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Coherent electronic transport and Kondo resonance in magnetic hanostructures
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We consider a coherent electronic transport between two ferromagnetic electrodes separated either by a
metallic nanoparticle or by a conducting molecule. Correlations between electrons with opposite spins lead to
the Kondo resonance, which manifests a formation of the singlet state. Although tunneling rates for electrons
with opposite spin orientations are different, the conductance reaches the unitary limit in the Kondo regime. We
predict a negative magnetoresistance effect, which can be observed for asymmetric magnetic junctions.
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[. INTRODUCTION The purpose of the present work is to study the coherent
electronic transport between ferromagnetic electrodes sepa-
Spin-dependent electronic transport attracts recently gre&éted by a nonmagnetic nanoparti¢eg., either a quantum
interest due to its potential applications in nanoelectronics. 1§10t or @ molecule The electrodes are assumed to be in the
the last decade intensive studies of giant magnetoresistané@m of thin films with an in-plane magnetization perpen-
led to a practical application of the effect in magnetic-field dicular to the direction of the current flow. For a nanoscopic
sensors and read heads for driveore recent studies of 9ap between the electrodes, the stray magnetic fields at the
tunnel magnetoresistance in multilayered metal-nonmetdparticle vanish. In considerations we take into account Cou-
thin films or in metal-nonmetal granular systems seem als$?mMb interactions at the particle with special attention on the
to be very promising.An interesting proposition is a ferro- Correlations between electrons with opposite spin orienta-
magnetic single-electron transist68ET),>* in which trans-  tions flowing through the particle. The considered system is
port through a nanoparticle placed between ferromagnetief @ transistor type with a gate electrode, which allows to
electrodes is a single-electron process. Due to high conta&ift @ position of the energy level and to change a number of
resistances R>10 MQ) the current intensity is, however, electrons at the partllcle. We expect for the dee_p dot level the
very low and tunneling events for transfer of an electron tokondo resonance with a peak in a local density of states at
and from the nanoparticle are incoherent. One can expeth€ Fermi energy, what reflects a formation of a singlet state.
that further development in technology leads to a productio?’2ssing from the Kondo regime to the empty state regime
of magnetic nanodevices operating in the coherent regime ¢in€ can observe a crossover from t_he strongly_co_rrelated to
the electronic transport. This is achieved if a typical dimen-the uncorrelated electron system. Itis of a special interest to
sion of the object becomes smaller than the phase cohereng@mine whether the singlet state in the Kondo regime is
length. The issue of coherence is critical for the possiblgreserved with increasing polarization of electrodes. _
application in quantum computers. The paper is organized as follows: In Sec. Il the model is

There are known experiments on coherent transport i,q_les_cribed and the current is expresseq by means of nonequi-
nonmagnetic nanostructures, through quantum °darsd Il_bnum Green's functions. In order to find the Green's func-
single-walled carbon nanotubdSWNT).® In this regime tions we usein Sec. III)_ the slave-bﬁsl%n method within the
quantum interference and electronic correlations play an ednéan-field approximatiodtSBMFA),* which takes into
sential role, they lead to the Fano resonance as well as to trecount the essential electronic correlations and captures the
Kondo resonanc®.’ The coherence effects should be alsoKondo resonance. This method is very simple and efficient
important in magnetic nanostructures. Garcia étstiowed for the study of electronic transport in nanostructuresow-
that the relative difference between the resistance for th€Ver. it has some limitations. Therefore, in Sec. IV we apply
parallel Rp) and the antiparallelR,p) orientation of mag- the equation of motion methodOM)"*" and compare the
netization in the electrode® R=(Rap—Rp)/Rap can be results'wnh those objralned .Wlthln the SBMFA. In Sec. V
very large in the ballistic transport through a magnetic poinSeme final remarks will be given.
contact. The effect is due to a relative change of a number of
conducting channels when magnetization changes its orien-
tation from parallel to antiparall€lSome attempts were un-
dertaken to measure magnetoresistance through multiwalled The Hamiltonian for the system with two ferromagnetic

carbon nanotubes connected with cobalt electrdied-  electrodes separated by the metallic nanoparticle can be ex-
though the minimal resistanég,;,~9 k() was less than the pressed as

resistance quantufRg,= 13 k( typical for the ballistic trans-

II. DESCRIPTION OF THE MODEL AND
DETERMINATION OF THE CURRENT

port, the magnetoresistance was rather M®~0.02. One H= e of o+ e el e +Unmn
could not distinguish any mechanism of the magnetoresis- kgu keo “ka,oka,o ; 0 %0007 orrol
tance from these experimental dafamoreover there was
lack of any features of interference, which were well seen for t

! + t.(Cx, +Cort H.C). 1
SWNT’s connected to the gold electrodes. kg(r (CiaoC00 ) @
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The first term describes electrons in the left={L) and the . SLAVE-BOSON APPROACH
right («=R) ferromagnetic electrode, the second and the
third one correspond to electrons at the particle with the
single energy leveé, and the onsite Coulomb interactidh
of two electrons with the opposite spins=1 ando= |, the
fourth term describes tunneling between the electrodes an

the particle.
. . . proach the annihilation operatay, of an electron at the
The current is calculated from the time evolution of the particle is expressed in terms of the slave-boson operators
occupation numbeN,_—Ek ngL +CkL o for electrons in the ey, do, and the slave-fermion operatéy,

left electrode
dNL _ie _ .
J=- T (2)  The local eigenstatd®), |o), and|2) (corresponding to the
t empty, the single, and the doubly occupied state at the par-

The thermal averages are expressed by the lesser Greefigle) are constructed by the auxiliary operators

function'® as
O)=ellvac), |o)=fllvac), |2)=dllvac) (©

Slave-boson fields were used for decades in strongly cor-
related electron systensee Ref. 16 for a reviewIn the
context of the Anderson model of a magnetic impurity, the
é ve-boson representation was first used by Batresd

ter developed by Colem&hand others! Within this ap-

Coo=E4f 0.+ o, do. 8)

E tL<CkL +Cos) —C-C.

from the vacuum stat¢vac). In order to operate in the
¢l ¢ 3
(CiaoCor) = f 2mi Gos ko ©)- @ physical space the auxiliary operators should obey the con-
From the Dyson equation we find straint
Gga,kaa(w) = ta[grkaa(w)G(iT,OO'(w) + glfao(w)Gga,OO'(w)(]Ai) eOe0+ E fO(rfO(r+ dgdoz 1 (10)

wheregy,, is the bare Green’s function for electrons in the  The slave-boson representatit®) gives the reliable re-

a electrode,Gy, o, is the dressed Green's function at the sults for the equilibrium situation and for the system with
particle, and the superscripta and < denotes the retarded, paramagnetic electrodes. It is well knot#h’18that this rep-

the advanced and the lesser Green’s function, respectiveljesentation can be generalized for large spin degenéyacy
Assuming quasielastic transport, for which the current conThe mean-field approximation gives then exact results in the

servation rule is fulfilled for any energy, one gets limit N—c andT=0. Moreover, one can include Gaussian
- _ ; fluctuations about mean-field solution, which corresponds to
Gop00(@)==21IM[Gg, go( @) [ YLofL(@) + YRoTR(@) ], the 1IN corrections. The local density of states shows then

®  two peaks corresponding to the charge and the spin fluctua-
where y,,=[,,/A,, T[,,=mp.t2, and A,=I , tions, respectively.

+T'g,. We used the relatlons for the bare Green’s functlons Kotliar and Ruckenstefl proposed other approach using
in the eIectrodesg 3 Gwe =2 (0= €ras)], 9= four slave-boson operators for representation of the electron

operatorcy,. The method is associated with the Guzwiller
approximation and has been widely used in the last decade
for studies of the ground state of strongly correlated elec-
trons in lattice model$® For the Anderson model of a single-
magnetic impurity this approach gives, however, a mean-
field stable solution with the local magnetic mome(i;)
21~LG R #(ng,)) for largeU andT=0 (for paramagnetic electrodes
J=— E ————({Nre) —{NLe))s (6)  in contrast to the exact solutigimg;)=(ng,).
We choose the Barnes-Coleman representat®nfor
where studies of our model with the ferromagnetic electrodes, be-
cause this method gives the reliable results for the paramag-
- ; netic case and describes a continuous evolution of physical
(Nag) =~ ;j_D dof,(w)Im[Go, g,(@)]. () guantities when the magnetization in the electrodes in-
“ creases. We are aware that within the mean-field approxima-
The charge and the spin accumulation at the particle are exion (MFA) the method takes into account spin fluctuations
pressed as (Np)==(Noy)=24.0Yaol{Nao) and (My)  but neglects charge fluctuations. The one-particle Green’s
=3,0(Noy) =24 00 Yae{Nao), Tespectively. There are sev- function has the quasiparticle contribution only. In order to
eral possible choices for the treatment of electronic correlaget the full electronic spectrum one has to include the 1/N
tions and calculation of the Green's functi@,, o,. We  corrections(see for example, Ref. 12 and the chapter 8 in
choose the slave-boson approach well adopted to descritigef. 18. Moreover, the Barnes-Coleman representation by
the Kondo regime and complement the calculations by théts construction underestimates long-range spin correlations,
equation of motion treatment, which allows to get a deepewhich may eventually lead to magnetic solutions for the
insight into the mixed valence range. electrodes with a very high magnetic polarization.

=2imp,,f, andgl 2=+ i TPae, Wherep,,=1/(2D,,) is
the assumed constant density of state§ ép<D,,, D, is

a half of the bandwidth anfl, denotes the Fermi distribution
function for electrons in ther electrode. Putting E(5) into
Egs.(4), (3), and(2) one gets
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The expressior8) is introduced into the Hamiltoniafl).
In order to find the Green’s functions we use the mean-field
approximation, within which the slave-boson operators are
treated as the complex numbers. Moreover, it is assuthed
—o0, in which the double occupancy at the particle is pro-
h|b|ted (dp=0). The problem is reduced then formally to the

free-electron model with the renormalized parametefs

=eot, and'eg=ey+\, for the coupling between the elec-
trodes and the particle and the local energy level, respec-
tively. Here,\ denotes the Lagrangian multiplier correspond-
ing to constraint10). The stable solution is found from the
saddle point of the partition function, i.e., from the minimum
of the free energy with respect to the variabdgsand\. The

free energy is the sum of the fermionic and the bosonic parts

PHYSICAL REVIEW 87, 024404 (2003
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These equations can be expressed in the form
=2 YaolMAyl (15
=2 T, RdA, ], (16)
where
1 D(X(T ~
Aa,l)’: - _f dwfa(w)G{)(r 0(;-(('0)! (17)
™ ~Dae ,
and the Green’s functiorégg‘og is given by
Gl o0(®)= (18)

0)_;0"‘ iz,,..

Equation (15) is the condition for the average number of
electrons at the particle and E(L.6) gives the shift of the
resonant level. In the SBMFA, the local density of states ha‘f‘;\ndpL

a Lorentzian peak close to the Fermi enetate,), with the
renormalized widthl ;. The method ignores the charge fluc- as P,=

asymmetric 7

Magnetoresistance Conductance [e?/h]

-0.1
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0.0

01 - asymmetric\ —
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Particle energy level
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FIG. 1. The results of the SBMFA for the conductarieg the
magnetoresistancg), and the spin accumulation as a function of
the relative position of the energy leve}— e of the particle for
the symmetric junction t{ =0.03{g=0.03) and the asymmetric
junction (t, =0.02{g=0.06) at the temperatur€=0. All param-
eters are in units of the half-band width | =1. The solid and the
dashed curves correspond the situation for the parallel and for the
antiparallel orientation of magnetization in the electrodes. The po-
larization is takerP = Pg=1/3 in the parallel configuration.

2 2
e 4ell’ 'R,
G= I >

e .
p "é(z)_l_zi = F ; 47L(7’7R<rs'n2(77<n0(r>)1

(19

where (ng) and A\ are determined from the set of self-
consistent equationd5)—(16). Figure 1a) presents the con-
ductance as a function of the position of the particle energy
level e5— e (with respect to the position of the Fermi level
taken asez=0) for the parallelG, and the antiparallefj,p
orientation of magnetization in the electrodes. In the calcu-
lations we assumed the density of states in the electrodes
pLT_pRT_l andle—pRl— 1/2 (| e. DLT_DRT_:L/Z DLL
=Dg,=1) for the parallel configuration ang, ;=pg =1

| = pry=1/2 for the antiparallel configuration. Follow-
ing the Julliere approaéfhone can express the polarization
(Pa1—Pa)(partpay), Which in our case isP,

tuations and consequently no peak occurs in the density of Pr=1/3 for the parallel configuration. In the following,

state ateg.

Let us analyze the situation for the small voltage-0
and the temperaturd=0. The conductance is calculated one of the spin subbands and it breaks down our assumption

from

the limit of strong polarizatioP,|— 1 is not considered,
because it corresponds to the case of vanishing bandwidth of

on the weak couplind’,,<D .
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The magnetoresistandd R=(Gp— Gap)/Gp is presented — 20f ' ™ 0.9
in Fig. 1(b). In the regime of the empty statéor €,>A ), =N |
one can find — 15
o 06 _
n_ 2PLPR 0 s 10 { @
—_—— o
1+ P PR é 0.5 —0.3
It is the Julliere formul&’ as one could expect for the un- S | ~ <
correlated transport of electrons. Note that the magnetoresis- 105 1073 10-1
tance in the empty state regime depends only on polariza- Temperature
tions of the electrodes. No quantity specifying the particle or
its coupling to the leads enters into the form(&®). In the FIG. 2. Temperature dependence of the conductasodid

Kondo regime €,—0) the conductance is G  curve and the boson occupation parametgr(dashed curvefor
=(e2/h)204y,_Ung. In general, an expression fMR has €o=—0.018 and 0. The contacts are symmetrig =(0.03tg

a complex algebraic form. A simpler form ®R is for the =0.03), the polarizations in the electrodBg=Pr=1/3 are ori-
system with equal polarization of the electrodeg=pP, €nted paraliel.
=P,
dashed curve in Fig.(&) for the symmetric junctions and for
P2(1-3a?+ a?P?+ a*P?) the antiparallel configuration
MR= 55 , (21) Relation (23) is valid for free electronsly=0) as well.
(1= a"P%) There is a difference in the dependence of the average num-

ber of electrongng) on the position of the particle levep,
which for the correlated electrons within the SBMFA is ex-

pressed by the renormalized valeg=e,+\. Using the
2P, Pg electron-hole symmetry in our model), one finds that in
MR=——5—-. (22)  the limits (ng)—0 and(ny)—2 electronic correlations are
1-P Pgr . ) .
irrelevant and the magnetoresistance is the same as for free

The magnetoresistance is then negative and its absolufdectrons. The absolute value af) is equal in both the
value is larger than in the empty state regifoempare with ~ limits, but its sign is opposite. Therefore, we expect that
Eq. (20)]. (mg)=0 for the symmetric Anderson model with ferromag-
Figure Xc) presents the spin accumulatigmo) at the Netic electrodes, i.e. whesy=U/2 and(ng)=1. The prob-
particle. When a gate voltage is applied to the particle, théem shall be un_dertaken in the following section within the
position of €, is shifted from the empty state regime to the €quation of motion approach.
Kondo regime. The spin accumulation then increases and Figure 2 shows the temperature dependence of the con-
achieves its maximal value in the mixed valence regimeductance and the slave-boson fief In the Kondo regime
next it decreases to zero. Using the formufay,) ¢ andej decreases to zero whan-T.. The sharp character
= (1/m)arctanf, /¢,) for the average number of electrons Of the transition from the broken symmetry state to the state
with the spino valid at T=0, one can easily derive the With vanishing boson field expectation value is an artifact of
following relation linking the magnetization with the occu- theé MFA. The peak in the density of states disappear. at
pation of the particle: In the mixed valence regime the value Tf is much larger
and one can observe an increase (bfcorresponding to
A —A smearing of the Fermi distribution functig¢see the curves in
sin({mp)) = ATJFAlsin(Tr(no)). (23)  Fig. 2 corresponding té;=0). The SBMFA is reliable in
[ the Fermi-liquid regime when the temperatuFeis much
It means that in the Kondo reginfee. when(ng)—1) the lower than the .Kondo tempe.ratuqu. _The method negllects
spin accumulatiogmg)— 0 and the system achieves the uni- char_ge fluctuations relevant in the m_lxed valence_ reg|me_and
tary limit with the singlet state. Although the tunneling rates@t higher temperatures. Therefore, in the following section,
T, are different for electrons with the opposite spin orien-W€ complement the studies of electronic transport by the
tation, the Kondo resonance leads to an equal probability t§auation of motion approach.
find an electron with the spioe=1 ando=|. The vanishing
spin accumulation at the nanoparticle in the Kondo regime is
independent on the asymmetry of the junctipRig. 1(c)]. It
is not true for the transmission, where equal values for both |ets us first describe the equation of moti¢gBEOM)
spin channels are only achieved for the symmetric cése ( method. The equation faBf), o, at the particle
=tg,P_=Pg). This fact is illustrated in Fig. (&), where for ’
the asymmetric junctionst(#tg) the conduction does not ‘
reach the maximal valuee?/h in the Kondo limit. Qualita- (w— Eo+iAo)G<r)a,oU(w)=1+ U((co(,co;cojcg())[u,
tively similar behavior holds fot, =tg but P # Py (see the (29

where a= (t? —t3)/(t? +1t%) describes asymmetry between
the left and the right junction. For a large asymmaetry- 1

IV. EQUATION OF MOTION APPROACH
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generates the higher-order Green'’s function
<(co,,c$;cojcgq)>;. Here, o denotes the spin orientation

opposite too. Next, the equation of motion for this function
is written as

(0—€p— U)«Coacggcoﬂ Cho))=(Nos)
+ 2l ({CuaCo,005105,) ({000 Gy C0s1 6,

+({CosCi=Chagl CO))L]. (25)

PHYSICAL REVIEW 87, 024404 (2003

do’ fy (o)

T @' —w—i0"

Folw)=> T

I a; ’7TkBT
o

=2

2
[iﬂ'fa(a))+|n

|

Here, R& denotes the real part of the digamma function and
€r, IS the position of the Fermi level in thea electrode.
Equations(30)—(31) and the condition

ao

LW €ERy

' DakeT

1
+ReV E - (32

We proceed a step further and truncate the series of hierarchy

of equations of motions using the self-consistent decoupling

procedure proposed by Lacrdikwithin which

T t =
<<Ckao'ck' ar;COF' Cgo>>2)%<ck’a’;C00'>Grka0',00'(w)’

(26)
T T =
<<Cka(rco;Ck' a'j Cg(r))[o~<cogck’ a’(r>Grka(r,0(r( w) '
(27)
t t
<<C00'Cka;Ck’ a’j Cgo>>£u~<ckagck’ a’;>G(r)a',00'( w) '
(28)

The Green'’s functions from the left-hand side of E2p) can
be written as % 1{{ChaoCa=Coal Cor)),

+
%tag:)w((COUCo;CO;I Cga»[» and

+
Ek: <<CO¢TC();Cka;| Cg)a'>>:u
_ t _
~ ROo,a;( w) + tagL;<<COUC0;COH C(T)U'>>Z)+ ROO’,CI;( w)

8 kfz, t”"Grk/a’U,OO'(w) - GBUlOU(w)
,a

XE ta’Ra’;a;(w)l (29)

where Roy, 4o(©) = i (Co,Chan) V[ 0~ €kao)s Rariraol©)
:Ek,k'[<0l/a/§3ka9]/[a’— €kaol- The function
({CosC} ~CoalCu)),, /U and can be neglected in the limit
U—oo. After these approximations one géfer U— )

1—<n0;>+H;(w)

w—egtiA,+i2AH (w)+Fiw)
(30

GBO’,O{T(('D) =

where 0,=A,+A ,

do’ fu(0)Gir ')

. (3D

How)=2> Ty

' —w—i0"

1 Dao’ r
(Nog)=——2 f . d0Yafu(@)IM[GG, 0, (0)]
aog (33)
consist a set of self-consistent integral equations, which have
to be solved.
At T=0 the functiondH,(w) andF () have a logarith-
mic singularity at the Fermi levab= e, , but Gg, g,0(®)

varies more smoothly around this point. At the equilibrium,
Eq. (30) for the Green'’s function can be written as

Goy0sl <)
i200G5- Aep)+1

G 00 €F) = (34

Assuming the solution

' in a formGg, o, (€r)=[1
—e??7]/(2iA,) one gets

. A-A
sin(¢;— )= AT_FAlS'n((f’T"'(ﬁl)- (35
Taking the phase shii$p= ¢+ ¢, according to the Friedel
sum ruleg=m(ny) and n= ¢, — ¢, =m(mMy), relation(35)
becomes the same as the d@é) derived for the SBMFA.
Again we come to the conclusion that the spin accumulation
(mg)—0 in the Kondo regime.

In general, the Green's functioBg,, o,(w) was deter-
mined numerically solving the set of Eg&0)—(33). The
singularity ater was treated with a special care. Integration
around the singularity point was performed according to a
logarithmic discretization procedut®In Fig. 3 the density
of states(DOS) is presented for both spin orientations. Be-
sides the sharp Kondo peak closeeto=0, one can see the
broad peak close te, corresponding to charge fluctuations.
Since the real part of the denominator of the Green’s func-
tion (30) is different for both spin orientations, the maxima
of the charge fluctuation peaks are at different positions.
Moreover, one can see that the weight of DOS der | is
much larger than that fos= | . This results from the nomi-
nator of Gy, ¢, (30), which is different for the opposite spin
directions. It is in contrast to the SBMFA, where no spin
asymmetry of the weights is observed—compare the Green’s
functions (30) and (18). The difference reflects the fact
that the SBMFA solution(18) completely neglects charge
fluctuations.
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FIG. 3. Local density of state®OS) determined by the EOM
method for the spin orientatiom=1 (solid curvg and o=
(dashed curveat T=10"7. The parameters arey=—0.02, t,
=tg=0.03, A;=0.0085, and®, =Pg=1/3.

Figure 4a) presents the conductangg andG,p for the
parallel and the antiparallel configuration of the magnetiza-
tion (solid and dashed curves, respectiyely is seen that
with lowering of the temperature the peak®fs shifted(as
expected!) to the Kondo regime.

The magnetoresistance is presented in Fi@p).4In the
empty state regime it is similar to the SBMFA resfdbm-
pare Fig. 1b)]. In the mixed valence regim®lR behaves
different, it increases and achieves large values. Moreover,
MR shows a strong temperature dependence. In this range
the contribution of the charge fluctuations is dominant and

Spin accumulation Magnetoresistance Conductance [e2/ h]

-0.06 -0.04 -0.02 0.00 0.02

since the width of the peaks of the DOS for the opposite spin Particle energy level
directions are different, the different temperature dependence
of the conductance results. A further shift ef into the FIG. 4. The conductance) calculated by means of the EOM

approach for the parallel and the antiparallel orientation of magne-
tization in the electrodegsolid and dashed curveghe magnetore-
sistance(b) and the spin accumulatiofe) as a function of the po-
sition of the dot level for different temperaturds=1x10"6, 1

X 1075, and 1x10™*. The other parameters are the same as those
in Fig. 3.

Kondo regime leads to a reduction BfR, which achieves
its minimal value given by Eq(21) (for our caseM R= P2
=1/9).

The spin accumulatioimy) calculated within the EOM
approacHFig. 4(c)] is much larger than that for the SBMFA
[compare Fig. (c)]. Its maximal value can be as large as 0.8

at e~ —0.02, which means that electrons with the spin o the peaks, corresponding to the charge and the spin
=1 are mostly transferred through the particle. In the Kondorctyations. However, the weight of the Kondo peak is small
regime we recover the SBMFA result wittng)—0. It is  anq its contribution to the electron occupation,,) is small
weakly temperature dependefit contrast tog andMR). 55 well, Therefore{my) starts to decrease at a much higher
For the antiparallel configuration there is no spin accumU|atemperatureT~AolkB [see the Fig. &)], when the charge
tion for any €, [see the dashed curve in Figchl. It results  fjycruation peak becomes to be deformed. Figure 5 shows
from the transfer rates to and from the particle, which areygq that at low temperaturé€s,» decreases quicker thai

equal for both spin orientations in the case of symmetriGyhich results in a magnetoresistance increase first, then a
junctions. decrease and finally the value for uncorrelated electronic

_ Temperature characteristics of our system are presented {Pansport given by Eq20) is reached.
Fig. 5 for e,=—0.025. The EOM approath gives the
Kondo temperature Ty=0.5D/kgexd —m(e—€p)/Ag,
which for our case wittD=D | =1 is T,=3.5x10°. The
conductancépresented in Fig.(®)] decreases in a very wide In the paper we considered the coherent transport through
temperature rang@ver four orders of magnitugl@nd satu- magnetic nanojunctions separated by a nanoparticle and a
rates at temperaturéB~10"%. We drew also a series of role of electronic correlations. In the empty state regime the
auxiliary figures(not presentedwith the DOS for various transport is uncorrelated and the Julliere formula for the
temperaturegsimilar to Fig. 3 and found that the Kondo magnetoresistance was recovered. We showed that in the
peak disappeared dt~10 *. For higher temperatures the Kondo regime the conductance reaches the unitary limit and
value of G is connected with the broad peak of the DOSthe singlet state is formed, for which the spin accumulation
corresponding to the charge fluctuations, which is weaklyanishes. Correlations between electrons lower the value of
temperature dependent. The spin accumulation depends ¢ime magnetoresistance, which can be even negative for asym-

V. FINAL REMARKS
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2.0 e the response of the subsystem. This problem has to be stud-
ied by many-particle Green’s functions including vertex cor-
rections. The essential point of such more fundamental ap-
proach is that the processes for each spin channel do not
proceed separately, but the interactions mix the channels.
The Kondo resonance at the nanoparticle is caused by col-
lective excitations of the low-energy particle-hole pairs that
lead to logarithmic singularities. In the response of the con-
duction electron subsystem the electron-hole pairs with op-
posite spins also take part. One can expect that electronic
correlations in the electrodes influence the Kondo resonance
and modify the Kondo exchange coupling. This topic has
been discussed in serval papé&se e.g. Refs. 23 and Rih
the context of magnetic impurity in a correlated electron me-
dium in the paramagnetic phase. The studishowed that
| . . | for the weakly correlated cagwith a small onsite coulomb
0.0 TS S S 0.0 integral U ,<D,) spin fluctuations of conduction electrons
Temperature are enhanced with an increase Wf,, which results in an
enhancement of both the Kondo exchange coupling and the
FIG. 5. Temperature dependence of the conductaacier the ~ Kondo temperature. For the strong coupling between the im-
parallel and the antiparallel orientation of magnetization in the elecpurity and the mediumI{,~D,) and the strong correlations
trodes (solid and dashed curvesthe magnetoresistance, and the of conducting electronsl,>D,) the studie%’ suggest that
spin accumulatior(b) for e;=—0.02. The Kondo temperature is the single Kondo picture leading to logarithmic divergences
estimated ag=3.5x 10 °. The other parameters are the same asbreaks down even for a paramagnetic medium. The theory is,
those in Fig. 3. however, not well developed for this case. Those stdtifés
support our statement that the Kondo resonance should occur
metric junctions. Analytical formulas were derived fistR I the system with the magnetic electrodes for the weak cou-
in the system with the electrodes of the same polarization aBliNg between the nanoparticle and the electrodBg,(
well as in the limit of strong asymmetry between the junc-<D.ac) and for the small polarization,<1). The present
tions. The slave-boson mean-field approach and the equatigPProach cannot be applied in the limit of large polarization
of motion method were used in the studies, and both of therkP.— 1), where one can expect a breakdown of the Kondo
gave quantitatively the same results in the Kondo regime antgsonance and magnetic solutions for whole range,of
in the empty state regime. For the mixed valence regime we A ferromagnetic single-electron transistdSET) has a

predict a large magnetoresistance, which should exhibit &imilar constructiof? to the model discussed in this paper.
strong temperature dependence. The tunnel barriers between the electrodes and the nanopar-

Very recenﬂy appeared a paper by SergueEa'_zz dis- ticle are assumed to be thicker in the fSET and therefore,

cussing also the spin-polarized transport through a quantuii@nsport is an incoherent sequential tunneling process. The

dot. In opposite to our studies they concentrate exclusivelgurrent-voltage -V) characteristic show®$ a Coulomb

on the Kondo regime and the main point of their interest isPlockade effect in a low-voltage regime. Moreover, for a

the contribution of the Kondo resonance to the spin valveligh voltage thd-V curve is asymmetric like in a diode and

effect. Their finding of the singlet Kondo state in the pres-the fSET can operate as a spin filter. Electronic correlations

ence of magnetic electrodes is in agreement with our concllat the nanoparticle lead to an increase of the magnetoresis-

sions. tance for the incoherent sequential tunneling—in contrast to
In the presented discussion all the information on correthe present result&21)—(22) for the coherent transport.

lations of electrons in the electrodes is included in the mag-

netic polarization only. In th_is simplified picture, lthe elec-. ACKNOWLEDGMENTS
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