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Scaling properties of the one-dimensional Anderson model with correlated diagonal disorder
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Statistical and scaling properties of the Lyapunov exponent for a tight-binding model with the diagonal
disorder described by a dichotomic process are considered near the band edge. The effect of correlations on
scaling properties is discussed. It is shown that correlations lead to an additional parameter governing the
validity of single parameter scaling.
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I. INTRODUCTION

It has been known for almost forty years that in stand
one-dimensional disordered models all states are local
for any strength of disorder, and that there is no localizat
transition in such systems.1,2 Formally this is expressed b
the statement that the Lyapunov exponent~LE! g, defined as

g52 lim
L→`

1

2L
ln T, ~1!

whereT is the transmission coefficient through the system
lengthL, is always positive.2 While it may seem that there i
nothing more to be said about one-dimensional~1D! models,
their localization properties have recently attracted a g
deal of attention. This renewed interest has been con
trated in two areas. The first area includes studies of unu
models that demonstrate the presence of extended stat
was noted first in Ref. 3 that introducing correlations in t
statistical properties of random site energies in the Ander
model, one can create extended states in the one-dimens
Anderson model at certain values of energy. Later on,
authors of Ref. 4 showed that regions of extended states
in 1D systems with long-range correlations of the rand
potential. The authors of Ref. 5 demonstrated that vanish
LE can be obtained in an arbitrarily chosen spectral reg
by selecting a special form of the correlation function of t
random potential. However, it should be noted that the re
obtained in Ref. 5 is valid up to the second order of the we
disorder expansion. Consideration of higher terms of the
pansion shows that LE drastically decreases at the mob
edges but remains positive.6 These conclusions were con
firmed experimentally,7 where the one-dimensional mod
with a predetermined correlated disorder was in a microw
waveguide with randomly positioned scatterers.

The second area of research interest in the field of o
dimensional localization is focused upon scaling and sta
tical properties of finite-size systems. The single param
scaling ~SPS! put forward in Ref. 1 is a cornerstone of th
current approach to the Anderson localization, but its in
pretation in the presence of non-self-averaging fluctuati
of conductivity was a subject of long debate. Eventually
was understood that the SPS hypothesis in Anderson lo
ization means that the entire distribution function of cond
tivity ~or transmission!, and not individual moments, must b
parametrized by a single parameter.8,9 This distribution in
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one-dimensional systems has been intensively studied,10 and
it was established that the bulk of the distribution for suf
ciently long systems has a log-normal form. It was also u
derstood starting with Ref. 8 that under certain circumstan
the two parameters of the distribution, the average value
the finite size LE,g̃52 ln T/(2L), which coincides with its
limiting value, g5^g̃&, and the variance,s25var(g̃), are
related to each other in a universal way,

t5
s2L

g
51. ~2!

This relation reduces two parameters of the distribution
only one, and provides, therefore, a justification and interp
tation for SPS. Conditions, under which Eq.~2! holds, how-
ever, have been established only recently, when the aut
of Ref. 11 showed that the validity of SPS is controlled by
new macroscopic lengthl s defined in terms of the integra
density of statesN(E):

l s
215sin@pN~E!#, ~3!

where E is energy. It was shown that SPS holds whenk
5(g l s)

21.1, and fails in the opposite case. Recently, t
authors of the present paper showed that parameterk plays a
more important role than just establishing the criterion
SPS. It was found that in the non-SPS region the functiot
defined in Eq.~2!, and the similar dimensionless combin
tion of the third moment with the lengthL and the Lyapunov
exponentg are functions of this single parameter.12 In Ref.
13, higher moments of the distribution of the Lyapunov e
ponent were calculated analytically for a quantum particle
a potential described by the Gaussian delta-correlated
dom function. It was found that all moments of the distrib
tion for this model can be expressed as functions of the
calization length and the parameterE/D2/3, where D
characterizes the strength of the potential. For the Gaus
white-noise potential the parameterk is also a function of
E/D2/3,11 thus in the particular case of the Gaussian whi
noise potential, these two parameters are equivalent.

In the present paper, we combine the two discussed a
and focus upon correlation induced changes in the proba
ity distribution function of the Lyapunov exponent. In ord
to study this problem, we consider a tight-binding mod
with the random potential described by a zero-mean dicho
mic process. This process is characterized by an expone
©2003 The American Physical Society05-1
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correlation function with a correlation radius, which is a fr
parameter of the model. There is no localizatio
delocalization transition in this model, and we are interes
in effects of the correlation radius on scaling and statist
properties of conductance in the regime of strongly localiz
states. This model allows for an approximate analytical tre
ment in the spectral region, where the correlation radius
comes a dominant length. Combining analytical and num
cal calculations, we show that the presence of this additio
length significantly changes the transition between SPS
non-SPS regions, and that in the non-SPS region it resul
a new scaling behavior.

II. QUASICLASSICAL APPROXIMATION
FOR LYAPUNOV EXPONENT

We consider the tight-binding model, described by t
equation of motion

cn111cn211~Vzn2E!cn50, ~4!

whereV describes the strength of the random potential. T
potential randomly takes one of two values6V, depending
upon whether the dichotomic random variablezn is equal to
1 or 21. The assumed value remains constant within
gions of random lengths~segments!, which are distributed
according to the discrete analog of the Poisson distribut
The average length of such regions is

l c5cothS 1

2r c
D , ~5!

wherer c is the correlation radius defined by

^znzm&5e2un2mu/r c. ~6!

The finite-size LE is defined through the norm of the trans
matrix,

g̃~E!5
1

L
lniTN •••T1i , ~7!

whereTn are transfer matrices that, in our case, are equa
eitherT1 or T2 , depending upon the value ofzn , whereT6

are

T65S E6V 21

1 0 D . ~8!

To consider the spectrum of this system let us note tha
addition of a constant potential6U shifts a conduction band
22<E<2, of the homogeneous tight-binding system w
no on-site potential by the value of the potential:227U
<E<27U. Correspondingly, the spectrum of the rando
system under consideration can be divided into three reg
with qualitatively different spectral and transport properti
One region, 0,uEu,22V, corresponds to the common pa
of the conduction bands of homogeneous systems with
site potentials equal to either1V or 2V. In the second
spectral region, consisting of energies 22V,E,21V and
222V,E,221V, extended states exist in a homog
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neous system with the site potentials equal to2V or 1V,
respectively. Finally the third region, 21V,uEu, corre-
sponds to the energies where extended states would not
in homogeneous systems with either of the two possible
ues of the potential. Obviously, no states can arise in
region also in the system with the random distribution of t
potential.

While all states in this model are localized, different spe
tral regions still have different transport properties. Transp
in the first region is characterized by multiple scattering
propagating modes, and the localization in this region res
from the interference of the scattered waves. Transport in
second region can be described as tunneling through st
arising within the segments of the system, where the po
tial produces potential wells between barriers formed by s
ments with the opposite value of the potential. If the avera
length of the ‘‘barrier’’ regions is larger than the penetrati
length under the barrier, the transport is mostly determin
by the under-barrier tunneling, and the interference effe
related to phase changes of the wave functions inside po
tial wells become less important. We are mostly interested
this region, where correlations are expected to result in
most nontrivial effects. One could expect that the transpor
this region can be described within the quasiclassical
proximation, and we will show below that this is indeed t
case.

In the context of our problem, this approximation mea
neglecting commutators between transfer matrices at dif
ent sites. Introducing LE in a homogeneous system with
potentialU according to

g0~E;U !5Re@l0~E;U !#, ~9!

where

l05cosh21S E2U

2 D , ~10!

we can write a quasiclassical expression for LE for Eq.~4! in
the following form:

g̃~E!'
1

L (
n51

N

g0~E;Vzn!. ~11!

Using the fact thatzn561, Eq.~11! can be rewritten in the
form

g̃5ga1
d

L (
n51

N

zn , ~12!

where

ga5 1
2 @g0~E;V!1g0~E;2V!#,

d5 1
2 @g0~E;V!2g0~E;2V!#. ~13!

The averaged finite-length LE,g5^g̃&, is determined by
ga , while its variances2 depends upond:

s25^g2&2^g&25
d2

L
l c .
5-2
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In the first spectral region this approximation yields vanis
ing LE, which is quite understandable, because interfere
effects responsible for the localization in this region are co
pletely neglected.

Equation~11! can be formally obtained in the following
way. The relation between LE and the eigenvalues of
transfer matrix allows us to write

2 cosh~ g̃L !5Tr~TN,1!, ~14!

where the transfer matrixTN,1 consists of sequences ofT6 ,

TN,15TN •••T15•••T
1

n3T
2

n2T
1

n1 . ~15!

Powersnk of transfer matricesT6 represent the lengths o
the regions where the potential remains constant. The m
cesT6 can be diagonalizedT6

n 5R6S6
n R6

21 , where

S6
n 5S el0(6V)n 0

0 e2l0(6V)nD . ~16!

Thus, introducinga125R1
21R2 anda215R2

21R1 , and not-
ing that for long enough samples the effect of matricesR6

appearing at the end of the structure on LE is negligible,
obtain that LE can be found from Eq.~14! with the transfer
matrix replaced by

T̃N,15•••a21S1

n2a12S2

n1 . ~17!

The last step in the procedure is to commute, for exam
S1 anda12, with the purpose of collecting allS6 together. If
one begins this rearrangement from the right side of Eq.~17!,
each of such permutations produces two terms. One of t
consists of the product of the partially ordered and the
maining nonordered parts, while the second one cont
commutators ofS1 anda12. Repeating the procedure lead
to the recurrent equation for the part of the transfer ma
containing only products of commuting diagonal matric
S6 ,

TN,15ON,11 (
kPeven

TN,pk11
Gnk

Opk21,1 , ~18!

where we have used the fact thata12a2151, and introduced
the commutatorGn5@S1

n ,a12#. Notation Opk21,1 stays for

the product of allS6 between sites 1, andpk21 : ON,1

5 . . . S
1

n2S
2

n1 , where pk5( l 51
k nl . Retaining the first term

only and using Eq.~14! we arrive at Eq.~11!.
Equation~18! can be used to obtain a representation

the transfer matrix in terms of the polynomial in powers
the parameterd, which enters the expression for commut
tors Gn , and can be considered as a small parameter in
case of weak disorder. However, the resulting expression
the transfer matrix cannot be interpreted as a weak diso
expansion for LE. The reason for this is the fact that
power of d is determined by the number of segments w
different values of the potential, and the whole polynomia
actually an expansion in terms of the number of ‘‘jump
betweenV and 2V. For instance, the term withd2 results
from configurations with only one such jump, and there
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only N such configurations. In the limitN→` they give zero
correction to the LE~in addition to the exponentially sma
probability of such configurations!. Thus, we can see that fo
long enough samples only terms of the order ofN;N/2
make a significant contribution to the LE because the num
of such terms is proportional to the binomial coefficientCN

N

and, therefore, they give a linear inN contribution to the
lniTi. The actual number of configurations contributing
LE depends upon the average length of the segments
constant potential; and the number of jumps, correspond
to the optimal configurations, can be estimated asN/ l c . It is
clear, therefore, that corrections to the first term of Eq.~18!
decrease with increasingl c . We thus expect that the approx
mation should work whenl loc / l c!1. It actually becomes
exact in the limit of infiniter c andV.14,15This can be under-
stood from the following arguments. Deviations from E
~12! are caused by the interference of the scattered wa
But in the second spectral region such scattered waves
to tunnel through the barriers, where the magnitude of
scattered waves decreases and the interference is destr
Obviously, the effectiveness of the destruction depends
the width of the potential barriers, and the rate of decay
the wave functions in them. These characteristics are de
mined byl c and the magnitude of the potential, respective

In the spectral region, 22V,uEu,21V, only g0(E;V)
in Eq. ~13! is different from zero, and we have fors2,

s2L5g2l c . ~19!

This expression is obviously different from SPS Eq.~2!, and
is valid wheng l c@1. In this case, scaling described by th
functiont(k) is no longer valid, but Eq.~19! suggests that a
new type of scaling appears. It can be conveniently descri
with the help of a new scaling function,S,

S5
s2L

g2l c

;1. ~20!

The transition between the two scaling regimes is contro
by the parameterg l c . If the correlation radius is so sma
that this parameter remains much less than unity for the
tire second spectral region, the regular scaling behavior
pressed byt(k) persists. The behavior expressed by Eq.~20!
occurs wheng l c is greater than unity for the entire regio
22V,uEu,21V. More detailed analysis of the transitio
between the two types of behavior requires a numerical
proach, which we discuss in the following section of t
paper.

In the third spectral region,uEu.21V, S decreases with
energy. This behavior can be approximately described as

S'
~A2Aueu2121!2

~A2Aueu2111!2
~21!

for 0,ueu21!1, wheree5(22uEu)/U and

S'S 1

e D 2 1

~ lnuUu1 lnueu!2
~22!

for ueu@1.
5-3
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III. SCALING PROPERTIES OF LE: NUMERICAL
SIMULATIONS

For the numerical analysis, we calculate the LE iterativ
using Eq.~7! and the usual technique of renormalization
the resultant vector after every ten iterations.16 The lengthl s
was calculated according to Eq.~3!, where the integrated
density of states was obtained using the phase formal2

with consequent averaging over all realizations. To inve
gate scaling properties we kept the length of chains m
larger than the correlation length,l c , and the localization
length, l loc , for all magnitudes of the random potentialU
and values of the energyE in the vicinity of the second
spectral region. Statistics were collected from 40 000 real
tions. Figures 1~a! and 1~b! present results of numerical com
putations of the Lyapunov exponent. The numerical value
the correlation radius in these figures is such thatl c. l loc for
the entire 22V,uEu,21V spectral region. A compariso
of numerical results and the approximation~11! is provided
for both average LE and its variance. For energies inside
first region this approximation gives zero, as discus
above. In the second region, one can see that Eq.~11! pro-
vides a reasonably good approximation forg, and even bet-
ter agreement fors2. In the third spectral region the agre
ment between Eq.~11! and the numerical calculation
becomes perfect.

We also studied numerically the scaling properties of
model. Let us recall that for systems without correlatio
SPS is controlled by the ratiok5 l loc / l s of two macroscopic
lengths existing in the system. In the presence of the co
lated disorder the situation is more complicated becaus
new length related to the correlation radiusr c should be
taken into account. In our model this length isl c—the aver-
age length of regions with constant potential. Ifl c is the
smallest length in the system,l c,( l loc ,l s), the presence o
correlations does not affect the scaling properties. Comp
simulations show that the scaling parametert behaves in this
case qualitatively similar to a system with uniformly distri
uted noncorrelated disorder. In Fig. 2 the dependence oft on
k is shown for both a tight-binding model with uniforml

FIG. 1. Dependence of the mean of the Lyapunov exponen
energy: numerical result~dotted line! and theory~solid line!, for
potentialV50.4 and correlation radiusr c510.
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distributed (2U<Vn<U) on-site potential~with U ranging
from 0.09 to 0.145) and the model under consideration.
the latter, potentials (V50.001–0.004) and correlation rad
(r c52 and 3) were chosen such as to havel c the smallest
length up to the genuine spectral boundary.

However, whenl c. l loc , the behavior ofs2 changes sig-
nificantly, and the character of this change depends upon
position of the spectral pointEc at which l c5 l loc(Ec). If l c
is so large thatEc falls in the first spectral regionuEu,2
2V, the scaling functiont remains essentially equal to unit
up to the very small vicinity of the boundaries of this inte
val. Inside a very small neighborhood of pointsuEu522V
any scaling behavior disappears, but immediately outside
this neighborhood inside the second spectral interval 22V
,uEu,21V a new scaling presented by Eq.~20! emerges.
This situation is presented in Fig. 3. In the third spect
region the functionS decreases in agreement with the an
lytical formulas Eq.~21! and Eq.~22!. It can be seen that the
scaling in terms of variablee5(22uEu)/U predicted by Eq.

n

FIG. 2. t(k) for different distributions of the potential: the un
form distribution~empty circles! and the dichotomic process~filled
circles! when r c is the smallest length of the system.

FIG. 3. The crossover between two scaling regimes,t;1 ~filled
circles! and S;1 ~empty circles!, as energy variable«5(E
12)/V changes, is shown for a collection of different values
parameters (V50.221.2 andr c552250) meeting the requiremen
u@1.
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~21! persists over quite a wide interval of energies.
In the case when the energyEc belongs to the interior of

the second spectral region, the scaling properties are d
mined by the parameterk. If k(Ec)!1 we return to the
situation of the noncorrelated disorder and ifk(Ec).1 the
system does not exhibit any scaling behavior in the sec
spectral region. The destruction of scaling in this case m
also be illustrated by the behavior oft(k) for different val-
ues ofl c . When l c increases from the values correspondi
to the noncorrelated limit, the functiont(k) starts changing
as shown in the inset of Fig. 2 where the dependence oft is
depicted for three different sets of parameters of the rand
potentialU and r c . It deviates from the universal~SPS! de-
pendence at larger values ofk with the increasing magnitud
of the deviation depending upon bothr c and U. It demon-
strates in that way the absence of scaling properties.

IV. CONCLUSION

We considered statistical characteristics and scaling p
erties of the Lyapunov exponent in a random medium w
correlated disorder, using a tight-binding model with a ra
dom potential described by a dichotomic process. A sim
a

he
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theoretical approach for estimation of the statistics of
Lyapunov exponent was suggested. Qualitative anal
based on this model allowed us to estimate the effect
correlations on scaling properties, and express this effec
terms of the ratio of the localization length and the corre
tion length,u5 l c / l loc . When the correlation radius is muc
smaller than the localization length (u!1), the system be-
haves as though correlations are absent and demonst
single parameter scaling,s2Ll loc;1, whose validity is gov-
erned by the ratiol loc / l s . In the opposite case, whenu
@1, the crossover to another scaling,s2Ll loc

2 / l c;1, specific
for the model under consideration, takes place at value
energy close to the band gap. The results of our calculat
can be verified experimentally in microwave experime
similar to Ref. 7.
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