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Randomly dilute spin models with cubic symmetry
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We study the combined effect of cubic anisotropy and quenched uncorrelated impurities on multicomponent
spin models. For this purpose, we consider the field-theoretical approach based on the Ginzburg-Landau-
Wilson w4 Hamiltonian with cubic-symmetric quartic interactions and quenched randomness coupled to the
local energy density. We compute the renormalization-group functions to six loops in the fixed-dimension (d
53) perturbative scheme. The analysis of such high-order series provides an accurate description of the
renormalization-group flow. The results are also used to determine the critical behavior of three-dimensional
antiferromagnetic three- and four-state Potts models in the presence of quenched impurities.
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I. INTRODUCTION AND MAIN RESULTS

The critical behavior of systems with quenched disorde
of considerable theoretical and experimental interest. A ty
cal example is obtained by mixing an~anti!ferromagnetic
material with a nonmagnetic one, obtaining the so-called r
domly dilute magnets. They are usually described by us
the Heisenberg Hamiltonian with a random-exchange ter

HH,r52J(̂
xy&

rxrysWx•sWy , ~1.1!

wheresx,i are M-component spins andrx are uncorrelated
random variables, which are equal to 1 with probabilityp
~the spin concentration! and zero with probability 12p ~the
impurity concentration!. The pure system corresponds top
51. The critical behavior of these systems is well est
lished, both theoretically and experimentally, see, e.g., R
1–5 and references therein. In particular, a different rand
Ising universality class describes the critical behavior of
random Ising model~RIM! above the percolation thresho
of the magnetic atoms.

The O(M )-symmetric Hamiltonian~1.1! is a rather sim-
plified model for real magnets. In particular, it does not ta
into account the presence of nonrotationally invariant int
actions that have only the reduced symmetry of the lat
and that are due, e.g., to the spin-lattice coupling and
dipole-dipole interactions. In this case, a more realis
Hamiltonian is

HH,c52J(̂
xy&

sWx•sWy1a(
x

(
i

sx,i
4 , ~1.2!

wherea is the anisotropy coupling. For many materialsa/J
is relatively small and thus one usually neglects these a
tional interactions. However, this is fully justified only
they are irrelevant in the renormalization-group~RG! sense.
This issue may be investigated by considering the cu
symmetricw4 Hamiltonian2
0163-1829/2003/67~2!/024418~9!/$20.00 67 0244
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Hc5E ddxH 1

2
@]mf~x!#21

1

2
rf~x!21

1

4!
v@f~x!2#2

1
1

4!
w(

i 51

M

f i~x!4J , ~1.3!

wheref(x) is anM-component field andr}T2Tc . Analy-
ses of high-order perturbative expansions~see, e.g., Refs
6–10! show that the cubic-symmetric quarticw interaction is
relevant forM>3, and in particular, for the physically rel
evant caseM53. In this case, the nature of the transitio
depends on the sign of the couplingw: if w.0, the critical
behavior is described by a new fixed point with reduced
bic symmetry, while, forw,0, the RG flow runs away to
infinity, and the corresponding system is expected to unde
a weak first-order transition. In the two-component case,
O~2!-symmetric fixed point is stable with respect to thew
perturbation, and thus, if the transition is continuous, it b
longs to theXY universality class.

It is of interest to study the effect of quenched disorder
cubic magnets. As discussed in Ref. 12, the critical beha
of these materials should be described by the effec
Hamiltonian

HH,rc52J(̂
xy&

rxrysWx•sWy1a(
x

(
i

sx,i
4

1(
x

(
i j

Dx,i j sx,isx, j , ~1.4!

where, beside the random-exchange term, a rand
anisotropy term is present. Here the anisotropy termDx,i j is
a random quantity that is traceless and has zero aver
Note that, for small anisotropy and weak disorder, this ad
tional term should be smaller than the other ones, be
loosely speaking, proportional to the product of (12p) and
a, i.e., it is a second-order perturbation of the Heisenb
Hamiltonian. This argument is not fully justified at criticality
since, if random anisotropy is relevant, it will eventual
change the critical behavior. Nonetheless, we expect—as
shall see, experiments confirm this assumption—a la
©2003 The American Physical Society18-1
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preasymptotic region in which such term can be neglec
For this reason in this paper we will not consider t
random-anisotropy term and we shall discuss the critical
havior of the model with Hamiltonian~1.4! with Dx,i j 50.

If only the random-exchange term is present, i.e.,Dx,i j
50, the critical behavior of the model~1.4! can be studied
using the field-theoretical Hamiltonian

Hrc5E ddxH 1

2
@]mf~x!#21

1

2
rf~x!21

1

2
c~x!f~x!2

1
1

4!
v@f~x!2#21

1

4!
w(

i 51

M

f i~x!4J , ~1.5!

where c(x) is a spatially uncorrelated random field wi
Gaussian distribution coupled to the local energy dens
Using the standard replica trick, one obtains t
Hamiltonian13,14

He5E ddxH(
i ,a

1

2
@~]mfa,i !

21rfa,i
2 #

1 (
i j ,ab

1

4!
~u1vd i j 1wd i j dab!fa,i

2 fb, j
2 J , ~1.6!

wherea,b51, . . .M andi , j 51, . . .N. The original system,
i.e., the randomly diluteM-component cubic model, is recov
ered in theN→0 limit.15 The couplingu is negative, being
proportional to minus the variance of the quenched disor

The study of the effective HamiltonianHe in the limit
N→0 provides also information on the critical behavior
the randomly dilute antiferromagneticq-state Potts model fo
q52 and 3, with Hamiltonian

Hdq5J(̂
xy&

rxrydsx ,sy
, ~1.7!

whereJ.0, sx51, . . . ,q, andrx are uncorrelated random
variables. Indeed, as argued in Refs. 20 and 21 using
arguments, the critical behavior of the antiferromagne
three- and four-state Potts models on a cubic lattice sho
be described by the cubic HamiltonianHc with M52 and
M53, respectively, and withw,0. The same correspon
dence holds in the random case. The randomly dilute th
and four-state models are respectively related to the two-
three-component model with Hamiltonian~1.6! in the limit
N→0 and forw,0.

Since disorder is coupled to the local energy density,
can use the Harris criterion11 to predict the critical behavio
of the model. It states that the addition of impurities to
system that undergoes a second-order phase transition
not change the critical behavior if the specific-heat criti
exponentapure of the pure system is negative. Ifapure is
positive, the transition is altered. This occurs in the Is
case (M51), where the addition of impurities leads to
different random Ising universality class~RIM!. In pure
M-component cubic models (M.1) the specific-heat expo
nentapure is negative; therefore, according to the Harris c
terion, the pure fixed point is stable against disorder. No
02441
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theless, disorder may still have physical consequences.
instance, it may give rise to new fixed points or change
attraction domain of the pure stable fixed point. Systems
are outside the attraction domain of the fixed point in t
absence of disorder, and therefore show a fluctuation-dri
first-order transition, may undergo asecond-order transition
in the presence of disorder. Such phenomenon, usually
ferred to as softening, is well understood in two-dimensio
random-exchange models in which disorder is coupled to
local energy density. Indeed, it was argued in Ref. 16, a
later put on a rigorous basis,17,18 that in two dimensions ther
mal first-order transitions become continuous in the prese
of quenched disorder coupled to the local energy density.
the cubic model~1.3! for v,0, it was shown19 that such a
softening persists in 21« dimensions, while it is absent nea
four dimensions, see thee-expansion analysis of Sec. III
Thus it is interesting to address this issue in three dim
sions, where the analysis of Ref. 16 shows that the oc
rence of softening may depend on nonuniversal feature
the model.

In order to study the RG flow of the effective Hamiltonia
He , we consider the fixed-dimension perturbative method
d53 and compute the RG functions perturbatively to s
loops. The analysis of such series allows us to determine
RG flow. We briefly anticipate the main results of our ana
sis. The stability of the stable fixed points of the pure theo
predicted by the Harris criterion is confirmed. The regionv
,0 for anyM and the regionw,0 for M>3 is outside the
attraction domain of the stable fixed point for all physic
valuesu,0. Moreover, for anyM there exists a fixed poin
in the RIM universality class, which is weakly unstable~i.e.,
with a very small crossover exponent! and may give rise to
observable crossover effects in physical systems. We do
find fixed points in the regionv,0 for any M and in the
regionw,0 for M>3. Therefore no softening is expecte
at least for sufficiently low impurity concentration to justif
the field-theoretical approach. As for the three-state rand
Potts model, it is expected to have anXY transition as in the
pure case22 or a first-order transition, depending on the val
of the effective negative couplingw. The four-state random
antiferromagnetic Potts model is expected to undergo a w
first-order transition.

We predict that cubic magnets with small positive anis
ropy have a critical behavior controlled by the pure cub
fixed point, which has critical exponents very close to t
Heisenberg ones. Therefore experiments should effectiv
observe the standard O~3! critical exponents. This is in good
agreement with the experiments that observe in most of
cases O~3! behavior with good accuracy, see, e.g., Refs
and 23. On the other hand, systems that tend to magne
along the cubic axes, should show a first-order transition
in the pure case. Experimentally, such a transition has ne
been observed, probably because of the smallness of the
bic anisotropy: due to the very small crossover exponentf
'0.01, see, e.g., Refs. 7 and 4, the cubic breaking can
observed only very close to the critical point, i.e., foruT
2Tcu/Tc!1024, which is the limit of most of the experi-
ments. As already observed in Ref. 24,a posteriori, the ex-
perimental results also confirm the validity of neglecting t
8-2
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RANDOMLY DILUTE SPIN MODELS WITH CUBIC SYMMETRY PHYSICAL REVIEW B67, 024418 ~2003!
random-anisotropy term in Eq.~1.4! in the experimentally
relevant range of parameters. Indeed, its presence would
rise to a crossover to a first-order transition in all case12

The associated crossover exponent isf52fH221aH
'0.39 wherefH and aH are the quadratic-anisotropy an
specific-heat exponents for the Heisenberg model. Such
exponent is sizable and thus one should have been ab
observe the random anisotropy if it were not very small.

The paper is organized as follows. In Sec. II we disc
some general properties of the RG flow in three dimensio
Section III analyzes the RG flow near four dimensions.
Sec. IV we present the computation and the analysis of
fixed-dimension pertubative expansion to six loops. In
Appendix we compute the differences between the thr
component cubic and Heisenberg critical exponents, b
reanalysis of the fixed-dimension six-loop expansion of R
7 for the cubic HamiltonianHc .

II. GENERAL CONSIDERATIONS ON THE RG FLOW

In this section we discuss some properties of the RG fl
of the Hamiltonian~1.6! for N→0, using general argument
and known results holding for the special cases in which
of the quartic couplings vanishes.

The RG flow in the planeu50 is that of the cubic Hamil-
tonian ~1.3! ~see, e.g., Ref. 4 for a recent review of result!.
Indeed, foru50 the Hamiltonian~1.6! describesN decou-
pled M-component cubic-symmetric models. Therefore
the planeu50 there are four fixed points:2 the trivial Gauss-
ian one, the Ising one in which theM components of the field
decouple, the O(M )-symmetric, and the cubic fixed poin
The Gaussian fixed point is always unstable, and so is
Ising fixed point for any number of componentsM.2,25 On
the other hand, the stability properties of th
O(M )-symmetric and of the cubic fixed point depend onM.
For sufficiently small values of M, M,Mc , the
O(M )-symmetric fixed point is stable and the cubic one
unstable. ForM.Mc , the opposite is true: the RG flow i
driven towards the cubic fixed point. Figure 1 sketches
flow diagram in the two casesM,Mc and M.Mc . High-
order perturbative computations in thee-expansion and in
the fixed-dimension field-theoretical frameworks show t
2,Mc,3; more precisely,Mc'2.9.6–8 This means that the
critical behavior of the two-component cubic model is d
scribed by the O~2!-symmetric fixed point and therefore be
longs to theXY universality class. IfM.Mc , the cubic

FIG. 1. RG flow in the planeu50 for M,Mc andM.Mc .
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anisotropy is relevant and therefore the critical behavior
the system is not described by the Heisenberg isotro
Hamiltonian.

In the three-component case the cubic critical expone
nc , hc differ very little from those of the Heisenberg unive
sality class. Indeed, the analysis of the six-loop fixe
dimension expansions of Ref. 7 reported in the Appen
provides the following estimates for their differences,

nc2nH520.0003~3!, hc2hH520.0001~1!,

gc2gH520.0005~7!. ~2.1!

Note that these differences are much smaller than the typ
experimental errors, see, e.g., Ref. 4 for a list of experime
results, so that, at present, cubic effects are experimen
negligible. Using the accurate estimates of Ref. 26 for
Heisenberg exponents and Eq.~2.1!, one obtains

nc50.7109~6!, hc50.0374~5!, gc51.3955~12!,
~2.2!

which are consistent with, but much more precise than,
results obtained from a direct analysis, see, e.g., Ref
and 6.

The stability of the pure fixed points against theu pertur-
bation can be inferred by using general arguments.2,11,25

Since theu interaction is the sum of the products of th
energy operators of the different cubicM-component models
the crossover exponent associated withu is given by the
specific-heat critical exponenta independently ofN, and
thus also forN→0. Therefore the pure stable fixed point
stable with respect to random dilution for anyM>2, since
the specific-heat exponent is always negative. For exam
for M52, where the stable fixed point is the O~2!-symmetric
one, we have27 aXY520.0146(8); for M53, where the
stable fixed point is the cubic one,ac520.133(2) using Eq.
~2.2!.

For v50 the Hamiltonian ~1.6! describes an
MN-component model with cubic anisotropy. The RG flo
for N→0 is shown in Fig. 2. It is characterized by the pre
ence of two stable fixed points. The one foru.0, w50, is
in the self-avoiding walk~SAW! universality class, but it is
irrelevant for our problem, since it is unreachable from t
physical regionu,0. The other one belongs to the regio
u,0, w.0 and it is in the RIM universality class. See, e.g
Refs. 28–32 for recent studies of the critical properties
RIM.

FIG. 2. RG flow in the planesv50 andw50 for N50.
8-3
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TABLE I. Fixed points of the Hamiltonian~1.6! near four dimensions. We report the leading nontrivial contribution of the expansio
powers ofe. Note thatKd5(4p)d/2 G(d/2)/2.

u/Kd v/Kd w/Kd Stability eigenvalues

I Gaussian 0 0 0 vu52e, vv52e, vw52e

II O( M ) 0 6
M18

e 0 vu5
42M

M18
e, vv5e, vw5

42M

M18
e

III SAW 3
4

e 0 0 vu5e, vv5e/2, vw5e/2

IV Ising 0 0 2
3

e vu52e/3, vv5e, vw52e/3

V mixed M24
M21

3
8

e
3

2(M21)
e 0 v15e, v25

42M

3(M11)
e, vw5

42M

3(M11)
e

VI cubic 0 2
M

e
2(M24)

3M
e vu5

M24
3M

e, v25e, v35
M24
3M

e

VII RIM 22A 27
106

Ae 0 2A24
53

Ae v152e, vv52A24
53

Ae, v35A24
53

Ae

VIII 2A 27
106

Ae 0 22A24
53

Ae v15O(e), vv52A24
53

Ae, v35A24
53

Ae

IX ( M.2) M24
4(M22)

e
1

(M22)
e

M24
3(M22)

e v15e, v25
42M

6(M22)
e, v35

M24
6(M22)

e

IX, X ( M52) 72A 27
106

Ae 62A54
53

Ae 72A24
53

Ae
o
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to
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In the casew50, the Hamiltonian~1.6! describesN
coupledM-vector models, and it is also calledMN model.2

See, e.g., Ref. 4 for a recent review of results. The RG fl
for M>2 andN→0 is shown in Fig. 2. Again, the flow is
characterized by two stable fixed points: the SAW and
O(M )-symmetric ones.

For M52 and genericN the Hamiltonian~1.6! is invari-
ant under the transformation

~f1,i ,f2,i !→
1

A2
~f1,i1f2,i ,f1,i2f2,i !,

~u0 ,v0 ,w0!→~u0 ,v01 3
2 w0 ,2w0!. ~2.3!

For N50 this transformation maps the Ising fixed point in
the cubic one, and the RIM fixed point into a new one b
longing to the region withu,0, v.0, w,0. Of course,
corresponding fixed points describe the same critical beh
ior.

In conclusion, the above-reported considerations show
presence of at least seven fixed points forM>3 and eight for
M52 using the above-mentioned symmetry. Of cour
other fixed points may lie outside the planesu50, v50,
w50. Thus a more general analysis for generic values of
quartic couplings is necessary in order to obtain a satis
02441
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tory knowledge of the RG flow. In particular, this woul
allow us to investigate if random dilution may cause a so
ening of the first-order transition predicted for pure syste
that are outside the attraction domain of the stable fix
point. For example, systems withv,0 might have a con-
tinuous transition if there exists a fixed point in the regi
u,0, v,0, while, for systems withM>3 andw,0, soft-
ening to a continuous transition requires a fixed point in
regionu,0, w,0.

III. RG FLOW NEAR FOUR DIMENSIONS

The RG flow of the randomly dilute cubic-symmetr
model can be investigated near four dimensions using
first nontrivial terms of the expansion in powers ofe[4
2d. Using the results reported in Refs. 13, 33, and 9, o
may easily obtain the results of Table I, where the location
the fixed points and the eigenvalues of the correspond
stability matrix are reported to leading order.

Note that the O(Ae) fixed points emerge at two-loop
level, and are related to the degeneracy of the one-loob
functions.34 For M52 the fixed points IV, VII, VIII can be
mapped respectively into the fixed points VI, IX, X using th
symmetry~2.3!.

The physically relevant fixed points are those that can
8-4
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RANDOMLY DILUTE SPIN MODELS WITH CUBIC SYMMETRY PHYSICAL REVIEW B67, 024418 ~2003!
reached from the regionu,0, i.e., the fixed points I~Gauss-
ian!, II @O(M )#, IV ~Ising!, VI ~cubic!, VII ~RIM! for all
values ofM>2, and V~mixed! and IX for M<4 ~note that
in three dimensions the mixed fixed point V lies in theu
.0 region for allM>2, as shown in the preceding section!.
Concerning their stability properties, we note that all fix
points in the regionu<0, except the O(M ) and cubic one,
are unstable for anyM. For M,Mc5422e1O(e2) (Mc
'2.9 in three dimensions! the stable fixed point is the O(M )
one, while forM.Mc the stable fixed point is the cubic on
Note that the derivation ofv1 for the fixed point VII~RIM!
requires a three-loop calculation—we used here the resul
Ref. 33.

In conclusion, near four dimensions the critical behav
is not changed by the addition of random impurities for a
M>2. Moreover, as already observed in Ref. 19@although
that analysis missed the O(Ae) fixed points#, there is no
softening of the transition for pure systems that are outs
the attraction domain of the stable fixed point~in particular,
for v,0 and forw,0 in the caseM>Mc).

Even though thee expansion provides useful indication
of the RG flow in lower dimensions, the validity of the e
trapolation toe51 of the results obtained near four dime
sions is not guaranteed, even at a qualitative level. Rele
features concerning the location and the stability of the fix
points can drastically change approaching three dimensi
Moreover, new fixed points, which are not found
e-expansion analyses, may appear in three dimensions.
example, this occurs in the physically interesting cases of
w4 Hamiltonian describing the critical behavior of frustrat
spin models with noncollinear order, see, e.g., Refs. 35
4, and the Ginzburg-Landau model of superconduct
where a complex scalar field couples to a gauge field,
e.g., Ref. 36.

IV. ANALYSIS OF THE SIX-LOOP FIXED-DIMENSION
PERTURBATIVE EXPANSION

A. Six-loop series

In the fixed-dimension field-theoretical approach, s
e.g., Ref. 4 and references therein, one expands in powe
appropriately defined zero-momentum quartic couplings
the present case we define renormalized couplingsū, v̄, and
w̄ from the zero-momentum four-point function. They a
normalized so that, at tree level, they are related to the b
couplingsu, v, andw by

u5
16p

3
RMNūm, v5

16p

3
RM v̄m, w5

16p

3
w̄m,

~4.1!

where RK59/(81K) and m is the renormalized mass de
fined by

Gai,b j
(2) ~p!5dabd i j Zf

21@m21p21O~p4!#. ~4.2!

HereGai,b j
(2) (p) is the two-point one-particle irreducible co

relation function.
02441
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By using the numerical results compiled in Ref. 37 and
general symbolic manipulation program, we determined
RG functions to six loops. The resulting series forN50 are

bu5m
]ū

]m
52ū1ū21

2~M12!

~M18!
ūv̄1

2

3
ūw̄2

95

216
ū3

2
50~M12!

27~M18!
ū2v̄2

92~M12!

27~M18!2ūv̄22
50

81
ū2w̄2

92

729
ūw̄2

2
184

81~M18!
ūv̄w̄1ūS (

i 1 j 1k>3
bi jk

(u)ūi v̄ j w̄kD , ~4.3!

bv5m
] v̄
]m

52 v̄1 v̄21
3

2
ūv̄1

2

3
v̄w̄2

4~190141M !

27~M18!2 v̄3

2
2~131125M !

27~M18!
ūv̄22

185

216
ū2v̄2

400

81~M18!
v̄2w̄

2
92

729
v̄w̄22

77

81
ūv̄w̄1 v̄S (

i 1 j 1k>3
bi jk

(v)ūi v̄ j w̄kD ,

~4.4!

bw5m
] v̄
]m

52w̄1w̄21
3

2
ūw̄1

12

~M18!
v̄w̄2

308

729
w̄3

2
104

81
ūw̄22

832

81~M18!
v̄w̄22

555

648
ū2w̄

2
4~370123M !

27~M18!2 v̄2w̄2
~23M1370!

27~M18!
ūv̄w̄

1w̄S (
i 1 j 1k>3

bi jk
(w)ūi v̄ j w̄kD . ~4.5!

We do not report here the coefficientsbi jk
(u) , bi jk

(v) , bi jk
(w) ,

which we computed fori 1 j 1k<6; they can be found in
Ref. 38. We have also computed the RG functions associ
with the critical exponents to six loops. We do not repo
them either since they will not be used in our analysis~they
are available on request!.

B. Resummation of the series

The perturbative series for theM-vector model and for the
cubic model are Borel summable and thus accurate res
can be obtained by resummation methods that exploit B
summability and the knowledge of the large-ord
behavior.7,39 On the other hand, perturbative series for ra
domly dilute models cannot be resummed naively. In
present case, an extension of the results of Refs. 40 an
indicates that the perturbative series at fixedu/v andu/w are
not Borel summable. For the zero-dimensional random Is
model, Ref. 42 showed that one could still compute correc
the free energy by means of a more elaborate resumma
method. Although no proof exists that this procedure wo
in higher dimensions, this method was recently applied
resum six-loop expansions for the random Ising model
three dimensions,31 obtaining reasonably accurate results.
8-5
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Here, we apply a similar method to resum the perturba
series for the randomly dilute cubic model for generic valu
of u,v,w. If f (u,v,w) has a perturbative expansion of th
form

f ~u,v,w!5 (
n50

cn~v,w!un, ~4.6!

cn~v,w!5 (
k,l 50

cnklv
kwl , ~4.7!

following Ref. 31, we first resum the coefficientscn(v,w)
and then, using the computed coefficients, we resum the
ries in u. The first resummation can be performed by us
either the Pade´-Borel method or the conformal-mappin
method—indeed, the large-order behavior of the coefficie
cn(v,w) is exactly the one of theM-component cubic
model.7 In the Pade´-Borel method, for each 0<n<p ~where
p is maximum order considered!, we consider the Pade´ ap-
proximants@(p2n2r n)/r n# of the Borel-Leroy transformed
series, which depend on an additional parameterbn . The
second method uses the large-order behavior of the s
and a conformal mapping, see Ref. 31. Once an estimat
the coefficientscn(v,w) is obtained, the second resummati
is performed by using the Pade´-Borel method. We conside
Padéapproximants@(q2r u)/r u# of the Borel-Leroy trans-
formed series, withq<p21. Therefore, in the double Pade´-
Borel method, which we will mostly use, the parameters
troduced by the analysis arep,$bn%,$r n% for the first
resummation andq,bu , r u for the second one. It is impos
sible to vary all thebn andr n independently, since there ar
too many combinations. Therefore, following Ref. 31, w
took them equal for alln.

In the special cases when one of the couplings vanis
one may use the methods already applied in the literature
the study of the corresponding model. For example, the
ries for u50 correspond to those of the Hamiltonian~1.3!;
they are Borel summable, so that one may use the stan
technique based on the knowledge of the large-order be
ior and a conformal mapping.7 The series forv50 corre-
spond to those of the random Ising Hamiltonian~1.3! with
M→0; thus one may use the analysis methods outlined
Ref. 31.

C. Results

1. Stability of the fixed points of the pure systems

First, for M52 we check the stability of the stable fixe
point of the pure theory (ū50) with respect to the perturba
tion induced by random dilution. The coordinates of t
stable O~2!-symmetric fixed point of the two-componen
theory are27,43 ū50, v̄XY51.402(4), andw̄50. The stabil-
ity with respect to random dilution is controlled by

vu5
]bu

]ū
U

(0,v̄XY,0)

, ~4.8!
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which, according to the nonpertubative argument reporte
Sec. II, should be given by

vu52
aXY

nXY
, ~4.9!

where aXY and nXY are the critical exponents of theXY
model. The analysis of the series~exploiting the known
large-order behavior of the series and using the conform
mapping method! givesvu50.007(8). Therefore the stabil-
ity of the XY fixed point is substantially confirmed, althoug
the apparent error of the analysis does not completely
clude the opposite sign forvu . The estimate ofvu is sub-
stantially consistent with Eq.~4.9!. Indeed, aXY /nXY
520.0217(12), obtained from the analysis of hig
temperature series, and43 aXY /nXY520.016(7), obtained
by a more similar technique, i.e., the analysis of the fixe
dimension expansion of the O~2!-symmetric model. We men
tion that perturbative studies based on shorter series44,45give
apparently contradictory results, favoring a negative value
vu .

We now consider the caseM>3. The relevant fixed point
is now the cubic one with coordinates (0,v̄c ,w̄c). The stabil-
ity against theū perturbation is determined by the sign of

vu5
]bu

]ū
U

(0,v̄c ,w̄c)

. ~4.10!

Again, one expectsvu52ac /nc , whereac andnc are the
critical exponents associated with the cubic fixed poi
Since the large-order behavior of the expansion ofvu is that
of the series of the cubic-symmetric pure model, one can
the standard conformal-mapping resummation.7 Estimates of
vu for several values ofM are reported in Table II~we use
the estimates of the cubic fixed points reported in Ref.!.
For comparison, we also report the ratio2ac /nc as obtained
from the results of Ref. 7. Other estimates can be obtai
using the results of Refs. 6 and 46. ForM53, we also quote
2ac /nc'0.142,46 2ac /nc'0.163.6 In conclusion, the
analysis of the six-loop perturbative series shows that
stable fixed point of the system without disorder is sta
with respect to the addition of random impurities, in agre
ment with the Harris criterion.

TABLE II. Estimates of the subleading exponentvu at the
M-component cubic fixed point for several values ofM. The last
column reports the theoretical prediction2ac /nc obtained from the
results of Ref. 7. ForM53 we also report the number obtaine
from the estimates~2.2!.

M @ v̄c ,w̄c# vu 2ac /nc

3 @1.321(18),0.096(20)# 0.157(28) 0.167(24), 0.187(3)
4 @0.881(14),0.639(14)# 0.203(27) 0.199(30)
8 @0.440(12),1.136(10)# 0.199(21) 0.191(24)
` @0.174(6),1.417(6)# 0.179(16) 0.175(30)
8-6
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2. Fixed points induced by the disorder, i.e., for uË0

We now study the stability of the RIM fixed point locate
in the planev50. Its coordinates are31 ūRIM520.631(16),
v̄50, w̄RIM52.195(20). This fixed point is stable in th
planev50. To check its stability with respect to thev per-
turbation we need to compute only

vv5
]bv

] v̄
U

(ūRIM,0,w̄RIM)

, ~4.11!

since the derivatives ofbv with respect toū andw̄ vanish at
v̄50. Note that the series forvv is M independent. We apply
the double Pade´-Borel method to resum the series. We fin
that nondefective Pade´ approximants are obtained only fo
r w51. Settingq5p21, the results depend on four free p
rameters:p, r u , bu , andbw . In principle, we should look for
the values ofbu andbw that make the estimates independe
of the orderp of the series, but in the present case the res
are weakly depending upon these two parameters. So
consider all values 0<bu , bw<10. With this choice, all ap-
proximants withr u51 andr u.2 are defective and therefor
we usep54, 5, and 6 andr u50,2. Forr u50 ~direct sum-
mation! we obtain vv520.047(8)$20% for p54, vv
50.008(2)$20% for p55, and vv520.049(2)$20% for p
56, where the number between parentheses is related t
spread of the results of the approximants considered, w
the one between braces is related to the uncertainty on
location of the fixed point. Forr u52, all approximants
with p54 are defective. For p55 we obtain vv
520.012(14)$20% and for p56 vv520.080(5)$20%. The
quite large discrepancy between these estimates clearly
cates that the analysis is not very robust. We give as con
vative final estimatevv520.04(5), that includes all previ-
ous results.47 This value suggests that the RIM fixed point
unstable, although it does not allow us to exclude the op
site case.

Finally, we search for the presence of new fixed poi
in the physical regionū,0. Our analysis does not pro
vide evidence for new fixed points in the physical regi
ū,0, at least forū*21, the region in which sufficiently
stable results are obtained. In the caseM52, we only
find the fixed point predicted by the symmetry~2.3!. Indeed,
a fixed point equivalent to the RIM is expected atū*
5ūRIM* 520.631(16), v̄* 5 v̄RIM* 1 5

3 w̄RIM* 53.658(33), w̄*
52w̄RIM* 522.195(20). Our resummation of the six-loo
series gives consistent results for the location of the fi
point, i.e.,ū* 520.70(5), v̄* 53.7(3), w̄* 522.2(2).
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APPENDIX: DIFFERENCES BETWEEN CUBIC AND
HEISENBERG CRITICAL EXPONENTS

In the three-component case the cubic critical expone
differ very little from those of the Heisenberg universali
class. The available estimates of the critical exponents
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indistinguishable within their uncertainty. Field-theoretic
six-loop calculations for the cubic model7 give nc
50.706(6), hc50.0333(26), andgc51.390(12), while the
analysis of Ref. 43 of six- and seven-loop series for the O~3!-
symmetric Heisenberg model provide the estimatesnH
50.7073(35),hH50.0355(25),gH51.3895(50). We also
mention the more accurate estimatesnH50.7112(5), hH
50.0375(5), gH51.3960(9), obtained by lattice
techniques.26 By comparing these estimates we can only p
a bound on the differences of the cubic and Heisenberg
ponents; for example, the estimates ofn differ at most by
1%.

Much better estimates of such differences can be obta
by a more careful analysis of the six-loop fixed-dimensi
series of the cubic model~1.3! computed in Ref. 7. We recal
that the expansion is performed in powers of the ze
momentum quartic couplingsv̄ and w̄ associated respec
tively with the couplingsv,w of the cubic Hamiltonian~1.3!.
The series for the cubic model can be obtained by settinū
50 in the perturbative series. In the planev̄,w̄
the coordinates of the O~3!-symmetric and cubic fixed
points are respectively26,43 XH5@1.390(4),0# and7 Xc
5@1.321(18),0.096(20)#. In order to obtain a more precis
determination of the exponents, one may proceed as follo
Noting the closeness of the fixed points, one may estim
the difference of the corresponding critical esponentsh and
n by expanding around the Heisenberg fixed point. Theref
the first-order approximation is

Dh[hc2hH'Dh (1)5
]hf

] v̄
U

XH

~ v̄c2 v̄H!1
]hf

]w̄
U

XH

w̄c ,

~A1!

Dn[nc2nH'Dn (1)5
]n

] v̄
U

XH

~ v̄c2 v̄H!1
]n

]w̄
U

XH

w̄c .

The RG functionshf( v̄,w̄), h t( v̄,w̄), and n( v̄,w̄)5(2
2hf1h t)

21 have been introduced in Ref. 7. The expre
sions~A1! can be simplified using the relation48

]hf,t

]w̄
U

( v̄,0)

5
M18

3~M12!

]hf,t

] v̄
U

( v̄,0)

, ~A2!

which is verified by our six-loop series and is probably exa
Therefore we write

Dh (1)5
]hf

] v̄
U

XH

S v̄c2 v̄H1
11

15
w̄cD ,

Dn (1)5
]n

] v̄
U

XH

S v̄c2 v̄H1
11

15
w̄cD . ~A3!

In order to estimate the right-hand side of the above eq
tions, one needs to consider all the elements of the cov
ance matrix associated with the cubic fixed pointXc , i.e.,
Cūū50.000 345, Cv̄ v̄50.000 380, andCūv̄520.000 361,
because the estimates of the coordinatesv̄c ,w̄c are strongly
8-7
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correlated. Using the covariance matrix one obtains the q
precise estimatev̄c1 11

15 w̄c51.391(4), which is very close to
v̄H51.390(4), thus leading to a large cancellation in th
right-hand side of Eqs.~A3!. In alternative, one may con
sider the approximate relation

]bv

] v̄
U

XH

~ v̄c2 v̄H!1
]bv

]w̄
U

XH

w̄c'0, ~A4!

which is obtained by expanding the equationbv( v̄c ,w̄c)
50. Within this approximation, one obtainsv̄c2 v̄H
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