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Scaling properties of the one-dimensional Anderson model with correlated diagonal disorder
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Statistical and scaling properties of the Lyapunov exponent for a tight-binding model with the diagonal
disorder described by a dichotomic process are considered near the band edge. The effect of correlations on
scaling properties is discussed. It is shown that correlations lead to an additional parameter governing the
validity of single parameter scaling.
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[. INTRODUCTION one-dimensional systems has been intensively stddiadd
it was established that the bulk of the distribution for suffi-
It has been known for almost forty years that in standarcciently long systems has a log-normal form. It was also un-
one-dimensional disordered models all states are localizederstood starting with Ref. 8 that under certain circumstances
for any strength of disorder, and that there is no localizatiorihe two parameters of the distribution, the average value of

transition in such systenis’. Formally this is eprQSSQd by the finite size LE,y=—InT/(2L), which coincides with its
the statement that the Lyapunov expon@r) y, defined as limiting value, y:<;,>, and the varianceg?=var(y), are

related to each other in a universal way,

1
y=—lim ZInT, (1)

a’L
7=—=1. (2)
whereT is the transmission coefficient through the system of Y
lengthL, is always positivé.While it may seem that there is This relation reduces two parameters of the distribution to
nothing more to be said about one-dimensiqddl) models,  only one, and provides, therefore, a justification and interpre-
their localization properties have recently attracted a greagation for SPS. Conditions, under which Eg) holds, how-
deal of attention. This renewed interest has been concemver, have been established only recently, when the authors
trated in two areas. The first area includes studies of unusuaf Ref. 11 showed that the validity of SPS is controlled by a
models that demonstrate the presence of extended statesnw macroscopic length, defined in terms of the integral
was noted first in Ref. 3 that introducing correlations in thedensity of statetN(E):
statistical properties of random site energies in the Anderson
model, one can create extended states in the one-dimensional |- t=sin #N(E)], (3)
Anderson model at certain values of energy. Later on, the
authors of Ref. 4 showed that regions of extended states exigthere E is energy. It was shown that SPS holds when
in 1D systems with long-range correlations of the random=(¥ls) "*>1, and fails in the opposite case. Recently, the
potential. The authors of Ref. 5 demonstrated that vanishinguthors of the present paper showed that paramepdays a
LE can be obtained in an arbitrarily chosen spectral regiorinore important role than just establishing the criterion for
by selecting a special form of the correlation function of theSPS. It was found that in the non-SPS region the function
random potential. However, it should be noted that the resuldefined in Eq.(2), and the similar dimensionless combina-
obtained in Ref. 5 is valid up to the second order of the wealkion of the third moment with the lengthand the Lyapunov
disorder expansion. Consideration of higher terms of the exexponenty are functions of this single parametérn Ref.
pansion shows that LE drastically decreases at the mobilit3, higher moments of the distribution of the Lyapunov ex-
edges but remains positifeThese conclusions were con- ponent were calculated analytically for a quantum particle in
firmed experimentally, where the one-dimensional model a potential described by the Gaussian delta-correlated ran-
with a predetermined correlated disorder was in a microwavelom function. It was found that all moments of the distribu-
waveguide with randomly positioned scatterers. tion for this model can be expressed as functions of the lo-

The second area of research interest in the field of onesalization length and the parametdt/D?3 where D
dimensional localization is focused upon scaling and statiseharacterizes the strength of the potential. For the Gaussian
tical properties of finite-size systems. The single parametewhite-noise potential the parameteris also a function of
scaling (SPS put forward in Ref. 1 is a cornerstone of the E/D?3 thus in the particular case of the Gaussian white-
current approach to the Anderson localization, but its internoise potential, these two parameters are equivalent.
pretation in the presence of non-self-averaging fluctuations In the present paper, we combine the two discussed areas
of conductivity was a subject of long debate. Eventually itand focus upon correlation induced changes in the probabil-
was understood that the SPS hypothesis in Anderson locaity distribution function of the Lyapunov exponent. In order
ization means that the entire distribution function of conduc+o study this problem, we consider a tight-binding model
tivity (or transmissio)) and not individual moments, must be with the random potential described by a zero-mean dichoto-
parametrized by a single paraméetérThis distribution in  mic process. This process is characterized by an exponential
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correlation function with a correlation radius, which is a freeneous system with the site potentials equaHy or +V,
parameter of the model. There is no localization-respectively. Finally the third region, 2V<|E|, corre-
delocalization transition in this model, and we are interesteégponds to the energies where extended states would not arise
in effects of the correlation radius on scaling and statisticaln homogeneous systems with either of the two possible val-
properties of conductance in the regime of strongly localizedies of the potential. Obviously, no states can arise in this
states. This model allows for an approximate analytical treatregion also in the system with the random distribution of the
ment in the spectral region, where the correlation radius bepotential.

comes a dominant length. Combining analytical and numeri- While all states in this model are localized, different spec-
cal calculations, we show that the presence of this additionatal regions still have different transport properties. Transport
length significantly changes the transition between SPS anith the first region is characterized by multiple scattering of
non-SPS regions, and that in the non-SPS region it results ipropagating modes, and the localization in this region results

a new scaling behavior. from the interference of the scattered waves. Transport in the
second region can be described as tunneling through states,

Il. QUASICLASSICAL APPROXIMATION arising within the segments of the system, where the poten-

FOR LYAPUNOV EXPONENT tial produces potential wells between barriers formed by seg-

) . o ) ments with the opposite value of the potential. If the average
We consider the tight-binding model, described by thelength of the “barrier” regions is larger than the penetration
equation of motion length under the barrier, the transport is mostly determined
by the under-barrier tunneling, and the interference effects
Uneat a1+ (VE—BE) =0, 4) rglated to phase changes of t?we wave functions inside poten-
whereV describes the strength of the random potential. Thdial wells become less important. We are mostly interested in
potential randomly takes one of two valugd/, depending this region, where correlations are expected to result in the
upon whether the dichotomic random varialjjeis equal to ~ most nontrivial effects. One could expect that the transport in
1 or —1. The assumed value remains constant within rethis region can be described within the quasiclassical ap-
gions of random lengthésegments which are distributed Proximation, and we will show below that this is indeed the

according to the discrete analog of the Poisson distributioncase. . S
The average length of such regions is In the context of our problem, this approximation means
neglecting commutators between transfer matrices at differ-

1 ent sites. Introducing LE in a homogeneous system with the
lc=cot 2ry) () potentialU according to
wherer . is the correlation radius defined by Yo(E;U)=ReNo(E;U)], 9
(Lolmy= e, (6 Where
The finite—size LE is defined through the norm of the transfer Ao=cosh‘1< E— U), 10
matrix,
1 we can write a quasiclassical expression for LE for @gin
Y(E)= E|n||TN Ty, (7)  the following form:
N
. . ~ 1
vv_hereTn are transfer m:?\trlces that, in our case, are equal to E)~ — 2 yo(E:VE,). (11)
eitherT, or T_, depending upon the value &f, whereT .. Li=a
are Using the fact that,,= +1, Eq.(11) can be rewritten in the
ExV -1 form
T.=
+ ( 1 0 ) tS) ) 5 N
] ) Y= ')’a+E 2 I (12
To consider the spectrum of this system let us note that an n=1

addition of a constant potentiad U shifts a conduction band, \yhere
—2<E=<2, of the homogeneous tight-binding system with
no on-site potential by the value of the potential2+ U Ya=3[Vo(E;V)+ vo(E; = V)],
<E=<2%U. Correspondingly, the spectrum of the random
system under consideration can be divided into three regions 5=3[vo(E;V)— yo(E;—V)]. (13

with qualitatively different spectral and transport properties. ~

One region, 6<|E|<2—-V, corresponds to the common part  The averaged finite-length LE;=(y), is determined by
of the conduction bands of homogeneous systems with the,, while its variances? depends upos:

site potentials equal to eitherV or —V. In the second
spectral region, consisting of energies ¥<E<2+V and 2= ()~ (y)2 ="
—2-V<E<-2+V, extended states exist in a homoge- 4 Y L ¢
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In the first spectral region this approximation yields vanish-only N such configurations. In the limit— oo they give zero

ing LE, which is quite understandable, because interferenceorrection to the LEin addition to the exponentially small

effects responsible for the localization in this region are comyprobability of such configurationsThus, we can see that for

pletely neglected. long enough samples only terms of the order/df N/2
Equation(11) can be formally obtained in the following make a significant contribution to the LE because the number

way. The relation between LE and the eigenvalues of thef such terms is proportional to the binomial coeffici€}

transfer matrix allows us to write and, therefore, they give a linear M contribution to the
- In|[T||l. The actual number of configurations contributing to
2 costiyL)=Tr(Ty 1), (14)  LE depends upon the average length of the segments with

constant potential; and the number of jumps, corresponding
to the optimal configurations, can be estimatedNas.. It is
Tna=Tn - Ty=-- .TiST'lZT'll. (15) clear, thereforg, that qorrections to the first term of 8@ '
’ decrease with increasirlg. We thus expect that the approxi-
Powersn, of transfer matrice§ .. represent the lengths of mation should work when ./l <1. It actually becomes
the regions where the potential remains constant. The matrexact in the limit of infiniter . andV.1**®This can be under-

where the transfer matriXy ; consists of sequences of. ,

cesT.. can be diagonalized” =R. STR.!, where stood from the following arguments. Deviations from Eq.
(12) are caused by the interference of the scattered waves.
n gho(=VIn 0 But in the second spectral region such scattered waves have
Se= 0 e Mo(=VIn |- 18 to tunnel through the barriers, where the magnitude of the

scattered waves decreases and the interference is destroyed.
Thus, introducingx,,= R;lR_ anda,;=R" 'R, , and not- Obviously, the effectiveness of the destruction depends on
ing that for long enough samples the effect of matriBes  the width of the potential barriers, and the rate of decay of
appearing at the end of the structure on LE is negligible, wehe wave functions in them. These characteristics are deter-
obtain that LE can be found from E¢L4) with the transfer mined byl and the magnitude of the potential, respectively.
matrix replaced by In the spectral region, 2V<|E|<2+V, only y,(E;V)
. R . in Eq. (13) is different from zero, and we have for?,
= o .
N,1 2194 129 ( 7) 0'2L=’yz|c. (19)

The last step in the procedure is to commute, for exampIeThiS expression is obviously different from SPS E#), and

S anday,, with the purpose of collecting a.. together. It~ - 4 whenyl >1. In this case, scaling described by the

one begins this rearrangement from the right side of(Ed), IIantion ~(x) is no longer valid, but Eq19) suggests that a

each of such permutations produces two terms. One of the . 4 .
consists of the product of the partially ordered and the reNeW type of scaling appears. It can b_e conveniently described
ith the help of a new scaling functiofs,

maining nonordered parts, while the second one containd
commutators oS, and aq,. Repeating the procedure leads

2
to the recurrent equation for the part of the transfer matrix S= U_Lwl_ (20)
containing only products of commuting diagonal matrices Y
St The transition between the two scaling regimes is controlled
by the parameteryl.. If the correlation radius is so small
Tn1=Onat > Tnpy, I0Op 110 (18  that this parameter remains much less than unity for the en-
keeven tire second spectral region, the regular scaling behavior ex-

where we have used the fact thaga,,=1, and introduced ~Pressed byr(«) persists. The behavior expressed by &)

the commutato’, =[S ,e1,]. Notation O, _ , stays for occurs whemyl. is greater than unity for the entire region
the product of allS. between sites 1, ang,_;: O 2—-V<|E|<2+V. More detailed analysis of the transition
B My t = 1- ¥N1  petween the two types of behavior requires a numerical ap-
=...57257, wherep,=2|_;n,. Retaining the first term  ,55ch which we discuss in the following section of the

only and using Eq(14) we arrive at Eq(11). paper.

Equation(18) can be used to obtain a representation for | the third spectral regiofE|>2+V, Sdecreases with

the transfer matrix in terms of the polynomial in powers of energy. This behavior can be approximately described as
the parametep, which enters the expression for commuta-

torsT',, and can be considered as a small parameter in the (V2\]e]—1-1)? 2
case of weak disorder. However, the resulting expression for ~
9o (V2\le[=1+1)2

the transfer matrix cannot be interpreted as a weak disorder

expansion for LE. The reason for this is the fact that thefor 0<|e|—1<1, wheree=(2—|E|)/U and
power of § is determined by the number of segments with

different values of the potential, and the whole polynomial is 1\2 1
actually an expansion in terms of the number of “jumps” ~ m
betweenV and —V. For instance, the term with? results

from configurations with only one such jump, and there arefor |e|>1.

(22
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FIG. 1. Dependence of the mean of the Lyapunov exponent oF\(.)rm distribution(empty circleg and the dichotomic processlled

energy: numerical resultdotted ling and theory(solid line), for circles whenr is the smallest length of the system.
potentialV=0.4 and correlation radius,= 10.
distributed —U=<V,<U) on-site potentialwith U ranging
from 0.09 to 0.145) and the model under consideration. For
the latter, potentials=0.001-0.004) and correlation radii
For the numerical analysis, we calculate the LE iteratively(r.=2 and 3) were chosen such as to hay¢he smallest
using Eq.(7) and the usual technique of renormalization oflength up to the genuine spectral boundary.
the resultant vector after every ten iteratidhghe lengthl However, wher .>1,,., the behavior ofr®> changes sig-
was calculated according to E@), where the integrated nificantly, and the character of this change depends upon the
density of states was obtained using the phase formalisnposition of the spectral poir, at whichl =1,,.(E¢). If I,
with consequent averaging over all realizations. To investiis so large tha€, falls in the first spectral regiofE|<2
gate scaling properties we kept the length of chains much-V, the scaling function remains essentially equal to unity
larger than the correlation length,, and the localization up to the very small vicinity of the boundaries of this inter-
length, I,,., for all magnitudes of the random potentidl  val. Inside a very small neighborhood of poifg=2—-V
and values of the energl in the vicinity of the second any scaling behavior disappears, but immediately outside of
spectral region. Statistics were collected from 40 000 realizathis neighborhood inside the second spectral intervah2
tions. Figures () and 1b) present results of numerical com- <|E|<2+V a new scaling presented by EQ0 emerges.
putations of the Lyapunov exponent. The numerical value offhis situation is presented in Fig. 3. In the third spectral
the correlation radius in these figures is such thatl,,. for ~ region the functionS decreases in agreement with the ana-
the entire 2-V<|E|<2+V spectral region. A comparison lytical formulas Eq.(21) and Eq.(22). It can be seen that the
of numerical results and the approximatigii) is provided scaling in terms of variable=(2—|E|)/U predicted by Eq.
for both average LE and its variance. For energies inside the

Ill. SCALING PROPERTIES OF LE: NUMERICAL
SIMULATIONS

first region this approximation gives zero, as discussed 3.0-

above. In the second region, one can see that(EL.pro-

vides a reasonably good approximation fgrand even bet- 2.5-

ter agreement foo2. In the third spectral region the agree-

ment between Eq.(11) and the numerical calculations @ 2.0

becomes perfect. 3
We also studied numerically the scaling properties of our § 1.5

model. Let us recall that for systems without correlations I

SPS is controlled by the ratio=1,,./ls of two macroscopic £ 104

lengths existing in the system. In the presence of the corre- Z

lated disorder the situation is more complicated because a 0.5+

new length related to the correlation radigg should be

taken into account. In our model this lengthl js—the aver- 0.0

age length of regions with constant potential.l{fis the 3

smallest length in the systerh,<(l.¢.,ls), the presence of
correlations does not affect the scaling properties. Computer FiG. 3. The crossover between two scaling regimesy (filled
simulations show that the scaling parametéehaves in this  circle§ and S~1 (empty circley, as energy variables=(E
case qualitatively similar to a system with uniformly distrib- +2)/v changes, is shown for a collection of different values of
uted noncorrelated disorder. In Fig. 2 the dependeneeonf  parameters\(=0.2— 1.2 andr ,=5— 250) meeting the requirement
« is shown for both a tight-binding model with uniformly 6>1.
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(21) persists over quite a wide interval of energies. theoretical approach for estimation of the statistics of the

In the case when the ener@y belongs to the interior of Lyapunov exponent was suggested. Qualitative analysis
the second spectral region, the scaling properties are detdsased on this model allowed us to estimate the effect of
mined by the parametex. If «(E;)<1 we return to the correlations on scaling properties, and express this effect in
situation of the noncorrelated disorder andk{fE.)>1 the terms of the ratio of the localization length and the correla-
system does not exhibit any scaling behavior in the secontion length,0=1./I,,.. When the correlation radius is much
spectral region. The destruction of scaling in this case magmaller than the localization lengtl¥£«1), the system be-
also be illustrated by the behavior efx) for different val-  haves as though correlations are absent and demonstrates
ues ofl.. Whenl, increases from the values correspondingsingle parameter scaling;?L|,.~ 1, whose validity is gov-
to the noncorrelated limit, the functior(x) starts changing erned by the ratid,./ls. In the opposite case, whef
as shown in the inset of Fig. 2 where the dependenceisf >1, the crossover to another scalirmgfj.l,zoc/lc~1, specific
depicted for three different sets of parameters of the randorfor the model under consideration, takes place at values of
potentialU andr . It deviates from the universésPS de-  energy close to the band gap. The results of our calculations
pendence at larger values ofwith the increasing magnitude can be verified experimentally in microwave experiments
of the deviation depending upon both and U. It demon-  similar to Ref. 7.
strates in that way the absence of scaling properties.
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