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Randomly dilute spin models with cubic symmetry
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We study the combined effect of cubic anisotropy and quenched uncorrelated impurities on multicomponent
spin models. For this purpose, we consider the field-theoretical approach based on the Ginzburg-Landau-
Wilson ¢* Hamiltonian with cubic-symmetric quartic interactions and quenched randomness coupled to the
local energy density. We compute the renormalization-group functions to six loops in the fixed-dimehsion (
=3) perturbative scheme. The analysis of such high-order series provides an accurate description of the
renormalization-group flow. The results are also used to determine the critical behavior of three-dimensional
antiferromagnetic three- and four-state Potts models in the presence of quenched impurities.
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I. INTRODUCTION AND MAIN RESULTS 1 1 1
He= J ddx{z[m(x)]% STE() 2+ o[ 6(x)?)?
The critical behavior of systems with quenched disorder is |
of considerable theoretical and experimental interest. A typi- M
cal example is obtained by mixing a@nt)ferromagnetic +—W2 ¢i(x)4}, (1.3
material with a nonmagnetic one, obtaining the so-called ran- 4=
domly dilute magnets. They are usually described by usin

Svhere ¢(x) is anM-component field andecT—T,. Analy-
the Heisenberg Hamiltonian with a random-exchange term $(X) b ¢ y

ses of high-order perturbative expansiaisee, e.g., Refs.
6—10 show that the cubic-symmetric quarticinteraction is
L relevant forM=3, and in particular, for the physically rel-
Huo= _‘]<XE> PxPySx Sy » (1.1 evant caseM=3. In this case, the nature of the transition
Y depends on the sign of the couplimg if w>0, the critical
behavior is described by a new fixed point with reduced cu-
bic symmetry, while, fow<0, the RG flow runs away to

_ . ) - infinity, and the corresponding system is expected to undergo
(the spin concentratigrand zero with probability + p (the a weak first-order transition. In the two-component case, the

impurity con_c_entratioh 'I_'he pure system corre_sponds Ho O(2)-symmetric fixed point is stable with respect to tive
=1. The critical behavior of these systems is well estabyq . hation, and thus, if the transition is continuous, it be-
lished, both theoretically and experimentally, see, e.g., Ref ongs to theX Y universality class

1-5 and references therein. In particular, a different random It is of interest to study the effect of quenched disorder on

Ising universality class describes the critical behavior of the, .- magnets. As discussed in Ref. 12, the critical behavior
random Ising mode{RIM) above the percolation threshold ¢ oo “materials should be described by the effective
of the magnetic atoms. Hamiltonian

The O(M)-symmetric Hamiltoniar(1.1) is a rather sim-
plified model for real magnets. In particular, it does not take
into account the presence of nonrotationally invariant inter- Hue=—3 pxpySx-§y+a, > sy
actions that have only the reduced symmetry of the lattice by !
and that are due, e.g., to the spin-lattice coupling and to
dipole-dipole interactions. In this case, a more realistic +E 2 Dy,ijSx,iSx,j » (1.4
Hamiltonian is o

wheres, ; are M-component spins angd, are uncorrelated
random variables, which are equal to 1 with probabifity

where, beside the random-exchange term, a random-
anisotropy term is present. Here the anisotropy tBryy; is
Hue=—3 S-§,+a>, > st (1.2 a random quantity that is traceless and has zero average.
(xy) x ’ Note that, for small anisotropy and weak disorder, this addi-
tional term should be smaller than the other ones, being,
wherea is the anisotropy coupling. For many materiald loosely speaking, proportional to the product of{fr) and
is relatively small and thus one usually neglects these addag, i.e., it is a second-order perturbation of the Heisenberg
tional interactions. However, this is fully justified only if Hamiltonian. This argument is not fully justified at criticality,
they are irrelevant in the renormalization-grofpG) sense. since, if random anisotropy is relevant, it will eventually
This issue may be investigated by considering the cubicehange the critical behavior. Nonetheless, we expect—as we
symmetrice* Hamiltoniarf shall see, experiments confirm this assumption—a large
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preasymptotic region in which such term can be neglectedheless, disorder may still have physical consequences. For
For this reason in this paper we will not consider theinstance, it may give rise to new fixed points or change the
random-anisotropy term and we shall discuss the critical beattraction domain of the pure stable fixed point. Systems that

havior of the model with Hamiltoniafd.4) with D, ;;=0. are outside the attraction domain of the fixed point in the
If only the random-exchange term is present, i,,;;  absence of disorder, and therefore show a fluctuation-driven

=0, the critical behavior of the modél.4) can be studied first-order transition, may undergosacondorder transition

using the field-theoretical Hamiltonian in the presence of disorder. Such phenomenon, usually re-

ferred to as softening, is well understood in two-dimensional
a1 , 1 , 1 5 random-exchange models in which disorder is coupled to the
Hie= | dX) 5L, @) "+ 51007+ 5 $(x) (X) local energy density. Indeed, it was argued in Ref. 16, and
later put on a rigorous bast§8that in two dimensions ther-
1 1 M mal first-order transitions become continuous in the presence
+Ev[¢(X)ZJZ+EWE i (x)*}, (1.9  of quenched disorder coupled to the local energy density. For
' Cot the cubic model1.3) for v<0, it was show!? that such a
where ¢(x) is a spatially uncorrelated random field with softening persists in 2 e dimensions, while it is absent near
Gaussian distribution coupled to the local energy densityfour dimensions, see the-expansion analysis of Sec. IIl.
Using the standard replica trick, one obtains theThus it is interesting to address this issue in three dimen-

Hamiltoniart>4 sions, where the analysis of Ref. 16 shows that the occur-
rence of softening may depend on nonuniversal features of
g 1 ) 5 the model.
He:f d°x % 51(0uda )" +1 3] In order to study the RG flow of the effective Hamiltonian

H., we consider the fixed-dimension perturbative method in
> 2 d=3 and compute the RG functions perturbatively to six
+ij ab E(U’LU Sij t Wij Gap) i b (1.6 loops. The analysis of such series allows us to determine the
’ RG flow. We briefly anticipate the main results of our analy-
wherea,b=1,...M andi,j=1, .. .N. The original system, sis. The stability of the stable fixed points of the pure theory
i.e., the randomly dilutél-component cubic model, is recov- predicted by the Harris criterion is confirmed. The region
ered in theN—O0 limit.*®> The couplingu is negative, being <0 for anyM and the regiow<0 for M=3 is outside the
proportional to minus the variance of the quenched disordeattraction domain of the stable fixed point for all physical
The study of the effective Hamiltoniak, in the limit  valuesu<0. Moreover, for anyM there exists a fixed point
N—O provides also information on the critical behavior of in the RIM universality class, which is weakly unstakie.,
the randomly dilute antiferromagnetiestate Potts model for with a very small crossover expongmind may give rise to
g=2 and 3, with Hamiltonian observable crossover effects in physical systems. We do not
find fixed points in the regiom<0 for any M and in the
regionw<0 for M=3. Therefore no softening is expected,

qu:J(XEW pxpyésx’sy' (1.7 at least for sufficiently low impurity concentration to justify
the field-theoretical approach. As for the three-state random
whereJ>0, s,=1, ... g, andp, are uncorrelated random Potts model, it is expected to have 4 transition as in the

variables. Indeed, as argued in Refs. 20 and 21 using R@ure cas# or a first-order transition, depending on the value
arguments, the critical behavior of the antiferromagneticof the effective negative coupling. The four-state random
three- and four-state Potts models on a cubic lattice shoulentiferromagnetic Potts model is expected to undergo a weak
be described by the cubic Hamiltonidi, with M=2 and first-order transition.
M =3, respectively, and witw<<0. The same correspon- We predict that cubic magnets with small positive anisot-
dence holds in the random case. The randomly dilute thregopy have a critical behavior controlled by the pure cubic
and four-state models are respectively related to the two- anfiked point, which has critical exponents very close to the
three-component model with Hamiltonigf.6) in the limit ~ Heisenberg ones. Therefore experiments should effectively
N—0 and forw<O0. observe the standard(8) critical exponents. This is in good
Since disorder is coupled to the local energy density, on@agreement with the experiments that observe in most of the
can use the Harris criteriGhto predict the critical behavior cases @) behavior with good accuracy, see, e.g., Refs. 4
of the model. It states that the addition of impurities to aand 23. On the other hand, systems that tend to magnetize
system that undergoes a second-order phase transition dogleng the cubic axes, should show a first-order transition, as
not change the critical behavior if the specific-heat criticalin the pure case. Experimentally, such a transition has never
exponenta,,. of the pure system is negative. f,,.is  been observed, probably because of the smallness of the cu-
positive, the transition is altered. This occurs in the Isingbic anisotropy: due to the very small crossover exponént,
case M=1), where the addition of impurities leads to a ~0.01, see, e.g., Refs. 7 and 4, the cubic breaking can be
different random Ising universality clas®kIM). In pure observed only very close to the critical point, i.e., fdr
M-component cubic modeldV(>1) the specific-heat expo- —T¢|/T.<10 #, which is the limit of most of the experi-
nenta,,. is negative; therefore, according to the Harris cri-ments. As already observed in Ref. 24posteriori the ex-
terion, the pure fixed point is stable against disorder. Noneperimental results also confirm the validity of neglecting the
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FIG. 2. RG flow in the planes=0 andw=0 for N=0.

random-anisotropy term in Eq1.4) in the experimentally ~anisotropy is relevant and therefore the critical behavior of
relevant range of parameters. Indeed, its presence would gifge System is not described by the Heisenberg isotropic
rise to a crossover to a first-order transition in all cades. Hamiltonian. S

The associated crossover exponent ds=2¢,—2+ ay In thg three-component case the cub|c.cr|t|cal exponents
~0.39 whereg,, and ay, are the quadratic-anisotropy and ¥c. 7 differ very little from those of the Heisenberg univer-
specific-heat exponents for the Heisenberg model. Such afflity class. Indeed, the analysis of the six-loop fixed-
exponent is sizable and thus one should have been able @mension expansions of Ref. 7 reported in the Appendix
observe the random anisotropy if it were not very small. ~ Provides the following estimates for their differences,

The paper is organized as follows. In Sec. Il we discuss
some general properties of the RG flow in three dimensions.
Section Il analyzes the RG flow near four dimensions. In
Sec. IV we present the computation and the analysis of the
fixed-dimension pertubative expansion to six loops. In theNote that these differences are much smaller than the typical
Appendix we compute the differences between the threeexperimental errors, see, e.g., Ref. 4 for a list of experimental
component cubic and Heisenberg critical exponents, by #esults, so that, at present, cubic effects are experimentally
reanalysis of the fixed-dimension six-loop expansion of Refnegligible. Using the accurate estimates of Ref. 26 for the
7 for the cubic Hamiltoniart,; . Heisenberg exponents and Eg.1), one obtains

ve—vy=—0.00033), 7#.— 7y=—0.00011),
Ye— yn=—0.000%7). 2.1

1.=0.71096), 7.=0.03745), y.=1.395512),
Il. GENERAL CONSIDERATIONS ON THE RG FLOW (2.2

In this section we discuss some properties of the RG flowwvhich are consistent with, but much more precise than, the
of the Hamiltonian(1.6) for N— 0, using general arguments results obtained from a direct analysis, see, e.g., Refs. 7
and known results holding for the special cases in which onand 6.
of the quartic couplings vanishes. The stability of the pure fixed points against th@ertur-

The RG flow in the plane=0 is that of the cubic Hamil- bation can be inferred by using general arguménts>®
tonian (1.3 (see, e.g., Ref. 4 for a recent review of results Since theu interaction is the sum of the products of the
Indeed, foru=0 the Hamiltonian(1.6) describesN decou- energy operators of the different cudlitcomponent models,
pled M-component cubic-symmetric models. Therefore inthe crossover exponent associated withs given by the
the planeu=0 there are four fixed poinfsthe trivial Gauss-  specific-heat critical exponent independently ofN, and
ian one, the Ising one in which td components of the field thus also foiN— 0. Therefore the pure stable fixed point is
decouple, the Q\1)-symmetric, and the cubic fixed point. stable with respect to random dilution for aM/=2, since
The Gaussian fixed point is always unstable, and so is ththe specific-heat exponent is always negative. For example,
Ising fixed point for any number of componer??® On  for M =2, where the stable fixed point is théZ)symmetric
the other hand, the stability properties of theone, we hav® ayy=—0.014§8); for M=3, where the
O(M)-symmetric and of the cubic fixed point dependMn  stable fixed point is the cubic one,= —0.133(2) using Eq.
For sufficiently small values ofM, M<M., the (2.2.
O(M)-symmetric fixed point is stable and the cubic one is For v=0 the Hamiltonian (1.6) describes an
unstable. FoM>M,, the opposite is true: the RG flow is MN-component model with cubic anisotropy. The RG flow
driven towards the cubic fixed point. Figure 1 sketches thdor N—0 is shown in Fig. 2. It is characterized by the pres-
flow diagram in the two casdgl <M. andM>M,.. High-  ence of two stable fixed points. The one for0, w=0, is
order perturbative computations in tleexpansion and in in the self-avoiding walK SAW) universality class, but it is
the fixed-dimension field-theoretical frameworks show thatirrelevant for our problem, since it is unreachable from the
2<M.<3; more preciselyM .~2.9.5-8 This means that the physical regionu<0. The other one belongs to the region
critical behavior of the two-component cubic model is de-u<0, w>0 and it is in the RIM universality class. See, e.g.,
scribed by the @)-symmetric fixed point and therefore be- Refs. 28—32 for recent studies of the critical properties of
longs to theXY universality class. IfM>M,., the cubic RIM.
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TABLE I. Fixed points of the Hamiltonial.6) near four dimensions. We report the leading nontrivial contribution of the expansion in
powers ofe. Note thatK = (4)¥2T (d/2)/2.

u/Ky v/Ky wi/Ky Stability eigenvalues
| Gaussian 0 0 0 Wy=—€, W,= —€, Wy=—€
I o(M) 0 6 0 _4-M _ _4-M
M+8 € QTMEgE WTE YT €
i SAW ;E 0 0 w,= €, w,= €2, w,= €l2
\Y Ising 0 0 %6 w,=—€l3, w,= €, w,=— €l3
- M—43 3 4-M 4-M
\Y, mixed ° _° 0 = - " -
M—18¢ 2(M—1) € @176 R2TIMF1) O w3 1) €
- 2 2(M—4 M —4 M —4
Vi cubic 0 —€ —( )6 w,= €, Wy=E€, W3=—F577 €

M 3M 3M

M
VI RIM ]2 0 /24 _ N _ %
2\ 108V 2\/5zle ©1=2¢€, @, g3'e ws= \/g3le
[27 [24 [24 [24
Vill 2 1_06\/2 0 -2 5—3\/E 01=0(¢€), 0,=— g;x/;wsz 5—3\/2
4

M—4 1 M—4 4-M M —
IX (M>2) _M-4 _ 1 M= e L
aM—2) € (M—2) 3M-2)¢ C1TE Q2TEM—2)¢ M —2) €

IX, X (M=2) |27 P4 N
=2\ 1gpV¢ =2/53'e 72\53'e

In the casew=0, the Hamiltonian(1.6) describesN  tory knowledge of the RG flow. In particular, this would
coupledM-vector models, and it is also callédN model?  allow us to investigate if random dilution may cause a soft-
See, e.g., Ref. 4 for a recent review of results. The RG flowening of the first-order transition predicted for pure systems
for M=2 andN—0 is shown in Fig. 2. Again, the flow is that are outside the attraction domain of the stable fixed
characterized by two stable fixed points: the SAW and thepoint. For example, systems with<<O might have a con-

3

O(M)-symmetric ones. tinuous transition if there exists a fixed point in the region
For M=2 and generid\ the Hamiltonian(1.6) is invari-  u<0, v<0, while, for systems wittM =3 andw<0, soft-
ant under the transformation ening to a continuous transition requires a fixed point in the

regionu<0, w<0.

1
(P12 2))— —=(d1j+ d2j b1 — b2)),
\/E I1l. RG FLOW NEAR FOUR DIMENSIONS

The RG flow of the randomly dilute cubic-symmetric
model can be investigated near four dimensions using the
For N=0 this transformation maps the Ising fixed point into first nontrivial terms of the expansion in powers &4
the cubic one, and the RIM fixed point into a new one be-—d. Using the results reported in Refs. 13, 33, and 9, one
longing to the region withu<0, v>0, w<0. Of course, may easily obtain the results of Table I, where the location of
corresponding fixed points describe the same critical behawhe fixed points and the eigenvalues of the corresponding
ior. stability matrix are reported to leading order.

In conclusion, the above-reported considerations show the Note that the O(/e) fixed points emerge at two-loop
presence of at least seven fixed pointsNbe3 and eight for  level, and are related to the degeneracy of the one-j@op
M=2 using the above-mentioned symmetry. Of coursefunctions®* For M=2 the fixed points IV, VII, VIII can be
other fixed points may lie outside the plangs 0, v=0, mapped respectively into the fixed points VI, IX, X using the
w=0. Thus a more general analysis for generic values of theymmetry(2.3).
quartic couplings is necessary in order to obtain a satisfac- The physically relevant fixed points are those that can be

(Ug,vg,Wg)— (Ug,vg+ 5Wo, —Wp). (2.3
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reached from the region<<0, i.e., the fixed points (Gauss- By using the numerical results compiled in Ref. 37 and a
ian), Il [O(M)], IV (Ising), VI (cubig), VII (RIM) for all general symbolic manipulation program, we determined the
values ofM=2, and V(mixed) and IX for M<4 (note that RG functions to six loops. The resulting series fb+=0 are

in three dimensions the mixed fixed point V lies in the

>0 region for allM=2, as shown in the preceding section 8 :m<9_U: T 2(M+2) T W 95_,
Concerning their stability properties, we note that all fixed ~! am (M+8) 216
points in the regioru=<0, except the O{1) and cubic one,
are unstable for anyl. For M<M.=4—2e+0(e?) (M, S0(M +2) 2M+2)__, o2 SOUQW— E—WZ
~2.9 in three dimensionghe stable fixed point is the ™) - 21(M +8) - 27(M+8)2 81 729"
one, while forM > M the stable fixed point is the cubic one. 184
Note that the derivation ob, for the fixed point VII(RIM) —UUW+~< > bWuiiwk|, (4.3
requires a three-loop calculation—we used here the results of 8LM+38) i+jTk=3 "
Ref. 33.

In conclusion, near four dimensions the critical behavior v 3 2 4190+ 41M)

is not changed by the addition of random impurities for any Bv:ma_m ~v+v? +2uU+ W 2IM+8)% V3
M=2. Moreover, as already observed in Ref.[8&though

that analysis missed the Q€) fixed pointd, there is no _2(131+25m)__, 185, 400

softening of the transition for pure systems that are outside 27(M +8) w216t Y 81M+8)" W

the attraction domain of the stable fixed pofimt particular,

for v<0 and forw<0 in the caseM=M,). _ EW_ 7—7u WAD E b(v)ﬁ—,—k
Even though thes expansion provides useful indications 72 81" Tk k4 '

of the RG flow in lower dimensions, the validity of the ex-

trapolation toe=1 of the results obtained near four dimen- (4.4
sions is not guaranteed, even at a qualitative level. Relevant g 3 12 308
features concerning the location and the stability of the fixed - m_v — WA+ W2H —OW+ ——— W— — w3

. . . . . w
points can drastically change approaching three dimensions. Jm 2 (M+8) 729
Moreover, new fixed points, which are not found in

) . ) . 104 832 555
e-expansion analyses, may appear in three dimensions. For - UW2— ————DW2— —u?w
example, this occurs in the physically interesting cases of the 81 8UM+8) 648
<p4. Hamiltoniar! describing the critical behavior of frustrated 4(370+23M) . (23M+370)
spin models with noncollinear order, see, e.g., Refs. 35 and VW — Uovw
4, and the Ginzburg-Landau model of superconductors, 27(M+8) 271(M+8)
where a complex scalar field couples to a gauge field, see, o
e.g., Ref. 36. +v7( > biuiwk. (4.5)
i+j+k=3
IV. ANALYSIS OF THE SIX-LOOP FIXED-DIMENSION We do not report here the coefficientsy), b{), by,
PERTURBATIVE EXPANSION which we computed for+j+k=<6; they can be found in

Ref. 38. We have also computed the RG functions associated

with the critical exponents to six loops. We do not report
In the fixed-dimension field-theoretical approach, seethem either since they will not be used in our analytiey

e.g., Ref. 4 and references therein, one expands in powers afe available on requgst

appropriately defined zero-momentum quartic couplings. In

the present case we define renormalized couplings, and B. Resummation of the series

w from the zero-momentum four-point function. They are

normalized so that, at tree level, they are related to the bare

couplingsu, v, andw by

A. Six-loop series

The perturbative series for tid-vector model and for the
ublc model are Borel summable and thus accurate results
can be obtained by resummation methods that exploit Borel

summability and the knowledge of the large-order

u= 16_77R om. v= 16_77R — _ @— behavior’*° On the other hand, perturbative series for ran-

MN , U mvm, w wm, ; i

3 3 3 domly dilute models cannot be resummed naively. In the

(4.1 present case, an extension of the results of Refs. 40 and 41
) ) indicates that the perturbative series at fixéd andu/w are

where R =9/(8+K) andm is the renormalized mass de- ot Borel summable. For the zero-dimensional random Ising

fined by model, Ref. 42 showed that one could still compute correctly
) the free energy by means of a more elaborate resummation

I'&Li(p) = 82582, [m?+ p?+ O(pH)]. (4.2 method. Although no proof exists that this procedure works

in higher dimensions, this method was recently applied to

Herel'® i(p) is the two-point one-particle irreducible cor- resum six-loop expansions for the random Ising model in

ai,bj
relation function. three dimensiong! obtaining reasonably accurate results.
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Here, we apply a similar method to resum the perturbative TABLE II. Estimates of the subleading exponeat, at the
series for the randomly dilute cubic model for generic valuegv-component cubic fixed point for several valuesMf The last

of u,u,w. If f(u,v,w) has a perturbative expansion of the column reports the theoretical predictien /v obtained from the
form results of Ref. 7. FoM=3 we also report the number obtained

from the estimate§2.2).

f(u,o,w)=2 cy(v,wu", (46 M [ve.Wel oy —aclve
- 3 [1.321(18),0.096(20) 0.157(28) 0.167(24), 0.187(3)

4 [0.881(14),0.639(14) 0.203(27) 0.199(30)

ch(v W)= > Coqu'w, (47 8 [0.440(12),1.136(1Q) 0.199(21) 0.191(24)

kI=0 % [0.1746),1.417(6)  0.179(16) 0.175(30)

following Ref. 31, we first resum the coefficientg(v,w)

and then, using the computed coefficients, we resum the sgyhich, according to the nonpertubative argument reported in

ries inu. The first resummation can be performed by usingsec. |1, should be given by

either the Pad®&orel method or the conformal-mapping

method—indeed, the large-order behavior of the coefficients

Ch(v,w) is exactly the one of theM-component cubic w _ Oxy (4.9

model” In the PadeBorel method, for each€@n<p (where Y vy '

p is maximum order considergdwe consider the Padap-

proximantg (p—n—rp)/r,] of the Borel-Leroy transformed where ayy and vyy are the critical exponents of th¥Y

series, which depend on an additional paramétgr The  model. The analysis of the serig¢exploiting the known

second method uses the large-order behavior of the seri¢srge-order behavior of the series and using the conformal-

and a conformal mapping, see Ref. 31. Once an estimate @fapping methodgives w,=0.0018). Therefore the stabil-

the coefficients,(v,w) is obtained, the second resummationity of the XY fixed point is substantially confirmed, although

is performed by using the PadBorel method. We consider the apparent error of the analysis does not completely ex-

Padeapproximants (q—r)/r,] of the Borel-Leroy trapS- clude the opposite sign fap,. The estimate ofv, is sub-

formed series, witlyy<<p— 1. Therefore, in the double Pade stantially consistent with Eq.(4.9). Indeed, ayy/vyy

Borel method, which we will mostly use, the parameters in-= —0.0217(12), obtained from the analysis of high-

troduced by the analysis arp{b,}{r,} for the first temperature series, alidayy/vyy=—0.01€7), obtained

resummation and,b,, r, for the second one. It is impos- by a more similar technique, i.e., the analysis of the fixed-

sible to vary all theb,, andr, independently, since there are dimension expansion of the(2)-symmetric model. We men-

too many combinations. Therefore, following Ref. 31, wetion that perturbative studies based on shorter sBrfegive

took them equal for alh. apparently contradictory results, favoring a negative value of
In the special cases when one of the couplings vanishesg,,, .

one may use the methods already applied in the literature for \We now consider the cagd¢=3. The relevant fixed point

the study of the corresponding model. For example, the sds now the cubic one with coordinates§p,w.). The stabil-

ries foru=0 correspond to those of the Hamiltonigh3); ity against theu perturbation is determined by the sign of

they are Borel summable, so that one may use the standard

technique based on the knowledge of the large-order behav-

ior and a conformal mappingThe series fon=0 corre- ° :ﬂﬁu (4.10
spond to those of the random Ising Hamiltonidn3) with “au| '
M—0; thus one may use the analysis methods outlined in (0w we)

Ref. 31.

Again, one expect®,= — a./v;, Wherea, and v, are the
critical exponents associated with the cubic fixed point.
Since the large-order behavior of the expansiowpis that

1. Stability of the fixed points of the pure systems of the series of the cubic-symmetric pure model, one can use
the standard conformal-mapping resummafidstimates of

w, for several values oM are reported in Table lfwe use

the estimates of the cubic fixed points reported in Ref. 7
For comparison, we also report the ratiax. /v, as obtained
from the results of Ref. 7. Other estimates can be obtained
using the results of Refs. 6 and 46. M= 3, we also quote
—aclve~0.142%% — o /v.,~0.163% In conclusion, the
analysis of the six-loop perturbative series shows that the

C. Results

First, for M =2 we check the stability of the stable fixed
point of the pure theoryy=0) with respect to the perturba-
tion induced by random dilution. The coordinates of the
stable @2)-symmetric fixed point of the two-component
theory aré”**u=0, vyy=1.4024), andw=0. The stabil-
ity with respect to random dilution is controlled by

9By stable fixed point of the system without disorder is stable
Wy= au , (4.8 with respect to the addition of random impurities, in agree-
(Owxy.0) ment with the Harris criterion.
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2. Fixed points induced by the disorder, i.e., for<tO

We now study the stability of the RIM fixed point located
in the planev=0. Its coordinates aféug,= —0.631(16),
v=0, Wgm=2.195(20). This fixed point is stable in the
planev =0. To check its stability with respect to theper-
turbation we need to compute only

_ 9By

v — )

(UriMOWRm)

w

(4.1

since the derivatives g8, with respect tau andw vanish at
v=0. Note that the series fas, is M independent. We apply

PHYSICAL REVIEW B67, 024418 (2003

indistinguishable within their uncertainty. Field-theoretical
six-loop calculations for the cubic modelgive v,
=0.7046), 7.=0.0333(26), andy.=1.390(12), while the
analysis of Ref. 43 of six- and seven-loop series for tf&)-O
symmetric Heisenberg model provide the estimaigs
=0.7073(35), 74 =0.0355(25), yy=1.3895(50). We also
mention the more accurate estimates=0.71125), »y
=0.03785), 7yy=1.396@9), obtained by lattice
technique<® By comparing these estimates we can only put
a bound on the differences of the cubic and Heisenberg ex-
ponents; for example, the estimatesofiffer at most by
1%.

Much better estimates of such differences can be obtained

the double Pad8orel method to resum the series. We find by a more careful analysis of the six-loop fixed-dimension

that nondefective Padapproximants are obtained only for

r,=1. Settingg=p—1, the results depend on four free pa-

rametersp, r,, b,, andb,,. In principle, we should look for

series of the cubic modé€l.3) computed in Ref. 7. We recall
that the expansion is performed in powers of the zero-
momentum quartic couplings and w associated respec-

the values ob, andb,, that make the estimates independenttively with the couplings,w of the cubic Hamiltoniar{1.3).
of the orderm of the series, but in the present case the resultIhe series for the cubic model can be obtained by setting

are weakly depending upon these two parameters. So, we0

consider all values €b,,, b, <10. With this choice, all ap-
proximants withr ,=1 andr ,>2 are defective and therefore
we usep=4, 5, and 6 and,=0,2. Forr,=0 (direct sum-

in the perturbative series. In the plane,w
the coordinates of the @)-symmetric and cubic fixed
points are respectivel§*® X,=[1.3904),0] and X,
=[1.321(18),0.096(2Q) In order to obtain a more precise

mation) we obtain w,=—0.047(8f20; for p=4, w, determination of the exponents, one may proceed as follows.
=0.008(2)20} for p=5, and w,=—0.049(2)20} for p Noting the closeness of the fixed points, one may estimate
=6, where the number between parentheses is related to thiee difference of the corresponding critical esponepiand
spread of the results of the approximants considered, while by expanding around the Heisenberg fixed point. Therefore
the one between braces is related to the uncertainty on thee first-order approximation is
location of the fixed point. For,=2, all approximants
with p=4 are defective. Forp=5 we obtain o,
—0.012(14)20} and forp=6 w,=—0.080(5)20}. The
quite large discrepancy between these estimates clearly indi-
cates that the analysis is not very robust. We give as conser-
vative final estimaten, = —0.04(5), that includes all previ-
ous resultd’ This value suggests that the RIM fixed point is v (Vo7 )+‘9_” W
unstable, although it does not allow us to exclude the oppo- v | ¢ g X ¢
site case. H H

Finally, we search for the presence of new fixed pointsThe RG functionsn,(v,w), #7(v,w), and v(v,w)=(2
in the physical regionu<0. Our analysis does not pro- — 74+ 7))~ have been introduced in Ref. 7. The expres-
vide evidence for new fixed points in the physical regionsions(Al) can be simplified using the relatith
u<0, at least foru=—1, the region in which sufficiently
stable results are obtained. In the cade=2, we only rx
find the fixed point predicted by the symmet&:3). Indeed, IW 3(M+2) g ‘ ]
a fixed point equivalent to the RIM is expected @t @0 @0
=Uky=—0.631(16), v* =05+ W5y =3.658(33), W* which is verified py our six-loop series and is probably exact.
= —W&,y= —2.195(20). Our resummation of the six-loop Therefore we write
series gives consistent results for the location of the fixed

We,
X

— . 9d7y
(UC_UH)"'__(}S
ow

Xy

Ap=ne—pu=AnW=—"C

(A1)

Av=p.— VH~AV(1)=—

_ M+8 a%,t\

(A2)

point, i.e..0* = —0.70(5), o* =3.7(3), W* = — 2.2(2). A= (U—C_U—H+1_1V—VC)
Ju « 15
H
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APPENDIX: DIFFERENCES BETWEEN CUBIC AND

HEISENBERG CRITICAL EXPONENTS In order to estimate the right-hand side of the above equa-

tions, one needs to consider all the elements of the covari-
In the three-component case the cubic critical exponentance matrix associated with the cubic fixed poXyt, i.e.,
differ very little from those of the Heisenberg universality Cgz=0.000 345, C;=0.000 380, andCg= —0.000 361,
class. The available estimates of the critical exponents areecause the estimates of the coordinatesv, are strongly
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correlated. Using the covariance matrix one obtains the quite=—0.743(10), and therefore  ve—vy+ W,
precise estimate,+ 1tw.=1.3944), which is very close to = —0.00098). Moreover, the analysis of the series pro-
v =1.3904), thus leading to a large cancellation in the vides the results d7,/dv]x,=0.06(1) and dv/dvlx,
right-hand side of Eqs(A3). In alternative, one may con- =0.21(1). Inserting in Egs. (A3), we finally obtain

sider the approximate relation A7M=20.00005(5) andA»®M=—0.00072). Next, we
determined the second-order contributions to EAfl). It

IBy (To—Ty) + IBy W.~0 (A4) can be estimated by evaluating the second derivativeg,of

v ¢ TR swl|. e T 7, and B, at X;. We obtainedA ®>~—0.00002 and

Xy Xy

Av(®~—0.0001. We also checked that the third-order con-
which is obtained by expanding the equatigy(v.,w.) tributions are very small and negligible. Summing up, we
=0. Within this approximation, one obtaing.—vy  obtain the estimate@.1).
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