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Nature of the quantum phase transition in clean itinerant Heisenberg ferromagnets
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A comprehensive theory of the quantum phase transition in clean itinerant Heisenberg ferromagnets is
presented. It is shown that the standard mean-field description of the transition is invalid in spatial dimensions
d<3 due to the existence of soft particle-hole excitations that couple to the order parameter fluctuations and
lead to an upper critical dimensiondc

153. A generalized mean-field theory that takes these additional modes
into account predicts a fluctuation-induced first-order transition. In a certain parameter regime, this first-order
transition in turn is unstable with respect to a fluctuation-induced second-order transition. The quantum ferro-
magnetic transition may thus be either of first or of second order, in agreement with experimental observations.
A detailed discussion is given of the stability of the first-order transition and of the critical behavior at the
fluctuation-induced second-order transition. Ind53, the latter is mean field like with logarithmic corrections
to scaling, and ind,3 it can be controlled by means of a 32e expansion.
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I. INTRODUCTION

The study of quantum phase transitions~QPT’s! is cur-
rently an important and very active field of research in co
densed matter physics; see, e.g., Ref. 1. Although, stri
speaking, these transitions occur only at zero tempera
(T50), they are important for understanding the behavio
many systems at low, but routinely accessible, temperatu
Understanding QPT’s is also important for gaining insig
into the possible phases of systems at zero temperature
deed, QPT’s are thought to be relevant for understand
phenomena as diverse as high-Tc superconductivity, quan
tum Hall effects, various magnetic phenomena in both m
tallic and insulating systems, the transport properties
doped semiconductors, and superconductor-metal
superconductor-insulator transitions; see, e.g., Refs. 2–5

Perhaps the most obvious, and one might naively th
almost trivial, QPT is the ferromagnetic transition that tak
place in a clean6 itinerant electron system as the exchan
coupling is varied at zero temperature. Indeed, this was
of the first QPT’s to be considered; see Ref. 7 and referen
therein. The traditional arguments and results for this Q
can be paraphrased as follows. LetM be the order paramete
vector, i.e., the magnetization, with componentsMi ( i
5x,y,z). Landau theory,8 which as a mean-field descriptio
is suitable for both thermal and quantum phase transitio
says that the free energy~at T.0) or energy~at T50), as a
function of M, for small magnetization and small magne
field h is of the form

F5F01tM21uM42h•M. ~1.1!

Here F0 is a background contribution that reflects the d
grees of freedom other than the order parameter.t turns out
to be the distance from the mean-field transition—i.e.,
transition takes place att50—and u is a constant that is
assumed to be positive. Minimizing Eq.~1.1! with respect to
0163-1829/2003/67~2!/024419~14!/$20.00 67 0244
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M leads to the conclusion that at zero external magnetic fi
the magnetic transition is continuous with mean-field or La
dau critical exponents. Fluctuations invalidate Landau the
in sufficiently low dimensions, while the mean-field critic
behavior is exact in dimensionsd larger then an upper criti-
cal dimensiondc

1 . For the thermal phase transition in
Heisenberg ferromagnet, it is well established thatdc

154.
For the corresponding QPT, it was argued thatdc

1542z,
with z the dynamical scaling exponent.7 This reduction of the
upper critical dimension is a result of the coupling betwe
statics and dynamics in quantum statistical mechanics, wh
leads to an effective dimension for fluctuations given
deff 5d1z. Mean-field theory suggestsz53 for the quan-
tum Heisenberg transition of clean itinerant electrons, so
conclusion was that this QPT should have adc

151, resulting
in mean-field-like critical behavior for both thin films an
bulk systems. From a theoretical statistical mechanics p
of view, the itinerant quantum ferromagnetic transition the
fore did not appear to be very interesting.

This conclusion was recently challenged by what amou
to a generalized mean-field description of the transition.9 The
basic physical argument, which is general and applies
other phase transitions as well, is as follows. In the dis
dered phase,F0 contains contributions from fermionic so
modes, viz., particle-hole excitations. Some of these acq
a mass in the ordered phase, which decreases the cont
tion of these fluctuations to the free energy and thus lead
a negative term in the free energy function that has a nona
lytic dependence on the order parameter.10 If this mode-
mode coupling effect, which is neglected in the usual Land
or mean-field theory, is strong enough, it clearly can lead
a modification of phase transition predicted by Eq.~1.1!.
Reference 9 showed that in the case of an itinerant ferrom
net, the soft modes that couple most strongly to the or
parameter, viz., spin-triplet particle-hole excitations, do
deed develop a mass in the ordered phase and lead
Landau energy function that has the form, ind53,
©2003 The American Physical Society19-1
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F5F01tM21vM4 ln M21uM42h•M. ~1.2!

The presence of theM4 ln M2 term, compared to Eq.~1.1!,
changes the nature of the transition from a continuous on
a discontinuous one. The same is true for dimensions 1,d
,3, due to a similar nonanalytic term in the Landau fun
tion. The fact that the nature of the phase transition ind
53 changes qualitatively upon improving on Landau the
is not consistent with the traditional notion of a thre
dimensional~3D! system being above its upper critical d
mensiondc

151. In contrast to the traditional prediction of
continuous transition with mean-field exponents, the gen
alized mean-field theory predicts the transition toalwaysbe
of first order provided thatd<3.

Experimentally, the situation is seemingly inconclusiv
In some ferromagnets with low Curie temperatures, wh
the quantum phase transition can be triggered by hydros
pressure or composition, the observed transition is of fi
order, in agreement with the generalized mean-field the
This is the case, for instance, in MnSi~Ref. 12! and in UGe2
~Ref. 13!. In others, for instance, ZrZn2 ~Ref. 12! and
NixPd12x ~Ref. 14!, however, the transition is observed to
continuous. Moreover, the critical behavior observed
NixPd12x is in good agreement with mean-field exponen
This is surprising, given the above conclusion that me
field theory cannot be correct ind53.

In this paper we provide new insights into this QPT a
additional understanding of the discontinuous transition t
results from the generalized mean-field theory, as well a
the stability of the latter. In the general theory of phase tr
sitions, transitions that are predicted to be continuous
Landau theory but are in fact discontinuous are cal
fluctuation-induced first-order phase transitions.15 We will
show that the first-order transition in itinerant quantum f
romagnets can indeed be understood as being fluctuatio
duced. The novel feature is that although the order param
fluctuations are above their upper critical dimension, in
well-defined sense the soft fermion fluctuations are not,
it is the effect of these fluctuations that drives the transit
first order ford<3.

Their are many similarities between the fluctuatio
induced first-order phase transition discussed here and
thermal first-order transition that occurs in conventional
perconductors or the nematic–to–smectic-A transition in
uid crystal systems.15,16 In all of these systems there are so
or massless excitations~in superconductors, these are t
gauge or vector potential fluctuations; in liquid crystals, t
director fluctuations; while in the electron system conside
here, fermionic particle-hole fluctuations! that couple to the
order-parameter fluctuations and become massive in
broken-symmetry phase. Because of the latter property,
fluctuation contribution to the free energy decreases, wh
ultimately leads to a fluctuation-induced first-order tran
tion. If these fluctuations are integrated out in some appro
mation, then a nonanalytic Landau-like theory can be deri
which predicts a discontinuous phase transition. The mo
fied mean-field theory for the magnetic transition mention
above results from such a procedure. For the supercondu
and liquid crystal transitions, a similar technique was us
02441
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initially.15 Later, a renormalization-group description
fluctuation-induced thermal phase transitions w
developed.16 Part of our goal here is to do the same for t
quantum ferromagnetic transition.

In addition, we perform a renormalization-group analy
of the stability of the first-order transition predicted by th
generalized mean-field theory. It turns out that the first-or
transition is stable if it occurs at a sufficiently large value
the paramtert in Eq. ~1.2!. However, if it occurs at smal
values oft, then the first-order transition can in turn becom
unstable with respect to fluctuations. The final result in t
case is a second-order transition that is induced by fluc
tions by a mechanism that is similar to the one discusse
the context of classical Potts models by Fucito and Paris17

This second-order transition is distinct from Hertz’s mea
field transition and belongs to a different universality cla
Depending on microscopic parameter values, the ferrom
netic QPT in itinerant electron systems can thus be eithe
first order or of second order, in agreement with the exp
mental observations mentioned at the beginning of this s
tion. Moreover, the critical behavior in the continuous case
d53 is mean field like with logarithmic corrections to sca
ing. Within the current experimental accuracy, this is ind
tinguishable from mean-field exponents, again in agreem
with the experimental observations.

The outline of this paper is as follows. In Sec. II we giv
a basic field theory describing coupled magnetization fl
tuations and soft fermionic degrees of freedom. In Sec.
we derive and discuss the generalized mean-field theory
results from integrating out the fermionic modes and t
predicts a first-order transition. In Sec. IV we perform a on
loop renormalization-group analysis of the field theory. W
show that the renormalized quartic coupling constant
become negative at large scales, leading to the first-o
phase transition described by the generalized mean-
theory. However, in a certain parameter regime fluctuati
keep the quartic coefficient positive, which results in a co
tinuous phase transition. In Sec. V we further discuss
results, compare them with previous work, and comment
the experimental situation. Parts of the results presented
have been previously announced in two sh
publications.9,18

II. COUPLED FIELD THEORY

Recently we have derived and discussed a local fi
theory describing the quantum ferromagnetic transition
disordered itinerant electron systems.19,20 This field theory
describes the coupling between the soft or massless fe
onic degrees of freedom~which in a disordered electron sys
tem are diffusive; i.e., the frequency is a quadratic funct
of the wave number! and the magnetization fluctuation
Here we give the analogous theory for clean electronic s
tem. In this case the fermionic soft modes have a linear
persion; i.e., the frequency is a linear function of the wa
number. There are numerous ways to construct field theo
that describe these soft modes; here we choose the me
developed in Refs. 21 and 22.
9-2
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NATURE OF THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW B67, 024419 ~2003!
A. Soft modes

A generalized Landau-Ginzburg-Wilson~LGW! theory
that keeps all of the soft modes in the problem will be d
scribed in terms of an actionA that depends on a fieldM
describing the fluctuating magnetization and on a fieldq de-
scribing the soft fermionic two-particle modes.23 All other
modes we imagine have been integrated out in order to ar
at the effective theory. The partition function can then
written in terms of a functional integral with respect toM
andq,

Z5E D@M,q#eA[M,q] . ~2.1a!

The action will consist of a part that depends only on
magnetization, a part that depends only on the fermionic
grees of freedom, and a coupling between the two,

A@M,q#5AM1Aq1AM ,q . ~2.1b!

The various pieces of the action in Eq.~2.1! can be derived
starting from a microscopic fermionic action or, more gen
ally, written down on the basis of symmetry arguments24

Here we choose the latter approach, with occasional re
ences to the miscroscopic theory as a check. For a comp
derivation from a microscopic action, the techniques of Re
19 and 21 can be used.

AM is just a static, local, LGW functional for the magn
tization fluctuations. It is local because no massless mo
that couple to the magnetization have been integrated
and it can be chosen static because the relevant~in the long-
wavelength, low-frequency limit! dynamical part will be
shown to be provided by the coupling to theq fluctuations;
see Eq.~2.9c! below. Neglecting terms that are irrelevant f
our purposes,AM is given by

AM52E dxM~x!@ t2a¹2#M~x!2uE dxM4~x!.

~2.2!

Here x[(x,t) comprises the real-space positionx and the
imaginary timet. *dx5*dx*0

bdt with b51/kBT, whereT
is the temperature.t is the dimensionless distance from th
bare LGW critical point, anda andu are positive constants
The physical magnetizationm is proportional to the expecta
tion value of the fieldM. For later reference we also define
temporal Fourier transform of the fieldM by

Mn~x!5ATE
0

b

dteiVntM~x!, ~2.3!

with Vn52pTn a bosonic Matsubara frequency.
The soft fermion fieldq originates from the composit

fermion variables21
02441
-

ve
e

e
e-

-

r-
te
.

es
ut,

Q12>
i

2 S 2c1↑c̄2↑ 2c1↑c̄2↓ 2c1↑c2↓ c1↑c2↑

2c1↓c̄2↑ 2c1↓c̄2↓ 2c1↓c2↓ c1↓c2↑

c̄1↓c̄2↑ c̄1↓c̄2↓ c̄1↓c2↓ 2c̄1↓c2↑

2c̄1↑c̄2↑ 2c̄1↑c̄2↓ 2c̄1↑c2↓ c̄1↑c2↑

D .

~2.4a!

Here thec andc̄ are the fermionic, i.e., Grassmann-value
fields that provide the basic description of the electron25

and all fields are understood to be taken at positionx. The
indices 1, 2, etc., denote the dependence of the Grassm
fields on fermionic Matsubara frequenciesvn1

52pT(n1

11/2), etc., and the arrows denote the spin projection. I
convenient to expand the 434 matrix in Eq. ~2.4a! in a
spin-quaternion basis,26

Q12~x!5 (
r ,i 50

3

~t r ^ si !r
i Q12~x!, ~2.4b!

with t05s0512 the 232 unit matrix, andt j52sj52 is j
( j 51,2,3), with s1,2,3 the Pauli matrices. In this basis,i
50 and i 51,2,3 describe the spin-singlet and spin-trip
degrees of freedom, respectively. Ther 50,3 components
correspond to the particle-hole channel~i.e., productsc̄c or
cc̄), while r 51,2 describe the particle-particle channel~i.e.,
productsc̄c̄ or cc). For our purposes the latter are n
important, and we therefore drop ther 51,2 from the spin-
quaternion basis. In terms of the remaining fields, the s
density can be expressed as

ns
i ~x,iVn!5AT(

m
(
ab

c̄m,a~x!sab
i cm1n,b~x!

5AT(
m

(
r 50,3

~A21!r tr @~t r ^ si !Qm,m1n~x!#

~ i 51,2,3!. ~2.4c!

The matrix elements ofQ are bilinear in the fermion
fields, soQ-Q correlation functions describe two-fermio
excitations. In a Fermi liquid, theQ fluctuations are massive
and soft, respectively, depending on whether the two
quencies carried by theQ field have the same sign or oppo
site signs, respectively. We therefore separate theQ fluctua-
tions into massless modesq12 and massive modesP12 by
splitting the matrixQ into blocks in frequency space,

Qnm~x!5Q~nm!Pnm~x!1Q~n!Q~2m!1Q

~2n!Q~m!qnm
† ~x!. ~2.4d!

In what follows, we will incorporate the frequency con
straints expressed by the step functions into the fieldsP and
q, respectively. That is, the frequency indices ofP must al-
ways have the same sign, and those ofq andq† must always
have opposite signs.

Finally, we define spatial Fourier transforms by
9-3
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Mn~k!5
1

AV
E dxMn~x!, ~2.5!

and analogously for the fieldsq andq†.

B. Soft-mode field theory

The massive modesP can be formally integrated out t
obtain an effective action for the soft modes,qnm . This can
be done perturbatively, as theP-dependent part of the actio
takes the form of a stable Gaussian~i.e., quadratic inP)
piece, and terms of higher order inP as well as terms cou
pling P and q, andP and M, respectively, starting with bi-
linear coupling terms. As can be seen from Eq.~2.4a!, theq
are particle-hole excitations, which in a clean electron s
tem have a linear dispersion relation; i.e., the freque
scales linearly with the wave number. The Gaussian par
the fermionic action will therefore have the form

A q
(2)5

24

G E dxdy (
1,2,3,4

(
r ,i

r
i q12~x! iG12,34

(2) ~x2y!r
i q34~y!.

~2.6a!

The vertex functionG (2) is most easily written in momentum
space,

iG12,34
(2) ~k!5d13d24G12

(2,0)~k!1d123,224d i02pTGKs ,
~2.6b!

with

G12
(2,0)~k!5uku1GHV122 . ~2.6c!

Here G and H are model-dependent coefficients.27 If one
derives Eq.~2.6b! from the microscopic model of Ref. 21
one findsG5p2NF /2vF andH51/pNF , with vF the Fermi
velocity andNF the density of states per spin at the Fer
surface. More generally, however,G andH will be arbitrary
coefficients with the appropriate dimensions.Ks is a spin-
singlet interaction amplitude that we include in our Gauss
theory in a random-phase-approximaion-~RPA-! type fash-
ion. InvertingG (2) shows that its presence does not chan
the frequency-momentum structure of theq propagator; see
Eqs. ~2.10! below. There is no spin-triplet interaction in th
bare action since its effects are included inAM . In a formal
derivation from a microscopic action, this can be achiev
by means of a Hubbard-Stratonovich decoupling of the sp
triplet interaction, withM the Hubbard-Stratonovich field.7,19

However, as long asKs is nonzero, it generates a spin-tripl
interaction in perturbation theory. This has importa
consequences—see Sec. III A below—and it is the reason
includeKs .

The part of the action couplingM andq originates from a
term AM -Q that couplesM and Q. Such a term must be
present since in the presence of a magnetization the fe
onic spin density will couple linearly to it. Using Eq.~2.4c!,
we thus obtain
02441
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AM2Q52c1ATE dx(
n

(
i 51

3

Mn
i ~x!

3 (
r 50,3

~21!r /2(
m

tr @~t r ^ si !Qm,m1n~x!#,

~2.7a!

with a model-dependent coefficientc1. In a technical deriva-
tion from a model with a pointlike spin-triplet interactio
amplitude K t , this term also is produced by a Hubbar
Stratonovich decoupling of the spin-triplet interaction term19

and c15ApK t /2. Defining a symmetrized magnetizatio
field by

b12~x!5(
i ,r

~t r ^ si !r
i b12~x!, ~2.7b!

with components

r
i b12~x!5~2 !r /2(

n
dn,n12n2

@Mn
i ~x!1~2 !r 11M 2n

i ~x!#,

~2.7c!

allows to rewrite Eq.~2.7a! in a more compact form

AM2Q5c1ATE dx tr @b~x!Q~x!#. ~2.7d!

Using Eq.~2.4d! in Eq. ~2.7a! or ~2.7d! and integrating out
the massiveP fluctuations obviously leads to a series
terms couplingM andq, M andq2, etc. We thus obtainAM ,q
in the form of a series

AM ,q5AM2q1AM2q21••• . ~2.8a!

The first term in this series is obtained by just replacingQ by
q in Eq. ~2.7a!,

AM2q5c1T1/2E dx tr @b~x!q~x!#

58c1T1/2(
12

E dx(
r

(
i 51

3

r
i b12~x!r

i q12~x!.

~2.8b!

The next term in this expansion must have the ove
structure

AM2q2}E dx tr @b~x!q~x!q†~x!#.

The details require information about the structure of
massive modes that were integrated out in going fromQ to q.
From the derivation of the nonlinears model that results in
the disordered case if one integrates out the massiveP fluc-
tuations in the tree approximation28,21 it is known that the
resulting effective fermion matrix field is traceless; i.e
(q2)nm in the above expression enters with different sig
depending on whethern and m are both positive or both
negative. This feature carries over to the clean case
yields
9-4
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AM2q25c2ATE dx(
123

(
rst

(
i 51

3

(
jk

r
i b12~x!

3@s
j q23~x! t

kq13~x!tr ~t rtst t
†!tr ~sisjsk

†!

2s
j q32~x! t

kq31~x!tr ~t rts
†t t!tr ~sisj

†sk!#,

~2.8c!

with c2 another positive constant. The bare values ofc1 and
c2 are related,c25c1/16. Terms of higher order inq in this
expansion will turn out to be irrelevant for determining t
behavior at the quantum phase transition.

C. Gaussian propagators

We will be interested in the renormalization-group flow
of the various parameters in the field theory defined abo
We will need the Gaussian propagators of the theory in
paramagnetic phase. These are easily determined from
quadratic form given by theM2, q2, and Mq parts of the
above action. Performing a spatial Fourier transform and
ing the symbol̂ •••& for the Gaussian average, we find f
the order parameter correlations

^Mn
i ~k!Mm

j ~p!&5dk,2pdn,2md i j

1

2
Mn~k!, ~2.9a!

^ r
i b12~k!s

j b34~p!&

52dk,2p@d122,3242~2 !rd122,423#d i j d rsM122~k!,

~2.9b!

in terms of the paramagnon propagator

Mn~k!5
1

t1ak21
~4Gc1

2/p!uVnu
uku1GHuVnu

. ~2.9c!

Notice that the coupling between the order parameter fi
and the fermionic degrees of freedom has produced the
namical piece ofM that is characteristic of clean itineran
ferromagnets.

For the fermionic propagators we find

^ r
i q12~k!s

j q34~p!&5dk,2pd i j d rs

G

8
iG12,34

(2)21~k!, ~2.10a!

with

0G12,34
(2)21~k!5d13d24D122~k!2d122,3242pTGKs

3D122~k!D122
(s) ~k!, ~2.10b!

1,2,3G12,34
(2)21~k!5d13d24D122~k!2d122,3248TGc1

2

3~D122~k!!2M122~k!, ~2.10c!

whereD andDs are the propagators
02441
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Dn~k!5
1

uku1GHVn
, ~2.10d!

D n
(s) ~k!5

1

uku1G~H1Ks !Vn
. ~2.10e!

Notice that0G (2)21 is actually the inverse of0G (2) given by
Eq. ~2.6b!, while the analogous statement for1,2,3G (2)21 is
not true. This is because the coupling betweenM andq gives
an additional contribution to the fermionic spin-triplet prop
gator.

Finally, due to the coupling betweenM and q, we also
have a mixed propagator

^ r
i q12~k!s

j b34~p!&52dk,2p@d122,3241~2 !r 11d122,423#

3d rsd i j Gc1ATD122~k!M122~k!.

~2.11!

D. Higher-order terms and diagram rules for a loop expansion

The action defined by Eqs.~2.6!–~2.8! suffices to extract
the information we are interested in, but it is incomple
from a calculational point of view. Namely, in order to set u
a loop expansion and renormalize the vertices in our ac
to one-loop order, one needs the term of orderq4. Although
it is possible to determine the desired renormalizations w
out knowing this term explicitly~see below!, for complete-
ness and later reference we here give such a term that s
fies basic symmetry requirements.

On general grounds and by analogy with the disorde
case,21 this term must have the structure

A q
(4)5

1

4GE dx1dx2dx3dx4

3(
1,2
3,4

(
r 1 ,r 2
r 3 ,r 4

(
i 1 ,i 2
i 3 ,i 4

tr ~t r 1
t r 2

† t r 3
t r 4

† !tr ~si 1
si 2

† si 3
si 4

† !

3G12
(4)~x12x4 ,x22x4 ,x32x4!

3 r 1

i 1q12~x1!r 2

i 2q32~x2!r 3

i 3q34~x3!r 4

i 4q14~x4!. ~2.12a!

The vertex functionG (4) can be expressed in terms of th
two-point vertexG (2), Eqs. ~2.6b! and ~2.6c!.29 In Fourier
space and neglectingKs , it reads

G12
(4)~k1 ,k2 ,k3!5

1

2
@G12

(2,0)~k11k2!1G12
(2,0)~k21k3!#.

~2.12b!

In addition there are terms of orderq3 andq4 that are pro-
portional toKs , as well as terms of higher order inq, but
they will not be important for our purposes.

As the last step in defining our effective field theory, w
need to remember that setting up aq-field theory requires a
Lagrange multiplier fieldl that constrains bilinear product
of the underlying fermion fields to the classical matrix fie
Q. In clean systems, thel field is soft with a propagator tha
is given by minus the noninteracting part of theq
propagator,21
9-5
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^ r
i l12~k!s

j l34~p!&52dk,2pd i j d rsd13d24

G

8
D122~k!.

~2.13!

This field couples toq in a way that results, upon integratin
out l, in the following diagram rules.21

Rule 1.For calculating propagators in a loop expansio
all internal q propagators must be taken as the interact
part of the Gaussian propagator, i.e., as the second term
the right-hand side of Eq.~2.10b! or ~2.10c!.

Rule 2.For calculating vertex functions, rule 1 also a
plies. In addition, one needs to consider all reducible d
grams ~which normally do not contribute to the vertices!,
with all reducible propagators replaced by thel propagator,
Eq. ~2.13!.

As an illustration, we show in Fig. 1 the diagrams for t
renormalization ofG (2,0), Eq. ~2.6c!, to one-loop order.

This completes the definition of our effective action, a
we will now proceed to discuss the ferromagnetic transit
it describes.

III. GENERALIZED MEAN-FIELD THEORY
AND THE FIRST-ORDER PHASE TRANSITION

In this section we derive a generalized mean-field the
for the ferromagnetic transition in low-temperature itinera
electron systems. It structurally maps onto the generali
mean-field theory for the superconducting transition at fin
temperature.15 The transition predicted by these theories is
first order. We then discuss the conditions under which
result is stable. We will see that, contrary to the usual c
cepts concerning first-order phase transitions, the mean-
description can be invalidated by fluctuation effects t
drive the transition second order. Physically, the first-or
transition turns out to be unstable when it is too close t
second-order transition with sufficiently strong fluctuation
otherwise it is stable.

A. Generalized mean-field theory

An effective actionAeff @M# involving only the magneti-
zation order parameter can be obtained by integrating ou
fermion fields,

eAeff [M]5E D@q#eA[M,q] . ~3.1!

Here A is the action given by Eq.~2.1b!. In general the
evaluation of this expression is very difficult. However,

FIG. 1. The noninteracting part of the two-pointq vertex to
one-loop order. Solid lines denote the interacting part of theq
propagator, and the wave line denotes thel propagator. See the tex
for further explanation.
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can be evaluated exactly within a generalized mean-field
proximation, which is defined as follows. First, we igno
temporal and spatial variations ofM,

Mn
i ~x!'d i3dn0m/AT. ~3.2!

Second, we restrict ourselves to Gaussian or quadratic o
in q. That is, we replace the full actionA by Eqs.~2.2!, ~2.6!,
and ~2.8!, and in these expressions we replaceM by
Eq. ~3.2!.

With the bare Gaussian action as given in Sec. II B a
taking into account the diagram rules mentioned at the en
Sec. II D, there is no coupling between the soft modes
the order parameter. However, one needs to acknowle
that under renormalization, the actionAq will acquire a spin-
triplet interaction that is generated as long asKsÞ0. Let the
such generated interaction constant beK̃ t . Then the fermi-
onic two-point vertex function, Eq.~2.6b!, gets generalized
to

iG12,34
(2) ~k!5d13d24~ uku1GHuV122u!1d123,224d i02pTGKs

1d123,224~12d i0!2pTGK̃t . ~2.6b8!

This renormalization-generated spin-triplet interacti
leads to a coupling between the soft fermionic modes and
order parameter in the free energy. In the resulting gene
ized mean-field approximation one obtains for the free
ergy density,f (m)52TAeff /V,

f 5 f @m50#1tm21um41
2

V (
k,L

T(
n

ln N~k,Vn ;m!,

~3.3a!

whereL is an ultraviolet momentum cutoff, and

N~k,Vn ;m!516c2
2G4K̃ t

2m2Vn
21~ uku1GHVn!2

3@ uku1G~H1K̃ t !Vn#2. ~3.3b!

Minimizing f with respect to the magnetization gives th
equation of state

h52tm14um31m64c2
2G4K̃ t

21

V (
k,L

T(
n51

`
Vn

2

N~k,Vn ;m!
,

~3.3c!

with h an external magnetic field.

B. Discussion of the generalized mean-field equation of state

We start with some general comments regarding the
sult, Eqs.~3.3!. The last term in both Eqs.~3.3a! and ~3.3c!
arises from fermionic fluctuations, namely, ther

i q with r
50,3 and i 51,2, which are massless in the paramagne
phase, but become massive in the ordered phase.30 As dis-
cussed elsewhere,32 these fluctuations lead to long-range co
relations in paramagnetic metals and to nonanalyticities
either the temperature or wave number depence of corr
tion functions, for example, the magnetic susceptibility. It
also interesting to note that Eqs.~3.3! are identical to the
9-6
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equations describing the first-order phase transition in c
ventional superconductors at finite temperature.15 As men-
tioned in the Introduction, the physics of the respective ph
transitions is very similar as well.

With some work, the integrals or sums in Eqs.~3.3! can
be explicitly performed. However, the most important fe
tures can be obtained by inspection and simple asymp
analysis. At zero temperature and for smallm, the leading
nonanalyticm dependence is a negative term on the rig
hand side of Eq.~3.3c!, which is of ordermd in generic
dimensions and of orderm3 ln 1/m in d53. At low but finite
temperatures this nonanalyticity is effectively replaced b
negative term of order

m~m21const3T2!(d21)/2

in generic dimensions or

m3 ln 1/~m21const3T2!1/2

in d53.33 Here const is a positive constant proportional
H2(11H/K̃ t )

2/c2
2. Analogous terms, with an extra factor o

m, appear in Eq.~3.3a!. As T→0 Eq. ~3.3a! thus has the
standard form of a free energy or effective potential, wh
leads to a discontinuous phase transition at somet5t1.0;
see Fig. 2. Schematically, this free energy functional in
presence of an external magnetic fieldh can be written, in
1,d,3, as

f 5 f ~m50!1tm22vm2~m21T2!(d21)/21um42hm1•••

~3.4a!

and, ind53, as

f 5 f ~m50!1tm21vm4 ln~m21T2!1um42hm1••• .
~3.4b!

In this schematic representation, the mean-field equatio
state in the most interesting cased53 takes the form

h52tm14vm3 ln~m21T2!1m3S 4u12v
m2

m21T2D .

~3.4c!

In these equations we use units such thatf, m, and T are
measured in terms of a microscopic energy, e.g., the Fe
energy.t, v, andu are then all dimensionless.v.0 is qua-

FIG. 2. Schematic form of the free energy as a function of
order parameter.
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dratic in K t or c1
2, so in strongly correlated systemsv is

larger than in weakly correlated ones.
In d53, these equations predict the phase diagram sh

in Fig. 3. There is a tricritical point at

T5Ttc5exp~2u/2v !. ~3.5a!

At T50, there is a first-order phase transition att5t1, with
the magnetization changing discontinuously from zero t
valuem1. One finds

m15expF2
1

2
~11u/v !G , ~3.5b!

t15vm1
2 . ~3.5c!

In d52, there is no finite-temperature magnetic phase tr
sition. However, at zero temperature there is a QPT, whic
predicted by Eqs.~3.4! to be discontinuous. The discontinu
ity in the magnetization and the transition point are given

m15~3v/4u!2, ~3.6a!

t15
u

3
m1

2 . ~3.6b!

In d.3 the nonanalyticitic terms produced by the soft mod
are subleading, and the transition is described by ordin
mean-field theory. The generalized mean-field theory t
suggests an upper critical dimensiondc

153. As we will see
in the next section, a more sophisticated analysis confi
this result.

C. Validity of the mean-field description

Normally, first-order phase transitions are not sensitive
fluctuation effects. We now argue, however, that in t
present case of a first-order transition driven by fluctuatio
~viz., soft fermion modes!, additional fluctuation effects can
destabilize the mechanism underlying the first-order tran
tion and lead to a fluctuation-driven second-order transiti
This will happen if, in a sense described below, the fir
order transition is too close to an unrealized second-or
one. To illustrate this point, consider the two schematic f
energy functionals shown in Fig. 4. In Fig. 4~a! the first-

e FIG. 3. Schematic form of the phase diagram ath50. The
dashed line denotes a second-order transition, the solid line den
a first-order transition, and TCP denotes the tricritical point.
9-7
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order transition occurs far fromt50, and fluctuation effects
are negligible. However, for the case shown in Fig. 4~b! the
fluctuations near the~unrealized! second-order transition a
t50 can affect the first-order transition that preempts
second-order one and needs to be taken into account.

Before presenting technical details in the next section,
us elaborate on this general point. First, we note that as
as one is far from any continuous transition~which brings in
new fluctuation effects! the functional forms of the free en
ergy funtions given by Eqs.~3.4! are exact for small magne
tizations. This follows from the properties of a Fermi-liqu
fixed point and the corrections to scaling near it.21 The mean-
field description above suggests a second-order, or con
ous, phase transition att50, which is preempted by the
first-order transition. The latter results from fluctuations th
are germane to a Fermi liquid and have nothing to do w
any critical point. These observations imply that the fir
order transition discussed above will take necessarily t
place if ~1! m1 is small enough and~2! t1 is not too small, so
that additional fluctuation effects due to the underlying cr
cal point att50 can be ignored. Examining Eqs.~3.4! and
~3.5! we see that this can occur when bothv ~which de-
scribes correlation effects! andu/v are large. More generally
it is reasonable to expect a first-order phase transition, w
no restrictions onm, whenever correlation effects are larg

Second, the next natural question is, what happens if
is not the case? In particular, we note the following. Eq
tions ~3.3! imply that the coefficientv is inversely propor-
tional toH. As explained in Sec. IV below,H is proportional
to the specific heat coefficient. SinceH is expected to be
sensitive to critical fluctuations and perturbation theory s
gests a logarithmic divergence at a continuous transition
d53, this suggests thatv might be suppressed close to, a
at, a continuous transition. To examine this possibility o
needs to go beyond simple perturbation theory. In the n
section renormalization-group methods are used to unta
the possibilities. We find that a continuous transition do
indeed occur ift1 is sufficiently small and if the bareu is
sufficiently large to stabilize the effects of critical fermion
fluctuations that are otherwise suppressed.

FIG. 4. Schematic forms of the free energy as a function of
order parameter. In~a! the first-order transition is not affected b
fluctuations; in~b! it may be.
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IV. RENORMALIZATION-GROUP FLOWS
AND THE SECOND-ORDER PHASE TRANSITION

A. Renormalization of the effective action

The parameterst, a, u, G, H, c1, and c2 as well as the
fields M andq in the theory defined above are renormaliz
under renormalization-group~RG! transformations. We will
employ a differential momentum-shell RG and integrate o
all frequencies. Ifb is the RG length rescaling factor, then w
rescale the wave numbers and two fields via

k→bk, ~4.1a!

Mn~x!→b(d221hM)/2Mn~x!, ~4.1b!

qnm~x!→b(d221hq)/2qnm~x!. ~4.1c!

Here hq and hM are exponents that characterize the spa
correlations of the fermion and order-parameter fields,
spectively. The rescaling of imaginary time, frequency,
temperature is less straightforward. We need to acknowle
the fact that there are two different time scales in the pr
lem: namely, one that is associated with the critical ord
parameter fluctuations and one that is associated with the
fermionic fluctuations. Accordingly, we must allow for tw
different dynamical exponentszM and zq , and imaginary
time and temperature may get rescaled either via

t→b2zMt, T→bzMT, ~4.1d!

or via

t→b2zqt, T→bzqT. ~4.1e!

How these various exponents should be chosen is discu
below.35

1. Zero-loop flows

In the tree, or zero-loop, approximation the RG flo
equations for the parameters in our field theory are ea
determined by power counting from the action given in S
II B. With ,5 ln b we find

dt

d,
5~22hM !t, ~4.2a!

da

d,
52hMa, ~4.2b!

du

d,
52~d1zM12hM24!u, ~4.2c!

dG

d,
52~12hq!G, ~4.2d!

dH

d,
5~22zq2hq!H, ~4.2e!

dc1

d,
5

1

2
~42z2hq2hM !c1 , ~4.2f!

e

9-8



e

di
o

th

a

t
e-

z-

ity
e
b

co
if

im
s
w

t

ec.
p-
in-
atial

ell

e-

a-
u-
me
be

n in
e

this
nt

hey

ial

a-
ne
or
e

NATURE OF THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW B67, 024419 ~2003!
dc2

d,
5

1

2
~62d2z22hq2hM !c2 . ~4.2g!

Now we examine these flow equations in order to s
whether the allow for a critical~i.e., unstable in only one
direction! fixed point, at least above some upper critical
mension. This will amount to an analysis of the stability,
otherwise, of Hertz’s critical fixed point.7 Note that in giving
Eqs.~4.2f! and~4.2g!, the particular choice ofz was not yet
specified because it is not obvious if azq or a zM should be
used for these terms that describe a coupling betweenq and
M fields. For the analogous disordered electron problem,
point has been discussed in detail in Ref. 19.

If we assume the Fermi-liquid degrees of freedom to be
a stable Fermi-liquid fixed point, we must chooseG andH to
be marginal, which implies

hq51, zq51. ~4.3!

Hertz7 further chose~in our language! a and c1 to be mar-
ginal, which implies

hM50 ~4.4a!

and

zM53. ~4.4b!

The latter choice is motivated by the paramagnon propaga
Eq. ~2.9c!, which yields appropriate mean-field critical b
havior only for a marginalc1, given thatG andH are mar-
ginal. This also implies thatz5zM in Eq. ~4.2f!.

With these choices,t is the relevant variable characteri
ing the critical fixed point, and Eq.~4.2a! yields a correlation
length exponentn51/2. The variableu is irrelevant ford
.1, suggesting an upper critical dimension equal to un
Indeed, Hertz’s conclusion was that the mean-field fix
point characterized by the above exponent was sta
for d.1.

However, we still need to examine the behavior ofc2. It
is irrelevant ford.1 if we usez5zM in Eq. ~4.2g!. How-
ever, as already emphasized in Ref. 19, one also has to
sider the casez5zq in this equation. This becomes obvious
one uses theM -q2 vertex, whose coupling constant isc2, to
construct loops. Clearly, pure fermion loops appear, the s
plest example of which is shown in Fig. 5, and in this ca
z5zq is the appropriate choice. We illustrate this point belo
by means of an explicit calculation.

Using z5zq in Eq. ~4.2g!, we see thatc2 becomes rel-
evant with respect to Hertz’s fixed point ford,3, giving an
actual upper critical dimensiondc

153. This is in agreemen

FIG. 5. Example of a fermionic loop renormalizing the par
magnon propagator, with the dashed line representing the mag
zation field. Since the loop integral is over fermionic propagat
only, the c2 associated with the vertices carry a time scale giv
by zq .
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with the result of the generalized mean-field theory; see S
III B. Physically, this surprising result means that soft or ga
less fermion excitations play an important role in determ
ing the phase transition behavior at, and below, three sp
dimensions even though naive power counting suggestsdc

1

51. This is further examined in the next subsection, as w
as in Sec. IV B.

2. One-loop flows

In this subsection we examine the effects ofc2 on the
phase transition. We will be mainly concerned with the b
havior in three dimensions; the behavior ind,3 will be
discussed using other techniques in Sec. IV B below.

In d53 the relevant diagrams can, in principle, give log
rithmic corrections or renormalizations to the various co
pling constants. Taking into account that there are two ti
scales, it is easy to show by power counting that there will
no logarithmic corrections toc1 , c2 , G, and t. This implies
that for these coupling constants, the flow equations give
Eqs. ~4.2! remain valid to one-loop order. Motivated by th
disordered case, we will be looking for a fixed point whereG
is marginal, which implies

hq51. ~4.5a!

We further requirec1 ~with z5zM) andc2 ~with z5zq) to be
marginal, which implies

zM1hM53 ~4.5b!

and

zq1hM51. ~4.5c!

Of the various scale dimensions introduced above,
leaves only one, e.g.,hM , as independent. For the irreleva
version ofc2 ~with z5zM), Eqs.~4.5a! and ~4.5b! imply

dc2

d,
52c2 . ~4.6!

For the remaining quantities, power counting shows that t
do allow for logarithmic renormalizations ind53. The dia-
grams that give rise to these are shown in Fig. 6. A cruc

ti-
s
n

FIG. 6. Diagrams that give the leading renormalization ofa, u,
andH, to one-loop order ind53. The quartic vertex in the diagram
for dH was defined in Fig. 1.
9-9
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T. R. KIRKPATRICK AND D. BELITZ PHYSICAL REVIEW B 67, 024419 ~2003!
feature is thatu is renormalized by anegativelogarithmic
term. In a purely perturbative treatment, this implies thau
changes sign, which in turn implies a fluctuation-driven fir
order phase transition, and the existence of a tricritical po
at finite temperatures, consistent with the generalized me
field theory. However, the renormalization-group flow equ
tions resum perturbation theory in a specific way, and in t
subsection we show that this ‘‘tricritical’’ behavior does n
necessarily persist to all orders.

The explicit flow equations are obtained by evaluating
diagrams shown in Fig. 6. Determining the general struct
of the flow equations does not require a detailed calculat
but can be achieved by power counting. At zero temperat
we find

da

d,
52hMa2

Aa

H
, ~4.7a!

du

d,
52~21hM !u2Au

c2
2

H
, ~4.7b!

dH

d,
5hMH1

AH

a1t
, ~4.7c!

where theAi are positive constants. In giving Eqs.~4.7! we
have absorbed the marginal coupling constantG and the mar-
ginal version ofc2 into these constants.37

The prefactorsAi can be determined by a detailed calc
lation of the diagrams. In the case ofAa and AH , one can
also obtain the result by the following alternative methoda
is the coefficient of the gradient-squared term in the s
susceptibility of a nonmagnetic reference system. The lo
rithmic renormalization of the latter ind53 has been calcu
lated in Ref. 32, and we can thus find the renormalization
a from that paper. ForH, we notice that it is related to th
specific heat coefficientgV5CV /T by

gV58pH/3. ~4.8!

This relation between the frequency coupling constant
the specific heat was first established for disordered elec
systems by Castellani and Di Castro.38 A proof by means of
Ward identities39 applies to clean systems as well. One c
therefore obtain the renormalization ofH from a calculation
of the specific heat, which in turn follows from the Gaussi
free energy densityf G . From Sec. II C we find, at criticality

f G 5
3T

2V (
p

(
iVn

ln~ap214Gc1
2/pupu!, ~4.9!

and the specific heat coefficient is obtained by differentiat
twice with respect to temperature.

We have chosen the second method to calculateAa and
AH , and obtain40

Aa5Gc2
2/9p3, ~4.10a!

AH53Gc2
2/p3. ~4.10b!
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For later reference we note thatAH /Aa527.1, but for now
we consider the general case. The value ofAu will not be
needed, other than that it is positive.

Next we solve the Eqs.~4.7!, first for the caset50. It is
convenient to first construct flow equations for the quantit

f 5c2
2/H, g5aH. ~4.11a!

The flow equations for these objects ind53 are

dg

d,
5AH2Aa , ~4.11b!

d f

d,
52~21hM ! f 2AHf /g. ~4.11c!

Solving these equations and using the result in Eq.~4.7b!
gives

u~, !5e2k,H u02
Auf 0

A~k21! F12
1

~11A, !K21G J ,

~4.12a!

with

k521hM , A5
AH2Aa

g0
, K5

AH

AH2Aa
,

~4.12b!

and

g05g~,50!51/96pvF , ~4.12c!

f 05 f ~,50!5p/16. ~4.12d!

SinceK>1 andA.0 for AH.Aa , we see that in contrast to
the perturbative result,u(,) does not necessarily becom
negative as,→`. Rather, the term in braces in Eq.~4.12a!
asymptotically approaches a valueu02Auf 0g0 /Aa . De-
pending on microscopic parameter values,u thus may or
may not become negative for large scales. We c
clude that a nontrivial continuous phase transition may e
for d<3.

We note, though, that if the opposite inequality were
hold, AH,Aa , then A would be negative andu would be-
come complex at large scales. These two features would
dicate a first-order phase transition. This suggests that
actual first-order phase transition occurs att.0 whereAH is
effectively smaller; cf. Eq.~4.7c!.

B. Critical behavior

1. Critical behavior in dÄ3

We are now in a position to determine the critical beha
ior at the second-order transition that we have shown in
previous subsection to exist in a certain regime of param
values. Ind53 we do so by using the explicit solution of th
flow equations given in Sec. IV A 2 above.

Let us consider the paramagnon propagator in the crit
regime. Sincet, c1, andG are not singularly renormalized a
one-loop order, while the coefficienta acquires a nontrivial
9-10
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NATURE OF THE QUANTUM PHASE TRANSITION IN . . . PHYSICAL REVIEW B67, 024419 ~2003!
renormalization, it has the form@see Eq.~2.9c!#

Mn~k!51/@ t1a~k!k21uVnu/uku#. ~4.13a!

k andVn have been made dimensionless by means of s
able microscopic scales. Thek dependence ofa follows from
Eqs.~4.6! and~4.11! oncehM has been chosen.41 In writing
Eq. ~4.13a! we have tacitly assumed that there is no ‘‘wav
function renormalization’’ that would give the numerator
scale dependence. SincehM determines the scale dimensio
of the magnetization field@see Eq.~4.1b!# and, hence, the
wave function renormalization, we need to choosehM50 in
order to be consistent with this assumption. From Eqs.~4.6!
and ~4.11! in the limit ,; ln 1/uku→` we then obtain

a~k→0!}~ ln 1/uku!21/26, ~4.13b!

Such logarithmic corrections to power-law scaling can
conveniently expressed in terms of scale-dependent cri
exponents. For instance, withb;1/uku a RG length scale
factor42 we can writea(k)k2}uku22h, with a scale-dependen
critical exponenth given by

h5
21

26
ln ln b/ ln b. ~4.14a!

We stress thath is the physical critical exponent that de
scribes the wave number dependence of the parama
propagator at criticality,M}uku221h, as opposed tohM ,
which has no direct physical meaning. In Appendix A w
demonstrate that a different choice ofhM leads to the same
physical result.

The correlation length exponentn, the susceptibility ex-
ponentg, and the dynamical exponentz can be directly read
off Eqs. ~4.13!, viz.,

n51/~22h!, z532h, g51. ~4.14b!

These exponents are defined as usual, i.e.,j}t2n, V;T
;j2z, M}t2g, with j the correlation length. The physica
dynamical exponentz is different from the exponentzM in
Eq. ~4.5b!, for the same reason for whichhÞhM . Also no-
tice that 1/n is not given by the scale dependence oft that
results from thet-flow equation~4.2a!, since the scale depen
dent coefficienta is a dangerous irrelevant variable with r
spect to the correlation length.

The order parameter exponentsb and d ~defined bym
}tb andm}h1/d, respectively, withh a magnetic field! can
be obtained from scaling arguments for the free energy;
Appendix B. We find

b51/2, d53. ~4.14c!

Finally, we define a specific heat exponenta by CV}T2a at
criticality.43 It can be determined by either of three metho
viz., ~1! Eq. ~4.8! together with the solution of the flow equa
tion for H, ~2! renormalized perturbation theory for the fre
energy, i.e., Eq.~4.13b! in Eq. ~4.9!, or ~3! a scaling argu-
ment for the free energy; see Appendix B. Either way
obtain the exact relation

a5211~ ln ln b/ ln b2h!/z. ~4.14d!
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The result forh is valid to leading logarithmic accuracy; th
values ofg, b, andd, as well as the relations betweenh and
n, z, anda, respectively, are exact.

2. Critical behavior in dË3

In dimensions less than 3, the critical behavior can
controlled by means of an expansion ine532d. We are
again looking for a fixed point whereG andc1 are marginal,
so Eqs.~4.5a! and~4.5b! still hold. Equation~4.5c! gets gen-
eralized to

zq1hM511e, ~4.15!

which guarantees thatc2 with z5zq is still marginal. We
then look for a fixed point wherea andH are both marginal.
hM then coincides with the physical exponenth, as it does
in the alternative treatment of the cased53 given in Appen-
dix A. We find

h52e/~AH /Aa21!52e/261O~e2!. ~4.16a!

The other exponent follow from this.n, z, g, b, andd are
still given by Eqs.~4.14b! and ~4.14c!, and for the specific
heat exponenta we have

a52d/~32h!. ~4.16b!

V. SUMMARY AND DISCUSSION

We summarize the achievements of this paper as follo
First, we have given an effective field theory that d

scribes the quantum ferromagnetic transition in clean e
tronic systems. It involves coupled fields describing the m
netization degrees of freedom, as well as gapless fermio
excitations. If the effects of the latter are neglected beyo
the tree level, as was the case in earlier theories descri
this quantum phase transition,7 then the resulting description
of the phase transition is incorrect for alld<3. That is, the
coupling to the fermionic degrees of freedom leads to
upper critical dimension for this phase transition ofdc

153.
Second, we have shown that the fermionic fluctuatio

lead to two very different types of fluctuation-driven qua
tum phase transitions, depending on microscopic details.
nerically, the quantum ferromagnetic transition ind<3 is a
fluctuation-driven first-order transition. This is in contrast
the conventional result,7 as well as to the Landau theor
description of this phase transition. Ind53 we have also
discussed the situation at low, but finite, temperatures
general we argue that this system will have a tricritical po
separating lines of second- and first-order phase transiti
A schematic phase diagram is shown in Fig. 3. These res
are in agreement with the experimental observations in M
~Ref. 12! and UGe2 ~Ref. 13!.

Third, we have shown that if the microscopic details a
such that the fluctuation-driven first-order quantum ph
transition is too close to a second-order, or continuous, tr
sition, then critical fluctuations will suppress the fermion
fluctuation effects that lead to a first-order transition, an
fluctuation-driven second-order transition results.44 For this
case, the critical behavior ind53 has been computed an
9-11
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has been found to be mean field like, with logarithmic c
rections. Ford,3, the critical behavior is nontrivial, but ca
be controlled by means of a 32e expansion. Both the pos
sibility of a second-order transition and the fact that the cr
cal behavior in this case is essentially mean field like is
agreement with the experimental observations on Zr2
~Ref. 12! and NixPd12x ~Ref. 14!. Our theory thus explains a
rather confusing experimental situation, where the transi
in bulk systems is observed to be continuous in some
tems and discontinuous in others. We further note that
fluctuation effect that leads to a first-order phase transi
grows with the strength of electronic correlation, or intera
tion, effects. This suggests that in strongly correlated syst
a first-order transition is generally expected.

Fourth, we have noted a mathematical and physical r
tion between the fluctuation-driven first-order phase tran
tion discussed here and the ones known to occur in fin
temperature superconductors and in liquid crys
systems.15,16 In all these systems, soft modes couple to
order parameter fluctuations in such a way that their con
bution to the free energy is reduced in the ordered phase.
this mechanism that causes the discontinuous transitio
occur. The fluctuation-driven second-order transition d
cussed here is similar to the one that occurs in classical P
models.17

Elsewhere we have discussed the effects of nonmagn
disorder on this phase transition, and on the phase diag
shown in Fig. 3.9 In general, sufficiently strong disorde
drives the tricritical point shown in Fig. 3 to zero temper
ture, making the zero-temperature transition in the prese
of sufficiently strong disorder continuous. This quantu
phase transition is in a different universality class than
fluctuation-driven second-order transition in clean syste
discussed above, and its critical behavior has been d
mined exactly.20
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APPENDIX A: RG WITH SCALE-DEPENDENT
EXPONENTS

Our choice ofhM50 in Sec. IV B 1 is somewhat uncon
ventional since it makes the coefficienta irrelevant, rather
than marginal. In this appendix we demonstrate that mak
a marginal leads to the same physical results, but comes
complications of its own.

Since the physical exponenth is scale dependent@see Eq.
~4.14a!#, choosinga marginal requires a scale depende
hM . This changes the flow equations. If we still require th
G, c1 ~with z5zM), and c2 ~with z5zq) be marginal, we
obtain, instead of Eqs.~4.2! and ~4.7!,

dt

d,
5@22h̃M~, !#t, ~A1a!
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da

d,
52h̃M~, !a2Aa /H, ~A1b!

dH

d,
5h̃M~, !H1

AH

a1t
, ~A1c!

dc2

d,
52c2 , ~A1d!

du

d,
52@22h̃M~, !#u2Au

c2
2

H
. ~A1e!

Here c2 in Eqs. ~A1d! and ~A1e! refers to the irrelevant (z
5zM) version ofc2, and

h̃M~, !5,
dhM

d,
1hM . ~A2!

We now look for a fixed point with respect to whichc2 and
u are irrelevant, whilea is marginal. The latter condition
leads to a differential equation forhM ,

,
dhM

d,
1hM2

12K

,
50, ~A3!

with K from Eq. ~4.12b!. In deriving Eq.~A3! we have used
the fact thatg5aH obeys a flow equation, att50,

dg

d,
5AH2Aa . ~A4!

Sincea is marginal,hM now represents the physical exp
nent h. Equation~A3! is easy to solve, and for asymptot
cally large values of, one recovers Eq.~4.14a!. Similarly,
the correlation length exponentn is now given by the scale
dimension of the relevant operatort, and from Eq.~A1a! we
recover the first equality in Eq.~4.14b!. It is easy to check
that all other physical results also agree with Sec. IV B 1

APPENDIX B:
SCALING ARGUMENTS FOR THE FREE ENERGY

In this appendix we consider the scaling behavior of
free energy density. Let us add a magnetic field termAh to
our action,

Ah52h•E dxM~x!; ~B1!

h gets rescaled viah→b[h]h with a scale dimension

@h#5
1

2
~d121zM2hM !, ~B2!

and the free energy density obeys the scaling law

f ~ t,T,h!5b2(d1zM) f ~ tb1/n,TbzM,hb[h] !. ~B3!

The magnetic susceptibility is given byx5]2f /]h2, and it is
readily checked that Eq.~B3! reproduces the susceptibilit
exponentg51 that we obtained in Sec. IV B from the para
magnon propagator. The critical behavior of the magneti
9-12
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tion m5] f /]h can be obtained from Eq.~B3! as well if we
take into account that the irrelevant variableu is a dangerous
irrelevant operator with respect tom ~but not with respect to
x). We thus need to includeu in the set of scaling variable
and find

m~ t,h,u!5b2(d1zM2[h])m~ tb1/n,hb[h] ,ub[u] !, ~B4a!

with

@u#52~d211hM !, ~B4b!

the scale dimension ofu; see Eqs.~4.2c! and ~4.5c!. Taking
into accountm(h50)}u21/2 andm(t50)}u21/3, we obtain
mean-field values, Eq.~4.14c!, for the order parameter expo
nentsb andd.

We also comment on the relation between the free ene
scaling and the specific heat exponenta. From Eq.~B3! we
d

nc
,

c-

de
n
rd
n

ch

.

02441
y

obtain a scaling law for the specific heat coefficientgV
5]2f /]T2 at criticality,

gV~T!5bzM2dgV~TbM
z !. ~B5!

In d532e this agrees with the result for the exponenta,
Eq. ~4.16b!, as obtained from either theH-flow equation or
renormalized perturbation theory. Ind53, however, the
simple scaling argument does not agree with the other
methods. The reason lies in the fact that ind53, d5zM
apart from logarithmic corrections to scaling. This is one
the ‘‘resonances’’ between exponents that have been
cussed by Wegner in his classification of sources of logar
mic corrections to scaling.46 This resonance leads to an a
ditional logarithm that is missed by the simple scali
argument. Once this is taken into account, all three meth
agree ind53 as well.
s,

s,

er,
the
s as

ry of
y of
e-

CS

s

dis-
-

as-
the

se,
ro-
x

nd
ffu-

ts
-
all
1S. Sachdev,Quantum Phase Transitions~Cambridge University
Press, Cambridge, England, 1999!.

2S. L. Sondhi, S. M. Girvin, and J. P. Carini, Rev. Mod. Phys.69,
315 ~1990!.

3M. P. Sarachik, inMore is Different: Fifty Years of Condense
Matter Physics, edited by R. N. Bhatt and N. P. Ong~Princeton
University Press, Princeton, 2001!.

4D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys.66, 261 ~1994!.
5Proceedings of the Institute for Theoretical Physics Confere

on Non-Fermi Liquid Behavior in Metals, edited by P. Coleman
B. Maple, and A. Millis@J. Phys.: Condens. Matter8 ~1996!#.

6By ‘‘clean’’ we mean a system that is free of impurities or stru
tural disorder.

7J. Hertz, Phys. Rev. B14, 1165~1976!.
8L. D. Landau and E. M. Lifshitz,Statistical Physics~Butterworth

Heinemann, Oxford, 1980!, Pt. 1.
9D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett.82,

4707 ~1999!.
10The sign of this term is consistent with the fact that the mo

mode coupling contribution is due to fluctuation effects that te
to suppress ferromagnetism. In a system with quenched diso
the effect has the opposite sign. See Ref. 11 for a discussio
this point.

11D. Belitz and T. R. Kirkpatrick, J. Low Temp. Phys.126, 1107
~2002!.

12C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzari
Phys. Rev. B55, 8330~1997!.

13 S. S. Saxenaet al., Nature~London! 406, 587 ~2000!.
14M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A

Loidl, Phys. Rev. Lett.82, 4268~1999!.
15B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett.32,

292 ~1974!.
16J. H. Chen, T. C. Lubensky, and D. R. Nelson, Phys. Rev. B17,

4274 ~1978!.
17F. Fucito and G. Parisi, J. Phys. A14, L499 ~1981!.
18D. Belitz and T. R. Kirkpatrick, Phys. Rev. Lett.89, 247202

~2002!.
e

-
d
er,
of

,

19D. Belitz, T. R. Kirkpatrick, M. T. Mercaldo, and S. L. Session
Phys. Rev. B63, 174 427~2001!.

20D. Belitz, T. R. Kirkpatrick, M. T. Mercaldo, and S. L. Session
Phys. Rev. B63, 174 428~2001!.

21D. Belitz and T. R. Kirkpatrick, Phys. Rev. B56, 6513~1997!.
22D. Belitz, F. Evers, and T. R. Kirkpatrick, Phys. Rev. B58, 9710

~1998!.
23Of course the magnetization is also if electronic origin. Howev

since the order parameter fluctuations play a special role in
theory, we separate them out and refer to all other soft mode
‘‘fermionic.’’

24Both of these approaches have been widely used in the histo
phase transitions. For instance, the Ginzburg-Landau theor
superconductivity was originally deduced from general symm
try arguments and only later derived from the microscopic B
theory.

25J. W. Negele and H. Orland,Quantum Many-Particle System
~Addison-Wesley, New York, 1988!.

26K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh. E´ksp. Teor.
Fiz. 79, 1120~1980! @Sov. Phys. JETP52, 568 ~1980!#.

27We deliberately use the same notation as in our treatment of
ordered ferromagnets~Ref. 19! to underscore the similar struc
tures of the two theories.

28F. Wegner and L. Scha¨fer, Z. Phys. B: Condens. Matter38, 113
~1980!.

29This structure can be deduced as follows. Integrating out the m
sive modes in the tree approximation proceeds formally as in
disordered case, where it produces a nonlinears model; see
Refs. 28 and 21. The only difference is that in the clean ca
soft single-particle excitations have been integrated out to p
duce the effectiveQ-field theory. This leads to a singular verte
in the gradient-squared term of thes model that is, in the long-
wavelength limit, proportional to an inverse wave number a
changes the dispersion relation of the soft modes from a di
sive one to a linear one; see Eq.~2.6c!. The requirement that the
two-point vertexG (2) remain soft under renormalization pu
constraints on the higher vertices in theq expansion. These con
straints are fulfilled if the singular vertex is the same for
9-13



-

tio
n
em
lin
er

a
he
in

dif
s
an

tu
-

c-
s
th
R

he
n
ant
sor-

ti,

ical

sed
-
. 45
der
ali-
tion
stent

s.

T. R. KIRKPATRICK AND D. BELITZ PHYSICAL REVIEW B 67, 024419 ~2003!
terms in theq expansion. This suggests that theq4 vertex, if
expressed in terms of theq2 vertex, is the same as in the non
linear s model. This procedure leads to Eqs.~2.12!. In Sec. IV
we will see that the results obtained from thisG (4) agree with
those obtained by other, more indirect, means. We also men
that the above arguments suggest that one can construct a
fective field theory for the soft modes in a clean fermion syst
that is analogous, and closely related, to the well-known non
ear s model that describes disordered fermions. This gen
theory will be pursued separately.

30This can be seen explicitly by using Eq.~3.2! in Eq. ~2.8c! and
recalculating theq propagator. Notice that the mean magnetiz
tion m acts like an external magnetic field, which breaks t
symmetry in spin space and gives two of the three soft sp
triplet modes a mass. This is the clean analog of the ‘‘spin
fusons’’ in the disordered case, which also acquire a mas
either an external magnetic field, or in a phase with a nonv
ishing magnetization; see, e.g., Refs. 4 and 31.

31T. R. Kirkpatrick and D. Belitz, Phys. Rev. B62, 952 ~2000!.
32D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. B55, 9452

~1997!.
33Notice that there is no term proportional tomT2 ln T in d53. In

other words, there is no renormalization oft, or the magnetic
susceptibility, that is proportional toT2 ln T. This feature of the
generalized mean-field theory is in agreement with exact per
bative calculations~Ref. 32!, as well as with Landau Fermi
liquid theory ~Ref. 34!.

34G. M. Carneiro and C. J. Pethick, Phys. Rev. B16, 1933~1977!.
35We use Ma’s method for identifying simple RG fixed points. A

cordingly, we use physical arguments to choose the value
various exponents and then check self-consistently whe
these choices indeed lead to appropriate fixed points. See
36.
02441
n
ef-

-
al

-

-
-
in
-

r-

of
er
ef.

36S.-K. Ma, Modern Theory of Critical Phenomena~Benjamin,
Reading, MA, 1976!.

37In the case of Eq.~4.7c!, this requires some explanation, as thec2

that appears here is nominally the irrelevantc2 ~with z5zM).
However, it effectively acts like a marginal operator since t
vertex functionG (2) is proportional to a frequency rather tha
being a constant. This mechanism for a nominally irrelev
operator turning into a marginal one is the same as in the di
dered case and has been discussed in detail in Ref. 19.

38C. Castellani and C. D. Castro, Phys. Rev. B34, 5935~1986!.
39C. Castellani, C. D. Castro, G. Kotliar, P. A. Lee, and G. Strina

Phys. Rev. B37, 9046~1988!.
40Here we use the fact that the marginal version ofc2 is related to

the marginal operatorc1; see the remark after Eq.~2.8c!.
41We remind the reader that the choice ofhM is in principle arbi-

trary, although some choices make the analysis of the crit
behavior easier than others.

42 We use the notationa;b for ‘‘scales likeb’’ and a}b for ‘‘ a is
proportional tob.’’

43This is a generalization of the usual definition ofa at thermal
phase transitions.

44This second-order transition is unrelated to the one discus
elsewhere~Ref. 45!, and the two transitions belong to two dif
ferent universality classes. While the one discussed in Ref
could be realized somewhere, it is not consistent with low-or
perturbation theory, and its realization requires something qu
tatively to change at higher order. The second-order transi
discussed in the present paper, on the other hand, is consi
with everything that is known.

45T. Vojta, D. Belitz, R. Narayanan, and T. R. Kirkpatrick, Z. Phy
B: Condens. Matter103, 9452~1997!.

46F. J. Wegner, inPhase Transitions and Critical Phenomena, ed-
ited by C. Domb and M. S. Green~Academic, New York, 1976!,
Vol. 6, p. 1.
9-14


