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This paper shows that in a higher-dimensional approach, quasicrystals and interfaces are formally equiva-
lent. Interfaces and quasicrystals are interpreted here as a region in space where the atoms of interpenetrated
crystal lattices compete for space. Based on this paradigm, a method derived from the strip-projection method
developed for the study of quasicrystals has been introduced. The method is completely general, independent
of the parent crystal lattice type, relative orientation, and translation and of the position and orientation of the
boundary plane. In this approach the perpendicular space coincides with Bollmanns’ displacement space, while
the parallel space contains a physical structure characterized by a minimum local strain that includes both the
interface and adjacent crystal lattices. A classification of interfaces in a finite number of well-defined equiva-
lence classeglocal isomorphismsthat include orientational and translational degrees of freedom has been
introduced. This classification is based on the symmetry of the hyperlattice and the position and shape of the
strip and incorporates concepts from previous structural units and symmetry breaking approaches. It is sug-
gested that such classes can be related to physical properties of interfaces. The formalism defines ideal
(minimum strain structures assumed to play an analogous role in grain bound&fis) to those played by
the perfect crystal and quasicrystal concepts in the study of crystals and quasiperiodic structures. Also, a lattice,
called the phason lattice, is introduced to account for the dislocation content of nonsingular interfaces. Ac-
cordingly, the properties of any GB are seen to be determined by the periodicity of isosymmetrical regions
related to the O and phason lattices and not by the ill-defined and pathologically discontinuous index number
3.
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[. INTRODUCTION perspective has introduced fundamental ideas to the field,
such as symmetry variants and the concept of delimiting
In spite of its technological importance, there is at presentspecial and interveninggeneral boundaries. Nevertheless,
no general theory of interfaces capable of relating the physiGB's are still crudely classified in the practice into three
cal properties of general grain boundari@B's) to their ~ broad classés(a) low-angle,(b) special or singular, antt)
structure. Since it is well known that different boundariesgeneral boundaries, which bear little relation to structure.
have different properties, a large amount of work has been The purpose of this paper is to show that by regarding
devoted to the creation of a classification scheme that wouldMerfaces as the projection onto the three-dimensi@@)
allow the grouping of GB's into a hopefully finite number of SPace of a suitable defined higher-dimensional hyperlattice,
(property-relatefi classes, equivalent to the Bravais lattices'V€ f|n<|j a nevlv cIassf;}ca:npn IO(]; |nterfa(iet§ n Iwellad?flnecli
of crystals. When studying the properties of crystals, the firsﬁqu'va ence classes that include orientational and transia-
thing that is specified is the lattice typispace group fol- ional degrees of freedom that incorporates the results of the

lowed by an analysis of the existing defects or alterations o bove classification schemes and provides an important step
. y . y” 9 owards the formulation of a general crystallographic theory
the “perfect lattice” that may account for the observed prop-

i . . or interfaces. It will be shown that interfaces and quasicrys-
erties. L_Jnfortunately, this procedure cannot be used for inteley1s are formally equivalent in the sense that they can be
faces since there are no ide@efect-freg reference struc-  jegcribed by the same set of equations and that these equa-
tures to compare with, making it difficult to ascertain (ions can be used to define an ideal or “perfect interface,” in
whether a given property is due to an intrinsic interfacialana|Ogy with the concepts of “perfect quasicrystal” and
feature or to an extrinsic defect. If the study of interfaces iS‘perfeCt crystal.” The higher-dimensionalHD) approach
to have a similar degree of success to that of crystals, thgrovides the mathematical background needed to define un-
development of a crystallography of interfaces is needed. ambiguously delimiting and intervening interfaces as well as
Among the numerous efforts to classify interfaces, thethe dependence and evolution of the symmetry variants with
works of Pond and co-workeré (see the book by Sutton and the macroscopic and microscopic degrees of freedom that
Balluffi® for a detailed accouptand Vitek and Suttdhde-  define an interface.
serve special mention. These authors have approached the The possibility of using a higher-dimensional approach to
problem of interfacial characterization from the complemen-study interfaces was first realized by Gratias and Thatab
tary points of view of(a) symmetry—based on group theo- used it to study general characteristics of interfaces. Also,
retical considerations—andb) structure—based on an Warringtonet al.” have used it to investigate the properties
analysis of the content and distribution of structural unitsof interfaces between nonperiodic crystdtpuasicrystals
obtained from computer simulations. Each from their ownThe first attempt to describe in some detail the geometry of
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general every day GB’s was made by Araget al® using this context and a new lattice shall be introduced called pha-
the conventional method of starting out with a predefinedson lattice or P lattice for short.

hyperlattice. Unfortunately, this limits the usefulness of the

method by preventing it from dealing with symmetry vari- Il. PERIODIC VERSUS NONPERIODIC INTERFACES

ants. This limitation is remedied in this work by letting the
hyperlattice symmetry vary with the relative orientati@md
symmetry of the parent crystalésee Sec. IV.

It is important to realize that, in practice, all interfaces can
be regarded as periodic. For any irrational orientation be-

. L ; . tween two latticegresulting in a nonperiodic interfagand
Although at first sight it may appear that introducing extra ithin anydegree of accuracy, there exists an infinite number

d|rr!en_3|ons into the pro_ble_m complicates the ISSUE UNNECEHE rational orientations corresponding to periodic, coinci-
sarl!y, it actually makes it simpler. For example, it is easier t0yance GB'SCGB's). The same reasoning applies to epitaxial
enwsag_e(both conceptually and mathemaucaltjne crystal- interfaces between crystals with “incommensurate” unit
quraphm properties ofa s_mgle crystal in 6D t.han those of &eys. Therefore, with no loss of generality, all GB’s can be
dichromatic pattern(two interpenetrated lattices in 3D considered as periodic, albeit of an arbitrarily large period.

which is cumbersome to handle, difficult to visualize, and Every periodic GB is associated with a coincidence site
requires the introduction of color symmetry groups. Addi- lattice (CSL) characterized by its index numb&r. numeri-

:!ona:ly, the tzymfmdetrg cha?ge(snr&entatmr!a_l anfd translg- cally equal to the reciprocal of the density of coincidence
ional variants) of dichromatic patters arising from varia- sites.>, is a pathologically discontinuous function of the mis-

tions in the rotational and translational degrees of freedo”E!)rientation angle: an infinitesimal change in the latter can

are difficult to follow in detail u_sing cor_wenti_onal methods. result in an arbitrarily large change K. Since one expects
e e a0 a1 Bhysical propetes (o b continuous, no phySical property
decouples these degrees of %lreedom allowing them to b an b-e a continuous function &, S0 that its use as a clgs-

. . . L 0 Bisication criterion is doomed to failure. In spite of this, it is
studied separately. Orientational variants or, more precisel

local | hisns d d onl th i £ th Y%ften used to describe or at least label interfaces. Consider
ocal 1somorphis epend only on the symmetry ot the 4, example the case of the so-called special or singular GB’s
hyperlattice which depends on the symmetry and orientatio

of the parent crystals and is unaffected by relative dis Iacere—Ref' 13; it is customary to assume that singular GB's are
P Y IS U y V€ CISPIaCE o1t period CGB's(small ). Now consider the case of

ments. Translational variants, in turn, are described by d'sl'ow-angle GB's and its network of primary dislocatiotsn

ﬁgiﬁn:ﬁgtshms?zz i’miie IEZSiInWtIEeahdIricrlt;':i]cgrtshorg?r;etrsucr] boundaries, the dislocation density and hence the inter-
) bhy pace, 9 yp SY Yacial energy decrease continuously with decreasing misori-
intact. It will also be shown that the number of rotational andentation angled until they vanish a=0, buts (the GB

translational variants is denumeralgéend effectively finite, period increases without limit ag— 0. Therefore the inter-

significantly simplifying the characterization task. facial energy actually increases with decreasingin con-

Given a completely arbitrary set of degrees of freedom - : . . /
. -~ ; . radiction with the usual assumption, an inconsistency usu-
the HD approach provides explicit analytical expressions tha&

produce an interfacial latticer quasilatticgé that minimizes ally bypassed'by considering low-angle GB’s as belonging to
a class of their own.

the local strain everywhere. Since it is sensible to assume . ,
that, to a first approximation, actual interfaces also minimize It has been recently proposédhat singular CGB's, here-

O L ; s after called “delimiting” (DGB'’s) after Vitek and Suttof,
local strain in order to minimize elastic energy, it is argued . : .
) . . ' are mathematically characterized by a zero deviation param-
that this lowest strairibest fi) structure defines the needed eterd [see Eq(19)]. All DGB's contain primary dislocations
defect-free reference structure or “perfect interface” suitable q ' P y

for characterization purposes. Actually, the method produce\é\”th crystalline Burgers vectors. All other CGB’s, character-

a complete bicrystal; i.e., it gives not only the points at theg%gsbzg;,g)niirg ((j:g\rllltztilr?n d?j{;g}%ﬁg Zaﬁhcilgendc'rm;;ﬁ?emg
interface, but also those of the adjacent crystals. y

One fundamental property of the method is its generality.Burgers vectors.

It does not depend on lattice type, relative orientation, and

translation of the parent crystals or on the orientation and IIl. INTERFACIAL LATTICES

location of the boundary plane. Also, it introduces the con-  gince a number of lattices in three and six dimensions are

cept of “phason,” which appears naturally in a HD context needed to introduce the method, a note on notation is needed

into the theory of interfaces. As we shall see, phason defects ihis point. In what follows, an-dimensional lattice\ will

are required for a complete understanding of the geometrlcetle
i

| ) N
; e represented by an expression of the fotmsLBZ(™
aspects of interfaces. The approach has already shown \WhereB is the (identity) matrix whose columns are the vec-

;gsvsf;:]ng(alzs ﬁ%_?vsics(:ugg,g(s éf thleoeﬁar:)u(;hpct);]r:s é%uglg "ors of the standard orthonormal basis endowed with units of
' distance an&(™ is ann-dimensionaZ modulus(the set of

model, “which is a corollary of the HD approach. integral column vectors im dimensiong The need for set-

In the following sections, the formalism will be developed tina th its aside intg will b | hen di .
in all generality and it will be illustrated using the results of Ing the units aside Inte will become ciear when discussing

the GCSN model for rotation related interfateshich cor- tAhe difference between perpendicular and reciprocal spaces.

responds to a particular choice of stiigee Sec. Iy, The L represents thedimensionlessstructure matrix of the lat-
lattices needed to describe interfaces will be formulated irtice and will often be written as the product=TL with L
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being the transformation that brings the orthonormal basigjuasicrystal but it is not otherwise related to its structure.
into the unit vectors of a specifidBravaig lattice andT any  The end result of this procedure is(aondecoratedtiling
further operation needed to reorient or deform the latticedescribing the geometry of quasicrystals and interfadas,
such as a rotation, shear, or expansion. with no detailed structural information. This limitation is
Given two completely arbitrary lattices;=L,BZ(™ and  overcome by defining the hyperlatti®d® as the Cartesian
Az:':zBZ(n) there exists a transformatioh such thatA; product of the interpenetrated 3D crystal latticesand A,
—TA,. It will be convenient to work in terms of the median embedded in a 6D space. As a result, the structurk(®fis
lattice A, where equations are more symmetrical and aescompletely determined by, ,A, and the transformation re-
thetically pleasant. The median lattice lies “halfway” be- lating them. Also, the base vectors af® project into the

tweenA; and A, and is defined by base vectors oA; andA,. This links the structures ok(®),
. A1, andA,, allowing the method to produce an actual inter-
Am=LnBZM=(ML )BZ™, (1) facial lattice in real space, at the expense of a reduction of

with M being the minimum norm matrix such thet?2=T.  the hyperlattice symmetry. The rest of the process remains
basically identical to the original.

To avoid atomic overlap, only those hyperlattice points
falling within a bounded region arouril called the strip are
yprojected (see Fig. 1 The strip selects hyperpoints with
dsmall associated strain or frustratig®ec. IV B and its
two lattices: the O lattice@) and the P latticeF), all other shape depend_s upon th_e symmetnes\@fa_nd_Az an(_]l_the_ .
lattices being derivable from these. TBeandP lattices play natur_e of atomic interactions. O_nce the strip is specified, |t_ is
equivalent roles for DGB's and IGB's; namely, they reSpeC_p055|ble to modgl nqt only the interface but a complete bic-
tively describe the primary and nonprimary dislocation con-YStal as shown in Fig. 1.
tent of DGB’s and IGB’s.

Other important lattices are the coincidence sites lattice
(CSL) C which is a sublattice 00, the secondary O lattice
S which is a sublattice oP, and the DSC lattic®, defined The modified strip-projection produces ideal 3D struc-
as the set of vectors joining the points of the two lattices. Agures characterized by a minimum local strain between near-
will become clear belowQ® andC are physically meaningful est neighbors at the interfa¢gee below. An ideal interface
only for DGB's; when dealing with IGB's, they must be s a concept equivalent to that of a perfect crystal. Decorated
replaced by their equivaleti? and S lattices. Since interfa-  Bravais lattices are used to characterize real crystals in spite
cial points are arranged in domains defined by the dislocatiogs the fact that they do not include dislocations, vacancies,
network and domains may have different symmgtﬁeﬂne and other defects that are known to exist in real crystals. This
latticesU;, i=1n, are needed to specify the atomic arrangeg pecause they provide a clear and mathematically manage-
ments(structural unity within each of then domain types of able picture of the underlying geometry and allow real crys-

an interface. - M
. . . . tals to be understood in terms of their differences from an
All lattices above are defined in the physical 3D space

I . 1deal lattice by analyzing diffraction data. Analogously, al-
denoteoE and called parallel space. A related S?t of IatJ['Cesthough some differences are expected between ideal and real
appears in the orthogonal complememE&fcaIled perpen-

dicular space” represented bg'. The lattices inE- are interfaces, it is the contention of this paper that ideal inter-

defined by structure matrices given by the inverse transposftglceS can be used to build a crystallographic description of

of their (dimensionlessE! counterpartsE* lattices play a mterfgceg. That this is indeeql the case s demonstrated by the
vital role in the characterization of interfaces since they conduantitative agreement obtained with experimental observa-
stitute a reduced representation of the displacement field 4©NS On fcc twist interfaces, as described below.

the interface and can be used to calculate the diffraction deal interfaces are expected to represent better those sys-
properties of interfaces. For clarity, their description shall be€ms which minimize energy mostly through strain minimi-
deferred to a second publication dealing with the structure ofation (as expected from systems with largely isotropic in-

Clearly L =L,=ML;=M"1L,. For simplicity, in what
follows we shall refer to a lattice using eithar, L, orL as
found convenient. Note the median lattice is preferred simpl
because of the symmetry of the equations.

In order to describe an arbitrary interface we shall nee

A. ldeal interfaces vs perfect crystals

E' and the diffraction properties of interfaces. teratomic potentia)s Of course, some differences are
expected between ideal and real interfaces, but as for crys-
IV MODIEIED STRIP-PROJECTION METHOD tals, by analyzing these differences through diffraction data,

an insight into the mechanisms controlling the structure of

The method presented here consists of a modified versioreal interfaces can be gained. Also, ideal interfaces can al-
of the strip method of Katz and Duné@d®devised to study ways be used as a first-order initial configuration to be re-
the crystallographic properties of quasicrystals. The mairfined by computer simulations. This information can later be
difference with the original strip method resides in that,fed back into the formalism to provide a more exact descrip-
there, a high-symmetrynormally cubi¢ hyperlattice is tion of the geometry of particular systems. This will intro-
sought at the onset such that its unit vectors project onto a seice system-dependent relaxational variaitsut the ideal
of six linearly dependent vector® star vectorin the 3D  prerelaxed structure is still useful from a crystallographic
physical space. The star vector has the point symmetry of thpoint of view, just as normal Bravais lattices.
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(V2) SinceV, andV, are orthogonalR® andA(®) are given by
Az the direct sumR°=V, oV, and A®=A,;®A,. The deci-
I sive step consists in realizing thRE is also given by the
el X direct sumR®=El® E-. Therefore, any hyperlattice poirt
I can be writter(disregarding the/2 factop as an ordered pair
in two different basesx=(x" x®)=(xl,x") with x®
n ! eA;, xPeA,, XleEl andx" eEL. Note x™),x(®) and
I E (x”,xi) refer to the same hyperpoint expressed in the coor-
dinate systems ofA;,A,) and E!,E').
i The x! component ofx is given byII(x) wherell is an

/ X orthogonal projector given by the block matrix
:::::::_/'/,::H::::::::::::::(V1) ]_(I I)

x® A1 =5 )

211 |

and| is the identity matrix in 3D. The perpendicular space
componentxt is in turn given byII*(x) with II+=1—1I.
. (V2) Using Eq.(3) we obtain two fundamental equations
E

Xl =TI(x)= %(x(l)+x(2)), @

x- =11 (x)= %(x(l)—x(z)). (5)

Sincex must be contained in the strip, the latter is chosen
to include the pair of atoms at®),x(®*) occupying incompat-
ible positions(smallx*). These points are then replaced by a
single atom at their average positioﬂﬁ Equations(4) and
(V1) (5) define, given two(or more interpenetrating lattices in
physical space, an ideal, best fit, minimum strain lattice as
the set of point!. Since strain is a physical consideration,
this endows the formalism with a physical basis in spite of its
FIG. 1. Schematic representation of the projection of a 2D hY‘geometricaI formulation. Whil&! contains lattice pointE*
perlattice into the 1D orthogonal subspad&sand E*. Top: the  contains displacements and is therefore associated with the
hylperpz)omt p0|nl?< results from thg embleddlng of Fhe Iat.tlc.e points displacement space callédspace by Bollmanh?
x( )_,x( ) and prcijects onto the pomtéi_,x . Only pomts within the By adopting the average positioﬁ, atoms in the inter-
region arounct! bounded by the strip are projected. Bottom: the ¢, "5 ot a5 4 strain buffer between the crystals on each side
projection of a complete bicrystal: interfacial points arise from theOf the interface? that minimizes the elastic ener V. Thé

projection of the hyperpoints inside the strip that lie within the tis th fthe | | strairl ae
region of conflict. Crystals 1 and 2 are recovered by projecting thecomponen IS thus a measure of the focal straik’ aepre-

Window

hyperpoints 1,0 and (0x?)). Egggng the frustration between two nearly coincident posi-
B. Six-dimensional hyperlattice Itis natural to assume that the interfacial energy should be

L lower in regions of small local strain. In particular, when
Letting Ly, L, be the structure matrices of two crystal x1=0, the pointx‘!)=x(? is a coincidence with zero local

latticesA;, A,, the hyperlattice is define@n the canonical strain. Note that since a rational relationship is assumed be-

basis ofR®) by the structure matrixﬁf) given by tweenA; and A,, an infinite number of hyperlattice points
{x} intersectEl with zero local strain defining the CSL.
|:1 0 Since every interfacial point' has an associated strairt,
LO=2 - (2)  the configuration of points iE" is a reduced representation
0 L, of the local strain inEl. In principle, for incommensurate

interfacegor quasicrystalsthe distancéx(®)— x(?)| becomes

The first and last thr lumns bf® span two orthogonal S 1
e first and last three columns bf” span two orthogona arbitrarily small(but not zero except at the origimnd E*

6 .
3D subspace¥;, V, of R” and generate the crystal lattices becomes densely filled. However, assuming a rational orien-

L1, L5 (expanded byw2) in the disjoint subspaces; ,V, tation, a discrete structure appearsgih which can be used

where they no longer compete for spdsee Fig. J__The\/§ to characterize the interface and calculate its diffraction
expansion is needed for proper projectibhut is irrelevant properties.

to the physics of the problem and can be ignored, soltffat From the projectordl andII' it is easy to show that the
is simply the Cartesian produtt®L ,. reflection
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) (5). Moreover, since the symmetry of the hyperlattice
changes with the orientation between parent crystals, it can
be related to orientational variants.

o/2| 62 V. INTERFACES AND QUASICRYSTALS AS COMPETING
LATTICES

The interface is a region in space where two lattices, each
representing the ground state of a crystal, are forced to co-
exist. In this scenario, the modified strip-projection method
can be seen as a referee that determines, using a minimum
strain criterion, the final structure in the region of conflict.
/1 Since the method describes equally well interfaces and

quasicrystals, it is only natural to extend this interpretation to
quasicrystals and consider them as “best fit” structures re-
sulting from 3D lattices competing for space. If such lattices
were found(possibly from the crystalline phases surrounding
the quasicrystal in the phase diagparthe method could
yield the “best fit” atomic structurda decorated tilingof a
quasicrystal.

FIG. 2. Projection window of cubi¢001) twist GB'’s defined by The average lattice given by E@) should be a plausible

the intersection of the basal planes of two cubes rotated B§2. low-energy configuration for metallic close-packed struc-
The edge of the cubes is half the minimum interatomic distancetures where the interatomic potential is mostly isotrdpic,
The rotation axis is normal to the page. which is a possible reason why quasicrystals have only been
found in metal alloys. The same interpretation should still
1 /1 1 hold for covalent systems, although the formalism would
R—R‘1=—< ) (6) have to include a way of accounting for bonding anisotro-
NPAL pies.
relates the coordinate systems af,(V,) and (E”,Ei) < Under ideal conditiongsuch as a perfectly isotropic po-

tentia) it is sensible to assume that the ground state of an
interface minimizes local strain. By comparing the diffrac-
tion patterns calculated from minimum strain interfaces with
actual measurements, the pertinence of such “perfect” struc-
tures could be assessed and defects in real interfaces could be
C. Window identified as it is commonly done for crystals. The diffraction
equations for perfect interfaces derived from the distribution
of points inE* shall be presented in a forthcoming publica-
tion.

that

R(xM x@y = (xl xb). (7)

The intersection of the strip witE" defines a bounded
region called projection windowFig. 1). Only those hyper-
points whosext component falls within this window are
eligible for projection into physical space. As an example, in
the case of rotation-related lattices there are no displace-
ments parallel to the rotation axisand the window is @ 2D When all the points within the strip are projected oBto
plane segment perpendicular po If the strip is chosen so the result is a 3D structure, yet in contrast with quasicrystals,
thatx(®)—x(?) is less than half the interatomic distance, theninterfaces are mostly two-dimensional systems. This can be
the strip is a hypercylinder and the window a sphere of raunderstood as follows: when the energy density in the region
dius d/4, with d being the minimum interatomic spacing. occupied by the projected points is larger than that of the
Although this window produces the normal set of O pointsadjacent crystals, the region minimizes its volume by col-
predicted by Bollmant for low-angle fcc(001) twist GB's, lapsing into a 2D surface. When the opposite is true, all
it does not account for the extra O points found points in the strip are projected and a new 3D phaseh as
experimentally’® These results are reproduced by a differenta guasicrystalnucleates between the two crystals.
window defined as the intersection of the plane normgdto  The set of hyperpoint§(x!,x")} that project onto a planar
and two solid cubes rotated by 6/2 aroundp as shown in interface define a 2D manifold within the strip Rf. In this
Fig. 2. This window accepts hyperpoints¥),x(?)) with the  scenario, the problem of calculating the atomic structure of
property thatx®) and x(?) lie in the intersection of their an interface, now including the orientation of the boundary
respective Wigner-Seitz cet§ Such points are referred to as plane, is replaced by the geometrical problem of finding the
quasicoincidences and lead to structures that are stable up@® manifold that minimizes the energy of the system. For
static relaxatiort? those systems whose interfacial energy is minimized by re-

Note the price paid in loss of hyperlattice symmetry isducing local strain, a manifold that goes through hyperpoints
compensated by the physical interpretation that can now bgith minimumx' componentclosest toE) should yield an
given to the lattice points il andE* through Eqs(4) and  accurate interfacial structure.

Interfacial manifold
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VI. CHARACTERIZATION OF INTERFACES
A. Symmetry variants

Any relative rigid body translatiorb=(b,,b,,b3) be-
tween A; and A, is taken into account from the median
lattice by displacingA; by b/2 and A, by —b/2. This is
equivalent to displacing the whole hyperlattice by the 6D
vectorb=(by,b,,bs,— by, —b,,—bs)/2. It is easy to show
using Egs.(4) and (5) that bl=II(b)=0 and bt=II*(b)
=b. Therefore, all crystal displacements are completely con-
tained inE*. As a result, Eq.(4) does not change upon
relative lattice translations but E¢p) becomes

XM

FIG. 3. Displacing the projection manifold by* so that it in-
tersects another hyperpoint is equivalent to shifting the hyperlattice
by one of its vectors. This shifts the real space structure by the
(DSCL) vectorbl =311 (x(M) + 211 (x?), leaving it otherwise unal-

.1
Xl=Hl(x+b)=5[(x(1)_x(2))]+b_ g tered

Although it is normally assumed that extrinsic disloca-
This implies that a relative crystal translation has the effectijons dissociate into dislocations with Burgers vectors be-
of displacing the strip along", leaving the hyperlattice un- |onging to the DSCL, this is not necessarily the case. When a
disturbed, thus decoupling the translational and orientationalrystal dislocation enters a GB, it becomes an extrinsic GB
degrees of freedom. dislocation and introduces a local displacement manifested
One must bear in mind that a strip displacement may,s a step in the strip and manifold. If the resulting increase in
cause a different set of hyperpointé’,x*)) to be projected  ejastic energy is too large, the dislocation may dissociate into
onto El. Such displacements may change the symmetry o§maller components that lead to lower-energy translational
the real space structufeleading to structural variations states and a smoothing of the strip. It is possible that trans-
known in the interfaces field as translational st#tes trans-  |ational states arrived at by phasons manifested as partial

lational variants. However, a displacement of the strip does DSCL dislocation¥ are energetically preferred. Since IGB's
not change the symmetry class or local isomorpflisithe  already contain a mixture of translational states, there is no

structure which depends solely on the relative orientatiofundamental state to be preserved by DSCL dislocations.
(and symmetryof the parent crystals. This significantly sim-

plifies the characterization task u_sing dichromati_c patterns /| HYPERLATTICE OF ROTATION-RELATED
whose symmetry changes unpredictably with relative crystal
s CRYSTALS
displacement3.
In this framework, an interface can be fully characterized A practical application of the formalism will be exempli-
(prior to the introduction of a boundary surfadsy the sym-  fied here using the well-known case of rotation interfaces.

metry of the hyperlattice and the position of the strip alongConsider two lattices such that=M?2L, [see Eq(1)]. The

E'. Each orientational variant, described by the symmetry ohyperlattice is defined in the 6D median lattice by the hyper-
the hyperlattice, corresponds to a local isomorphism, andtructure matrix
each local isomorphism has a number of symmetry-

inequivalent translational variants described by the position R Mt o\(/L, O
of the strip. In the following sections we shall see that the L®)= \/5( o M L. 9)
number of orientational and translational variants for rota- 0 L,

tional interfaces igeffectively finite. Projection ontcEl andE* generates two lattices with struc-

ture matriced ! andL* given by
B. Phason dislocations

In order to preserve the smallest components, a shift of ﬁ‘,‘nzg(M 1L+ ML), (10)
the strip is normally accompanied by a change in the shape
of the projection manifold. If the strigor manifold is dis-
placed by a vectob® (Fig. 3) so that it intersects another (L 1(M‘1I: —ML,) (11)
hyperpoint, the real space structure is the same as before, mo2 ! 2
with an inconsequential shift of origirbf in Fig. 3) in par- .
allel space. The same origin shift is obtained by displacingNote thatL* is basically the Frank-Bilby equation giving the
the strip by the vectob=3x"+2x® which projects onto displacement field at the interface which confirms the con-
the DSCL vectorbl=3I1(x®) + 21 (x®). Since the full ~sistency between the formalism and known theory. The col-
hyperlattice projects onto the DSCEQq. (4)], displacements umns ofI:Un and I:#] are the basis vectors of two lattices in
through hyperlattice vectors always preserve the translationaghe corresponding spaces.
state of the interface; therefore, relative translations need In view of the minimumx* requirement, the manifold has
only be specified modulo a DSCL vector. In what follows, a stepped shape which causes the appearance of dislocation
we shall refer to non-DSCL displacements as phasons.  networks in the real space structure. This means that all in-
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terfaces are composed of atomic domains limited by disloca-
tions. If the dislocations belong to the DSCL, then all do-
mains belong to the same translational state. Otherwise the
symmetry of adjacent domains is differéAids a result,liﬂn
describes only the structure of the central, dislocation-free,
domain near the origin.

In particular, for identical crystal lattices,;=L,=L
andM?2=R, (a rotation throughg aroundp=(hkl)). Then
M =Ry and
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where the operators
1 FIG. 4. Cubic twist{001) interfacial plane with quasicrystalline
R”ZE(R_ o2t Ry o), (14)  octagonal symmetry obtained with=45, x=3, §=2-1. Gray
circles indicate atomic positions.

RL:E(R—a/z— Ry ) (15  tional values. This means that E4.8) also describes, if one
2 so wishes, nonperiodic interfaces taken in a strict mathemati-
are the symmetric and antisymmetric component&Rof,, cal sensdsee Fig. 4 If _5 is a rational number, it re(_jucges to
=RI+R'. The CSL is given by the null space Bf, and in Eq._ (16). Its most S|gn|f|cant_ advgntage, however, Iles_ in that
median lattice coordinates, the O lattice is given byUnlikepandg, xandé are given in terms of the experimen-

(2RY) 1. tal observable® andN and are thus linked to the geometry
of the interface? In terms ofx and &, the index number
becomes

VIIl. ROTATION-RELATED BOUNDARIES IN THE CUBIC

SYSTEM
3 =p?[(x+8)*+N]. (19

A. Generalized Ranganathan’s expression
By considering all GB's as periodic, Ranganathan'sDGB'S occur wheff 6=0 (p=1, £=x), so that Eqs(18)
equatio’ can be applied to all interfaces in the cubic sys-and(19) become
tem. Accordingly, given two cubic lattices related by a rota-

tion through@ around{hkl) we have 0 1
g {hkh tani)(: JN 3 (20
0
tan;, = JN B, (16)
q S =x2+N. (21)

with p and q being arbitrary coprime positive integers and
N=h?+k?+12. The index numbe¥ is given by(divided by ¢ is referred to as the deviation parameter since it is a mea-
2 until odd sure of the angular separation between a general IGB with
rotation angled and its closest DGB at the singular angle
S =q*+Np” 17 Note that for IGB’s the integep takes part in the expres-
o ) - ] sion of 2 [Eqg. (19)]. Sincep cannot be experimentally de-
There are significant advantages in rewriting Btf) in termined,s, is ill defined for these boundaries. On the other

the form hand, DGB's have a well-definedl given in terms of the
P 1 1 measurable anglé, [Eq. (21)]. This leads to an alternative
tan= =N —— =N =, (18)  definition of DGB’s as those with a well-defined index num-
2 X+ o 3 bers,.

where ¢= /N cot/2=x+ & with x and & being the integer

and fractional parts of/N cot@/2. If the closest integer func- Ranganathan's expression for epitaxial interfaces

tion is used to evaluat, then § lies in the interval The generalized Ranganathan’s expression can also be
[—-0.5,0.5); if the integer function is used insteatllies  used for epitaxial interfaces between two lattices of different
within [0,1). lattice parameter. Let,,L, be two lattices such thdt,

Equation(18) is a generalization of Ranganathan’s equa-= aL;, with a=p/q, p,q being two coprime integers such
tion to irrational orientations since now can acquire irra- thatp<gq. If, in analogy with Eq.(18), we define
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p 1 best fit regions in a volume containing interpenetrated, as
iair-iavany 3 (22)  opposed to just juxtaposed, crystal lattices.
The O lattice provides the primary dislocation content of
wherex is the integer part of/p and 6= «—X, then we can DGB'’s and for rotation-related boundaries it is given in me-

write dian lattice coordinates by the transformation
1 JE+N[ 0 1
Ly=——+L;. 23 =(2RY)1=—2——
2= X1 4) - (23 O:=(2R") SN -1 0), (27)

In analogy with the case of rotation related GB’s, we canith N=1 for (001) twist GB's. The O latticeO, of delim-
now define delimiting GB’s as those for which=0, i.e., iting GB's is obtained by substituting=0, NX=1 in Eq.

p=1,q=x, and L;=x L,. Hence delimiting expitaxial 27):
boundaries occur wheh; is a sublattice ofL,. Since for '

expansion-related interfacé4 [see Eq(1)] is given by K2+1/ 0 1
= B . (28
1 2 10
=Jplql = ——1I (24)
M=vp/q k+o Subindexex and ¢ are used to distinguish between delimit-
_ o . _ ing and intervening lattices.
the O and CSL lattices are givéim the median latticeby
\/ﬁ \/xTé D. Delimiting boundaries .
O=—L;=7— Ly (25) The boundary plane of DGB's&=0) is composed of
pP—q 1-(x+96) , ; e ; ,
atomic domains delimited by a network of primary disloca-
and tions (see Fig. % as can be verified by applying the Frank-
Bilby equation toO, . Since primary dislocations have crys-
C=paL,=px+éL;. (260 talline Burgers vectors belonging to the DSCL, all domains

belong to the same translational state and differ only in size
(the length of theD, vectors, which is an increasing func-
tion of x. The structure of this unique domain type is the
same as that of the triviat=1, §=0, %=1 boundary(an
(00Y) crystal plang
Although all delimiting domains have the same structure,
they differ in the relative displacement of their points with
If ¢ is small,x+ & is a large number and its fractional part respect to the O point at their center. Domains labeled A, B,
& can be neglected. Hence, small-angle boundaries are effegnd C, in Fig. 5 with O points colored black, gray, and white
tively delimiting boundaries, and like any other DGB, they are, respectively, shifted by the vectors with coordinates
must contain only primary dislocations, as it is indeed{0,0}, 3{1,1}, and3{0,1}, given in terms of the base vectors
observed? This makes it clear why small-angle boundariesof the median lattice. This introduces a partition of the O
are in a class of their own: they are so close together ( lattice into three sublattice®, B, C) according to the type
> §) that no intervening boundaries are found around themef domain at the center of which they lie. As we shall see, the
and it is no longer justifiable to call them singular. As adomains of intervening boundaries and the points of the P
result, although the number of delimiting boundaries is actulattice can be equivalently partitioned.
ally infinite, only a finite number of them are singular. The CSLC can have two orientations depending on the
parity of x (Ref. 12: the parallel orientation X even in
which C||O and the inclined orientatiorx(odd) whereC and
) ) O are rotated byr/4. The inclined orientation has O points
A boundary plangfa 6D manifold must now be intro- ¢ tynes A and B, while the parallel orientation also has
d.uced. For S|mpI|c.|ty, we s.hall conS|d9r hgre the relatlvelytype_c O points. The CSL always coincides with the sublat-
simple case of cubi¢001) twist boundarles with _the_purpose tice of type-A O pointsFig. 5).
not to obtain a full crystallographic characterization of the  gincecC is a sublattice oD, there exists a transformation

system at this point, but rather as an illustration of the priny ¢\,ch thaitC=KO . For the(001) twist case in the parallel
ciples involved in the task. In this section the P lattice will beorientationKzZpR » while for the inclined orientatiorK

defined for this system and its relation to other lattices ex-_ PR_,. SinceS is only well defined for DGB's p=1),
plored. Also, existing theory shall be discussed and restategq sgall only consider the CSL of delimiting boundar@s
in the HD framework using results from the GCSN motfel. which can be written for any orientation as

The interface 0f(001) twist GB’s consists of a single
buffer plane’? although it must be noted that this is not the C,=KO,=F"0,, (29)
general case; the interface of low-ang@L1) twist DGB's,
for instance, can be stepp&dPredicting nonplanar bound- where F= \/ER,TM, v=1+(x*+1)mod 2, with mod being
ary surfaces is possible in this approach because it gives titbe modulo function and=1,2 for x odd, even.

Note the O lattice diverges faxr=1, §=0, which means
that misfit dislocations become infinitely spaced when

=L,. Also note thafC is again ill defined for nondelimiting
GB'’s since there is no experimental accesg.to

B. Class of small-angle boundaries

C. Crystallography of {001) twist boundaries
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| | One problem of this reasoning is that no unambiguous
! HPuE ! definition (6=0) of DGB'’s existed until recently, and with-
7 ;
| |

out it, it was not clear when to use the primary or secondary
O lattices to describe the dislocation content of an interface.
The usual smalk criterion is not enough since, as we have

S T ™ iy i seen, it leads to inconsistencies. For instar29 has a
smaller period thax41; however, the former is an IGB«(
| [ AL I I } | =2, §=1/3) containing nonprimary dislocations whil41

ﬁ = _ﬁ)__ —+— is a DGB (x=9, 6=0) with a purely primary dislocation

| | content. Another problem of the argument is that it says

nothing about the structure of GB’s far from special orienta-
— ] — U =) — L tions.
In spite of this,Sis still fundamental to the description of
| interfaces since it provides the distribution of sites in the
| interface that belong to the same translational state. Follow-
ing Bollmann, to calculateés we must first calculate the
DSCL of a DGB atf, . The secondary O lattice @+ A 6 is
then given byS,=04D, [see Eqs(27) and (30)], with 8
— JIT1] — JITIT] —— being the value of¢ resulting from substitutingd by A6
=6— 6, in Eq. (18). Thus, in the median latticé; is given
by

1
Si= 5 1VET T

0 1)
1 oD (31)

or, in terms ofO;,

| |
u |

! 0 ﬁ— | Si=F2"(5710,). (32
| |
|

Similar expressions exist for the other rotation axes in the
cubic system, i.e., a function &f, in this casé=>~”, applied

to the scaled O latticé'O,. SinceK is a relatively simple
function to calculaté! this method represents a simplified
way to calculates.

Intervening interfaces also contain atomic domains de-
— I1J — [OIT] — fined by dislocation network, but here the Burgers vectors
of these dislocations are not DSCL vectors but phasons, so
that adjacent domains belong to different translational states

< [

FIG. 5. Wire figure(lines joining nearest neighbgref delimit-
ing simple cubic(001) twist boundaries for parallgtop) and in-

clined (bottom relative orientations of the O and CSL lattices. O (Se_?hFlg' 6 fi . . f in th |
lattice: short thick arrows. CSL: long narrow arrows. Note that the e structure of Intervening Interfaces in the angular

periodicity of domain types is the same as that of the CSL. range defined by e (x—1/2x+1/2) is the same except for
domain size(dislocation spacing which increases a§— x

Following Grimmer et al,? the DSCL is given byD (6—0) _in accordance with experimental stervatiﬁ?r'@..
—(CT)~! and for delimiting boundaries it can be obtained At the singular angle’= 6, the domain containing the origin
from Eq. (29): becomes |r_1f|n|tely Ia_rge and the GB becomes delimiting.

Intervening domains have the structure of some of the
translational states of the delimiting bounda&y at ¢é=x
:i FrO, . (30) (.5= 0). Thgse statgs are obtained by projtlect.ing the hyperlat-

2V 1+ &2 tice of 3, with a strip shifted by a vector within the Wigner-
Seitz cell ofD, (see Fig. J. Although the number of vectors
(phasongin this cell is nondenumerable, the number of dif-
ferent translational states is finite. This occurs as a direct

The O lattice does not describe the dislocation content ofonsequence of the discrete nature of the hyperlattice: while
IGB’s. According to Bollmanf the structurdi.e., the trans-  displacing the strip, the projected structure remains un-
lational variant of boundaries near DGB¥small §) must be  changed until eventually one or more hyperpoifger unit
preserved. To achieve this, he postulates that these boundell) enter and/or leave the strip. As an example, Fig. 7
aries should possess a network of dislocations with Burgershows the translational states B{(x=3,6=0), as a func-
vectors belonging to the DSCLD{) of the nearby singular tion of the strip displacement.
orientationd, . The secondary O latticB is then defined as The structure of any IGB af, , 5 is thus determined by
the dual of the secondary dislocation network. the structure of the closest delimiting boundary ét (6

X

E. Intervening boundaries
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i
“ %

A

A

> >

FIG. 7. Top left: Wigner-Seitz cell of the DSCL dE5 (x
=3,6=0) cubic twist(001) interface. The regions marked A, A
B indicate the translational states arrived at by the corresponding
displacement vector. The accompanying figures show2theunit
cell decorated with circles at lattice points to aid in the visualization
of structural units and symmetry elements present in each state.
Note states A and Adiffer only by the removal of one atom. Since
the good fit criterion is determined by the strip, a slight variation of
the window contour could leave this atom in place. The determina-
tion of atomic structure at this level of detail requires additional
computer relaxation allowing atomic diffusion. Note domain types
A and B contain the same symmetry elements of Bristowe and
Crocker’s types 2 and CS(Ref. 19.

FIG. 6. Wire figure of intervening interfaces corresponding to
(top) parallel state ¥ =21389,x=4, §=2/35) showing domain _2(1-w) 51
types A, B, C and(bottom inclined state £=4369,x=3, § Pe=F (o 05)' (33
=3/20) with domains A and B. The secondary O-lattice vectors,

marked with long thin arrows, join domains of same ty@eA) With the aid of Eqs(32) and (33) P, can be expressed in

while the P lattice(short thick arrows joins domains of different A N .
types. The CSL unit cell o =4369 is drawn, but that of terms of the secondary O latti¢Eig. 6) which joins domains

~21389 is too large to be shown. The properties of intervening®f the same type:
GB’s are determined by the domain periodicity and not by that of
the CSL.
S;=F"P;. (34

=0) (Ref. 12 as a mixture of its translational states. This
partitions the angular range into regions limited by ( Figure 6 shows that intervening GB's also have up to three
—1/2,x+1/2). Each region representing an orientationaldifferent domain types distinguished by their symmetry, each
variant of the(001) twist system. Since for large(small#)  corresponding to a translational stateXbf. Just as for de-
all GB’s become delimiting, the number of orientational vari- limiting boundaries, the inclined orientation contains two
ants is finite, and since the number of translational states peypes of domains A and B, while the parallel orientation has
orientational variant is also finite, it becomes possible toan additional type C. A detailed account of the translational
characterize the symmetry of any GB. states present in each orientational variant shall be presented
The P lattice is defined as the set of points that join do-elsewhere.
mains of different symmetryFig. 6) or, more precisely, as Just as the size of the smallest O-lattice vectors gives the
the dual lattice of the phason dislocation network, in directspacing between primary dislocations, the phason dislocation
analogy with the O lattice which is the dual of the primary spacings is given by the magnitude of the smallest P-lattice
dislocation network. In terms of the conventional O lattice,vectors (Fig. 6), which can be expressed in terms of the
the P lattice is given by angles as
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By ism has been introduced. The method produces igeati-
sin—- mum local straif structures. Since minimum strain is a
1 1 1 2 - . . L . .
[ — , (35)  physical consideration, this gives the method a physical basis
2v. 0 0 2v A6 in spite of its geometrical formulation.
COSz — X Sins sin— : .
2 2 2 Ideal interfaces are suggested to play an analogous role in

) o ) grain boundaries to that played by the perfect crystal and
where A6=6— 6,. This equation is in agreement with ex- quasicrystal concepts in the study of crystals and quasiperi-
perimental observatiofs****and constitutes strong support odic structures, thus constituting an important step towards
fOI’ the forma”sm. PhaSOI’I diSlocationS are in faCt partial Secthe formu'ation of a genera' Crysta”ographic theory Of inter-
ondary dislocations, and the difference in the structure ofaces. This hypothesis is supported by the ability of ideal
adjacent domains corresponds to the stacking fault associatggterfaces to quantitatively account for some experimental
with this type of dislocation. The displacements associategpservations on fcc twist boundaries. Also, when the hyper-
with the secondary O-lattice vectors, on the other hand, beattice is projected in perpendicular space, the Frank-Bilby
long to the DSC lattice and preserve symmetry so that ikquation is rederived. The fact that such a general result can
joins domains with equal symmetry as shown in Fig. 6. pe obtained from this approach constitutes further evidence

in favor its ability to describe interfacial-related phenomena.
F. General considerations Some advantages of the modified strip-projection method
are the following:(a) It has given a new meaning to perpen-

Figures 5 and 6 show that delimiting and mtervenmgdicular space by associating it with Bollmanfisspace.(b)

boundaries are topologically identical, the difference being.. : . : .
the symmetry of the domains and the Burgers vector of thgglnce a geometrical link exists between the 6D hyperlattice

dislocation networks that define them. Delimiting domainsand the 3D competing lattices, the method produces, in con-

have all the same symmetry and dislocation networks giver&_'rt"jlst ;\2:2 t(r)1t:teruzg?é?asigfssé::\re?g\yv g?fﬁéaitnetgrgggsol; 0D
by the dual of the O lattice. Intervening domains, on the 99 q y 9 prop

other hand, have different symmetries determined by thgrly oriented crystals, a prediction that can lead to the dis-

translational states of the associated delimiting boundary an@?(\rfor?/egf new quasicrystalline phases in systems so far un-

are the dual of the P lattice. This equivalence is mathemati- Other advantages of the method are the following: The
cally expressed by the similarity of Eq@9) and(34). effect of dislocations impinging on grain boundaries can be

The lattice pairs ©,,C,) and P,,S;) play symmetrical . . I i
roles in the description of DGB’s and IGB’s. These IatticesdeSCrIbed " terms_, of stnp d_|splacem§ants by t.h? Burgers vec
&or of the dislocation. This is useful in describing the inter-

are sufficient to completely characterize all interfaces except _,. : ) : .
: 2 . . action between crystal dislocations and grain boundaries, re-
for the structural units within each domain determined by th ; : :
; S X ated to mechanical properties of policrystals.
translational states of the closest delimiting GB. This means . e . .
. ; It has introduced a new classification of interfaces in well-
that the structure and hence the properties of IGB’s are de; .. : . . i
. L . defined equivalence classes that include orientational and
termined by the periodicity of the domain typeS,(or S;) . . e
: ) R ! translational degrees of freedom. This classification is based
and not by the strict period which is ill defined and patho- : o
logically discontinuous on the symmetry of the hyperlattice and the position and
gically | shape of the strip and is consistent with previous structural

A” Fhat remains to do_ for a full grystallographlc charac- units and symmetry approaches. Each orientational variant,
terization of the system is to describe the symmetry proper-

ties and the structural units of each domain type. The numb described by the symmetry of the hyperlatiice, corresponds

[ . . . .
) : - . o §6 a local isomorphism, and each local isomorphism has a
of translational states in each orientational variant increases

with x. however, only the ones with highest symmetry arenumber of symmetry-inequivalent translational variants. The

chosen by the cut-broiection method to define the interfaCenumber of both orientational and translational variants is fi-
The detai)lled calculgtic:n of the translational states present inite’ and it is hoped that such classes can be later associated
P with the physical properties of interfaces.

each local isomorphism and which of them are selected t0", | " " cp o - ihe structure and hence the prop-
form the interface shall be deferred to a forthcoming publi- _ .. ; . S :
: erties of GB’s are determined by the periodicity of the isos-
cation. : : ) ;
ymmetrical regions(domain types and not by the strict
boundary perio® which is ill defined(except for DGB’s.
IX. CONCLUSIONS For delimiting boundaries this periodicity is given by the
SL while for IGB’s it is given by the secondary O lattice.

; ; ; ; C
It has been shown that in & higher-dimensional approach, The phason or P lattice has been introduced to describe

guasicrystals and interfaces are formally equivalent. This is . i ; .
an important result since describing under the same forméhe dlslopat|on content of IGBS' The P and 0 '?‘tt'ces play
ymmetrical roles in accounting for the dislocation content

context two apparently unrelated physical systems alway§ . ; U . :
enhances our understanding of nature as a whole. In th@f intervening and delimiting boundaries, respecively.

framework, interfaces and quasicrystals are interpreted as a
region in space where the atoms of interpenetrated crystal
lattices compete for space, with a modified strip-projection Support from CONACYT through Grant No. 25125-A is

method deciding the final atomic positions. Based on thisacknowledged. The author is thankful to A. Gomez and L.
paradigm, a method derived from the strip-projection formal-Beltran for useful discussions.
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