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Slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior
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We use Monte Carlo simulations to study the influence of dipolar interactions and polydispersion on the
magnetic relaxation of single-domain ferromagnetic particles below the blocking temperature. We find the
surprising result that for all particle densities the relaxation rate decays by a power law, with a density-
dependent exponentn and a temperature-dependent prefactor. Depending on the value ofn, the relaxation
function shows a simple exponential decay, a stretched exponential decay, or a power-law decay, and seems to
approach a finite remanent magnetization at high densities. We interpret the results for intermediate and large
densities as indications of spin-glass behavior.
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In the last decade, magnetic nanoparticles have rece
considerable interest, due both to their important technolo
cal applications~mainly in magnetic storage and recording!
and their rich and often unusual experimental behav
which is related to their role as a complex mesosco
system.1 An important scientific question concerns the rela
ation behavior of an assembly of magnetic particles;
problem is also of practical relevance, since it is related
the way recorded patterns decay.2 Experimentally, after
switching off the magnetic field, the remanent magnetizat
decays very slowly with time. There is no clear answer to
functional form of the decay, and usually the remanent m
netization has been fitted by a logarithmic time depende
or by exponentials with specific relaxation time distribution
e.g., gamma distribution functions.3–7 In general, the prob-
lem is difficult and not always well defined, since the ma
netic nanoparticles are polydisperse and sometimes the s
and size of the particles are not well known. In addition,
particles may form long chains or other types of aggrega
and apart from the dipolar interaction between the magn
nanoparticles other types of interactions, for example
change or superexchange interactions, may also bec
relevant.8,9 Moreover, it is not clear if, in some relaxatio
phenomena at low temperature, quantum tunneling is
volved or not.8,10

Related to the relaxational behavior is the question of
magnetic structure of the system. It is a matter of controve
if, at large concentrations of nanoparticles at temperatu
well below the blocking temperatureTB , a spin-glass phas
exists or not. While some experiments present indication
a spin-glass phase,7,11 others favor the existence of a rando
anisotropy system.12 On the theoretical side, the problem
also open. While Monte Carlo simulations on aging13 seem
to favorize the spin-glass hypothesis, simulations of the ze
field cooling and field-cooling susceptibility showed no ind
cation of a spin-glass phase.14

To gain insight into the slow magnetic relaxation and t
underlying magnetic structure, we focus on perhaps the m
basic model of magnetic nanoparticles, which~i! assumes a
coherent magnetization rotation within the anisotropic p
ticles, and~ii ! takes into account the magnetic dipolar inte
action between them. We consider both monodisperse
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polydisperse systems where the particles are arranged as
frozen liquid and are randomly oriented. To study the sl
magnetic relaxation we have employed Monte Carlo simu
tions. As been shown in Ref. 15, the Monte Carlo method
well suited to treat the relaxation of magnetic particles wh
the Monte Carlo time steps are large compared with the p
cession time of the magnetic moments. Alternati
molecular-dynamic simulations are not useful for treati
slow relaxational processes, since the accessible time sc
are too short. We find that, belowTB , the relaxation function
depends crucially on the concentration of the magnetic p
ticles and thus on the strength of the dipolar interaction.
the dilute limit, the remanent magnetization decays expon
tially for monodisperse particles and in a stretched expon
tial fashion for polydisperse particles. With increasing de
sity, we observe the following scenario:~i! stretched
exponential decay at low densities,~ii ! a power-law decay a
intermediate densities, and~iii ! relaxation toward a nonvan
ishing remanent magnetization at very high densities.
consider this scenario, in particular steps~ii ! and ~iii !, as
clear indications of a spin-glass phase.3,16–18

For the numerical calculation, we use the same mode
in Ref. 14, where every particlei was considered to be
single magnetic domain with all its atomic magnetic m
ments rotating coherently. This results in a constant abso
valueum i u5MsVi of the total magnetic moment of each pa
ticle, whereMs is the saturation magnetization, which is su
posed to be independent of the particle volumeVi . The en-
ergy of each particlei consists of three contributions
anisotropy energy, field energy, and dipolar interaction
ergy. We assume a temperature independent uniaxial an
ropy energyEA

( i )52KVi((mini)/umi u)2, whereK is the an-
isotropy constant and the unit vectorni denotes the easy
directions. As usual, the coupling to an applied external fi
H is described by the field energyEH

( i )52miH, and the en-
ergy of the magnetic dipolar interaction between two p
ticles i and j separated byr i j is given byED

( i , j )5(mimj )/r i j
3

23(mir i j )(mj r i j )/r i j
5 . Adding up the three energy contribu

tions and summing over all particles we obtain the to
energy
©2003 The American Physical Society16-1
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E5(
i

EA
~ i !1(

i
EH

~ i !1
1

2 (
i

(
j Þ i

ED
~ i , j ! . ~1!

In the Monte Carlo simulation we concentrate on sample
N564 particles placed in a liquidlike arrangement with p
riodic boundary conditions~a doubling of the system siz
showed no significant difference in the results!. The volumes
Vi are considered as~i! monodisperse or~ii ! polydisperse
with a distribution of volumesVi drawn from a normal dis-
tribution P(V)}exp$2(V2V̄)2/(2sV

2)%, with fixed width sV

50.4 and a normalized mean volumeV̄. The anisotropy axis
is chosen randomly, and the easy axis vectorni is defined to
be parallel to the easy axis with a positivez component. The
unitless concentrationc is defined as the ratio between th
total volumeS iVi occupied by the particles and the volum
V of the sample. We varied the concentration from the dil
limit ( c→0) to very dense systems withc50.384c0 , where
c0[2K/Ms

2 is a dimensionless constant specific for ea
material,c0>1.4 for iron nitride andc0>2.1 for maghemite
nanoparticles.19 The relaxation of the individual magneti
moments per time step~Monte Carlo step! t is simulated by
the standard Metropolis algorithm, and the interaction en
gies are calculated using the Ewald sum method.14,20

To study the magnetic relaxation we first align all m
mentsmi along thez direction by applying a strong externa
field. At a time t50 we switch off the field and determin
the normalized remanent magnetization

m~ t !5
1

N (
i 51

N
Vi

V̄
cosu i~ t !

as a function of time, whereu i is the angle between th
magnetic moment of particlei and thez axis. By definition,
m(0)51. In our analysis, we follow early works,3,21 and
focus on the relaxation rateW(t), which is related tom(t)
by W(t)52(d/dt)ln m(t), or

m~ t !5expF2E
0

t

W~ t8!dt8G . ~2!

For the relevant case of a power-law decay ofW(t) above
some crossover timet0 ,

W~ t !5At2n, t>t0 , ~3!

we obtain, well abovet0 ,

m~ t !

m~ t0!
.5

expF2cnS t

t0
D 12nG , 0<n,1 ~a!

S t

t0
D 2A

, n51 ~b!

e2cnF11cnS t

t0
D 12nG , n.1, ~c!

~4!

with cn5At0
12n/u12nu. For n.1, according to Eq.~4c!,

m(t) approaches the finite value

m~`!5m~ t0!exp@2At0
12n/u12nu#. ~5!
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In the following we will show explicitly that the decay of th
remanent magnetization well belowTB indeed follow the
scenario described by Eq.~3!, with n50 for dilute systems
of monodisperse particles,n'2/3 for dilute systems of poly-
disperse particles, andn>1 for dense systems independen
of size distribution.

First we consider monodisperse systems. Figure 1 sho
in a double logarithmic presentation, the relaxation rateW(t)
and the remanent magnetizationm(t). The relaxation rate
W(t) is shown for~a! very diluted systems where the dipola
interaction is negligible and~b!–~d! systems with increasing
density where dipolar interactions become increasingly
portant. We also show the corresponding remanent magn
zationm(t) for the two most dense systems@~e! and~f! cor-
respond to~c! and ~d!#. The different curves in each figur
correspond to different temperatures well belowTB ~see Ref.
14!. In all curves we can distinguish between two time r
gimes. In the short-time regime,intrawell relaxation occurs,
where the magnetic momentsmi relax toward the easy axi
ni of the particles. This motion does not require thermal
tivation, and thus is independent of temperature. Since it
local relaxation, it depends only weakly on the concentrat
of particles. In the second time regime, which occurs a

FIG. 1. Monodisperse systems. Relaxation rateW(t) in ~a! the
dilute limit, and for~b!–~d! increasing density with volume fraction
c/c0 for different reduced temperaturesT/TB . Corresponding rem-
anent magnetizationm(t) for the two most dense systems@~e! and
~f! correspond to the relaxation rates in~c! and~d!#. The solid lines
correspond to the power-law regression in~b!–~d!. TheW(t) curves
of the two lowest temperatures are shifted by factors of 0.5 and
respectively.
6-2
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about 102 time steps,interwell relaxation takes place wher
the magnetic moments try to overcome the local poten
barrier.

For very dilute systems@Fig. 1~a!#, the potential barriers
are determined solely by the anisotropy energy of each
ticle i, KVi . In this caseW(t) becomes a constant at larg
times, i.e.,n50, giving rise to the~expected! simple expo-
nential relaxation ofm(t). With increasing concentrationc,
cooperative effects set in andW(t) shows a power-law be
havior, W(t)}t2n, with an increasing exponentn. For c/c0

50.128@Fig. 1~b!#, we see a power-law behavior over mo
than three decades, withn around 0.9 for all temperature
considered. The slowing down of the relaxation with d
creasing temperature is due to the prefactorA in W(t), which
decreases with decreasing temperature. Forc/c050.192,
W(t) decays simply as 1/t for all temperatures@Fig. 1~c!#.
According to Eq.~4b!, this leads to a power law decay of th
remanent magnetizationm(t)}t2A, which also can be ob
served directly when plotting log@m(t)# vs log(t) @Fig. 1~e!#.
The exponentA decreases with decreasing temperatureA
>0.45, 0.19 and 0.14 forT/TB50.48, 0.30, and 0.18 respec
tively. For very dense systems@Figs. 1~d! and 1~f!# the relax-
ation rate seems to decay faster than 1/t, with exponentsn
around 1.1 for all temperatures considered. According to
~4c! we may expect a nonvanishing remanent magnetiza
in this case. The value ofm(`) is not directly accessible, bu
can be estimated from Eq.~5!. We obtainm(`)>1028, 5
31023, and 1022 for T/TB50.35, 0.19, and 0.15.

Next we consider the more realistic case of a polydispe
system of particles. The broad distribution of particle siz
leads to a broad distribution of individual particle barrie
KVi . Accordingly, in the dilute limit the relaxation rateW(t)
is also no longer a constant. We find that asymptotica
W(t) decays by a power law, which becomes more p
nounced at lower temperatures, with an exponentn close to
2/3. With increasing concentration we obtain qualitative
the same picture as for monodisperse systems. Forc/c0

50.128 @Fig. 2~b!#, W(t) shows a clear power-law deca
over nearly four orders of magnitude where the exponenn
has already reached 1. Accordingly, the remanent magne
tion decays with a power lawm(t)}t2A. As for the mono-
disperse case, the exponentA decreases with decreasing tem
perature,A>0.33, 0.16, and 0.11 forT/TB50.49, 0.24, and
0.18, respectively. With higher concentrations,W(t) seems
to decay faster than 1/t. For c/c050.192 @Figs. 2~c! and
2~e!# we findn>1.05, while forc/c050.384@Figs. 2~d! and
2~f!# we find n>1.11 for all temperatures considered. Fro
the values forA, n and t0 we can again estimatem(`). For
example, for the highest concentrationc/c050.384 we ob-
tain m(`)>1023, 231022 and 331022 at T/TB50.39,
0.19, and 0.14, respectively.

According to Fig. 2, polydisperse systems follow t
same scenario as monodisperse systems when the pa
concentration is increased, but the transition from a stretc
exponential decay toward a power-law decay occurs a
considerably lower concentration, which should be arou
0.15 for iron nitride and 0.25 for maghemite particles. The
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concentrations are easily experimentally accessible and
enough to guarantee that the dipolar interaction is still
dominant one.

The ultraslow power-law relaxation observed in Fig
1~c!–1~f! and 2~b!–2~f! must have its origin in the occur
rence of a collective state well below the blocking tempe
ture, which may even hinder all particles to relax fully
high concentrations. In this case, the system attains a
small but finite remanent magnetization, but without lo
range-order, and seems to approach some glassy ferro
netic state. Power-law approaches toward a finite magne
tion were discussed earlier in the context of the flipping
clusters~see Ref. 16, and references therein!, but in contrast
to the situation there the exponent (12n) in Eq. ~4c! is
practically independent of temperature. The power-law de
at intermediate particle concentration that we find@cf. Eq.
~4b!# is reminiscent to the relaxation behavior of canonic
spin glasses, where the exponent decreases approxim
linear with temperature.17,18 Having this in mind, we con-
sider the relaxation behavior at intermediate and large c
centrations as clear indications of a collective spin-glass-
phase belowTB . The stretched exponential behavior that w
see at small concentrations has not been assigned to a

FIG. 2. Polydisperse systems. Relaxation rateW(t) in ~a! the
dilute limit, and for~b!–~d! increasing density with volume fraction
c/c0 for different reduced temperaturesT/TB . Corresponding rem-
anent magnetizationm(t) for the two most dense systems@~e! and
~f! correspond to the relaxation rates in~c! and~d!#. The solid lines
correspond to the power-law regression in~b!–~d!. TheW(t) curves
of the two lowest temperatures are shifted by factors of 0.5 and
respectively.
6-3
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glass behavior from a theoretical point of view. It has, ho
ever, been observed in relaxation experiments on real
glasses.16 We hesitate to interpret the stretched exponen
decay we observe here as an indication of a spin-glass
havior, since it also occurs in dilute polydisperse syste
where cooperative effects are absent.

The interpretation of our results is not in conflict wi
previous results on field-cooling processes belowTB , where
monodisperse systems with different initial conditions~de-
magnetized or saturated sample! were shown to relax toward
the same equilibrium point when a weak magnetic field w
maintained. This result was interpreted as an indication
the absence of a spin-glass phase. However, as pointed
already by Binder and Young16 and further elaborated exper
mentally by Garcia del Muroet al.23 in systems of magnetic
fine particles, the collective states of glassy systems ca
erased by a magnetic field of moderate strength, and
think that this was the case in the simulations of Ref. 14

In summary, we have investigated the relaxation beha
of the most basic model for magnetic nanoparticles, t
ev
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takes into account the polydispersivity and anisotropy of
particles as well as the dipolar interaction between them.
found the surprising result that the relaxation rate, from
dilute limit toward very dense systems, is always charac
ized by a power-law decay. The exponentn depends strongly
on the concentration, the prefactorA depends strongly on
temperature, and the crossover timet0 , above which the
power-law decay can be seen, is nearly independent of
concentration and temperature. Depending on the value on,
we observed a simple exponential decay, a stretched e
nential decay, or a power-law decay of the relaxation fu
tion. For high densities, the power-law decay seems to l
to a finite remanent magnetization. We believe that our
sults for intermediate and large concentrations of polyd
perse particles are clear indications of some type of gla
phase at low temperatures.
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