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Interfaces and quasicrystals as competing crystal lattices:
Towards a crystallographic theory of interfaces

David Romeu
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, Me´xico, D. F. 01000, Mexico

~Received 20 August 2002; revised manuscript received 9 October 2002; published 16 January 2003!

This paper shows that in a higher-dimensional approach, quasicrystals and interfaces are formally equiva-
lent. Interfaces and quasicrystals are interpreted here as a region in space where the atoms of interpenetrated
crystal lattices compete for space. Based on this paradigm, a method derived from the strip-projection method
developed for the study of quasicrystals has been introduced. The method is completely general, independent
of the parent crystal lattice type, relative orientation, and translation and of the position and orientation of the
boundary plane. In this approach the perpendicular space coincides with Bollmanns’ displacement space, while
the parallel space contains a physical structure characterized by a minimum local strain that includes both the
interface and adjacent crystal lattices. A classification of interfaces in a finite number of well-defined equiva-
lence classes~local isomorphisms! that include orientational and translational degrees of freedom has been
introduced. This classification is based on the symmetry of the hyperlattice and the position and shape of the
strip and incorporates concepts from previous structural units and symmetry breaking approaches. It is sug-
gested that such classes can be related to physical properties of interfaces. The formalism defines ideal
~minimum strain! structures assumed to play an analogous role in grain boundaries~GB’s! to those played by
the perfect crystal and quasicrystal concepts in the study of crystals and quasiperiodic structures. Also, a lattice,
called the phason lattice, is introduced to account for the dislocation content of nonsingular interfaces. Ac-
cordingly, the properties of any GB are seen to be determined by the periodicity of isosymmetrical regions
related to the O and phason lattices and not by the ill-defined and pathologically discontinuous index number
S.

DOI: 10.1103/PhysRevB.67.024202 PACS number~s!: 61.72.Mm, 61.72.Lk, 61.44.Br
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I. INTRODUCTION

In spite of its technological importance, there is at pres
no general theory of interfaces capable of relating the ph
cal properties of general grain boundaries~GB’s! to their
structure. Since it is well known that different boundari
have different properties, a large amount of work has b
devoted to the creation of a classification scheme that wo
allow the grouping of GB’s into a hopefully finite number o
~property-related! classes, equivalent to the Bravais lattic
of crystals. When studying the properties of crystals, the fi
thing that is specified is the lattice type~space group!, fol-
lowed by an analysis of the existing defects or alterations
the ‘‘perfect lattice’’ that may account for the observed pro
erties. Unfortunately, this procedure cannot be used for in
faces since there are no ideal~defect-free! reference struc-
tures to compare with, making it difficult to ascerta
whether a given property is due to an intrinsic interfac
feature or to an extrinsic defect. If the study of interfaces
to have a similar degree of success to that of crystals,
development of a crystallography of interfaces is needed

Among the numerous efforts to classify interfaces,
works of Pond and co-workers1,2 ~see the book by Sutton an
Balluffi3 for a detailed account! and Vitek and Sutton4 de-
serve special mention. These authors have approached
problem of interfacial characterization from the compleme
tary points of view of~a! symmetry—based on group theo
retical considerations—and~b! structure—based on a
analysis of the content and distribution of structural un
obtained from computer simulations. Each from their o
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perspective has introduced fundamental ideas to the fi
such as symmetry variants and the concept of delimit
~special! and intervening~general! boundaries. Nevertheless
GB’s are still crudely classified in the practice into thr
broad classes5: ~a! low-angle,~b! special or singular, and~c!
general boundaries, which bear little relation to structure

The purpose of this paper is to show that by regard
interfaces as the projection onto the three-dimensional~3D!
space of a suitable defined higher-dimensional hyperlatt
we find a new classification of interfaces in well-defin
equivalence classes that include orientational and tran
tional degrees of freedom that incorporates the results of
above classification schemes and provides an important
towards the formulation of a general crystallographic the
for interfaces. It will be shown that interfaces and quasicr
tals are formally equivalent in the sense that they can
described by the same set of equations and that these e
tions can be used to define an ideal or ‘‘perfect interface,’
analogy with the concepts of ‘‘perfect quasicrystal’’ an
‘‘perfect crystal.’’ The higher-dimensional~HD! approach
provides the mathematical background needed to define
ambiguously delimiting and intervening interfaces as well
the dependence and evolution of the symmetry variants w
the macroscopic and microscopic degrees of freedom
define an interface.

The possibility of using a higher-dimensional approach
study interfaces was first realized by Gratias and Thalal6 who
used it to study general characteristics of interfaces. A
Warringtonet al.7 have used it to investigate the properti
of interfaces between nonperiodic crystals~quasicrystals!.
The first attempt to describe in some detail the geometry
©2003 The American Physical Society02-1
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general every day GB’s was made by Arago´n et al.8 using
the conventional method of starting out with a predefin
hyperlattice. Unfortunately, this limits the usefulness of t
method by preventing it from dealing with symmetry va
ants. This limitation is remedied in this work by letting th
hyperlattice symmetry vary with the relative orientation~and
symmetry! of the parent crystals~see Sec. IV!.

Although at first sight it may appear that introducing ex
dimensions into the problem complicates the issue unne
sarily, it actually makes it simpler. For example, it is easier
envisage~both conceptually and mathematically! the crystal-
lographic properties of a single crystal in 6D than those o
dichromatic pattern~two interpenetrated lattices in 3D!,
which is cumbersome to handle, difficult to visualize, a
requires the introduction of color symmetry groups. Ad
tionally, the symmetry changes~orientational and transla
tional variants2! of dichromatic patterns arising from varia
tions in the rotational and translational degrees of freed
are difficult to follow in detail using conventional method
In the HD approach, the evolution of orientational and tra
lational variants can be easily followed since the meth
decouples these degrees of freedom, allowing them to
studied separately. Orientational variants or, more precis
local isomorphisms9 depend only on the symmetry of th
hyperlattice which depends on the symmetry and orienta
of the parent crystals and is unaffected by relative displa
ments. Translational variants, in turn, are described by
placements of the strip~see Sec. IV! in a direction orthogo-
nal to the physical space, leaving the hyperlattice symm
intact. It will also be shown that the number of rotational a
translational variants is denumerable~and effectively finite!,
significantly simplifying the characterization task.

Given a completely arbitrary set of degrees of freedo
the HD approach provides explicit analytical expressions
produce an interfacial lattice~or quasilattice! that minimizes
the local strain everywhere. Since it is sensible to assu
that, to a first approximation, actual interfaces also minim
local strain in order to minimize elastic energy, it is argu
that this lowest strain~best fit! structure defines the neede
defect-free reference structure or ‘‘perfect interface’’ suita
for characterization purposes. Actually, the method produ
a complete bicrystal; i.e., it gives not only the points at t
interface, but also those of the adjacent crystals.

One fundamental property of the method is its genera
It does not depend on lattice type, relative orientation, a
translation of the parent crystals or on the orientation a
location of the boundary plane. Also, it introduces the co
cept of ‘‘phason,’’ which appears naturally in a HD conte
into the theory of interfaces. As we shall see, phason def
are required for a complete understanding of the geomet
aspects of interfaces. The approach has already show
usefulness by accounting for the extra O points found
low-angle 110-twist GB’s~Ref. 10! through the GCSN
model,11 which is a corollary of the HD approach.

In the following sections, the formalism will be develope
in all generality and it will be illustrated using the results
the GCSN model for rotation related interfaces12 which cor-
responds to a particular choice of strip~see Sec. IV!. The
lattices needed to describe interfaces will be formulated
02420
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this context and a new lattice shall be introduced called p
son lattice or P lattice for short.

II. PERIODIC VERSUS NONPERIODIC INTERFACES

It is important to realize that, in practice, all interfaces c
be regarded as periodic. For any irrational orientation
tween two lattices~resulting in a nonperiodic interface! and
within anydegree of accuracy, there exists an infinite num
of rational orientations corresponding to periodic, coin
dence GB’s~CGB’s!. The same reasoning applies to epitax
interfaces between crystals with ‘‘incommensurate’’ u
cells. Therefore, with no loss of generality, all GB’s can
considered as periodic, albeit of an arbitrarily large perio

Every periodic GB is associated with a coincidence s
lattice ~CSL! characterized by its index numberS, numeri-
cally equal to the reciprocal of the density of coinciden
sites.S is a pathologically discontinuous function of the mi
orientation angle: an infinitesimal change in the latter c
result in an arbitrarily large change inS. Since one expects
physical properties to be continuous, no physical prope
can be a continuous function ofS, so that its use as a clas
sification criterion is doomed to failure. In spite of this, it
often used to describe or at least label interfaces. Cons
for example the case of the so-called special or singular G
~Ref. 13!; it is customary to assume that singular GB’s a
short period CGB’s~small S). Now consider the case o
low-angle GB’s and its network of primary dislocations.14 In
such boundaries, the dislocation density and hence the in
facial energy decrease continuously with decreasing mis
entation angleu until they vanish atu50, but S ~the GB
period! increases without limit asu→0. Therefore the inter-
facial energy actually increases with decreasingS, in con-
tradiction with the usual assumption, an inconsistency u
ally bypassed by considering low-angle GB’s as belonging
a class of their own.5

It has been recently proposed12 that singular CGB’s, here-
after called ‘‘delimiting’’ ~DGB’s! after Vitek and Sutton,4

are mathematically characterized by a zero deviation par
eterd @see Eq.~19!#. All DGB’s contain primary dislocations
with crystalline Burgers vectors. All other CGB’s, characte
ized by a nonzero deviation parameter, are called interven
GB’s ~IGB’s! and contain dislocations with noncrystallin
Burgers vectors.

III. INTERFACIAL LATTICES

Since a number of lattices in three and six dimensions
needed to introduce the method, a note on notation is nee
at this point. In what follows, ann-dimensional latticeL will
be represented by an expression of the formL5L̂BZ(n)

whereB is the~identity! matrix whose columns are the vec
tors of the standard orthonormal basis endowed with unit
distance andZ(n) is ann-dimensionalZ modulus~the set of
integral column vectors inn dimensions!. The need for set-
ting the units aside intoB will become clear when discussin
the difference between perpendicular and reciprocal spa
L̂ represents the~dimensionless! structure matrix of the lat-
tice and will often be written as the productL̂5TL with L
2-2
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being the transformation that brings the orthonormal ba
into the unit vectors of a specified~Bravais! lattice andT any
further operation needed to reorient or deform the latt
such as a rotation, shear, or expansion.

Given two completely arbitrary latticesL15L̂1BZ(n) and
L25L̂2BZ(n) there exists a transformationT such thatL1
5TL2. It will be convenient to work in terms of the media
lattice Lm where equations are more symmetrical and a
thetically pleasant. The median lattice lies ‘‘halfway’’ be
tweenL1 andL2 and is defined by

Lm5LmBZ(n)5~ML̂ 1!BZ(n), ~1!

with M being the minimum norm matrix such thatM25T.
Clearly L̂m5Lm5ML̂ 15M21L̂2. For simplicity, in what
follows we shall refer to a lattice using eitherL, L̂ , or L as
found convenient. Note the median lattice is preferred sim
because of the symmetry of the equations.

In order to describe an arbitrary interface we shall ne
two lattices: the O lattice (O) and the P lattice (P), all other
lattices being derivable from these. TheO andP lattices play
equivalent roles for DGB’s and IGB’s; namely, they respe
tively describe the primary and nonprimary dislocation co
tent of DGB’s and IGB’s.

Other important lattices are the coincidence sites lat
~CSL! C which is a sublattice ofO, the secondary O lattice
S which is a sublattice ofP, and the DSC latticeD, defined
as the set of vectors joining the points of the two lattices.
will become clear below,O andC are physically meaningfu
only for DGB’s; when dealing with IGB’s, they must b
replaced by their equivalentP and S lattices. Since interfa-
cial points are arranged in domains defined by the disloca
network and domains may have different symmetries,12 the
latticesUi , i 51,n, are needed to specify the atomic arrang
ments~structural units! within each of then domain types of
an interface.

All lattices above are defined in the physical 3D spa
denotedEi and called parallel space. A related set of lattic
appears in the orthogonal complement ofEi called ‘‘perpen-
dicular space’’ represented byE'. The lattices inE' are
defined by structure matrices given by the inverse transp
of their ~dimensionless! Ei counterparts.E' lattices play a
vital role in the characterization of interfaces since they c
stitute a reduced representation of the displacement fiel
the interface and can be used to calculate the diffrac
properties of interfaces. For clarity, their description shall
deferred to a second publication dealing with the structure
E' and the diffraction properties of interfaces.

IV. MODIFIED STRIP-PROJECTION METHOD

The method presented here consists of a modified ver
of the strip method of Katz and Duneau15,16devised to study
the crystallographic properties of quasicrystals. The m
difference with the original strip method resides in th
there, a high-symmetry~normally cubic! hyperlattice is
sought at the onset such that its unit vectors project onto a
of six linearly dependent vectors~a star vector! in the 3D
physical space. The star vector has the point symmetry o
02420
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quasicrystal but it is not otherwise related to its structu
The end result of this procedure is a~nondecorated! tiling
describing the geometry of quasicrystals and interfaces,8 but
with no detailed structural information. This limitation i
overcome by defining the hyperlatticeL(6) as the Cartesian
product of the interpenetrated 3D crystal latticesL1 andL2

embedded in a 6D space. As a result, the structure ofL(6) is
completely determined byL1 ,L2 and the transformation re
lating them. Also, the base vectors ofL(6) project into the
base vectors ofL1 andL2. This links the structures ofL(6),
L1, andL2, allowing the method to produce an actual inte
facial lattice in real space, at the expense of a reduction
the hyperlattice symmetry. The rest of the process rema
basically identical to the original.

To avoid atomic overlap, only those hyperlattice poin
falling within a bounded region aroundEi called the strip are
projected ~see Fig. 1!. The strip selects hyperpoints wit
small associated strain or frustration~Sec. IV B! and its
shape depends upon the symmetries ofL1 and L2 and the
nature of atomic interactions. Once the strip is specified,
possible to model not only the interface but a complete b
rystal as shown in Fig. 1.

A. Ideal interfaces vs perfect crystals

The modified strip-projection produces ideal 3D stru
tures characterized by a minimum local strain between n
est neighbors at the interface~see below!. An ideal interface
is a concept equivalent to that of a perfect crystal. Decora
Bravais lattices are used to characterize real crystals in s
of the fact that they do not include dislocations, vacanc
and other defects that are known to exist in real crystals. T
is because they provide a clear and mathematically man
able picture of the underlying geometry and allow real cr
tals to be understood in terms of their differences from
ideal lattice by analyzing diffraction data. Analogously, a
though some differences are expected between ideal and
interfaces, it is the contention of this paper that ideal int
faces can be used to build a crystallographic description
interfaces. That this is indeed the case is demonstrated b
quantitative agreement obtained with experimental obse
tions on fcc twist interfaces, as described below.

Ideal interfaces are expected to represent better those
tems which minimize energy mostly through strain minim
zation ~as expected from systems with largely isotropic
teratomic potentials!. Of course, some differences a
expected between ideal and real interfaces, but as for c
tals, by analyzing these differences through diffraction da
an insight into the mechanisms controlling the structure
real interfaces can be gained. Also, ideal interfaces can
ways be used as a first-order initial configuration to be
fined by computer simulations. This information can later
fed back into the formalism to provide a more exact desc
tion of the geometry of particular systems. This will intro
duce system-dependent relaxational variants,1,2 but the ideal
prerelaxed structure is still useful from a crystallograph
point of view, just as normal Bravais lattices.
2-3
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B. Six-dimensional hyperlattice

Letting L̂1 , L̂2 be the structure matrices of two cryst
latticesL1 , L2, the hyperlattice is defined~in the canonical
basis ofR6) by the structure matrixLm

(6) given by

Lm
(6)5A2S L̂1 0

0 L̂2
D . ~2!

The first and last three columns ofLm
(6) span two orthogona

3D subspacesV1 , V2 of R6 and generate the crystal lattice
L̂1 , L̂2 ~expanded byA2) in the disjoint subspacesV1 ,V2

where they no longer compete for space~see Fig. 1!. TheA2
expansion is needed for proper projection17 but is irrelevant
to the physics of the problem and can be ignored, so thatLm

(6)

is simply the Cartesian productL̂1^ L̂2.

FIG. 1. Schematic representation of the projection of a 2D
perlattice into the 1D orthogonal subspacesEi and E'. Top: the
hyperpoint pointx results from the embedding of the lattice poin
x(1),x(2) and projects onto the pointsxi,x'. Only points within the
region aroundEi bounded by the strip are projected. Bottom: t
projection of a complete bicrystal: interfacial points arise from
projection of the hyperpoints inside the strip that lie within t
region of conflict. Crystals 1 and 2 are recovered by projecting
hyperpoints (x(1),0) and (0,x(2)).
02420
SinceV1 andV2 are orthogonal,R6 andL(6) are given by
the direct sumsR65V1% V2 and L(6)5L1% L2. The deci-
sive step consists in realizing thatR6 is also given by the
direct sumR65Ei

% E'. Therefore, any hyperlattice pointx
can be written~disregarding theA2 factor! as an ordered pai
in two different basesx5(x(1),x(2))5(xi,x') with x(1)

PL1 , x(2)PL2 , xiPEi, andx'PE'. Note (x(1),x(2)) and
(xi,x') refer to the same hyperpoint expressed in the co
dinate systems of (L1 ,L2) and (Ei,E').

The xi component ofx is given byP(x… whereP is an
orthogonal projector given by the block matrix

P5
1

2 S I I

I I D , ~3!

and I is the identity matrix in 3D. The perpendicular spa
componentx' is in turn given byP'(x… with P'5I2P.
Using Eq.~3! we obtain two fundamental equations

xi5P(x…5
1

2
~x(1)1x(2)!, ~4!

x'5P'~x!5
1

2
~x(1)2x(2)!. ~5!

Sincex must be contained in the strip, the latter is chos
to include the pair of atoms atx(1),x(2) occupying incompat-
ible positions~smallx'). These points are then replaced by
single atom at their average positionxi. Equations~4! and
~5! define, given two~or more! interpenetrating lattices in
physical space, an ideal, best fit, minimum strain lattice
the set of pointsxi. Since strain is a physical consideratio
this endows the formalism with a physical basis in spite of
geometrical formulation. WhileEi contains lattice points,E'

contains displacements and is therefore associated with
displacement space calledb space by Bollmann.14

By adopting the average positionxi, atoms in the inter-
face act as a strain buffer between the crystals on each
of the interface12 that minimizes the elastic energy. Thex�

component is thus a measure of the local strain atxi repre-
senting the frustration between two nearly coincident po
tions.

It is natural to assume that the interfacial energy should
lower in regions of small local strain. In particular, whe
x�50, the pointx(1)5x(2) is a coincidence with zero loca
strain. Note that since a rational relationship is assumed
tweenL1 and L2, an infinite number of hyperlattice point
$xc% intersectEi with zero local strain defining the CSL
Since every interfacial pointxi has an associated strainx�,
the configuration of points inE' is a reduced representatio
of the local strain inEi. In principle, for incommensurate
interfaces~or quasicrystals! the distanceux(1)2x(2)u becomes
arbitrarily small ~but not zero except at the origin! and E'

becomes densely filled. However, assuming a rational or
tation, a discrete structure appears inE' which can be used
to characterize the interface and calculate its diffract
properties.

From the projectorsP andP' it is easy to show that the
reflection

-

e
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R5R215
1

A2
S I I

I ÀI D ~6!

relates the coordinate systems of (V1 ,V2) and (Ei,E') so
that

R~x(1),x(2)!5~xi,x'!. ~7!

C. Window

The intersection of the strip withE' defines a bounded
region called projection window~Fig. 1!. Only those hyper-
points whosex� component falls within this window are
eligible for projection into physical space. As an example
the case of rotation-related lattices there are no displa
ments parallel to the rotation axisr and the window is a 2D
plane segment perpendicular tor. If the strip is chosen so
thatx(1)2x(2) is less than half the interatomic distance, th
the strip is a hypercylinder and the window a sphere of
dius d/4, with d being the minimum interatomic spacing
Although this window produces the normal set of O poin
predicted by Bollmann14 for low-angle fcc^001& twist GB’s,
it does not account for the extra O points fou
experimentally.10 These results are reproduced by a differe
window defined as the intersection of the plane normal tr
and two solid cubes rotated by6u/2 aroundr as shown in
Fig. 2. This window accepts hyperpoints (x(1),x(2)) with the
property thatx(1) and x(2) lie in the intersection of their
respective Wigner-Seitz cells.18 Such points are referred to a
quasicoincidences and lead to structures that are stable
static relaxation.12

Note the price paid in loss of hyperlattice symmetry
compensated by the physical interpretation that can now
given to the lattice points inEi andE' through Eqs.~4! and

FIG. 2. Projection window of cubiĉ001& twist GB’s defined by
the intersection of the basal planes of two cubes rotated by6u/2.
The edge of the cubes is half the minimum interatomic distan
The rotation axis is normal to the page.
02420
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~5!. Moreover, since the symmetry of the hyperlatti
changes with the orientation between parent crystals, it
be related to orientational variants.

V. INTERFACES AND QUASICRYSTALS AS COMPETING
LATTICES

The interface is a region in space where two lattices, e
representing the ground state of a crystal, are forced to
exist. In this scenario, the modified strip-projection meth
can be seen as a referee that determines, using a minim
strain criterion, the final structure in the region of conflict

Since the method describes equally well interfaces
quasicrystals, it is only natural to extend this interpretation
quasicrystals and consider them as ‘‘best fit’’ structures
sulting from 3D lattices competing for space. If such lattic
were found~possibly from the crystalline phases surroundi
the quasicrystal in the phase diagram!, the method could
yield the ‘‘best fit’’ atomic structure~a decorated tiling! of a
quasicrystal.

The average lattice given by Eq.~4! should be a plausible
low-energy configuration for metallic close-packed stru
tures where the interatomic potential is mostly isotropic12

which is a possible reason why quasicrystals have only b
found in metal alloys. The same interpretation should s
hold for covalent systems, although the formalism wou
have to include a way of accounting for bonding anisot
pies.

Under ideal conditions~such as a perfectly isotropic po
tential! it is sensible to assume that the ground state of
interface minimizes local strain. By comparing the diffra
tion patterns calculated from minimum strain interfaces w
actual measurements, the pertinence of such ‘‘perfect’’ str
tures could be assessed and defects in real interfaces cou
identified as it is commonly done for crystals. The diffractio
equations for perfect interfaces derived from the distribut
of points inE' shall be presented in a forthcoming public
tion.

Interfacial manifold

When all the points within the strip are projected ontoEi,
the result is a 3D structure, yet in contrast with quasicryst
interfaces are mostly two-dimensional systems. This can
understood as follows: when the energy density in the reg
occupied by the projected points is larger than that of
adjacent crystals, the region minimizes its volume by c
lapsing into a 2D surface. When the opposite is true,
points in the strip are projected and a new 3D phase~such as
a quasicrystal! nucleates between the two crystals.

The set of hyperpoints$(xi,x')% that project onto a plana
interface define a 2D manifold within the strip inR6. In this
scenario, the problem of calculating the atomic structure
an interface, now including the orientation of the bounda
plane, is replaced by the geometrical problem of finding
2D manifold that minimizes the energy of the system. F
those systems whose interfacial energy is minimized by
ducing local strain, a manifold that goes through hyperpoi
with minimumx' component~closest toEi) should yield an
accurate interfacial structure.

e.
2-5
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VI. CHARACTERIZATION OF INTERFACES

A. Symmetry variants

Any relative rigid body translationb5(b1 ,b2 ,b3) be-
tween L1 and L2 is taken into account from the media
lattice by displacingL1 by b/2 and L2 by 2b/2. This is
equivalent to displacing the whole hyperlattice by the
vector b̂5(b1 ,b2 ,b3 ,2b1 ,2b2 ,2b3)/2. It is easy to show
using Eqs.~4! and ~5! that bi5P(b̂)50 and b�ÄP�(b̂)
5b. Therefore, all crystal displacements are completely c
tained in E'. As a result, Eq.~4! does not change upo
relative lattice translations but Eq.~5! becomes

x�ÄP�
„x1b̂…5

1

2
@~x(1)2x(2)!#1b. ~8!

This implies that a relative crystal translation has the eff
of displacing the strip alongE', leaving the hyperlattice un
disturbed, thus decoupling the translational and orientatio
degrees of freedom.

One must bear in mind that a strip displacement m
cause a different set of hyperpoints (x(1),x(2)) to be projected
onto Ei. Such displacements may change the symmetry
the real space structure,9 leading to structural variation
known in the interfaces field as translational states19 or trans-
lational variants.2 However, a displacement of the strip do
not change the symmetry class or local isomorphism9 of the
structure which depends solely on the relative orientat
~and symmetry! of the parent crystals. This significantly sim
plifies the characterization task using dichromatic patte
whose symmetry changes unpredictably with relative cry
displacements.3

In this framework, an interface can be fully characteriz
~prior to the introduction of a boundary surface! by the sym-
metry of the hyperlattice and the position of the strip alo
E'. Each orientational variant, described by the symmetry
the hyperlattice, corresponds to a local isomorphism,
each local isomorphism has a number of symme
inequivalent translational variants described by the posi
of the strip. In the following sections we shall see that t
number of orientational and translational variants for ro
tional interfaces is~effectively! finite.

B. Phason dislocations

In order to preserve the smallestx' components, a shift o
the strip is normally accompanied by a change in the sh
of the projection manifold. If the strip~or manifold! is dis-
placed by a vectorb' ~Fig. 3! so that it intersects anothe
hyperpoint, the real space structure is the same as be
with an inconsequential shift of origin (bi in Fig. 3! in par-
allel space. The same origin shift is obtained by displac
the strip by the vectorb53x(1)12x(2) which projects onto
the DSCL vectorbi53P(x(1))12P(x(2)). Since the full
hyperlattice projects onto the DSCL@Eq. ~4!#, displacements
through hyperlattice vectors always preserve the translati
state of the interface; therefore, relative translations n
only be specified modulo a DSCL vector. In what follow
we shall refer to non-DSCL displacements as phasons.
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Although it is normally assumed that extrinsic disloc
tions dissociate into dislocations with Burgers vectors
longing to the DSCL, this is not necessarily the case. Whe
crystal dislocation enters a GB, it becomes an extrinsic
dislocation and introduces a local displacement manifes
as a step in the strip and manifold. If the resulting increas
elastic energy is too large, the dislocation may dissociate
smaller components that lead to lower-energy translatio
states and a smoothing of the strip. It is possible that tra
lational states arrived at by phasons manifested as pa
DSCL dislocations12 are energetically preferred. Since IGB
already contain a mixture of translational states, there is
fundamental state to be preserved by DSCL dislocations

VII. HYPERLATTICE OF ROTATION-RELATED
CRYSTALS

A practical application of the formalism will be exempl
fied here using the well-known case of rotation interfac
Consider two lattices such thatL̂25M2L̂1 @see Eq.~1!#. The
hyperlattice is defined in the 6D median lattice by the hyp
structure matrix

L̂ (6)5A2S M21 0

0 MD S L̂1 0

0 L̂2
D . ~9!

Projection ontoEi andE' generates two lattices with struc
ture matricesL i andL' given by

L̂m
i 5

1

2
~M21L̂11ML̂ 2!, ~10!

L̂m
'5

1

2
~M21L̂12ML̂ 2!. ~11!

Note thatL̂' is basically the Frank-Bilby equation giving th
displacement field at the interface which confirms the c
sistency between the formalism and known theory. The c
umns of L̂m

i and L̂m
' are the basis vectors of two lattices

the corresponding spaces.
In view of the minimumx' requirement, the manifold ha

a stepped shape which causes the appearance of disloc
networks in the real space structure. This means that al

FIG. 3. Displacing the projection manifold byb' so that it in-
tersects another hyperpoint is equivalent to shifting the hyperlat
by one of its vectors. This shifts the real space structure by
~DSCL! vectorbi53P(x(1))12P(x(2)), leaving it otherwise unal-
tered.
2-6
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terfaces are composed of atomic domains limited by dislo
tions. If the dislocations belong to the DSCL, then all d
mains belong to the same translational state. Otherwise
symmetry of adjacent domains is different.12 As a result,L̂m

i

describes only the structure of the central, dislocation-fr
domain near the origin.

In particular, for identical crystal lattices,L15L25Lm
(3)

andM25Ru ~a rotation throughu aroundr̂5^hkl&). Then
M5Ru/2 and

Lm
i 5

1

2
~R2u/21R1u/2!Lm

(3) , ~12!

Lm
'5

1

2
~R2u/22R1u/2!Lm

(3) , ~13!

where the operators

Ri5
1

2
~R2u/21R1u/2!, ~14!

R'5
1

2
~R2u/22R1u/2! ~15!

are the symmetric and antisymmetric components ofR2u/2
5Ri1R'. The CSL is given by the null space ofR', and in
median lattice coordinates, the O lattice is given
(2R')21.

VIII. ROTATION-RELATED BOUNDARIES IN THE CUBIC
SYSTEM

A. Generalized Ranganathan’s expression

By considering all GB’s as periodic, Ranganatha
equation20 can be applied to all interfaces in the cubic sy
tem. Accordingly, given two cubic lattices related by a ro
tion throughu around^hkl& we have

tan
u

2
5AN

p

q
, ~16!

with p and q being arbitrary coprime positive integers an
N5h21k21 l 2. The index numberS is given by~divided by
2 until odd!

S5q21Np2. ~17!

There are significant advantages in rewriting Eq.~16! in
the form

tan
u

2
5AN

1

x1d
5AN

1

j
, ~18!

wherej5AN cotu/25x1d with x and d being the integer
and fractional parts ofAN cotu/2. If the closest integer func
tion is used to evaluatex, then d lies in the interval
@20.5,0.5); if the integer function is used instead,d lies
within @0,1).

Equation~18! is a generalization of Ranganathan’s equ
tion to irrational orientations since nowd can acquire irra-
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tional values. This means that Eq.~18! also describes, if one
so wishes, nonperiodic interfaces taken in a strict mathem
cal sense~see Fig. 4!. If d is a rational number, it reduces t
Eq. ~16!. Its most significant advantage, however, lies in th
unlike p andq, x andd are given in terms of the experimen
tal observablesu andN and are thus linked to the geomet
of the interface.12 In terms of x and d, the index number
becomes

S5p2@~x1d!21N#. ~19!

DGB’s occur when12 d50 (p51, j5x), so that Eqs.~18!
and ~19! become

tan
ux

2
5AN

1

x
, ~20!

Sx5x21N. ~21!

d is referred to as the deviation parameter since it is a m
sure of the angular separation between a general IGB w
rotation angleu and its closest DGB at the singular angleux .

Note that for IGB’s the integerp takes part in the expres
sion of S @Eq. ~19!#. Sincep cannot be experimentally de
termined,S is ill defined for these boundaries. On the oth
hand, DGB’s have a well-definedS given in terms of the
measurable angleux @Eq. ~21!#. This leads to an alternative
definition of DGB’s as those with a well-defined index num
ber Sx .

Ranganathan’s expression for epitaxial interfaces

The generalized Ranganathan’s expression can also
used for epitaxial interfaces between two lattices of differ
lattice parameter. LetL1 ,L2 be two lattices such thatL2
5aL1, with a5p/q, p,q being two coprime integers suc
that p,q. If, in analogy with Eq.~18!, we define

FIG. 4. Cubic twist̂ 001& interfacial plane with quasicrystalline
octagonal symmetry obtained withu545, x53, d5A221. Gray
circles indicate atomic positions.
2-7
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a5
p

q
5

1

x1d
, ~22!

wherex is the integer part ofq/p andd5a2x, then we can
write

L25
1

~x1d!
L1 . ~23!

In analogy with the case of rotation related GB’s, we c
now define delimiting GB’s as those for whichd50, i.e.,
p51, q5x, and L15x L2. Hence delimiting expitaxial
boundaries occur whenL1 is a sublattice ofL2. Since for
expansion-related interfacesM @see Eq.~1!# is given by

M5Ap/qI5
1

Ax1d
I , ~24!

the O and CSL lattices are given~in the median lattice! by

O5
Apq

p2q
L15

Ax1d

12~x1d!
L1 ~25!

and

C5ApqL15pAx1dL1 . ~26!

Note the O lattice diverges forx51, d50, which means
that misfit dislocations become infinitely spaced whenL1
5L2. Also note thatC is again ill defined for nondelimiting
GB’s since there is no experimental access top.

B. Class of small-angle boundaries

If u is small,x1d is a large number and its fractional pa
d can be neglected. Hence, small-angle boundaries are e
tively delimiting boundaries, and like any other DGB, th
must contain only primary dislocations, as it is inde
observed.12 This makes it clear why small-angle boundari
are in a class of their own: they are so close togetherx
@d) that no intervening boundaries are found around the
and it is no longer justifiable to call them singular. As
result, although the number of delimiting boundaries is ac
ally infinite, only a finite number of them are singular.

C. Crystallography of Š001‹ twist boundaries

A boundary plane~a 6D manifold! must now be intro-
duced. For simplicity, we shall consider here the relativ
simple case of cubiĉ001& twist boundaries with the purpos
not to obtain a full crystallographic characterization of t
system at this point, but rather as an illustration of the pr
ciples involved in the task. In this section the P lattice will
defined for this system and its relation to other lattices
plored. Also, existing theory shall be discussed and rest
in the HD framework using results from the GCSN mode12

The interface of^001& twist GB’s consists of a single
buffer plane,12 although it must be noted that this is not th
general case; the interface of low-angle^011& twist DGB’s,
for instance, can be stepped.11 Predicting nonplanar bound
ary surfaces is possible in this approach because it gives
02420
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best fit regions in a volume containing interpenetrated,
opposed to just juxtaposed, crystal lattices.

The O lattice provides the primary dislocation content
DGB’s and for rotation-related boundaries it is given in m
dian lattice coordinates by the transformation

Oj5~2R'!215
Aj21N

2AN
S 0 1

21 0D , ~27!

with N51 for ^001& twist GB’s. The O latticeOx of delim-
iting GB’s is obtained by substitutingd50, N51 in Eq.
~27!:

Ox5
Ax211

2 S 0 1

21 0D . ~28!

Subindexesx andj are used to distinguish between delim
ing and intervening lattices.

D. Delimiting boundaries

The boundary plane of DGB’s (d50) is composed of
atomic domains delimited by a network of primary disloc
tions ~see Fig. 5! as can be verified by applying the Fran
Bilby equation toOx . Since primary dislocations have crys
talline Burgers vectors belonging to the DSCL, all doma
belong to the same translational state and differ only in s
~the length of theOx vectors!, which is an increasing func
tion of x. The structure of this unique domain type is th
same as that of the trivialx51, d50, S51 boundary~an
~001! crystal plane!.

Although all delimiting domains have the same structu
they differ in the relative displacement of their points wi
respect to the O point at their center. Domains labeled A
and C, in Fig. 5 with O points colored black, gray, and wh
are, respectively, shifted by the vectors with coordina
$0,0%, 1

2 $1,1%, and 1
2 $0,1%, given in terms of the base vector

of the median lattice. This introduces a partition of the
lattice into three sublattices~A, B, C! according to the type
of domain at the center of which they lie. As we shall see,
domains of intervening boundaries and the points of th
lattice can be equivalently partitioned.

The CSLC can have two orientations depending on t
parity of x ~Ref. 12!: the parallel orientation (x even! in
which CiO and the inclined orientation (x odd! whereC and
O are rotated byp/4. The inclined orientation has O point
of types A and B, while the parallel orientation also h
type-C O points. The CSL always coincides with the subl
tice of type-A O points~Fig. 5!.

SinceC is a sublattice ofO, there exists a transformatio
K such thatC5KO . For the^001& twist case in the paralle
orientationK52pRp/2 while for the inclined orientationK
5pRp/4 . SinceS is only well defined for DGB’s (p51),
we shall only consider the CSL of delimiting boundariesCx
which can be written for any orientation as

Cx5KO x5FnOx , ~29!

where F5A2Rp/4 , n511(x211)mod 2, with mod being
the modulo function andn51,2 for x odd, even.
2-8



ed

t o

un
e

us
-
ary
ce.

ve

ys
ta-

f
he
ow-

the

d

de-
s
, so
tes

lar
r

the

rlat-
-

if-
ect
hile
un-

. 7

O
th

INTERFACES AND QUASICRYSTALS AS COMPETING . . . PHYSICAL REVIEW B67, 024202 ~2003!
Following Grimmer et al.,21 the DSCL is given byD
5(CT)21 and for delimiting boundaries it can be obtain
from Eq. ~29!:

Dx5
1

2n

4

11j2
FnOx . ~30!

E. Intervening boundaries

The O lattice does not describe the dislocation conten
IGB’s. According to Bollmann14 the structure~i.e., the trans-
lational variant! of boundaries near DGB’s~smalld) must be
preserved. To achieve this, he postulates that these bo
aries should possess a network of dislocations with Burg
vectors belonging to the DSCL (Dx) of the nearby singular
orientationux . The secondary O latticeS is then defined as
the dual of the secondary dislocation network.

FIG. 5. Wire figure~lines joining nearest neighbors! of delimit-
ing simple cubic^001& twist boundaries for parallel~top! and in-
clined ~bottom! relative orientations of the O and CSL lattices.
lattice: short thick arrows. CSL: long narrow arrows. Note that
periodicity of domain types is the same as that of the CSL.
02420
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One problem of this reasoning is that no unambiguo
definition (d50) of DGB’s existed until recently, and with
out it, it was not clear when to use the primary or second
O lattices to describe the dislocation content of an interfa
The usual small-S criterion is not enough since, as we ha
seen, it leads to inconsistencies. For instance,S29 has a
smaller period thanS41; however, the former is an IGB (x
52, d51/3) containing nonprimary dislocations whileS41
is a DGB (x59, d50) with a purely primary dislocation
content. Another problem of the argument is that it sa
nothing about the structure of GB’s far from special orien
tions.

In spite of this,S is still fundamental to the description o
interfaces since it provides the distribution of sites in t
interface that belong to the same translational state. Foll
ing Bollmann, to calculateS we must first calculate the
DSCL of a DGB atux . The secondary O lattice atux1Du is
then given bySj5ObDx @see Eqs.~27! and ~30!#, with b
being the value ofj resulting from substitutingu by Du
5u2ux in Eq. ~18!. Thus, in the median lattice,Sj is given
by

Sj5
1

2d
Ax211Aj211S 0 1

21 0DDx ~31!

or, in terms ofOj ,

Sj5F22n~d21Oj!. ~32!

Similar expressions exist for the other rotation axes in
cubic system, i.e., a function ofK , in this caseF22n, applied
to the scaled O latticed21Oj . SinceK is a relatively simple
function to calculate,21 this method represents a simplifie
way to calculateS.

Intervening interfaces also contain atomic domains
fined by dislocation networks,12 but here the Burgers vector
of these dislocations are not DSCL vectors but phasons
that adjacent domains belong to different translational sta
~see Fig. 6!.

The structure of intervening interfaces in the angu
range defined byjP(x21/2,x11/2) is the same except fo
domain size~dislocation spacing!, which increases asj→x
(d→0) in accordance with experimental observations.22,23

At the singular angleu5ux the domain containing the origin
becomes infinitely large and the GB becomes delimiting.

Intervening domains have the structure of some of
translational states of the delimiting boundarySx at j5x
(d50). These states are obtained by projecting the hype
tice of Sx with a strip shifted by a vector within the Wigner
Seitz cell ofDx ~see Fig. 7!. Although the number of vectors
~phasons! in this cell is nondenumerable, the number of d
ferent translational states is finite. This occurs as a dir
consequence of the discrete nature of the hyperlattice: w
displacing the strip, the projected structure remains
changed until eventually one or more hyperpoints~per unit
cell! enter and/or leave the strip. As an example, Fig
shows the translational states ofS5(x53,d50), as a func-
tion of the strip displacement.

The structure of any IGB atux1d is thus determined by
the structure of the closest delimiting boundary atux (d

e

2-9
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50) ~Ref. 12! as a mixture of its translational states. Th
partitions the angular range into regions limited byx
21/2, x11/2). Each region representing an orientation
variant of thê 001& twist system. Since for largex ~smallu)
all GB’s become delimiting, the number of orientational va
ants is finite, and since the number of translational states
orientational variant is also finite, it becomes possible
characterize the symmetry of any GB.

The P lattice is defined as the set of points that join
mains of different symmetry~Fig. 6! or, more precisely, as
the dual lattice of the phason dislocation network, in dir
analogy with the O lattice which is the dual of the prima
dislocation network. In terms of the conventional O lattic
the P lattice is given by

FIG. 6. Wire figure of intervening interfaces corresponding
~top! parallel state (S521389,x54, d52/35) showing domain
types A, B, C and~bottom! inclined state (S54369,x53, d
53/20) with domains A and B. The secondary O-lattice vecto
marked with long thin arrows, join domains of same type~A-A !
while the P lattice~short thick arrows! joins domains of different
types. The CSL unit cell ofS54369 is drawn, but that ofS
521 389 is too large to be shown. The properties of interven
GB’s are determined by the domain periodicity and not by that
the CSL.
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Pj5F2(12n)~d21Oj!. ~33!

With the aid of Eqs.~32! and ~33!, Pj can be expressed in
terms of the secondary O lattice~Fig. 6! which joins domains
of the same type:

Sj5FnPj . ~34!

Figure 6 shows that intervening GB’s also have up to th
different domain types distinguished by their symmetry, ea
corresponding to a translational state ofSx . Just as for de-
limiting boundaries, the inclined orientation contains tw
types of domains A and B, while the parallel orientation h
an additional type C. A detailed account of the translatio
states present in each orientational variant shall be prese
elsewhere.

Just as the size of the smallest O-lattice vectors gives
spacing between primary dislocations, the phason disloca
spacings is given by the magnitude of the smallest P-latti
vectors ~Fig. 6!, which can be expressed in terms of th
angles as

,

g
f

FIG. 7. Top left: Wigner-Seitz cell of the DSCL ofS5 (x
53,d50) cubic twist^001& interface. The regions marked A, A8,
B indicate the translational states arrived at by the correspon
displacement vector. The accompanying figures show theS5 unit
cell decorated with circles at lattice points to aid in the visualizat
of structural units and symmetry elements present in each s
Note states A and A8 differ only by the removal of one atom. Sinc
the good fit criterion is determined by the strip, a slight variation
the window contour could leave this atom in place. The determi
tion of atomic structure at this level of detail requires addition
computer relaxation allowing atomic diffusion. Note domain typ
A and B contain the same symmetry elements of Bristowe
Crocker’s types 2 and CSL~Ref. 19!.
2-10
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s5
1

2n

1

cos
u

2
2x sin

u

2

5
1

2n

sin
ux

2

sin
Du

2

, ~35!

whereDu5u2ux . This equation is in agreement with ex
perimental observations12,22,23and constitutes strong suppo
for the formalism. Phason dislocations are in fact partial s
ondary dislocations, and the difference in the structure
adjacent domains corresponds to the stacking fault assoc
with this type of dislocation. The displacements associa
with the secondary O-lattice vectors, on the other hand,
long to the DSC lattice and preserve symmetry so tha
joins domains with equal symmetry as shown in Fig. 6.

F. General considerations

Figures 5 and 6 show that delimiting and interveni
boundaries are topologically identical, the difference be
the symmetry of the domains and the Burgers vector of
dislocation networks that define them. Delimiting doma
have all the same symmetry and dislocation networks gi
by the dual of the O lattice. Intervening domains, on t
other hand, have different symmetries determined by
translational states of the associated delimiting boundary
are the dual of the P lattice. This equivalence is mathem
cally expressed by the similarity of Eqs.~29! and ~34!.

The lattice pairs (Ox ,Cx) and (Pj ,Sj) play symmetrical
roles in the description of DGB’s and IGB’s. These lattic
are sufficient to completely characterize all interfaces exc
for the structural units within each domain determined by
translational states of the closest delimiting GB. This me
that the structure and hence the properties of IGB’s are
termined by the periodicity of the domain types (Cx or Sj)
and not by the strict periodS which is ill defined and patho
logically discontinuous.

All that remains to do for a full crystallographic chara
terization of the system is to describe the symmetry prop
ties and the structural units of each domain type. The num
of translational states in each orientational variant increa
with x; however, only the ones with highest symmetry a
chosen by the cut-projection method to define the interfa
The detailed calculation of the translational states presen
each local isomorphism and which of them are selected
form the interface shall be deferred to a forthcoming pub
cation.

IX. CONCLUSIONS

It has been shown that in a higher-dimensional approa
quasicrystals and interfaces are formally equivalent. Thi
an important result since describing under the same for
context two apparently unrelated physical systems alw
enhances our understanding of nature as a whole. In
framework, interfaces and quasicrystals are interpreted
region in space where the atoms of interpenetrated cry
lattices compete for space, with a modified strip-project
method deciding the final atomic positions. Based on t
paradigm, a method derived from the strip-projection form
02420
c-
f

ted
d
e-
it

g
e

s
n

e
nd
ti-

pt
e
s
e-

r-
er
es

e.
in
to
-

h,
is
al
s
is
a

tal
n
is
l-

ism has been introduced. The method produces ideal~mini-
mum local strain! structures. Since minimum strain is
physical consideration, this gives the method a physical b
in spite of its geometrical formulation.

Ideal interfaces are suggested to play an analogous ro
grain boundaries to that played by the perfect crystal a
quasicrystal concepts in the study of crystals and quasip
odic structures, thus constituting an important step towa
the formulation of a general crystallographic theory of inte
faces. This hypothesis is supported by the ability of id
interfaces to quantitatively account for some experimen
observations on fcc twist boundaries. Also, when the hyp
lattice is projected in perpendicular space, the Frank-Bi
equation is rederived. The fact that such a general result
be obtained from this approach constitutes further evide
in favor its ability to describe interfacial-related phenomen

Some advantages of the modified strip-projection meth
are the following:~a! It has given a new meaning to perpe
dicular space by associating it with Bollmann’sb space.~b!
Since a geometrical link exists between the 6D hyperlat
and the 3D competing lattices, the method produces, in c
trast with other approaches, already decorated tilings.~c! It
suggests that quasicrystals can grow at the interface of p
erly oriented crystals, a prediction that can lead to the d
covery of new quasicrystalline phases in systems so far
explored.

Other advantages of the method are the following: T
effect of dislocations impinging on grain boundaries can
described in terms of strip displacements by the Burgers v
tor of the dislocation. This is useful in describing the inte
action between crystal dislocations and grain boundaries
lated to mechanical properties of policrystals.

It has introduced a new classification of interfaces in we
defined equivalence classes that include orientational
translational degrees of freedom. This classification is ba
on the symmetry of the hyperlattice and the position a
shape of the strip and is consistent with previous structu
units and symmetry approaches. Each orientational vari
described by the symmetry of the hyperlattice, correspo
to a local isomorphism, and each local isomorphism ha
number of symmetry-inequivalent translational variants. T
number of both orientational and translational variants is
nite, and it is hoped that such classes can be later assoc
with the physical properties of interfaces.

It has been shown that the structure and hence the p
erties of GB’s are determined by the periodicity of the iso
ymmetrical regions~domain types! and not by the strict
boundary periodS which is ill defined~except for DGB’s!.
For delimiting boundaries this periodicity is given by th
CSL while for IGB’s it is given by the secondary O lattice

The phason or P lattice has been introduced to desc
the dislocation content of IGB’s. The P and O lattices pl
symmetrical roles in accounting for the dislocation conte
of intervening and delimiting boundaries, respectively.
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