ininb/Inb. (4.143  heat exponentr we have
We stress thaty is the physical critical exponent that de- a=-d/(3=7). (4.160
scribes the wave number dependence of the paramagnon
propagator at criticality,Mo|k| 27, as opposed tayy , V. SUMMARY AND DISCUSSION

which has no direct physical meaning. In Appendix A we

demonstrate that a different choice 9§, leads to the same e summarize the achievements of this paper as follows.
physical result. First, we have given an effective field theory that de-

The correlation length exponent the susceptibility ex- scribes the quantum ferromagnetic transition in clean elec-
ponenty, and the dynamical exponentan be directly read tronic systems. It involves coupled fields describing the mag-

off Egs. (4.13, viz., neti;at_ion degrees of freedom, as well as gapless fermionic
excitations. If the effects of the latter are neglected beyond
v=1/2-17), z=3—75, y=1. (4.14h  the tree level, as was the case in earlier theories describing

i ] this quantum phase transitiérihen the resulting description
These exponents are defined as usual, et ", 0~T  of the phase transition is incorrect for ali<3. That is, the
~&7% Mot™?, with & the correlation length. The physical coupling to the fermionic degrees of freedom leads to an
dynamical exponerz is different from the exponerdy, in  ypper critical dimension for this phase transitiondgf=3.
Eq. (4.5b), for the same reason for which# 7y . Also no- Second, we have shown that the fermionic fluctuations
tice that 14 is not given by the scale dependencetdhat  |eaq to two very different types of fluctuation-driven quan-
results from the-flow equation(4.2a, since the scale depen- m phase transitions, depending on microscopic details. Ge-
dent coefficient is a dangerous irrelevant variable with re- nerically, the quantum ferromagnetic transitiondre3 is a
spect to the correlation length. _ fluctuation-driven first-order transition. This is in contrast to
The order parameter exponenisand & (defined bym  the conventional resuft,as well as to the Landau theory
octh and mecht, respectively, witth a magnetic fielfican  gescription of this phase transition. th=3 we have also
be obtained from scaling arguments for the free energy; segiscussed the situation at low, but finite, temperatures. In
Appendix B. We find general we argue that this system will have a tricritical point
separating lines of second- and first-order phase transitions.

p=112, 6=3. (4.149 A schematic phase diagram is shown in Fig. 3. These results
Finally, we define a specific heat exponenby C,=T~“at  are in agreement with the experimental observations in MnSi
criticality.*® It can be determined by either of three methods,(Ref. 12 and UGe (Ref. 13.
viz., (1) Eq. (4.8) together with the solution of the flow equa- ~ Third, we have shown that if the microscopic details are
tion for H, (2) renormalized perturbation theory for the free such that the fluctuation-driven first-order quantum phase
energy, i.e., Eq(4.13h in Eq. (4.9), or (3) a scaling argu- transition is too close to a second-order, or continuous, tran-
ment for the free energy; see Appendix B. Either way wesition, then critical fluctuations will suppress the fermionic

obtain the exact relation fluctuation effects that lead to a first-order transition, and a
fluctuation-driven second-order transition res(ftor this
a=—1+(InInb/Inb—7)/z. (4.149 case, the critical behavior id=3 has been computed and
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has been found to be mean field like, with logarithmic cor- da ~

rections. Fod<3, the critical behavior is nontrivial, but can ge =~ mf)a=AalH, (Alb)

be controlled by means of a-3e expansion. Both the pos-

sibility of a second-order transition and the fact that the criti-

cal behavior in this case is essentially mean field like is in

agreement with the experimental observations on ZrZn

(Ref. 12 and Ni,Pd, _, (Ref. 14. Our theory thus explains a

rather confusing experimental situation, where the transition —=—c,, (Ald)

in bulk systems is observed to be continuous in some sys- d¢

tems and discontinuous in others. We further note that the

fluctuation effect that leads to a first-order phase transition %

grows with the strength of electronic correlation, or interac- de

gﬂ?r’sfg?gg‘ Jgéssﬁ%gngiessfcjsetr?:rtE:ITystter)?p?gg/e?rrelated SyStemlﬁere C, in .Eqs. (Ald) and (Ale) refers to the irrelevantz(
Fourth, we have noted a mathematical and physical rela- Zy) version ofcy, and

tion between the fluctuation-driven first-order phase transi- 5 -~

tion discussed here and the ones known to occur in finite- "M<€):€W+ M - (A2)

temperature superconductors and in liquid crystal

systems>*° In all these systems, soft modes couple to thewe now look for a fixed point with respect to which and

order parameter fluctuations in such a way that their contriu are irrelevant, whilea is marginal. The latter condition

bution to the free energy is reduced in the ordered phase. It igads to a differential equation foyy, ,

this mechanism that causes the discontinuous transition to

An

(O
— =nu({) Py

ac (Alc)

- c5
=—[2=am(O]u—-A, (Ale)

occur. The fluctuation-driven second-order transition dis- €d77|v| o 1-K —0 (A3)
cussed here is similar to the one that occurs in classical Potts de v ¢
models!’

Elsewhere we have discussed the effects of nonmagnet
disorder on this phase transition, and on the phase diagra
shown in Fig. 2 In general, sufficiently strong disorder dg
drives the tricritical point shown in Fig. 3 to zero tempera- — =
ture, making the zero-temperature transition in the presence de

of SUfﬁCiently Strong disorder continuous. This quantUmSincea is marginaLﬁM now represents the physica| expo-
phase transition is in a different universality class than theyent 5. Equation(A3) is easy to solve, and for asymptoti-
fluctuation-driven second-order transition in clean systemgga|ly |arge values of one recovers Eq4.143. Similarly,
discussed above, and its critical behavior has been detejhe correlation length exponentis now given by the scale
mined exactly?’ dimension of the relevant operatprand from Eq.(Ala) we
recover the first equality in Eq4.14b. It is easy to check
ACKNOWLEDGMENTS that all other physical results also agree with Sec. IV B 1.

ith K from Eq.(4.12h. In deriving Eq.(A3) we have used
}Iﬁe fact thatg=aH obeys a flow equation, @&=0,

Ap—A,. (A4)
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APPENDIX B:
SCALING ARGUMENTS FOR THE FREE ENERGY

32555, and DMR-01-32726. In this appendix we consider the scaling behavior of the
free energy density. Let us add a magnetic field tetmto
APPENDIX A: RG WITH SCALE-DEPENDENT our action,
EXPONENTS
Our choice ofyy =0 in Sec. IV B 1 is somewhat uncon- An=—h- f dxM(x); (BD)

ventional since it makes the coefficieatirrelevant, rather h gets rescaled via— b"h with le di .

than marginal. In this appendix we demonstrate that making 9 - with a scale dimension

a marginal leads to the same physical results, but comes with 1

complications of its own. [h]= E(d+2+z,\,I - M), (B2)
Since the physical exponentis scale dependefsee Eq.

(4.143], choosinga marginal requires a scale dependentand the free energy density obeys the scaling law

nm - This changes the flow equations. If we still require that _(dtzy) Uy —rr 0hi

G, ¢; (with z=zy), andc, (with z=z;) be marginal, we f(t,T,h)=b WE(tb™, T, hb™). (B3)

obtain, instead of Eqg4.2) and(4.7), The magnetic susceptibility is given kye= 9f/9h?, and it is
readily checked that EqB3) reproduces the susceptibility
ﬂ:[2_~ (O]t (Ala) exponenty=1 that we obtained in Sec. IV B from the para-
d¢ K ' magnon propagator. The critical behavior of the magnetiza-
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tion m=gf/oh can be obtained from E¢B3) as well if we
take into account that the irrelevant variables a dangerous
irrelevant operator with respect to (but not with respect to
x). We thus need to include in the set of scaling variables
and find

m(t,h,u)=b~ @ T2~ [ mtb1” hplh ubld), (B4a)
with
[u]=—=(d=1+ ny), (B4b)

the scale dimension af; see Eqs(4.2¢ and (4.59. Taking
into accounm(h=0)eu~*2andm(t=0)=u" 3, we obtain
mean-field values, Eq4.149, for the order parameter expo-
nentsgB and 4.

PHYSICAL REVIEW B57, 024419 (2003

obtain a scaling law for the specific heat coefficient
=92f/9T? at criticality,

')’V(T):bZM_d')’V(TbﬁA)-

In d=3— € this agrees with the result for the exponent

Eq. (4.16b, as obtained from either thd-flow equation or
renormalized perturbation theory. ld=3, however, the
simple scaling argument does not agree with the other two
methods. The reason lies in the fact thatde 3, d=z,,
apart from logarithmic corrections to scaling. This is one of
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We also comment on the relation between the free energgrgument. Once this is taken into account, all three methods

scaling and the specific heat exponentFrom Eq.(B3) we
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