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Coherent electronic transport and Kondo resonance in magnetic nanostructures

Bogdan R. Bułka and Stanisław Lipin´ski
Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan´, Poland

~Received 17 June 2002; published 9 January 2003!

We consider a coherent electronic transport between two ferromagnetic electrodes separated either by a
metallic nanoparticle or by a conducting molecule. Correlations between electrons with opposite spins lead to
the Kondo resonance, which manifests a formation of the singlet state. Although tunneling rates for electrons
with opposite spin orientations are different, the conductance reaches the unitary limit in the Kondo regime. We
predict a negative magnetoresistance effect, which can be observed for asymmetric magnetic junctions.
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I. INTRODUCTION

Spin-dependent electronic transport attracts recently g
interest due to its potential applications in nanoelectronics
the last decade intensive studies of giant magnetoresist
led to a practical application of the effect in magnetic-fie
sensors and read heads for drives.1 More recent studies o
tunnel magnetoresistance in multilayered metal-nonm
thin films or in metal-nonmetal granular systems seem a
to be very promising.2 An interesting proposition is a ferro
magnetic single-electron transistor~fSET!,3,4 in which trans-
port through a nanoparticle placed between ferromagn
electrodes is a single-electron process. Due to high con
resistances (R.10 MV) the current intensity is, howeve
very low and tunneling events for transfer of an electron
and from the nanoparticle are incoherent. One can ex
that further development in technology leads to a produc
of magnetic nanodevices operating in the coherent regim
the electronic transport. This is achieved if a typical dime
sion of the object becomes smaller than the phase coher
length. The issue of coherence is critical for the possi
application in quantum computers.

There are known experiments on coherent transpor
nonmagnetic nanostructures, through quantum dots5 and
single-walled carbon nanotubes~SWNT!.6 In this regime
quantum interference and electronic correlations play an
sential role, they lead to the Fano resonance as well as to
Kondo resonance.5–7 The coherence effects should be al
important in magnetic nanostructures. Garcia et al.8 showed
that the relative difference between the resistance for
parallel (RP) and the antiparallel (RAP) orientation of mag-
netization in the electrodesMR5(RAP2RP)/RAP can be
very large in the ballistic transport through a magnetic po
contact. The effect is due to a relative change of a numbe
conducting channels when magnetization changes its or
tation from parallel to antiparallel.9 Some attempts were un
dertaken to measure magnetoresistance through multiwa
carbon nanotubes connected with cobalt electrodes.10 Al-
though the minimal resistanceRmin'9 kV was less than the
resistance quantumRQ513 kV typical for the ballistic trans-
port, the magnetoresistance was rather lowMR'0.02. One
could not distinguish any mechanism of the magnetore
tance from these experimental data;10 moreover there was
lack of any features of interference, which were well seen
SWNT’s connected to the gold electrodes.6
0163-1829/2003/67~2!/024404~8!/$20.00 67 0244
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The purpose of the present work is to study the coher
electronic transport between ferromagnetic electrodes s
rated by a nonmagnetic nanoparticle~e.g., either a quantum
dot or a molecule!. The electrodes are assumed to be in
form of thin films with an in-plane magnetization perpe
dicular to the direction of the current flow. For a nanosco
gap between the electrodes, the stray magnetic fields a
particle vanish. In considerations we take into account C
lomb interactions at the particle with special attention on
correlations between electrons with opposite spin orien
tions flowing through the particle. The considered system
of a transistor type with a gate electrode, which allows
shift a position of the energy level and to change a numbe
electrons at the particle. We expect for the deep dot level
Kondo resonance with a peak in a local density of state
the Fermi energy, what reflects a formation of a singlet st
Passing from the Kondo regime to the empty state reg
one can observe a crossover from the strongly correlate
the uncorrelated electron system. It is of a special interes
examine whether the singlet state in the Kondo regime
preserved with increasing polarization of electrodes.

The paper is organized as follows: In Sec. II the mode
described and the current is expressed by means of none
librium Green’s functions. In order to find the Green’s fun
tions we use~in Sec. III! the slave-boson method within th
mean-field approximation~SBMFA!,11,12 which takes into
account the essential electronic correlations and captures
Kondo resonance. This method is very simple and effici
for the study of electronic transport in nanostructures,13 how-
ever, it has some limitations. Therefore, in Sec. IV we ap
the equation of motion method~EOM!7,14 and compare the
results with those obtained within the SBMFA. In Sec.
some final remarks will be given.

II. DESCRIPTION OF THE MODEL AND
DETERMINATION OF THE CURRENT

The Hamiltonian for the system with two ferromagne
electrodes separated by the metallic nanoparticle can be
pressed as

H5 (
k,a,s

ekas cka,s
† cka,s1(

s
e0 c0s

† c0s1Un0↑n0↓

1 (
k,a,s

ta~cka,s
† c0s1H.c.!. ~1!
©2003 The American Physical Society04-1



th
th

a

he

ee

he
e
,

ve
on

n

n

e

-
ela

cr
th
pe

cor-

he

tors

par-

on-

ith

y
the
n
to

en
tua-

g
tron
er
ade
ec-
-
an-

be-
ag-
ical
in-
ma-
ns
n’s
to
/N
in
by
ns,

he

BOGDAN R. BUŁKA AND STANISŁAW LIPIŃSKI PHYSICAL REVIEW B 67, 024404 ~2003!
The first term describes electrons in the left (a5L) and the
right (a5R) ferromagnetic electrode, the second and
third one correspond to electrons at the particle with
single energy levele0 and the onsite Coulomb interactionU
of two electrons with the opposite spinss5↑ ands5↓, the
fourth term describes tunneling between the electrodes
the particle.

The current is calculated from the time evolution of t
occupation numberN̂L5(k,sckL,s

† ckL,s for electrons in the
left electrode

J[2eK dN̂L

dt L 5
ie

\ F(
k,s

tL^ckL,s
† c0s&2c.c.G . ~2!

The thermal averages are expressed by the lesser Gr
function15 as

^cka,s
† c0s&5E dv

2p i
G0s,kas

, ~v!. ~3!

From the Dyson equation we find

G0s,kas
, ~v!5ta@gkas

r ~v!G0s,0s
, ~v!1gkas

, ~v!G0s,0s
a ~v!#,

~4!

wheregkas is the bare Green’s function for electrons in t
a electrode,G0s,0s is the dressed Green’s function at th
particle, and the superscriptr, a and, denotes the retarded
the advanced and the lesser Green’s function, respecti
Assuming quasielastic transport, for which the current c
servation rule is fulfilled for any energyv, one gets

G0s,0s
, ~v!522i Im@G0s,0s

r ~v!#@gLs f L~v!1gRs f R~v!#,
~5!

where gas5Gas /Ds , Gas5prasta
2 , and Ds5GLs

1GRs . We used the relations for the bare Green’s functio
in the electrodesgas5(kgkas[(k@1/(v2ekas)#, gas

,

52ipras f a and gas
r ,a57 ipras , whereras51/(2Das) is

the assumed constant density of states forueu,Das , Das is
a half of the bandwidth andf a denotes the Fermi distributio
function for electrons in thea electrode. Putting Eq.~5! into
Eqs.~4!, ~3!, and~2! one gets

J5
e

\ (
s

2GLsGRs

Ds
~^nRs&2^nLs&!, ~6!

where

^nas&52
1

pE2Das

Das
dv f a~v!Im@G0s,0s

r ~v!#. ~7!

The charge and the spin accumulation at the particle are
pressed as ^n0&[(s^n0s&5(a,sgas^nas& and ^m0&
[(ss^n0s&5(a,ssgas^nas&, respectively. There are sev
eral possible choices for the treatment of electronic corr
tions and calculation of the Green’s functionG0s,0s

r . We
choose the slave-boson approach well adopted to des
the Kondo regime and complement the calculations by
equation of motion treatment, which allows to get a dee
insight into the mixed valence range.
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III. SLAVE-BOSON APPROACH

Slave-boson fields were used for decades in strongly
related electron systems~see Ref. 16 for a review!. In the
context of the Anderson model of a magnetic impurity, t
slave-boson representation was first used by Barnes11 and
later developed by Coleman12 and others.17 Within this ap-
proach the annihilation operatorc0s of an electron at the
particle is expressed in terms of the slave-boson opera
e0 , d0, and the slave-fermion operatorf 0s

c0s5e0
†f 0s1s f 0s

† d0 . ~8!

The local eigenstatesu0&, us&, andu2& ~corresponding to the
empty, the single, and the doubly occupied state at the
ticle! are constructed by the auxiliary operators

u0&5e0
†uvac&, us&5 f 0s

† uvac&, u2&5d0
†uvac& ~9!

from the vacuum stateuvac&. In order to operate in the
physical space the auxiliary operators should obey the c
straint

e0
†e01(

s
f 0s

† f 0s1d0
†d051. ~10!

The slave-boson representation~8! gives the reliable re-
sults for the equilibrium situation and for the system w
paramagnetic electrodes. It is well known12,17,18that this rep-
resentation can be generalized for large spin degeneracN.
The mean-field approximation gives then exact results in
limit N→` andT50. Moreover, one can include Gaussia
fluctuations about mean-field solution, which corresponds
the 1/N corrections. The local density of states shows th
two peaks corresponding to the charge and the spin fluc
tions, respectively.

Kotliar and Ruckenstein19 proposed other approach usin
four slave-boson operators for representation of the elec
operatorc0s . The method is associated with the Guzwill
approximation and has been widely used in the last dec
for studies of the ground state of strongly correlated el
trons in lattice models.16 For the Anderson model of a single
magnetic impurity this approach gives, however, a me
field stable solution with the local magnetic moment (^n0↑&
Þ^n0↓&) for largeU andT50 ~for paramagnetic electrodes!,
in contrast to the exact solution̂n0↑&5^n0↓&.

We choose the Barnes-Coleman representation~8! for
studies of our model with the ferromagnetic electrodes,
cause this method gives the reliable results for the param
netic case and describes a continuous evolution of phys
quantities when the magnetization in the electrodes
creases. We are aware that within the mean-field approxi
tion ~MFA! the method takes into account spin fluctuatio
but neglects charge fluctuations. The one-particle Gree
function has the quasiparticle contribution only. In order
get the full electronic spectrum one has to include the 1
corrections~see for example, Ref. 12 and the chapter 8
Ref. 18!. Moreover, the Barnes-Coleman representation
its construction underestimates long-range spin correlatio
which may eventually lead to magnetic solutions for t
electrodes with a very high magnetic polarization.
4-2
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The expression~8! is introduced into the Hamiltonian~1!.
In order to find the Green’s functions we use the mean-fi
approximation, within which the slave-boson operators
treated as the complex numbers. Moreover, it is assumeU
→`, in which the double occupancy at the particle is p
hibited (d050). The problem is reduced then formally to th
free-electron model with the renormalized parameterst̃ a

5e0ta and ẽ05e01l, for the coupling between the elec
trodes and the particle and the local energy level, resp
tively. Here,l denotes the Lagrangian multiplier correspon
ing to constraint~10!. The stable solution is found from th
saddle point of the partition function, i.e., from the minimu
of the free energy with respect to the variablese0 andl. The
free energy is the sum of the fermionic and the bosonic p
F5F f1Fb , which are given by

F f52(
a,s

ImE
2Das

Das dv

2pDas
f a~v!ln~js2v!, ~11!

Fb5l~e0
221!. ~12!

Here, js5 ẽ01 i D̃s and D̃s5e0
2Ds . The minimum ofF is

determined by

]F

]l
5

]F f

]l
1~e0

221!50, ~13!

]F

]e0
5

]F f

]e0
1le050. ~14!

These equations can be expressed in the form

12e0
25(

a,s
ga,sIm@Aa,s#, ~15!

l52(
a,s

Ga,sRe@Aa,s#, ~16!

where

Aa,s52
1

pE2Das

Das
dv f a~v!G̃0s,0s

r ~v!, ~17!

and the Green’s functionsG̃0s,0s
r is given by

G̃0s,0s
r ~v!5

1

v2 ẽ01 i D̃s

. ~18!

Equation ~15! is the condition for the average number
electrons at the particle and Eq.~16! gives the shift of the
resonant level. In the SBMFA, the local density of states
a Lorentzian peak close to the Fermi energy~at ẽ0), with the
renormalized widthD̃s . The method ignores the charge flu
tuations and consequently no peak occurs in the densit
state ate0.

Let us analyze the situation for the small voltageV→0
and the temperatureT50. The conductance is calculate
from
02440
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e2

h (
s

4e0
2GLsGRs

ẽ0
21D̃s

2
5

e2

h (
s

4gLsgRssin2~p^n0s&!,

~19!

where ^n0& and l are determined from the set of sel
consistent equations~15!–~16!. Figure 1~a! presents the con
ductance as a function of the position of the particle ene
level e02eF ~with respect to the position of the Fermi lev
taken aseF50) for the parallelGP and the antiparallelGAP
orientation of magnetization in the electrodes. In the cal
lations we assumed the density of states in the electro
rL↑5rR↑51 andrL↓5rR↓51/2 ~i.e. DL↑5DR↑51/2, DL↓
5DR↓51) for the parallel configuration andrL↑5rR↓51
andrL↓5rR↑51/2 for the antiparallel configuration. Follow
ing the Julliere approach20 one can express the polarizatio
as Pa5(ra↑2ra↓)/(ra↑1ra↓), which in our case isPL
5PR51/3 for the parallel configuration. In the following
the limit of strong polarizationuPau→1 is not considered,
because it corresponds to the case of vanishing bandwid
one of the spin subbands and it breaks down our assump
on the weak couplingGas!Das .

FIG. 1. The results of the SBMFA for the conductance~a!, the
magnetoresistance~b!, and the spin accumulation as a function
the relative position of the energy levele02eF of the particle for
the symmetric junction (tL50.03,tR50.03) and the asymmetric
junction (tL50.02,tR50.06) at the temperatureT50. All param-
eters are in units of the half-band widthDL↓51. The solid and the
dashed curves correspond the situation for the parallel and for
antiparallel orientation of magnetization in the electrodes. The
larization is takenPL5PR51/3 in the parallel configuration.
4-3
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The magnetoresistanceMR5(GP2GAP)/GP is presented
in Fig. 1~b!. In the regime of the empty state~for ẽ0@Ds),
one can find

MR5
2PLPR

11PLPR
. ~20!

It is the Julliere formula,20 as one could expect for the un
correlated transport of electrons. Note that the magnetore
tance in the empty state regime depends only on polar
tions of the electrodes. No quantity specifying the particle
its coupling to the leads enters into the formula~20!. In the
Kondo regime (ẽ0→0) the conductance is G
5(e2/h)(s4gLsgRs . In general, an expression forMR has
a complex algebraic form. A simpler form ofMR is for the
system with equal polarization of the electrodesPL5PR
5P,

MR5
P2~123a21a2P21a4P2!

~12a2P2!2
, ~21!

where a5(tL
22tR

2)/(tL
21tR

2) describes asymmetry betwee
the left and the right junction. For a large asymmetrya→1

MR52
2PLPR

12PLPR
. ~22!

The magnetoresistance is then negative and its abso
value is larger than in the empty state regime@compare with
Eq. ~20!#.

Figure 1~c! presents the spin accumulation^m0& at the
particle. When a gate voltage is applied to the particle,
position of e0 is shifted from the empty state regime to th
Kondo regime. The spin accumulation then increases
achieves its maximal value in the mixed valence regim
next it decreases to zero. Using the formula^n0s&
5(1/p)arctan(D̃s /ẽ0) for the average number of electron
with the spins valid at T50, one can easily derive th
following relation linking the magnetization with the occu
pation of the particle:

sin~p^m0&!5
D↑2D↓
D↑1D↓

sin~p^n0&!. ~23!

It means that in the Kondo regime~i.e. when^n0&→1) the
spin accumulation̂m0&→0 and the system achieves the un
tary limit with the singlet state. Although the tunneling rat
Gas are different for electrons with the opposite spin orie
tation, the Kondo resonance leads to an equal probabilit
find an electron with the spins5↑ ands5↓. The vanishing
spin accumulation at the nanoparticle in the Kondo regim
independent on the asymmetry of the junctions@Fig. 1~c!#. It
is not true for the transmission, where equal values for b
spin channels are only achieved for the symmetric casetL
5tR ,PL5PR). This fact is illustrated in Fig. 1~a!, where for
the asymmetric junctions (tLÞtR) the conduction does no
reach the maximal value 2e2/h in the Kondo limit. Qualita-
tively similar behavior holds fortL5tR but PLÞPR ~see the
02440
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dashed curve in Fig. 1~a! for the symmetric junctions and fo
the antiparallel configuration!.

Relation ~23! is valid for free electrons (U50) as well.
There is a difference in the dependence of the average n
ber of electronŝn0& on the position of the particle levele0,
which for the correlated electrons within the SBMFA is e
pressed by the renormalized valueẽ05e01l. Using the
electron-hole symmetry in our model~1!, one finds that in
the limits ^n0&→0 and ^n0&→2 electronic correlations are
irrelevant and the magnetoresistance is the same as for
electrons. The absolute value of^m0& is equal in both the
limits, but its sign is opposite. Therefore, we expect th
^m0&50 for the symmetric Anderson model with ferroma
netic electrodes, i.e. whene05U/2 and^n0&51. The prob-
lem shall be undertaken in the following section within t
equation of motion approach.

Figure 2 shows the temperature dependence of the
ductance and the slave-boson fielde0

2. In the Kondo regime
G ande0

2 decreases to zero whenT→Tc . The sharp characte
of the transition from the broken symmetry state to the st
with vanishing boson field expectation value is an artifact
the MFA. The peak in the density of states disappears atTc .
In the mixed valence regime the value ofTc is much larger
and one can observe an increase ofG corresponding to
smearing of the Fermi distribution function~see the curves in
Fig. 2 corresponding toe050). The SBMFA is reliable in
the Fermi-liquid regime when the temperatureT is much
lower than the Kondo temperatureTK . The method neglects
charge fluctuations relevant in the mixed valence regime
at higher temperatures. Therefore, in the following secti
we complement the studies of electronic transport by
equation of motion approach.

IV. EQUATION OF MOTION APPROACH

Lets us first describe the equation of motion~EOM!
method. The equation forG0s,0s

r at the particle

~v2e01 iDs!G0s,0s
r ~v!511U^^c0sc0s̄

†
c0s̄uc0s

† &&v
r ,

~24!

FIG. 2. Temperature dependence of the conductance~solid
curve! and the boson occupation parametere0

2 ~dashed curve! for
e0520.018 and 0. The contacts are symmetric (tL50.03,tR

50.03), the polarizations in the electrodesPL5PR51/3 are ori-
ented parallel.
4-4
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generates the higher-order Green’s functi

^^c0sc0s̄
†

c0s̄uc0s
† &&v

r . Here, s̄ denotes the spin orientatio
opposite tos. Next, the equation of motion for this functio
is written as

~v2e02U !^^c0sc0s̄
†

c0s̄uc0s
† &&v

r 5^n0s̄&

1(
k,a

ta@^^ckasc0s̄
†

c0s̄uc0s
† &&v

r 2^^c0sckas̄
†

c0s̄uc0s
† &&v

r

1^^c0sc0s̄
†

ckas̄uc0s
† &&v

r #. ~25!

We proceed a step further and truncate the series of hiera
of equations of motions using the self-consistent decoup
procedure proposed by Lacroix,14 within which

^^ckasck8a8s̄
†

c0s̄uc0s
† &&v

r '^ck8a8s̄
†

c0s̄&Gkas,0s
r ~v!,

~26!

^^ckasc0s̄
†

ck8a8s̄uc0s
† &&v

r '^c0s̄
†

ck8a8s̄&Gkas,0s
r ~v!,

~27!

^^c0sckas̄
†

ck8a8s̄uc0s
† &&v

r '^ckas̄
†

ck8a8s̄&G0s,0s
r ~v!.

~28!

The Green’s functions from the left-hand side of Eq.~25! can
be written as (k^^ckasc0s̄

†
c0s̄uc0s

† &&v
r

'tagas
r ^^c0sc0s̄

†
c0s̄uc0s

† &&v
r and

(
k

^^c0sc0s̄
†

ckas̄uc0s
† &&v

r

'R0s̄,as̄~v!1tagas̄
r

^^c0sc0s̄
†

c0s̄uc0s
† &&v

r 1R0s̄,as̄~v!

3 (
k8,a8

ta8Gk8a8s,0s
r

~v!2G0s,0s
r ~v!

3(
a8

ta8Ra8s̄,as̄~v!, ~29!

where R0s̄,as̄(v)5(k@^c0s̄
†

ckas̄&#/@v2ekas#, Ra8s̄,as̄(v)

5(k,k8@^ck8a8s̄
†

ckas̄&#/@v2ekas#. The function

^^c0sckas̄
†

c0s̄uc0s
† &&v

r }1/U and can be neglected in the lim
U→`. After these approximations one gets~for U→`)

G0s,0s
r ~v!5

12^n0s̄&1H s̄~v!

v2e01 iDs1 i2D0H s̄~v!1F s̄~v!
,

~30!

where 2D05D↑1D↓ ,

H s̄~v!5(
a

Gas̄E dv8

p

f a~v8!G0s̄,0s̄
a

~v8!

v82v2 i01
, ~31!
02440
hy
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F s̄~v!5(
a

Gas̄E dv8

p

f a~v8!

v82v2 i01

5(
a

Gas̄

p H ip f a~v!1 ln
2pkBT

Das̄

1ReCF1

2
2 i

v2eFa

2pkBT G J . ~32!

Here, ReC denotes the real part of the digamma function a
eFa is the position of the Fermi level in thea electrode.
Equations~30!–~31! and the condition

^n0s&52
1

p (
a

E
2Das

Das
dvgas f a~v!Im@G0s,0s

r ~v!#

~33!

consist a set of self-consistent integral equations, which h
to be solved.

At T50 the functionsH s̄(v) andF s̄(v) have a logarith-
mic singularity at the Fermi levelv5eFa , but G0s,0s0

r (v)
varies more smoothly around this point. At the equilibriu
Eq. ~30! for the Green’s function can be written as

G0s,0s
r ~eF!5

G0s̄,0s̄
a

~eF!

i2D0G0s̄,0s̄
a

~eF!11
. ~34!

Assuming the solution in a form G0s,0s
r (eF)5@1

2e2ifs#/(2iDs) one gets

sin~f↑2f↓!5
D↑2D↓
D↑1D↓

sin~f↑1f↓!. ~35!

Taking the phase shiftf5f↑1f↓ according to the Friede
sum rulef5p^n0& andh5f↑2f↓5p^m0&, relation ~35!
becomes the same as the one~23! derived for the SBMFA.
Again we come to the conclusion that the spin accumulat
^m0&→0 in the Kondo regime.

In general, the Green’s functionG0s,0s
r (v) was deter-

mined numerically solving the set of Eqs.~30!–~33!. The
singularity ateF was treated with a special care. Integrati
around the singularity point was performed according to
logarithmic discretization procedure.18 In Fig. 3 the density
of states~DOS! is presented for both spin orientations. B
sides the sharp Kondo peak close toeF50, one can see the
broad peak close toe0 corresponding to charge fluctuation
Since the real part of the denominator of the Green’s fu
tion ~30! is different for both spin orientations, the maxim
of the charge fluctuation peaks are at different positio
Moreover, one can see that the weight of DOS fors5↑ is
much larger than that fors5↓. This results from the nomi-
nator ofG0s,0s

r ~30!, which is different for the opposite spin
directions. It is in contrast to the SBMFA, where no sp
asymmetry of the weights is observed—compare the Gre
functions ~30! and ~18!. The difference reflects the fac
that the SBMFA solution~18! completely neglects charg
fluctuations.
4-5
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Figure 4~a! presents the conductanceGP andGAP for the
parallel and the antiparallel configuration of the magneti
tion ~solid and dashed curves, respectively!. It is seen that
with lowering of the temperature the peak ofG is shifted~as
expected21! to the Kondo regime.

The magnetoresistance is presented in Fig. 4~b!. In the
empty state regime it is similar to the SBMFA result@com-
pare Fig. 1~b!#. In the mixed valence regimeMR behaves
different, it increases and achieves large values. Moreo
MR shows a strong temperature dependence. In this ra
the contribution of the charge fluctuations is dominant a
since the width of the peaks of the DOS for the opposite s
directions are different, the different temperature depende
of the conductance results. A further shift ofe0 into the
Kondo regime leads to a reduction ofMR, which achieves
its minimal value given by Eq.~21! ~for our caseMR5P2

51/9).
The spin accumulation̂m0& calculated within the EOM

approach@Fig. 4~c!# is much larger than that for the SBMF
@compare Fig. 1~c!#. Its maximal value can be as large as 0
at e0'20.02, which means that electrons with the spins
5↑ are mostly transferred through the particle. In the Kon
regime we recover the SBMFA result witĥm0&→0. It is
weakly temperature dependent~in contrast toG and MR).
For the antiparallel configuration there is no spin accumu
tion for anye0 @see the dashed curve in Fig. 4~c!#. It results
from the transfer rates to and from the particle, which
equal for both spin orientations in the case of symme
junctions.

Temperature characteristics of our system are presente
Fig. 5 for e0520.025. The EOM approach14 gives the
Kondo temperature TK50.57D/kBexp@2p(eF2e0)/D0#,
which for our case withD5DL↓51 is TK53.531025. The
conductance@presented in Fig. 5~a!# decreases in a very wid
temperature range~over four orders of magnitude! and satu-
rates at temperaturesT'1024. We drew also a series o
auxiliary figures~not presented! with the DOS for various
temperatures~similar to Fig. 3! and found that the Kondo
peak disappeared atT'1024. For higher temperatures th
value of G is connected with the broad peak of the DO
corresponding to the charge fluctuations, which is wea
temperature dependent. The spin accumulation depend

FIG. 3. Local density of states~DOS! determined by the EOM
method for the spin orientations5↑ ~solid curve! and s5↓
~dashed curve! at T51027. The parameters aree0520.02, tL

5tR50.03, D050.0085, andPL5PR51/3.
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both the peaks, corresponding to the charge and the
fluctuations. However, the weight of the Kondo peak is sm
and its contribution to the electron occupation^n0s& is small
as well. Therefore,̂m0& starts to decrease at a much high
temperatureT'D0 /kB @see the Fig. 5~b!#, when the charge
fluctuation peak becomes to be deformed. Figure 5 sh
also that at low temperaturesGAP decreases quicker thanGP ,
which results in a magnetoresistance increase first, the
decrease and finally the value for uncorrelated electro
transport given by Eq.~20! is reached.

V. FINAL REMARKS

In the paper we considered the coherent transport thro
magnetic nanojunctions separated by a nanoparticle an
role of electronic correlations. In the empty state regime
transport is uncorrelated and the Julliere formula for
magnetoresistance was recovered. We showed that in
Kondo regime the conductance reaches the unitary limit
the singlet state is formed, for which the spin accumulat
vanishes. Correlations between electrons lower the valu
the magnetoresistance, which can be even negative for as

FIG. 4. The conductance~a! calculated by means of the EOM
approach for the parallel and the antiparallel orientation of mag
tization in the electrodes~solid and dashed curves!, the magnetore-
sistance~b! and the spin accumulation~c! as a function of the po-
sition of the dot level for different temperaturesT5131026, 1
31025, and 131024. The other parameters are the same as th
in Fig. 3.
4-6
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COHERENT ELECTRONIC TRANSPORT AND KONDO . . . PHYSICAL REVIEW B67, 024404 ~2003!
metric junctions. Analytical formulas were derived forMR
in the system with the electrodes of the same polarization
well as in the limit of strong asymmetry between the jun
tions. The slave-boson mean-field approach and the equa
of motion method were used in the studies, and both of th
gave quantitatively the same results in the Kondo regime
in the empty state regime. For the mixed valence regime
predict a large magnetoresistance, which should exhib
strong temperature dependence.

Very recently appeared a paper by Sergueevet al.22 dis-
cussing also the spin-polarized transport through a quan
dot. In opposite to our studies they concentrate exclusiv
on the Kondo regime and the main point of their interes
the contribution of the Kondo resonance to the spin va
effect. Their finding of the singlet Kondo state in the pre
ence of magnetic electrodes is in agreement with our con
sions.

In the presented discussion all the information on cor
lations of electrons in the electrodes is included in the m
netic polarization only. In this simplified picture, the ele
trodes are treated as two independent reservoirs of s
dependent noninteracting quasiparticles. The source
magnetism in the electrodes is Coulomb and exchange in
actions, which not only determine the ground state but a

FIG. 5. Temperature dependence of the conductance~a! for the
parallel and the antiparallel orientation of magnetization in the e
trodes ~solid and dashed curves!, the magnetoresistance, and t
spin accumulation~b! for e0520.02. The Kondo temperature i
estimated asTK53.531025. The other parameters are the same
those in Fig. 3.
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the response of the subsystem. This problem has to be s
ied by many-particle Green’s functions including vertex co
rections. The essential point of such more fundamental
proach is that the processes for each spin channel do
proceed separately, but the interactions mix the chann
The Kondo resonance at the nanoparticle is caused by
lective excitations of the low-energy particle-hole pairs th
lead to logarithmic singularities. In the response of the c
duction electron subsystem the electron-hole pairs with
posite spins also take part. One can expect that electr
correlations in the electrodes influence the Kondo resona
and modify the Kondo exchange coupling. This topic h
been discussed in serval papers~see e.g. Refs. 23 and 24! in
the context of magnetic impurity in a correlated electron m
dium in the paramagnetic phase. The studies23 showed that
for the weakly correlated case~with a small onsite coulomb
integral Ua!Da) spin fluctuations of conduction electron
are enhanced with an increase ofUa , which results in an
enhancement of both the Kondo exchange coupling and
Kondo temperature. For the strong coupling between the
purity and the medium (Ga'Da) and the strong correlation
of conducting electrons (Ua.Da) the studies24 suggest that
the single Kondo picture leading to logarithmic divergenc
breaks down even for a paramagnetic medium. The theor
however, not well developed for this case. Those studies23,24

support our statement that the Kondo resonance should o
in the system with the magnetic electrodes for the weak c
pling between the nanoparticle and the electrodes (Gas

!Das) and for the small polarization (Pa!1). The present
approach cannot be applied in the limit of large polarizat
(Pa→1), where one can expect a breakdown of the Kon
resonance and magnetic solutions for whole range ofe0.

A ferromagnetic single-electron transistor~fSET! has a
similar construction25 to the model discussed in this pape
The tunnel barriers between the electrodes and the nano
ticle are assumed to be thicker in the fSET and therefo
transport is an incoherent sequential tunneling process.
current-voltage (I -V) characteristic shows25 a Coulomb
blockade effect in a low-voltage regime. Moreover, for
high voltage theI -V curve is asymmetric like in a diode an
the fSET can operate as a spin filter. Electronic correlati
at the nanoparticle lead to an increase of the magnetore
tance for the incoherent sequential tunneling–in contras
the present results~21!–~22! for the coherent transport.
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