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Ferroelastic dynamics and strain compatibility
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We derive underdamped evolution equations for the order-parameter~OP! strains of a proper ferroelastic
material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free
energy as a polynomial expansion in theN5n1Nop symmetry-adapted strains. TheNop strain equations are
structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding
~BG!, with ‘‘strain accelerations’’ proportional to a Laplacian acting on a sum of the free-energy strain deriva-
tive and frictional strain force assuming geometric linearity. The tensorial St. Venant’s elastic compatibility
constraints that forbid defects, are used to determine then non-order-parameter strains in terms of the OP
strains, generating anisotropic and long-range OP contributions to the free energy, friction, and noise. Thesame
OP equations are obtained by either varying the displacement vector components, or by varying theN strains
subject to theNc compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than
one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear

~strain! oscillators labeled by wave vectorkW , with competing short- and long-range couplings. The oscillators
have different ‘‘strain-mass’’ densitiesr(k);1/k2 and dampings;1/r(k);k2, so the lighter large-k oscilla-
tors equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a
sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting
inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-
dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for
special parameter values. We consider in detail the two-dimensional~2D! unit-cell transitions from a triangular
to a centered rectangular lattice (Nop52,n51,Nc51) and from a square to a rectangular lattice (Nop51,n
52,Nc51) for which the OP compatibility kernel is retarded in time, or frequency dependent in Fourier space
~in fact, acoustically resonant inv/k). We present structural dynamics for all other 2D symmetry-allowed
proper ferroelastic transitions: the procedure is also applicable to the 3D case. Simulations of the BG evolution
equations confirm the inherent richness of the static and dynamic texturings, including strain oscillations,
domain-wall propagation at near-sound speeds, grain-boundary motion, and nonlocal ‘‘elastic photocopying’’
of imposed local stress patterns.

DOI: 10.1103/PhysRevB.67.024114 PACS number~s!: 64.70.Kb, 64.60.Cn, 11.10.Lm, 81.30.Kf
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I. INTRODUCTION

Structural phase transitions in solids have attracted a g
deal of interest over a century, both for their conceptual
portance as symmetry-changing phase transitions, and
their role in inducing technologically useful properties
materials. Both the diffusion-controlled replacive and the d
fusionless displacive transformations have been studied
though the former have received more attention because
reaction kinetics is more conducive to control.

We consider here the class of materials known as
roelastic martensites. Ferroelasticity is defined as the e
tence of two or more stable orientation states of a crystal
correspond to different arrangements of the atoms, but
structurally identical or enantiomorphous.1,2 In addition,
these orientation states are degenerate in energy in the
sence of mechanical stress. The term ‘‘martensitic’’ refers
a diffusionless first-order phase transition that can be
scribed in terms of one~or several successive! shear defor-
mation~s! from a parent to a product phase.3 The morphology
and kinetics of the transition are dominated by the str
energy. The transition results in a characteristic lamellar
twinned microstructure.

Salient features of proper ferroelastic crystals include m
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chanical hysteresis and mechanically~reversibly! switchable
domain patterns. Usually ferroelasticity occurs as a resul
a phase transition from a nonferroelastic high-symme
‘‘parent’’ phase and is associated with the softening of
elastic modulus with decreasing temperature or increas
pressure in the parent phase. Since the ferroelastic trans
is normally weakly first order, or second order, it can
described to a good approximation by the Landau the
with spontaneous strain or deviation of a given ferroelas
orientation state from the parent phase as the order pa
eter. The strain can be coupled to other fields such as ele
polarization and magnetic moment and thus the crystal
have more than one transition. Depending on whether
spontaneous strain is the primary or a secondary order
rameter at a given transition, the lower symmetry phase
called a proper or an improper ferroelastic, respective
While some martensites are proper ferroelastics, example
improper ferroelastics include ferroelectrics and mag
toelastics.

There is a further subset of ferroelastic martensites~either
nonelemental metals or alloy systems! that exhibit the shape
memory effect.4 These materials are characterized by high
mobile twin boundaries and~often! show precursor struc
tures above the transition. Furthermore, these materials h
©2003 The American Physical Society14-1
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small Bain strain, elastic shear modulus softening, an
weakly to moderately first-order transition. Some examp
include InTl, FePd, NiTi, and AuCd.

Dynamics plays a central role in proper ferroelas
transitions.2,5–17As noted, these materials undergo diffusio
less, displacive transitions, with strain~components! as the
primary order parameter, and develop complex microstr
tures in their dynamical evolution, finally forming spatial
varying, multiscale ‘‘textures’’ or strain patterns. Whe
quenched, some martensitic materials develop interfa
moving at near-sound speeds. Textured improper ferroe
tics include materials of technological importance such
superconducting cuprates18 and colossal magnetoresistan
manganites.19 Many dynamical models have been invoked
follow aspects of~proper! ferroelastic pattern formation5–17

such as nucleated twin-front propagation, width-length sc
ing of twin dimensions,20,21 tweed,22–24stress effects, elasti
domain misfits, and acoustic noise generation.25

In a one-dimensional~1D! model, Bales and Gooding5

considered a displacementu and a sixth-order free energ
F(«), nonlinear in the strain, that in one dimension is simp
a derivative,«5]u/]x. With Lagrangian dynamics, a Ray
leigh dissipation,26 and variation inu, a single strain evolu-
tion equation was obtained in one dimension,

r0«̈5
]2

]x2 S dF

d«
1A8«̇ D , ~1.1!

where A8 and r0 are the scaled friction~coefficient! and
mass density, respectively. In a low-frequency–large-wa
vector regimer0v!A8k2, where the inertial term is small,
simple time-dependent Ginzburg-Landau~TDGL! equation
is obtained5,6 in one dimension,

«̇52
1

A8

dF

d«
. ~1.2!

For the kÞ0 modes in one dimension the strain is a on
component ‘‘vector’’ that in Fourier space is simply propo
tional to the scalar displacement; and there is only one B
vais lattice. In higher dimensionsD.1, the strain
~displacement! is a tensor~vector!, and there are many pos
sible discrete lattice symmetries. The central question
what is the general form of the underdamped evolution eq
tions for ~order-parameter! strain-tensor components, for fe
roelastic transitions of different symmetries?

A wide variety of dynamical models have been used
date. These include a 2D or 3D TDGL dynamics in morph
logical variables for structural variants, with a long-ran
potential between squares of these variables,8 motivated by
ideas of elastic inclusions.27 Other work in 2D and 3D has
used a TDGL equation for the order-parameter~OP! strains
only, with a long-range potential emerging between the
strains themselves10–12 ~not their squares!, by optimizing
non-OP strains. Some authors14 assumed the validity of a 2D
Bales-Gooding ~BG! form from a Lagrangian withou
non-OP strains, and then phenomenologically added a lo
range potential between squares of the OP strains. A TD
equation in the displacements has also been used.13 Yet other
02411
a
s

-

c-

es
s-
s

l-

-

-

a-

s:
a-

o
-

P

g-
L

models considered displacement accelerations equate
displacement gradients of the free energy as forces; or s
TDGL equations coupled to vacancy field dynamics.15 Fi-
nally, the Lagrange-Rayleigh procedure5,6,26 has recently
been applied16,17 in two dimensions, yielding an under
damped dynamics for the displacement, which is truncate
overdamped equations that are seemingly different from
TDGL form.

While these and other models yield valuable insights i
ferroelastic texturing ~i.e., single-crystal microstructure!,
there is clearly a need, through explicit derivation, to obt
an underdamped, symmetry-specific OP strain dynamics
D.1; to find the precise form of long-range potentials~if
any! that emerge; and to determine the regime of validity~if
it exists! of some form of TDGL equations.

In this paper, we use the Lagrange-Rayleigh variatio
procedure to derive a ferroelastic strain dynamics~including
noise terms!. A central role is played by theNc St. Venant
compatibility conditions10,11,24,28–30for theN5Nop1n sym-
metry adapted strains, which enforce the absence of def
~and lattice integrity! at each instant, and allow then non-OP
strains to be expressed in terms ofNop order parameter
strains. We show the following.

~i! An underdamped set ofNop equations can be obtaine
for the OP strains alone, which is of a generalized BG for
with naturally emerging anisotropic long-range~ALR! con-
tributions to OP potentials, friction, and noise.~For theNop
51 case these are, in general, also explicitlyretarded in
time.!

~ii ! The sameOP equations can be obtained, either
varying thedisplacement, or by varying thestrainssubject to
the compatibility constraint through dynamic Lagrange m
tipliers.

~iii ! Dropping strain inertial terms yields strain TDG
equations, with nonlocal Onsager coefficients, that reduc
constants for special friction values, resulting in a loc
TDGL dynamics. These act as a late-time dynamics for
damping envelope of textural oscillations.

We explicitly demonstrate~i!, ~ii !, ~iii ! above for the 2D
triangular to centered rectangular or TR lattice transit
(Nop52,n51,Nc51) and for the square to rectangular
SR lattice transition (Nop51,n52,Nc51), as well as
present dynamics for all other allowed 2D symmetries. T
procedure can be generalized to three dimensions, e.g.
cubic to tetragonal (Nop52,n54,Nc56) transition where
~static! compatibility potentials in a TDGL dynamics pro
duce rich textures.11 Our central result is a generalized B
dynamics written in the OP strains$«,%, ,51,2, . . . ,Nop
only,

r0«̈,5
c,

2

4
DW 2S d~F1Fc!

d«,
1

d~R1Rc!

d«̇,
D 1g̃,1g̃,

c , ~1.3!

wherec, is a symmetry-specific constant, andr0 is a scaled
mass density.Fc($«,%),R

c($«̇,%) are the compatibility-
induced symmetry-specific contributions that emerge na
rally from the non-OP free energy as additions to the OP f
energyF and OP Rayleigh dissipationR, while g̃,

c is the
4-2
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FERROELASTIC DYNAMICS AND STRAIN COMPATIBILITY PHYSICAL REVIEW B67, 024114 ~2003!
corresponding noise term that adds to the OP noiseg̃, . In
Eq. ~1.3! and subsequently, we use the symbolDW to denote
dimensionlessdiscrete derivatives on a reference lattice.31

The generalized BG equations can be written as Lange
equation for«,(kW ,t) and v,[«̇,(kW ,t), yielding statistically
equivalent Fokker-Planck equations for the probabi
P($«, ,v,%,t).

In the strain-variation derivation of the BG dynami
above, we introduce the concept of a strain mass-den
tensor whose components~in Fourier space! behave as
rss8(k);r0 /k2, which is responsible in coordinate spac
for the Laplacian on the right-hand side of Eq.~1.3!. This
generalization of the 1D case expresses the physical idea
long-wavelength strains are extended lattice deformati
and hence have greater inertia. We present a physically
minating analogy of~generalized! BG dynamics as an arra
of coupled nonlinearkW -space oscillators that have an intri
sically hierarchical equilibration, with largek oscillators
damping out first.

The Nop strain order-parameter equations with deriv
anisotropic long-range terms are equivalent to theD dis-
placement equations that do not explicitly have such ter
The advantage of the OP strain approach is that it disp
and uses such anisotropic long-range correlations that
valuable in understanding simulated textures, as dem
strated below.

More generally, in the displacement (uW ) picture, the
strains are derived quantities and the compatibility condit
is an incidental identity, expressing the single-valuednes
uW . This is analogous to describing magnetic problems
terms of the vector potentialAW , with BW just a label forDW

3AW , and withDW •(DW 3AW )50 just expressing a vector iden
tity. By contrast, in the strain-only picture, the geometrica
linear strain tensor componentsEmn are the physical vari-
ables, and the compatibility conditionsDW 3(DW 3E)T50
~with T denoting transpose! are treated as independent fie
equations expressing the physical constraint of no defe
This is analogous to working with the magnetic inductionBW ,
where the Maxwell’s field equationDW •BW 50 expresses the
absence of magnetic monopoles. Similarly, the compatib
conditions can be viewed as the integrability conditions
the strain tensor as a function of~or with respect to! the
displacement field.30 The compatibility equation for strain
has been used for a consistent description of forces
liquids;30 here we use it to develop a consistent OP dynam
for ferroelastics.

The basic idea is quite simple. Compatibility implie
non-OP strains$ei% are proportional in Fourier space to O
strains$«,%,

ei5(
,

Si ,«, . ~1.4!

It is convenient to henceforth notationally distinguish b
tween n non-order-parameter strains$ei% and Nop order-
parameter strains$«,%. The non-OP free energyf ~and Ray-
02411
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leigh dissipation!, harmonic in the non-OP strains~and time
derivatives!, can be written in terms of OP strains. With ela
tic constantsai ,

f 5
1

2 (
i ,kW

ai uei u25
1

2 (
,,,8kW

U,,8«,«,8
* [Fc~$«,%!.

~1.5a!

This defines the compatibility kernels

U,,85(
i

aiSi ,Si ,8
* ~1.5b!

for Fc ~and similarly for Rc) of Eq. ~1.3! in the desired
OP-only dynamics. Thus the problem reduces to finding
proportionality constantsSi , , for each symmetry-base
phase transition.

The plan of the paper, with self-contained sections, is
follows. In Sec. II the OP dynamics for the TR case is d
rived byuW variation. In Sec. III we demonstrate that the sam
TR dynamics is obtained by strain variation, with enforc
compatibility. Results for the SR case are stated and a
lyzed, with derivation details in Appendix A. Numerica
simulations of some interesting BG dynamic evolutions
presented~using standardized scaled energies32 and dissipa-
tions, as in Appendix B!. Noise contributions are derived
and a Fokker-Planck formalism is set up. Section IV d
cusses the equivalent inhomogeneous oscillator descrip
of the BG dynamics. Section V deals with its TDGL trunc
tion, also derived in Appendix C from truncated displac
ment dynamics.16,17 Section VI presents the compatibilit
kernels for other 2D symmetries. Finally, Sec. VII contains
summary and discussion.

II. ORDER-PARAMETER STRAIN DYNAMICS BY
DISPLACEMENT VARIATION

Consider a Lagrangian densityL(a,ȧ)5*dt( rW(T2V)
that depends on a variablea(rW,t) through a kinetic termT

5T(ȧ)5( rW
1
2 r0ȧ2, and a potential termV5V(a). Then,

with a Rayleigh dissipation26 Rtot[R1Rc5*drW 1
2 hȧ2

~whereh is the friction coefficient!, we have, by variation in
a, the Lagrange-Rayleigh equation,

d

dt

]L

]ȧ
2

]L

]a
52

]Rtot

]ȧ
. ~2.1!

In this section we work in the displacement picture, a
consider variations in displacementa(rW,t)→um(rW,t) that
will generatem51, . . . ,D equations, forüm in D dimen-
sions. The potential or Gibbs free energyV depends on dis-
placement derivatives that areN5Nop1n symmetry-
adapted linear combinations of the symmetric Cauchy st
tensor,

Emn5
1

2
~Dmun1Dnum!. ~2.2!
4-3
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We neglect ‘‘geometric’’ nonlinearity, as justified by the sca
ing of Appendix B, where such corrections are higher or
in a typical ~small! strain value. We notationally distinguis
between OP strains$«,% and non-OP strains$ei%. The poten-
tial V5F($«,%)1 f ($ei%) is anharmonic throughF in the
Nop order-parameter strains, and harmonic throughf in then
non-OP strains, while the Rayleigh dissipatio
Rtot($«̇,%,$ėi%) is harmonic in both the strain rates,

f 5(
rW,i

1

2
aiei

2 , Rtot5(
rW,,

1

2
A,8«̇,

21(
rW,i

1

2
ai8ėi

2 . ~2.3!

Here, as in Appendix B,$A,%,$ai% and $A,8%,$ai8% are, re-
spectively, OP and non-OP second-order elastic and fric
coefficients, and the sum is over sites$rW% of a reference
lattice, whilet is a scaled time.

TR dynamics from displacement variation

Consider the TR transition, for whichNop52 andn51.
Figure 1 shows the TR, the SR, and other lattice transitio
~While it is true16,17 that these correspond to 2D projection
analogs of hexagonal to orthorhombic, and tetragona
orthorhombic lattice transitions, respectively, we will reser
this 3D terminology for full 3D analyses, elsewhere.! The
symmetry-adapted non-OP compressional straine1
5 1

2 (Dxux1Dyuy), whereas the OP are the ‘‘deviatoric’’«2

FIG. 1. Symmetry-allowed transitions in two-dimensions for t
four crystal systems. The dark lines are guides to the eye, for
formations. There is a one-component strain order parameter fo~a!
the square to rectangle or SR case, driven by«2; ~b! the rectangle to
oblique or RO case, driven by«2; and ~c! the square to centere
rectangle or SC case, driven by«3. A two-component OP, ortwo
one-component OP’s, lead~s! to ~d! the triangular to centered rec
angle or TR case, driven by«2 ,«3; ~e! the triangle to oblique or TO
case, driven by«2 ,«3; and ~f! the square to oblique or SO cas
driven by «2 and «3, independently.@The oblique to oblique fer-
roelastic (p2 to p1) transition that involves merely a loss of inve
sion symmetry is not considered~Ref. 35!.#
02411
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51
2(Dxux2Dyuy) and shear strain«35 1

2 (Dxuy1Dyux). The
deviatoric strain can be regarded as a simple shear rotate
p/4.

Then Eq.~2.3! for the non-OP compressional energy

f 5( rW
1
2 a1e1

2,Rtot5 1
2 ( rW@a18ė1

21(A28«̇2
21A38«̇3

2)#. The anhar-
monic and fourth-order~triple-well! free energy F for
«2 , «3, is given below in Eq.~3.27a!, although this explicit
form is not needed in the derivation.

Defining OP free-energy derivatives~i.e., stresses! F2,3
[dF/d«2,3(r ,t), the Lagrange-Rayleigh variation with re
spect to displacementsuW (rW,t) gives for the dynamics of Eq
~2.1!

r0üx5
1

2
@a1Dxe11DxF21DyF3#1

1

2
@a18Dxė11A28Dx«̇2

1A38Dy«̇3#, ~2.4a!

r0üy5
1

2
@a1Dye12DyF21DxF3#1

1

2
@a18Dyė12A28Dy«̇2

1A38Dx«̇3#. ~2.4b!

These displacement equations have been obta
previously,16 but were then truncated by dropping the d
placement acceleration~second time derivative! to yield re-
duced equations that are analyzed further in Appendix
Instead, we pursue here the underdamped OP-strain e
tions and find they have a generalized BG form.

The strains obey the compatibility constraints, which
the displacement picture ensure thatuW is single valued~i.e.,
cross-derivatives commute!. The equation for the 2D case is
at every instant,

DW 2e12~Dx
22Dy

2!«222DxDy«350. ~2.5!

Taking spatial derivatives of Eq.~2.4! we obtain the full
underdamped equations for the strains,

r0ë15
1

4 Fa1DW 2e11~Dx
22Dy

2!
]F

]«2
12DxDy

]F

]«3
G

1
1

4
@a18DW

2ė11A28~Dx
22Dy

2!«̇212A38DxDy«̇3#,

~2.6a!

r0«̈25
1

4 Fa1~Dx
22Dy

2!e11DW 2
]F

]«2
G1

1

4
@a18~Dx

22Dy
2!ė1

1A28DW
2«̇2#, ~2.6b!

r0«̈35
1

4 F2a1DxDye11DW 2
]F

]«3
G1

1

4
@2a18DxDyė1

1A38DW
2«̇3#. ~2.6c!

By taking appropriate derivatives of Eq.~2.6!, it is easy to
see that the compatibility condition~2.5! is satisfied as an
identity. This linear equation, Eq.~2.5!, can then be used

e-
4-4
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instead of the nonlinear Eq.~2.6a!, to eliminate the non-OP
straine1(kW ,v) in terms of the OP strains«2,3(kW ,v), assum-
ing periodic boundary conditions.

Defining a1v[a12 iva18 , transforming to Fourier space

and withF2,3 now defined asF2,3[]F/]«2,3* (kW ,v), the com-
patibility constraint~2.5!,

Q1e1~kW ,v!1Q2«2~kW ,v!1Q3«3~kW ,v!50, ~2.7!

with Q1[2k2,Q2[kx
22ky

2 ,Q3[2kxky , is used to elimi-

nate e1(kW ,v), giving NOP52 order-parameter strain-onl
equations,31

r0v2«25
k2

4 Fa1vS Q2
2

Q1
2
«21

Q2Q3

Q1
2

«3D 1F22 ivA28«2G ,

~2.8a!

r0v2«35
k2

4 Fa1vS Q2Q3

Q1
2

«21
Q3

2

Q1
2
«3D 1F32 ivA38«3G .

~2.8b!

These can be succinctly written as an OP dynamics
«,(r ,t) with (,52,3),

r0«̈,5
1

4
DW 2S d~F1Fc!

d«,
1

d~R1Rc!

d«̇,
D , ~2.9!

where Fc and Rc are compatibility-induced contribution
from the non-OP free energyf and dissipationR written in
terms of the OP strains,

Fc5
1

2
a1 (

kW ,,,,8
U,,8

c
~ k̂!«,~kW ,t !«* ,8~kW ,t !, ~2.10a!

Rc5
1

2
a18 (

kW ,,,,8
h,,8

c
~ k̂!«̇,~kW ,t !«̇* ,8~kW ,t !, ~2.10b!

where the orientation-dependent kernel31 U,,8
c ( k̂)5h,,8

c ( k̂)
is defined implicitly above, and given explicitly in Eq.~3.29!
of Sec. III, following a strain-based derivation of the sam
dynamics.

The system ofNop52 underdamped equations~2.9! de-
rived for the strains is clearly of a Bales-Gooding form@com-
pare with Eq.~1.1!#, but now generalized in three ways: b
the derived replacement]2/]x2→DW 2; by the appearance of
compatibility-induced ~ALR! interaction, between«,-«,8
~and not «,

2-«,8
2 ); and of a similiar compatibility-induced

ALR dissipation, between«̇,-«̇,8 strain rates.
An interesting consequence of the BG structure with

riodic boundary conditions is that the ‘‘kW50’’ ~or more pre-
cisely, kW→0) OP strain obeysr0«̈,(kW50,t)50, so macro-
scopic strain momentumr0«̇,(kW50,t)50 is conserved,33

unaffected by internal forces and dissipations. The solutio
«,(kW50,t)5 «̇,(kW50,0)t1«,(kW50,0). In the special case o
an austenite phase with initial conditions«̇,(kW50,0)50, and
«,(kW50,0);( r«,(r ,0)50, strains ofboth signs will de-
02411
r
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velop on cooling below transition, as a consequence of
dynamics. The OP strain is in this case like a ‘‘charge’’ tha
generated in sign-balancing pairs, and the notion of ela
‘‘screening’’ helps in understanding simulations presen
later.

The SR dynamics, driven by a deviatoric strain OP, c
similiarly be shown by displacement variation to be also
the generalized BG form, as given in the first part of Appe
dix A. However, we now proceed to derive the strain dyna
ics through strain variation.

III. OP STRAIN DYNAMICS BY STRAIN VARIATION
WITH COMPATIBILITY CONSTRAINTS

In discussions of ferroelastics, it is common to assert t
although the free energy is in terms of the strains, the t
basic variables for such systems are displacements, s
strains are just displacement derivatives. Thus Monte C
simulations, numerical solutions of dynamic equations, a
static analyses of textures, even when expressed in term
strains, are all finally performed in terms of displacemen
Following the electromagnetic analogy mentioned in the
troduction, an alternative treatment is in terms ofstrainsas
the basic variables. The free energy for a first-order tran
tion, say,F0;«6, is then regarded as zeroth order in deriv
tives, whereas in the displacement picture it is a sixth pow
of derivatives. In this section, we derive ferroelastic dyna
ics for the TR and SR cases, using strains as the variati
quantities. Results for external stress and noise are
stated. We use periodic boundary conditions throughout33,34

and transform between coordinaterW and wave vectorkW de-
scriptions, as convenient. The Lagrange-Rayleigh dynam
equation for a general variablea is

d

dt

]L

]ȧ
2

]L

]a
52

]Rtot

]ȧ
, ~3.1!

and we consider here the strains as the variables,

a→$Emn~rW,t !%. ~3.2!

In total, if we consider all space groups in two dime
sions, there are 23 ferroelastic transitions35 in two dimen-
sions. Figure 1 shows the six symmetry-allowed transitio
in two dimensions for the four crystal systems with mo
atomic basis. We will present the initial part of the argume
in general form, before focusing on the triangular to~cen-
tered! rectangular lattice or TR case; and the square to r
angle or SR case, with other 2D transitions considered
Sec. VI.

The Lagrangian contains the potentialV and kinetic en-
ergy T that depend on symmetry-adapted strains which
the basis functions of irreducible representations of the u
cell symmetry group. In general, these are linear combi
tions of the strain tensor$Emn%. The s51,2, . . . ,N
symmetry-adapted strains are written as$es%, with N53 in
two dimensions~and 6 in three dimensions!. In two dimen-
sions, except for the RO case, the compressional (e1), de-
viatoric (e2), and shear (e3) strains are defined by
4-5
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e1

c1
5

1

2
~Exx1Eyy!,

e2

c2
5

1

2
~Exx2Eyy!,

e3

c3
5

1

2
~Exy1Eyx!, ~3.3!

wherec1 ,c2 ,c3 are symmetry-specific constants.
The strain tensor~neglecting geometric nonlinearity a

justified in Appendix B! obeys the St. Venant compatibilit
condition, which is here a field equation forbidding defe
such as dislocations and vacancies29,30 at every instant,

DW 3@DW 3E~rW,t !#T50, ~3.4a!

kW3E~kW ,t !3kW50, ~3.4b!

with no source term on the right-hand side. Thep
51,2, . . . ,Nc compatibility conditions are

C(p)[(
s

Q̂s
(p)es~rW,t !50, ~3.5!

whereQ̂m
(p) are second-order derivative operators, from E

~3.4a!. In two dimensions there is only one compatibili
equation Nc51, and the operators in Fourier space a
Q1(kW )[2kW2/c1 , Q2(kW )[(kx

22ky
2)/c2 , Q3(kW )[2kxky /c3.

Thus Eq.~3.5! for es(kW ,t) is, from Eq.~3.4b!,

Q1e11Q2e21Q3e350. ~3.6!

The anisotropic compatibility factorsQ1,2,3(kW ) encode the
discrete symmetries of the compressional, deviatoric,
shear strains. The symmetry constants for the TR case
c15c25c351, whereas for the SR case they arec15c2

5A2,c351. The compatibility constraint will be invoked
repeatedly in the derivations below. The physical meaning
the constraint is that order parameter strains should not
or cause defects in the lattice, i.e., lattice integrity is ma
tained. Suppose, in a sea of square unit cells, one cell
made rectangular~local deviatoric strain!. It is clear that in
order to maintain lattice integrity, the neighboring cells mu
also deform, inducing all three strains in an interrelated w
with a similar~but smaller! deformation of the larger numbe
of further neighbors. The requirement of a smooth, comp
ible fitting together of neighboring unit cells will cause th
disturbance to propagate outwards, and in an anisotropic
~due to discrete crystal symmetry and elastic constants!: the
local condition hasglobal consequences.

The LagrangianL also contains the compatibility con
straints through dynamic Lagrange multipliers$L (p)(rW,t)%,

L5E dtFT2V2(
p,rW

L (p)C(p)G . ~3.7!

We now~a! obtain the kinetic energyT($ėm%) in terms of
the time derivatives of the symmetry-adapted strains; and~b!
use this to derive the TR and SR dynamics by strain va
tion, incorporating the compatibility constraint.
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A. Kinetic energy in terms of strain rates

Since Newtonian dynamics is forpoint particles, the ki-
netic energy in terms of displacements is

T5
1

2
r0(

rW,m

u̇m
2 ~rW,t !5

1

2
r0(

kW ,m

uu̇m~kW ,t !u2 ~3.8!

in coordinate and wave-vector spaces, wherer0 is a dimen-
sionless mass density that is a ratio of typical kinetic a
elastic energy densities~Appendix B!. In the strain picture,
the displacement can be defined in terms of the stra
through the Kirchhoff-Cesaro-Volterra relation30

uW ~rW !5E
C(rWo ,rW)

@E~ lW !1$~ lW2rW !3¹W lW3E~ lW !%#•d lW,

~3.9a!

where the line integral is along any contourC(rWo ,rW) to rW

from rWo , which is a fixed point of the deformation. This
valid up to a global translation and a global rotation, that c
be viewed as integration constants~taken to vanish for peri-
odic boundary conditions!. Therefore, taking derivatives with
respect torW, the symmetric combination is the same as E
~2.2! as it must be:

1

2
~Dmun1Dnum!5Emn . ~3.9b!

In two dimensions, two of the displacement gradients c
be obtained from Eqs.~2.2! and~3.3! and expressed in term
of order parameter strain symmetry coordinates as

Dxux5
e1

c1
1

e2

c2
, Dyuy5

e1

c1
2

e2

c2
. ~3.10a!

Taking time derivatives and transforming to Fourier spa
gives forkx,kyÞ0,

u̇x~kW ,t !5

ė1

c1
1

ė2

c2

ikx
, u̇y~kW ,t !5

ė1

c1
2

ė2

c2

iky
. ~3.10b!

Inserting Eq.~3.10b! into Eq. ~3.8! yields the kinetic energy
that isnonlocal in terms of the strain rates,

T5 (
kW ,s,s8

1

2
rss8~kW !ės* ~kW ,t !ės8~kW ,t !

5 (
rW,r 8W s,s8

1

2
rss8~rW2rW8!ės* ~rW,t !ės8~rW8,t !, ~3.11!

where we have introduced an anisotropic ‘‘strain ma
density tensor’’ whose components turn out to be related
ratios of the compatibility factors of Eq.~3.6!,
4-6
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rss8~kW !5r~k!F 1

c1
2

k2

kx
2ky

2 2
1

c1c2

~kx
22ky

2!

kx
2ky

2

2
1

c1c2

~kx
22ky

2!

kx
2ky

2

1

c2
2

k2

kx
2ky

2

G
5r~k!F S Q1

Q3
D 2 S Q1Q2

Q3
2 D

S Q2Q1

Q3
2 D c1

2

c2
2 S Q1

Q3
D 2G . ~3.12a!

This strain mass-density tensor is a kinematic tim
independent quantity true for all 2D symmetries and ha
determinant (2/c1c2kxky)

2. Here

r~k![
4r0

c3
2k2

~3.12b!

and therefore long-wavelength strains over many lat
spacings are effectively more ‘‘massive,’’ as is physica
reasonable. In 2D coordinate space,rss8(R

W );(4r0)ln(uRW u). It
is this inverse Laplacian dependence that gives rise to
Bales-Gooding structure~1.3! of the underdamped dynamic
The strain kinetic energy can be expressed only in term
the compressional and deviatoric strain rates, i.e., the ‘‘sh
components’’ of the strain mass tensor are zero,rs35r3s
50. This is because from Eqs.~3.3! and ~3.9b!, the shear
strain rate

ė3~kW !

c3
5

1

2
@ ikxu̇y~kW !1 ikyu̇x~kW !#, ~3.13!

is not independent, but is related to the other strain rates
consistency condition through Eq.~3.10b!, which turns out to
be precisely the compatibility constraint.

B. Dynamics by strain variations

The compatibility conditions~3.5! become

C(p)~r ,t !5(
,

Q̂,
(p)«,~rW,t !1(

i
Q̂i

(p)ei~rW,t !50,

~3.14a!

and therefore in Fourier space

C(p)~kW ,t !5(
,

Q,
(p)~kW !«,~kW ,t !1(

i
Qi

(p)~kW !ei~kW ,t !50.

~3.14b!

The Gibbs free energyV($«,%, $ei%) depends harmoni
cally on the non-OP strains throughf and anharmonically on
OP strains throughF, whereas the Rayleigh dissipationRtot

to the lowest order depends harmonically on all strain ra
Thus,

V5 f ~$ei%!1F~$«,%!, f 5
1

2(i ,rW
aiei

2 ,
02411
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Rtot5
1

2 (
i ,rW

ai8ėi
21

1

2(,,rW
A,8«̇,

2 , ~3.15!

whereai ,ai8 are the non-OP elastic and friction constants

The kinetic energy in terms of strain rates$ėi%,$«̇,%, from
Eq. ~3.11!, is

T5 (
kW ,,,,8

1

2
r,,8~kW !«̇,* ~kW ,t !«̇,8~kW ,t !

1 (
kW ,i ,i 8

1

2
r i i 8~kW !ėi* ~kW ,t !ėi 8~kW ,t !%. ~3.16!

Using Eqs. ~3.14b!, ~3.15!, and ~3.16!, the Lagrange-
Rayleigh dynamics for OP and non-OP strains are given
directly varying thestrains in Eqs.~3.1! and ~3.7!,

(
,8

r,,8«̈,81(
i 8

r, i 8ëi 852
]F

]«,
2(

p
Q,

(p)L (p)2A,8«̇, ,

~3.17a!

(
i 8

r i i 8ëi 81aiei1ai8ėi1(
p

Qi
(p)L (p)52(

,8
r i ,8«̈,8 ,

~3.17b!

(
i

Qi
(p)ei52(

,
Q,

(p)«, . ~3.17c!

We have written the equations in a general form for futu
3D BG generalizations such as the cubic to tetrago
transition.11 There are (n1Nc) linear equations~3.17b! and
~3.17c! for (n1Nc) variables$ei%,$L

(p)% that can be written
in matrix form, and inverted to yield the dynamics for the O
strains$«,%. We do not pursue this general treatment he
but now specialize to the TR case and give the result for
case at the end of the section. Other symmetries are con
ered in Sec. VI.

TR underdamped dynamics

For the TR transition,n51,Nop52,Nc51; the non-OP
strain is compressionale1; the OP strains are ‘‘deviatoric’
and shear («2 ,«3 respectively!; whereas the symmetry con
stants of Eq.~3.6! are c15c25c351. The strain mass-
density components arer115r(k)(Q1 /Q3)25r22,r12

5r(k)(Q1Q2 /Q3
2)5r21. We haveNop1n1Nc521111

54 equations like Eq.~3.17!,

r22«̈21r21ë152
]F

]«2*
2Q2L2A28«̇2 , ~3.18a!

052
]F

]«3*
2Q3L2A38«̇3 , ~3.18b!

r11ë11r12«̈252a1e12a18ė12Q1L, ~3.18c!

Q1e152Q2«22Q3«3 . ~3.18d!
4-7
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There areNop52 nonlinear equations for«2,3 and n
1Nc52 linear equations fore1 ,L. We can use the compa
ibility equation~3.18d! for the strain mass density$rss8(k

W )%
components in Eq.~3.12! to write the expression on the lef
hand side of Eq.~3.18c! as

r11ë11r12«̈25
4r0

Q3
«̈3 . ~3.19!

The Lagrange multiplier of Eq.~3.18c! is determined by
the OP strains as

L~kW ,v!5
1

Q1
2 Fa1v«21S a1vQ31

4r0v2Q1

Q3
D «3G ,

~3.20!

where a1v5a12 iva18 . Substituting Eq.~3.20! into Eq.
~3.18! with the identity

r222r21

Q2

Q1
5

4r0

k2
, ~3.21!

yields the TR equations in terms of the OP strains alone31

r0v2«25
k2

4 F dF

d«2*
1a1vS Q2

2

Q1
2
«21

Q2Q3

Q1
2

«3D 2 ivA28«2G ,

~3.22a!

r0v2«35
k2

4 F dF

d«3*
1a1vS Q2Q3

Q1
2

«21
Q3

2

Q1
2
«3D 2 ivA38«3G .

~3.22b!

Since ratios of compatibility factors recur, it is useful
define

Q,,,8~ k̂![
Q,~kW !

Q,8~kW !
. ~3.23!

The non-OP strain in Eq.~3.18d! is a derivedquantity,

e1~kW ,v!52@Q2,1~ k̂!«2~kW ,v!1Q3,1~ k̂!«3~kW ,v!#

[S12«21S13«3 , ~3.24!

defining for the TR case, the constantsSi ,( k̂) mentioned in
Eq. ~1.4!, which depend only on the wave vector directionk̂,
i.e., no nontrivial length scale,31 and not on its magnitudeukW u
~i.e., no length scale!.

In a compact form with,52,3,

r0v2«,5
k2

4 S d~F1Fc!

d«,* ~kW ,v!
1

d~R1Rc!

d«̇,* ~kW ,v!
D . ~3.25!

This is written as an OP strain-only dynamics for«,(rW,t),

r0«̈,~rW,t !5
1

4
DW 2S d~F1Fc!

d«,~rW,t !
1

d~R1Rc!

«̇,~rW,t !
D , ~3.26!
02411
which can be written as a strain-momentum continu
equation.33 The OP free energy from Appendix B is

F05(
rW

FK0

2 (
,

~DW «,!21~t21!~«2
21«3

2!1$~«2
21«3

2!

22~«2
323«2«3

2!1~«2
21«3

2!2%G . ~3.27a!

This free energy is invariant under the 6mm point
group operations. Specifically, under three fold rotatio
Ex8x85Exx/413Eyy/41(A3/2)Exy ; Ey8y85

3
4 Exx1

1
4 Eyy

2(A3/2)Exy ;Ex8y852(A3/4)(Exx2Eyy)2 1
2 Exy and the

non-OP and OP strains transform ase185e1 ,«2852 1
2 «2

2(A3/2)«3 ,«385(A3/2)«22 1
2 «3. The~anharmonic! OP free

energy has not been explicitly used in the derivation of
dynamics, whose structure depends only on the number
nature of the~harmonic! non-OP strains.

The compatibility induced OP-OP interaction is th
non-OP free energy written in terms of the OP strai
f @e1($«,%)#[Fc($«,%) with (,52,3),

Fc5
1

2
a1 (

rW,rW8,,,,8
«,~rW,t !U,,,8

c
~rW2rW8!«,8~rW8,t !

5
1

2
a1 (

kW ,,,,8
U,,,8

c
~ k̂!«,~kW ,t !«,8

* ~kW ,t !. ~3.27b!

The Rayleigh dissipation function for the OP is

R5
1

2 (
rW,,

A,8«̇,
2 , ~3.28a!

and the compatibility-induced contributionRc is the non-OP
dissipation written in terms of the OP strain rates,

Rc5
a18

2 (
rW,rW8,,,,8

«̇,~rW,t !h,,,8
c

~rW2rW8!«̇,8~rW8,t !

5
a18

2 (
kW ,,,,8

h,,,8
c

~ k̂!v2«̇,~kW ,t !«̇,8
* ~kW ,t !. ~3.28b!

Thus, explicitly

d~R1Rc!

d«̇,* ~kW ,v!
5(

,8
A,,,8

8 «̇,~kW ,v!, ~3.28c!

where the effective OP friction is

A,,,8
8 5A,8d,,,81a18h,,,8

c . ~3.28d!

Here the~frequency-independent! potential and friction ker-
nels emerging from the dynamics are the same,

h,,8
c

~ k̂!5U,,8
c

~ k̂!, ~3.29a!

where

U,,8
c

5S1,S1,85Q,,1Q,8,1[Q,Q,8 /Q1
2 , ~3.29b!

and ~as from static-constrained minimization!,
4-8
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U22
c ~ k̂!5

~kx
22ky

2!2

k4
5~Q2 /Q1!2, ~3.29c!

U33
c ~ k̂!54

kx
2ky

2

k4
5~Q3 /Q1!2,

U23
c ~ k̂!5

2kxky~kx
22ky

2!

k4
5Q2Q3 /Q1

25U32
c ~ k̂!.

Both the friction and potential kernels depend on the wa
vector direction k̂, are independent ofukW u for long
wavelengths,31 and are ‘‘anisotropic long-range’’ function
encoding the discrete symmetry of the lattice, which fall
in coordinate space with a dimensional pow
hc(RW ),Uc(RW );1/RD. At kW50, the potentials are undefine
and we setU,,,8

c
50. ~A Coulomb potential, by contrast

diverges for long wavelengths as;1/k2 and falls off as
;1/RD22.!

Although Eq. ~3.26!, derived from strain variation will
give the same results as Eq.~2.4!, derived from displacemen
variation, they are conceptually distinct. In the displacem
picture, Eq.~2.8!, or any equation obtained from it, is solve
with (ux ,uy) on a lattice, with both initial and boundar
conditions applied to the basic variablesuW . Strains are de-
fined as derivatives of the basic variables, and are der
quantities, e.g.,F;«,

4 is a fourth power of derivatives. By
contrast, Eq.~3.26! is an OP-strain-only dynamics, and
solved in the strain picture, with«2 ,«3 on a lattice; with
initial and boundary conditions applied to the basic variab
$«,%; and with theF;«,

4 term as zeroth order in derivative
~Indeed, the highest-order derivatives are strain-grad
squared or Ginzburg terms.! The non-OP strain is a derive
quantity, obtained after solving for the OP and then using
~3.24!, the displacement can also, in principle, be deriv
using Eq.~3.9!.

In displacement-picture simulations, terms of the Land
free energy and Rayleigh dissipation are all anisotropic,
ing powers of the various displacement-derivative combi
tions. In strain-picture simulations, the anisotropy is in t
symmetry-specific compatibility kernels, with OP strains n
merically treated as isotropic ‘‘scalars.’’ The strain pictu
has advantages, as it works directly with the physical str
variables, and uses compatibility kernels evaluated once
for all, which encode the unit-cell symmetries and give
sight into energetically favored textures.

SR underdamped dynamics

We now turn to the square-rectangle or SR case, wh
shows a different structure, namely,time-retardedOP poten-
tials and friction. For the SR case,n52,Nop51,Nc51; the
non-OP strains are compression and sheare1 , e3; the OP
strain is deviatoric«2; the symmetry constants arec15c2

5A2,c351. The compatibility factors are Q1(kW )
52k2/A2,Q25(kx

22ky
2)/A2,Q352kxky . Then the compat-

ibility constraint ~3.6! becomes10,24
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k2e12A8kxkye32~kx
22ky

2!«250. ~3.30!

The strain mass components arer115r(k)(Q1 /Q3)2

5r22, r125r(k)Q1Q2 /Q3
25r21. We have n1Nop1Nc

52111154 equations like Eq.~3.17!, and with arguments
similiar to the TR case we have, from the second part
Appendix A, Eqs.~A9! for «2 ,e1 ,e3,

r22«̈21r21ë152
dF

d«2*
2Q2L2A28«̇2 , ~3.31a!

052a3e32a38ė32Q3L, ~3.31b!

r11ë11r12«̈252a1e12a18ė12Q1L, ~3.31c!

Q1e11Q3e352Q2«2 . ~3.31d!

Substituting for the compressional straine1 yields
coupled equations betweene3 and«2. As in Eq.~3.23!, it is
convenient to define a variable for the ubiquitousQ ratios,
throughQ,,,8[Q, /Q,8 . Then,

r0«̈252
c2

2kW2

4
@Q2,1Q3,1~a1e31a18ė3!1~a1Q2,1

2 «21F2!

1~a18Q2,1
2 1A28!«̇2#, ~3.32a!

r0ë352
c3

2kW2

4
@Q2,1Q3,1~a1«21a18«̇2!1~a31a1Q3,1

2 !e3

1~a381a18Q3,1
2 !ė3#. ~3.32b!

Eliminatinge3, these yield the final result~A15! in terms
of the OP strain alone,

r0v2«25
c2

2k2

4 F dF

d«2*
1a1v

bv~Q2 /Q3!2

Bv
«22 ivA28«2G .

~3.33!

As bv[@a3v2(4r0v2/c3
2k2)#/a1v , whereaiv[ai2 ivai8 ,

the kernel is now frequency dependent, and complex, a
the connection~A13! to non-OP strains,

e15S12«2 , S12[2
~Q1Q2 /Q3

2!

Bv
bv , ~3.34a!

e35S32«2 , S32[2
~Q2 /Q3!

Bv
, ~3.34b!

whereBv[11bv(Q1 /Q3)2. The compatibility condition is
manifestly satisfied as an identity.

It is convenient to write the second term on the right-ha
side of Eq.~3.33! in terms of real and imaginary parts,
4-9
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a1vbvS Q2

Q3D 2

Bv
[a1UcF k̂,v2,S v

k D 2G2 iva18h
cF k̂,v2,S v

k D 2G ,
~3.35!

with Uc,hc given explicitly later. With this separation,

r0v2«25
c2

2

4
k2F d~F1Fc!

d«2* ~kW ,v!
1

d~R1Rc!

d«̇2
!~kW ,v!

G , ~3.36!

wherec2
252. The OP dynamics for«2(rW,t) is then

r0«̈2~rW,t !5
1

2
DW 2F ]~F1Fc!

]«2~rW,t !
1

]~R1Rc!

]«̇2~rW,t !
G , ~3.37!

where the OP triple-well free energy is the same as in A
pendix B,

F05(
rW

~t21!«2
21«2

2~«2
221!21

K0

2
~DW «2!2. ~3.38a!

Under fourfold rotations, Exx→Eyy ,Eyy→Exx ,Exy
→2Exy , the non-OP and OP strains transform ase1
→e1 ,«2→2«2 ,e3→2e3, leaving the free energy invarian
and similarly for other 4mm point group operations. The
~anharmonic! OP free energyF0 is not explicitly used in the
derivation, and the dynamics depends only on the num
and type of the non-OP strains.

We note thatv dependences carry an infinitesimal imag
nary part to maintain causality, and thus Eq.~3.37! has con-
tributions only from earlier times,

]Fc

]«2
5a1 E

2`

t

dt8(
r 8W

Uc~rW2rW8,t2t8!«2~rW8,t8!.

~3.38b!

The OP dissipation in addition to

R5
1

2 (
rW

A28«̇2
2 , ~3.39a!

now also has a retarded compatibility contribution,

]Rc

]«̇2

5a18 E
2`

t

dt8(
r 8

hc~rW2rW8,t2t8!«̇2~rW8,t8!.

~3.39b!

Both are ALR functionsUc,hc;1/RD as before but are als
retarded in time. For negligible non-OP frictiona185a3850,
the compatibility-induced friction vanishes,a18h

c50. The

non-OP compressional and shear strainse1,3(rW,t) arederived

quantities obtained after solving for«2(rW,t) and using Eq.
~3.34!, and the constantsSi , are frequency-dependent an
therefore retarded in time, like the compatibility potential

The real and imaginary parts of the kernel of Eq.~3.35!
that give rise to the compatibility-induced OP potentialUc

and the friction coefficienthc are explicitly
02411
-

er

Uc~ k̂,v2,v2!5
a3

a1
Q2,3

2
F11

a1

a3
ubvu2Q1,3

2 G
@~11brQ1,3

2 !21bi
2Q1,3

4 #
,

~3.40a!

where the ‘‘velocity’’ v[v/k, and

br[
a3

a1

S g1v2
a18

a1

a38

a3
D

F11S va18

a1
D 2G , bi[

a3

a1

vFg
a18

a1

2
a38

a3
G

F11S va18

a1
D 2G ,

ubvu2[br
21bi

25S a3

a1
D 2 Fg21S va38

a3
D 2G

F11S va18

a1
D 2G . ~3.40b!

Similarly,

hc~ k̂,v2,v2!5

~Q1,3Q2,3!
4ubvu21

a38

a18
~Q2,3!

4

@~11brQ1,3
2 !21bi

2~Q1,3!
4#

,

~3.40c!

with

g[12
4r0

c3
2a3

S v

k D 2

. ~3.40d!

Note that both the static and dynamicUc are zero for
diagonal orientations, whenQ250. The zero-frequency limit
Uc( k̂,0,0)[U0

c( k̂) is the static bulk compatibility
potential10,24 used in earlier TDGL simulations,10 and is

U0
c~ k̂!5Q2,1

2 /@11~a1 /a3!Q3,1
2 #. ~3.41a!

This favors diagonalkx /ky561 textures~when Q250),
and the derived non-OP strainse1 ,e2 are expelled in a kind
of ‘‘elastic Meissner effect,’’10 as can be seen from Eq
~3.34!. The bulk static compatibility potential is independe
of ukW u for long wavelengths and does not set a domain-w
separation length scale. Near the center point (G) of the Bril-
louin zone~BZ! theU0

c( k̂) depends only on the wave vecto
direction. It is only in combination with the surface compa
ibility potential34 Usur f ace(k);1/k that equal-width ‘‘true’’
twins ~that satisfy a width-length scaling20,21! are obtained.10

An exact Fourier transform to coordinate space36 confirms
this preference for diagonal orientations: with cosu5r̂•r̂8,
the coordinate space compatibility potential

U0
c~rW2r 8W !5

G~u!

urW2rW8u2
~3.41b!

is found to have in the prefactor, a basic four-lobe struct
from cos 4u, with higher harmonics. Witha[8a1 /a3,
4-10
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Figure 9 in Appendix C~TDGL dynamics!, with a single-site
initial condition, clearly shows multi-lobe strain texture
from these higher harmonics.

Returning to the dynamic case, we see from Eq.~3.40!
that the repulsive kernel has avelocity-resonant structure
through br.g512(v/v0)2, strongest at a propagatio
speedv5v05Aa3/4r0, or a time-dependent propagatio
length scale Lp(t)5t/tp with tp5(4r0 /a3)1/2. These
non-OP inertial effects, with anisotropic directional modu
tion or finite-velocity retardation;(v/k)2, compete with
frictional delays;v2, with the peaks becoming singular fo
vanishing friction. This is somewhat like electrons intera
ing by exchanging a photon, where the finiteness of
speed of light produces retarded Coulomb potentials.37 The
resonant structure can be thought of as the OP strain tex
‘‘exchanging a non-OP phonon mode,’’ causing inertial tim
delays.Lp(t) is the time-dependent size of an expandi
anisotropic ‘‘region of influence’’ within which changes i
texturing at one point enforce compatible changes in tex
ing at other points of the lattice. This phonon mediation
also described by the equivalent instantaneous dynamic
Eq. ~3.32! with deviatoric and shear strains obeying tw
coupled underdamped equations, which are convenient
numerical simulations.38

The anisotropic potential kernel,Uc@ k̂,v2,(v/k)2#, is
plotted in Fig. 2. This shows plots of the kernel versus sca
velocity, namely,v̄[A4r0 /a3v and various BZ wave-vecto
directions31 a5kx /ky for scaled frequencies v̄2

[v@(a8/a)#250.1, where we takea18/a15a38/a3[a8/a.
Uc determines the positive energy costs of the non-
strains, which the system wants to eliminate. The smal
Uc is at diagonal texturinguau51, and zero velocity,v
50. The most-non-optimal strains are the most stron
driven, with largeUc. The striking features of Fig. 2 ar
clearly a preferred diagonal orientationa561, and a
strongest-repulsion textural velocity comparable to sou
speeds,;A(a3/4r0)@11a1/2a3# in the ferroelastic materia
at long times. An extremal textural profile«2(kW ,v) in Fou-
rier space, if determined from an effective Lagrangian wh
variation yields Eq.~3.36!, will be shaped by this peake
structure. This suggests that textures will tilt diagonally a
thereafter remain stationary and rigid; and that the most
stable or strongest-driven transient interfaces between ph
will move/grow at a constant velocity close to the speed
sound.

A fuller investigation of possible evolutions, with inte
mediate states that can be sensitive to elastic and fricti
parameters, requires further work. Here we will only illu
02411
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trate the rich variety of texturings, and later outline a ten
tive scenario for nucleation and growth.

Figures 3 and 4 illustrate SR case simulations39 under the
BG-equivalent dynamics of Eq.~3.32!, with red, green, and
blue representing positive, zero, and negative strains, res
tively, with relative color intensities. Parameters are in t
captions and quenches are into the martensitic regimt
520.25. Figure 3 shows time sequences of BG dynam
for the OP deviatoric strain and the non-OP shear str
Note the grain-boundary-like regions that rapidly anneal
by tip growth, carrying the shear strain that is already e
pelled from the diagonal-domain regions. For these para
eters, the propagation timetp,tD ; the unit-cell relaxation
time is defined later. Figure 4 shows the time sequences
smaller elastic constants~and hence smaller shear mod
velocities/larger propagation times!, sotp.tD . We now have
domain walls propagating away from each other, giving
effect of a ‘‘zoom lens’’ moving in. Note the non-OP she
fronts moving with the OP walls~compare with Fig. 6!. Mi-
crostructure as shown in Fig. 3 has been seen in FePd u
phase-contrast microscopy,22 and twinning waves have bee
found in 1D models.5

For parameters as in Fig. 4 and for an intermediate te
perature,t50.85, Fig. 5 shows dynamical stress respon
to applied static deviatoric stressP2(r )5P0 /@11(r /r 0)2#,
where r 051 is the width andP051 is a time-independen
strength. The single-sign induced strain has a large ene
and the system elastically screens it by nucleating hierar
cal opposite-sign elastic multipoles, with the propagat
length setting a scale, and wave fronts moving out. A si
soidally time-varyingP0(t) can produce even more strikin
propagating patterns. Similar ‘‘elastic photocopying’’ wa
found previously using TDGL dynamics, with the surfa
compatibility potential10,34 setting a domain-wall separatio
scale.40,41

The last BG simulation39 of Fig. 6 shows, for the TR cas
and Eq.~3.26!, plots of the OP shear«2, with star-triangle
patterns as found by other dynamics16,42,43and seen experi-
mentally in crystals of lead orthovanadate, Pb3(VO4)2,
which undergoes a trigonal to monoclinic transition,44 see
also Fig. 8. Once again, thee1 plot shows that equilibration
involves expelling non-OP strains~except at OP corners
with e1 globally vanishing!.

Finally, we note that linearizing the BG dynamics~3.36!
about equilibrium in the zero-damping limit yields the fam
iar wave equation. ‘‘Textural phonon’’ spectra can emer
For a finite L03L0 system we can also include surfac
compatibility restoring forces, with a kernel,10 Usur f ace
4-11
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;(a3 /a1L0)/ukWu. The long-wavelength OP strain oscillation
then have velocitiesv(kW )/k5v( k̂) that are obtained by solv
ing

v2;
1

2r0
@^F9&1a1Uc1a1Usur f ace#, ~3.42!

where^F9& is a free-energy curvature averaged with a pro
ability distribution peaked at the equilibrium structure. F
infinite systems the long-wavelength spectrum is linear.
finite L0, very long wavelengths probe the system size,21 and
v;(uku/L0)1/2. This is the ‘‘dyadon spectrum’’21 of waves in
twin bands of martensite. Anomalies have indeed b
observed45 in some ferroelastic phonon spectra. However,
do not pursue this conjectured explanation here.

C. External stress and noise terms

We now consider stress$ps(rW)% and delta-correlated nois

$g̃s(t)%, which modify the free energy as

F→F2(
,,rW

~p,«,1g̃,«,!, ~3.43a!

f→ f 2(
i ,rW

~piei1g̃iei !,

where noise correlations are

^g̃,~rW,t !g̃,8~rW8,t8!&52A,8T̄d,,,8d rW,r 8Wd~ t2t8!,

^g̃i~rW,t !g̃i 8~rW8,t8!&52ai8T̄d i ,i 8d rW,r 8Wd~ t2t8!,
~3.43b!
02411
-
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i.e., the bare noise is Markovian. HereT̄[kBT/E0, andE0 is
an OP elastic energy given in Appendix B. For small stre
and noise, a simple use of the substitution~1.4!, justified by
a detailed analysis, yields effective OP stresses and nois

p,
tot5p,1p,

c , g̃,
tot5g̃,1g̃,

c , ~3.44a!

where

p,
c5(

i
piSi , , g̃,

c5(
i

g̃iSi , , ~3.44b!

with constantsSi , as in Eqs.~3.24! and ~3.34!, respectively,
for the TR and SR cases. The total correlations are

^g̃,
tot~ k̂,t !g̃* ,8

tot
~ k̂8,t8!&52T̄A,,,8

8 ~ k̂!dkW ,kW8d~ t2t8!,
~3.44c!

whereas in Eq.~3.28d!,

A,,,8
8 ~ k̂![d,,,8A,81(

i
ai8Si ,Si ,8

* . ~3.44d!

The elimination of non-OP strains thus induces cross c
plings, so non-OP stresses induce OP variations; noise
relations become spatially nonlocal; and different OP’s
quire cross-correlated noises. The BG determinis
dynamics then becomes the BG Langevin dynamics of
~1.3!. For the TR case the noise is delta correlated in tim
For the SR case with OP only, there is frequency dep
dence, but this can be circumvented by considering$«2 ,e3%
of Eq. ~3.32! as our system. Thus in both cases we have t
variables with Markovian noises.
e

r

-
l

FIG. 2. ~Color! Compatibility

potential Uc@ k̂,v2,(v/k)2# for
the square-rectangle SR cas

versus scaled velocity, v̄
[(4r0 /a3)1/2(v/k), and direc-
tion parameter a5kx /ky for
frequency/dissipation paramete

v̄25(va8/a)250.1. ThusUc is a
repulsive and dynamic orienta
tional potential, favoring diagona
textures, and moving interfaces.
4-12



n

n

-

nd
n

-
d

-

e

c

tial,
:

s,

FERROELASTIC DYNAMICS AND STRAIN COMPATIBILITY PHYSICAL REVIEW B67, 024114 ~2003!
D. Fokker-Planck description

Langevin dynamics with delta-correlated Markovia
noise can be46 equivalently written in a Fokker-Planck~FP!
description. The set of 4L0

2 random variables labeled bya

5$,,kW% is taken to be

$xa%5$«2~kW ,t !,«3~kW ,t !%, $va%5$«̇2~kW ,t !,«̇3~kW ,t !%.
~3.45!

FIG. 3. ~Color! Square-rectangle~SR! case: grain-boundary mo
tion under BG-type dynamics. The columns show~top to bottom!
temporal sequences for timet of 10, 20, 42, and 70 ps~see Appen-

dix B!. The initial conditions are«2(rW,t50),e3(rW,t50) random
around zero mean. Parameters~defined in Appendix B! are r0

51,t520.25, and the material is ‘‘hard,’’a15100,a35210; with
A2851,a3850.15a18 . The time step isDt51024. Left column: the

OP deviatoric strain«2(rW,t) under BG-equivalent dynamics~3.32!,
showing formation of twinlike regions separated by grain bou
aries that are pushed out by domain-wall tip growth. Right colum

non-OP shear straine3(rW,t), which is expelled from diagonal
domain regions, and concentrated in the pushed-out grain boun
regions (e1 not shown!. Diagnostics~Ref. 39! at t570 were E
521.08,̂ «2&50.0012,max-min«25(1.33,21.35); max-mine3

5(0.062,20.058).
02411
for the TR case, with«3→e3 for the SR case. The Langevi
equations are

ẋa~ t !5va~ t !,

v̇a~ t !5Da
~1!1Ĝa~ t !, ~3.46a!

where the frictional force plus internal stress, or ‘‘drift’’ term
is

-
:

ary

FIG. 4. ~Color! Square-rectangle~SR! case: interface propaga
tion under BG-type dynamics. The columns show~top to bottom!
temporal sequences for timet of 40, 80, 160, and 1000 ps. Th

initial conditions are«2(rW,t50),e3(rW,t50) random around zero
mean. Parameters~defined in Appendix B! are r051,t520.25,
and the material is ‘‘soft,’’a1510,a3521; with A28515a38 ,a18
50. The time step isDt50.002. Left column: the OP deviatori

strain «2(rW,t) under BG dynamics~3.32!, showing domain walls
propagating under the repulsive long-range compatibility poten
giving the impression of a ‘‘zoom lens’’ moving in. Right column

non-OP shear straine3(rW,t), propagating outwards with interface
concentrated at corners (e1 not shown!. Diagnostics~Ref. 39! at t
51000 were E521.4,̂ «2&50.0044, max-min «25(1.23,
21.23); max-mine35(0.33,20.49).
4-13
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Da
(1)52

1

M ~k!

]~F1Fc!

]xa*
2(

a8
Da,a8

(2) va8 , ~3.46b!

whereM (k)54r0 /k2 is a strain mass. The Langevin nois
correlation is

^Ĝa~ t !Ĝa8~ t8!&52Da,a8
(2) d~ t2t8!, ~3.46c!

with ‘‘diffusion coefficient’’

Da,a8
(2)

5dkW ,kW8T̄A,,,8
8 ~ k̂!/M ~k!2. ~3.46d!

FIG. 5. ~Color! SR case: strain evolution under BG-type dyna
ics, with a fixed, time-independent, Lorentzian-profile local stre
The sequence~top to bottom!, for time t540, 60, 76, and 106 ps
with the same parameters as Fig. 3, but nowt50.85. Left column:

dynamic texturing of deviatoric strain«2(rW,t). The system reduce
the energy from the imposed single-sign strain by ‘‘elastic pho
copying,’’ or adaptive screening of the long-range elastic inter
tion, generating higher multipoles that propagate here. Right

umn: the non-OP shear straine3(rW,t) follows the OP propagation.
02411
The FP equation in Kramers form46 for the time-
dependent probabilityP($xa%,$va%,t) is

]P/]t5L̂P[@ L̂ (1)1L̂ (2)#P, ~3.47a!

where the Fokker-Planck operator for ferroelastics is a s
of drift and diffusion terms, respectively, given by

L̂ (1)52va

]

]xa*
2

]

]xa*
Da

(1) ,

-
.

-
-
l-

FIG. 6. ~Color! Triangular to centered rectangle~TR! case:
nested strain texturing under BG dynamics of Eq.~3.26!. The col-
umns show temporal sequences, with timet of 10, 40, 250, and 620

ps. The initial conditions for the OP strains are«2(rW,t50),«3(rW,t
50) random around zero mean. Parameters~defined in text! are
r051, t5250, a151000,a352100; A2851, a3851, a1850 and

the time step isDt51023. Left column: the OP shear strain«3(rW,t)
showing formation of nested star and triangle domains. Right c

umn: non-OP compression straine1(rW,t), concentrated near domai
corners, and expelled elsewhere. Diagnostics~Ref. 39! at t5620
were E5243.2, ^«2&520.003 16,̂«3&521.0531025,max-min
«25(4.45,22.62),max-min«35(3.63,23.65).
4-14
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L̂ (2)5 (
a,a8

]2

]xa* ]xa8
*

Da,a8
(2) . ~3.47b!

A formal solution for the probability in terms of the initia
distribution is46

P~$xa%,$va%,t !5etL̂P~$xa%,$va%,0!. ~3.48!

The FP operator carries the nonlinearity, symmetr
anisotropies, and long-range spatial correlations. Its eig
values and eigenfunctions can be used to describe dyn
correlations. Since ‘‘potential conditions’’ hold,46 the
asymptotic probability is a Boltzmann distribution, which~as
can be checked by substitution! is P05exp$2@(F1Fc)
11

2(aMva
2#/T̄%. The free-energy minima thus correspond

probability peaks in OP function space, highest for ze
strain rate. For uniform OP this implies a triple-well fre
energy, but for nonuniform textures there will be a mo
complex free-energy landscape. The multiple extrema are
TDGL asymptotic states.

The FP formalism is convenient for discussing textu
dynamics, metastability, and glassy behavior; e.g., to de
mine strain correlations that correspond to experiment
probed response functions,14,25 or to calculate temperature
dependent transformation rates through first-passage tim15

Both strains and strain rates appear naturally, as in phen
enological models of elasticity and plasticity,47 which could
thereby be given a microscopic basis.

IV. BG DYNAMICS AS AN INHOMOGENEOUS ARRAY OF
DAMPED AND COUPLED NONLINEAR OSCILLATORS

Here, we consider a mechanical analog of nonident
damped oscillators, which suggests a physical scenario
nucleation and growth after a temperature quench. We
review well-known damped oscillator results, to fix notati
and terminology, and regimes of validity.

A particle of massM and friction parameterA, driven by
a force 2F8[2]F/]x52Ax of spring constantA[F9,
obeys the underdamped equation

Mẍ1A8ẋ52F8, ~4.1a!

which can be written in an equivalent convenient form

ẍ52~1/M !@]F/]x1A8ẋ#, ~4.1b!

and the general solution is oscillations of exponentially
creasing amplitude. With natural frequencyv0

25F9/M and
relaxation ratet0

21[A8/M , the complex frequency is48

v85Av0
22~t0!222 i

1

2
t0

21 . ~4.1c!

Thus, there is exponential decay~without even one complete
oscillation! in the overdamped parameter limit of

t0v0,1, ~4.2!

when the inertial term is small at all times, and
02411
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ẋ~ t !'2l@]F/]x~ t !#, ~4.3a!

wherel51/A8 describes the damped behavior. Outside t
regime, it approximately describes the exponentially dec
ing envelope of the oscillations, at low frequencies/lo
times,

v!A8/M , t@2pM /A8. ~4.3b!

Note that from Eq.~4.1c!, and ~4.3b!, larger frequency/
smaller mass oscillations are damped out earlier.

We now turn to BG-type evolution equations that cann
be obtained by adding simple local inertial terms to the st
dard overdamped dynamics such as ModelA or B dynamics
for a nonconserved or conserved order parame
respectively.49 However, defining an inverse mass 1/M (k)
51/r(k)5k2/4r0;k2 the apparently unusual BG structu
of Eq. ~3.26! for the TR case, say, can be written as

«̈,~kW ,t !52@1/M ~k!#@]~F1Fc!/]«,* ~kW ,t !1A,8«̇,~kW ,t !#,
~4.4a!

where, for simplicity,a1850. On comparing with Eq.~4.1b!,
the dynamics has an intuitively appealing interpretation. I
the dynamics of a set of~nonlinear, coupled! oscillators, of
~two-component! spring extension50 «,(kW ,t), labeled byk,
with different massesM (k);1/k2 that are strongly depen
dent on the oscillator labelk: heaviest near the origin, an
lightest at the ~BZ! edge. Similarly, the damping rat
t0(k)21[A8/M (k);k2 is smaller for the larger masses. Th
spring couplingUc( k̂) acts equally over all the BZ oscilla
tors, in a given directionk̂. Note that there is an intrinsically
large range of damping timest0;k22, over orders of mag-
nitude.~This is reminiscent of decay times at criticality at
second-order critical point!. From Eq. ~4.4a! the k→0
infinite-mass oscillator is a special case, with its initial v
locity «̇(k→0,0) unchanged.51

Linearizing around equilibrium extensions, with effectiv
curvature F95F0

91K0k2[A(k), and with v0
2

[A(k)/M (k), the complex frequency is

v85Av0~k!22@t0~k!#222 i
1

2
t0~k!21. ~4.4b!

The top panel of Fig. 7 shows that the angularly averag
strain structure factorS̄(k,t)5^u«2(kW ,t)u2&dk or squared os-
cillator extension averaged over a shell 2dk, is underdamped
for small-k oscillators, but is overdamped for larger-k oscil-
lators. The bottom panel shows asymptotic agreement
tween BG and TDGL dynamics.~See also Figs. 6 and 8!. The
initial strains are nonzero only in a 535 square region, and
the oscillating strains show up as oscillating colors~not
shown!. The bottom panel shows that for the SR case
moment^k2& takes on asymptotically the same value in t
BG and TDGL dynamics.

From Eq.~4.4b!, the long-wavelength modes are of nece
sity underdamped, withv0t0;1/k@1, a point made by Reid
and Gooding.6 We will, for simplicity, consider the regime
wherenoneof the oscillators are in the overdamped regim
4-15
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~4.2!, i.e., t0(k)v0(k)@1 for all k, even those at the BZ
cornerk5A2p. The oscillating, damped texture has to set
down tosometime-independent state, which from Sec. III
will be a peak of the probability distribution, where the fre
energy derivative is zero. Then an ‘‘envelope dynamics’’
in Eq. ~4.3a! for the OP strain is

FIG. 7. ~Color! Top: angularly averaged square oscillator exte

sion or strain structure factorS̄(k,t) ~defined in the text! versus
time in picoseconds; for SR-case nonlinear BG-dynamics osc
tors, labeled byk. The oscillators are at high temperaturest54
~where there is only a single-well free energy!, with parameters as
in Fig. 4, and an initial condition as in text. The set of inhomog
neous strain oscillators of different mass;k22 and damping;k2,
are averaged over a shell of thickness 2dk in the Brillouin zone.
The heavier, less damped oscillators with smallerk50.525 ~blue!
oscillate, while the lighter, strongly damped oscillators withk
52.65 ~red! are overdamped. The shells are 2d50.05 and 0.1,
respectively. Bottom: comparison of^k2&5(kk

2u«3u2/(ku«3u2 for
BG and TDGL dynamics for TR oscillators. The BG line~blue!
asymptotically merges with the TDGL line~red!. Inset shows early
time damped oscillations in the BG case and overdamped mo
tonic decay for the TDGL case.
02411
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«̇,~kW ,t !52l
]~F1Fc!

]«,* ~kW ,t !
, ~4.5a!

wherel51/A,8 . However, the different-mass/friction osci
lators can reach this late-time behavior only at differe
times tk . Thus for times and lengths introduced throughv
;2p/t,k;p/L, there is a wave vector dependent time sc
t.tk or a time-dependent length scaleL,LD(t) for textures
to achieve the late-time regime, namely,

v!A8/M ~k!, t.tk[2p/@~A8/4r0!k2#,

L,LD~ t !5~ t/tD!1/2, tD[~4r0 /pA8!1/2, ~4.5b!

wheretD is the time for relaxation across a unit cell.
Taking the idea of a late-time equilibration lengthLD(t)

as more generally applicable to the nonlinear case, a tenta
picture emerges. While damped harmonic oscillators h
trivial and identical final states, an inhomogeneous set
nonlinear oscillators with long-range coupling can ha
kW -dependent inhomogeneous final states$«(kW ,t→`)%
5$«̄(kW )%. The oscillations begin around the average va
~say, zero! of the initial states$«(kW ,t50)%, for times t.tD
after a temperature quench. Because of thek-dependent in-
homogeneous damping of Eq.~4.4a!, the lightest masses nea

-

-

-

o-

FIG. 8. ~Color! Ordinary TDGL dynamics and OP textures. Le
column: evolution for TR case with timet51, 20, and 150 ps and
parametersa151000,t5250,A285A3851. Right column: SR case
a15100,a35210,t520.25,A2851 showing states evolved from
different initial conditions, but the same parameters, illustrat
nearly degenerate multiple free energy minima discussed in the
4-16
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FERROELASTIC DYNAMICS AND STRAIN COMPATIBILITY PHYSICAL REVIEW B67, 024114 ~2003!
the BZ corner, with labelsp.k.p/LD(t)[kD(t) will be
the first to feel the final state attractor and begin oscillatio
around the final rather than the initial state. As time p
ceeds, the boundary shifts, and the circle ofk,kD(t)
‘‘initial-state’’ oscillators shrinks, while the number ofA2p
.k.kD(t) ‘‘final-state’’ oscillators increases. Finally, all ex
cept the very smallest-k oscillators are on an equilibratio
path, and the larger-k ones@corresponding to structures o
time-dependent sizeLD(t)] have already reached it. There
thussequential-scale equilibration, from the edge of the BZ
inwards. For the SR case,38 the additionalLp(t) propagation
length enriches the scenario. The tentative scenario is co
tent with what we have seen in our simulations for giv
parameters, although the nonlinear mode coupling could
duce more complex relaxation pathways, in more gen
parameter regimes.

Thus the unusualBG dynamics implies unusual elast

properties.Sincer(kW );1/k2, long-wavelength strains are k
nematically blocked from decaying too early, and the sca
dependent damping and equilibration process starts at sm
scale textures oriented by compatibility potentials, and th
spreads to larger length scales, with associated non-OP s
expulsion. Consequently, materials classes governed by
dynamics can have rich spatial patterning, metastability
glassiness, hierarchical multiscale microstructure, and a c
plex nonequilibrium elastic response.

V. LATE-TIME –SMALL-SCALE LIMITS OF DYNAMICS

We now show~for all frictions ai8 ,A,8 nonzero! that the
underdamped TR and SR equations are approximated
TDGL-type equations. The validity of TDGL dynamics i
any regime was recently questioned16 and an alternative
overdamped dynamics, obtained by dropping displacem
acceleration terms in Eq.~2.8! was proposed.16,17 Appendix
C shows they are equivalent.

TR case dynamics

For the TR case, the late-time equations, from dropp
OP strain-acceleration terms in Eq.~3.26!, are with Eq.
~3.28c!,

(
,8

A,,,8~ k̂!«̇,~kW ,t !52
]~F1Fc!

]«̄,* ~kW ,t !
. ~5.1!

This truncation is valid only for textures in a low-frequen
large-wave-vector regime as in Eq.~4.5b!. For a1850 Eq.
~4.5a! follows, while for the general case, an inversion yiel

«̇,~kW ,t !52(
,8

l,,8~ k̂!
]~F1Fc!

]«,8
* ~kW ,t !

, ~5.2a!

where the Onsager coefficient matrix is, withA285A38 ,

l5
21

W F A381a18Q3,1
2 2a18Q2,1Q3,1

2a18Q2,1Q3,1 A281a18Q2,1
2 G , ~5.2b!

with the determinant~actually isotropic forA285A38)
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W5A28A38F11S a18

A38
D Q3,1

2 1S a18

A28
D Q2,1

2 G . ~5.2c!

Since diagonal elements, and the determinant, of thl
matrix are nonzero, Eq.~5.2! implies that asymptotic texture
«̄,(kW ) are determined by the extrema of the total free ene
which locate stable and metastable textural minima, as in
FP discussion of Sec. III D,

]~F1Fc!/]«̄,* ~kW !50. ~5.3!

In coordinate space,

«̇,~r ,tW !52(
,8

(
rW8

l,,8~rW2rW8!
]~F1Fc!

]«,8~rW8,t !
. ~5.4!

This is a time-dependent Ginzburg-Landau equation, w
Onsager coefficients that are anisotropic and spatiallynonlo-
cal. For negligible non-OP friction parameter (a18/A28→0),
the Onsager coefficient matrix becomes both spatially in
pendent and diagonal in OP labels, yielding an ‘‘ordinar
TDGL equation with a constant, isotropic, and uniform fri
tion:

«̇,~rW,t !52
1

A,8

]~F1Fc!

]«,~rW,t !
, ~5.5!

but still anisotropic and nonlocal in the elastic forces.

SR case dynamics

For the SR case, from dropping OP inertial terms in E
~3.36! in kW ,v space,

F22 iv@A281a18h
c~ k̂,v2,v2!#«21a1Uc~ k̂,v2,v2!«250.

~5.6a!

This can be written as a generalized TDGL-type equat
with retardedOnsager kernelsl(rW2rW8,t2t8) in coordinate
space,

«̇2~rW,t !52E
2`

t

dt8(
rW8

l~rW2rW8,t2t8!
]~F1Fc!

]«2~rW8,t8!
.

~5.6b!

Since the general TDGL structure is a ‘‘current’’ proportion
to a ‘‘force,’’ the Onsager coefficientl(kW ,v)[1/@A28

1hc( k̂,v2,v2)# is like a dynamic ‘‘conductivity.’’ We con-
sider, however, the low frequencyv→0, or asymptotic long-
time limit, keeping the linear term in frequency, but negle
ing the quadratic and higher-orderv2,(v/k)2 frequency
dependence in the kernels. The regime of validity is cons
ered below. This yields an instantaneous nonlocal TD
equation as in the TR case, Eq.~5.4!, with a single
,52 order parameter. In Fourier space,Fc

5(a/2)(kW ,tU0
c( k̂)u«2(kW ,t)u2, where the retarded compatibi
4-17
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LOOKMAN, SHENOY, RASMUSSEN, SAXENA, AND BISHOP PHYSICAL REVIEW B67, 024114 ~2003!
ity potential reduces to the static expression10,24of Eq. ~3.41!
and the Onsager coefficientl( k̂) is given byl( k̂)[1/@A28

1a18h
c( k̂,0,0)#.

For non-OP frictiona1,38 /a1,3→0, hc vanishes, and we
again recover an ordinary~local, instantaneous! TDGL equa-
tion as in Eq.~5.5! and ,52 with compatibility forces re-
maining nonlocal. Thus the model used in previous work10 is
a specific limit of the exact dynamics.

In a regime similar to Eq. ~4.5b! ~with d82

5max$@a18a38/a1a3#,@a18/a1)
2#%, the non-OP inertial delay

(r0 /a3)(v/k)2 and frictional retardation;(vd8)2 can be,
respectively, neglected, yielding Eq.~5.5!, for lengths L
,min@LD(t),Lp(t)#, and times t.t f[(2pd8)1/2. These
simple heuristic estimates may not, of course, be stri
quantitative, but capture the diffusive aspect of the late-ti
relaxation. Figure 8, left column, shows that the TDG
dynamics52 for the TR case yields textures similar to th
~longer-run! BG dynamics of Fig. 6.

We note that the free energy can have several metas
minima with different microstructure, but closeby fre
energy densities. Thus the nested stars of Fig. 6, under
turbation, yield rhombohedral structures of slightly lower e
ergy density53 ~which are also obtained directly with
different initial random-number seed!. The multiple-minima
picture also emerges in TDGL simulations for the SR case
Fig. 8 where different random-number seeds produce th
SR case quasitwin textures, with diagonal domains of dif
ent number and separation.54 Such quasitwins were previ
ously obtained in a displacement picture by Monte Ca
simulation.24 The total free energies in each case are ext
sive ;L0

2, while their energy differences behave as t
length ;K0L0 of the diagonal domain walls~with compat-
ibility cost from Uc vanishing!: the free-energy density dif
ference is then;1/L0. ~A surface compatibility potentia
sets a domain-wall separation length scale10 and would raise
the degeneracy, favoring equal-width ‘‘true’’ twins.! The bar-
rier between states with differing numbers of walls is the c
;A1L0 of a fractional-length kink in the domain wall an
the barrier crossing time;e(A1L0 /T̄).

Thus, in general, the ALR potential can produce
multiple-minima free-energy landscape, with nearly degen
ate, differently textured states separated by large barr
Initial conditions or intermediate-state dynamical scales
lock the system into one of the metastable states. The po
bility of multiple minima is consistent with recent analys
of models of competing short- and long-range interaction55

In general, the inclusion of noise in BG-Langevin sim
lations will enable the system to more easily find low-ene
minima. We now turn to other symmetries, and give the
namics for the four crystal systems of 2D ferroelastic tran
tions.

VI. OP STRAIN DYNAMICS FOR ALL 2D-SYMMETRY
TRANSITIONS

Since the derivations above involved the generic str
mass tensor and the harmonic non-OP strains and did
involve the details of the anharmonic OP free energy, the
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dynamics structure will be the same for all types of 2D~and
indeed, 3D! transitions. However, the nature of the non-O
strains determines the symmetry of the compatibility kerne

In 2D there areN53 strains~compressional, deviatoric
and shear! and one compatibility equation (Nc51). The dis-
tinct ferroelastic transformations~Fig. 1!, order parameters
and all possible symmetry-allowed combinations of strains
the Landau free energy, were found by Hatchet al.35 using
the computer programISOTROPY. These transformations fal
into two classes determined by the nature and numbe
order parameters.

~A! For either a two-component OP or two on
component OP’s (Nop52,n51), we have the TR case, th
TO case, and the square to oblique~SO! case, respectively.

~B! For a one-component OP, (Nop51,n52), we have
the SR case with deviatoric OP; the square to centered r
angle~SC! case with shear OP; and the rectangle to obliq
~RO! case with shear OP.

In 2D group theoretical symmetry notation, the transf
mations in Fig. 1 are~a! p4mm to p2mm, ~b! p2mm to p2,
~c! p4mm to c2mm, ~d! p6mm to c2mm, ~e! p6mm to p2,
and ~f! p4mm to p2. The OP compatibility kernels are fre
quency independent~dependent! for case A~B!.

A. One non-OP strain, two OP strains„NopÄ2,nÄ1…

TR case, driven by combined deviatoric and shear stra
«2 ,«3. This is studied in the text above. The TO case diffe
from the TR case only in thatF0 @Eq. ~3.27a!# includes terms
up to sixth order in OP strains.

SO case, driven by independent deviatoric«2 and shear
strains,«3. For the SO case, there are two distinct OP’s t
drive the transition, and the OP free energy is35

F05
1

2 (
rW

A2«2
21B2«2

41A3«3
21B3«3

4 , ~6.1!

where the constants are merely illustrative. However, the h
monic non-OP energy and thus the form of the dynamics
the kernels, are identical in both cases.

B. Two non-OP strains, one OP strain„NopÄ1,nÄ2…

SR driven by deviatoric strain, «2. This is considered in
detail in the text above.

SC driven by shear strain, «3 The OP free energy now is
as in Eq.~3.38a!, but is F0($«3%). The non-OP harmonic
energy, f 5 1

2 ( ra1e1
21a2e2

2, and the dissipation isRtot

5@ 1
2 ( ra18ė1

21a28ė2
21A38«̇3

2#. Thus the derivation carries
over, with the interchange 2↔3, and, in particular, the com
patibility factors and symmetry constants interchang
Q2↔Q3 ,c2↔c3 in the dynamical kernel of Eq.~3.40!. The
v→0 limit, analogous to Eq.~3.41!, is the static result.

a1U0
c~ k̂!5

a1Q3,1
2

@11~a1 /a2!Q2,1
2 #

. ~6.2!
4-18
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FERROELASTIC DYNAMICS AND STRAIN COMPATIBILITY PHYSICAL REVIEW B67, 024114 ~2003!
This is zero forkx50 or for ky50, so domain walls are
either vertical or horizontal, as can be confirmed in simu
tions. The dynamics fore2 ,«3 are

r0ë252
c2

2kW2

4
@Q2,1Q3,1~a1«31a18«̇3!

1~a1Q2,1
2 1a2!e21~a18Q2,1

2 1a28!ė2 , ~6.3a!

r0«̈352
c3

2kW2

4
@Q2,1Q3,1~a1e21a18ė2!

1~F31a1Q3,1
2 «3!1~A381a18Q3,1

2 !«̇3#. ~6.3b!

RO driven by shear strain, «3. In this case the symmetry
adapted strains are the strain tensor components themse
that is, e15Exx, e25Eyy and «35Exy. The non-OP free
energy is

f 5
1

2 (
r

$a1e1
2 1a2e2

2 %,

and the Rayleigh dissipation is

Rtot5
1

2 (
r

$A38«̇3
21a1ė1

2 1a2ė2
2 %,

with a6, a68 the non-OP elastic and friction coefficient
respectively. The compatibility condition isQ1e11Q2e2

1Q3«350, where in Fourier spaceQ152ky
2, Q25kx

2,
Q352kxky. The derivation carries through, and the sta
compatibility kernel

a1U0
c~ k̂!5

a1~Q3/Q1!2

F11S a1

a2
D S Q2

Q1
D 2G ~6.4!

is as in Eq.~6.2! with the substitution 1→1, 2→2 for sub-
scripts.

VII. SUMMARY AND DISCUSSION

There are two themes in this paper: first, a derivation
ferroelastic evolution equations for all 2D symmetries, a
second, a demonstration of a strain-based~rather than a
displacement-based! description of elastic phase transition

We have, derived theD.1 underdamped dynamics fo
ferroelastics in terms of the OP strains$«,% alone, showing
that the evolution equations are of a generalized Ba
Gooding form. The strain-based derivation yields a wa
vector dependent strain mass;1/kW2, thus large-scale strain
have greater inertia. The structure is that of an OP st
acceleration,«̈, , proportional to a Laplacian acting on th
sum of an OP-only stress and an OP-only frictional for
The stress and friction are strain and strain-velocity deri
tives, respectively, of the effective free energyF($«,%)
1Fc($«,%) and effective Rayleigh dissipationR($«̇,%)
1Rc($«̇,%). These contain, in addition to direct local O
02411
-

es,

f
d

s-
e

in

.
-

contributions (F and R), additional anisotropic and long
range contributions (Fc andRc) that emerge from eliminat-
ing the non-OP strains using St. Venant’s compatibility co
ditions. The kernels are explicitly evaluated for all 2
symmetries. There are also compatibility-induced noise c
tributions, and this BG-Langevin dynamics of Eq.~1.3! or
Eq. ~3.46! is a central result. A Fokker-Planck equatio
~3.47! is obtained. The BG dynamics can be regarded
nonlinear, nonlocally coupled oscillators labeled bykW , with
unequal masses;1/kW2, and dampings;kW2. The textures are
the set of final rest positions$«,(kW ,t→`)%, with large-k
oscillators ~small-scale strain textures! equilibrating first.
The late-time envelope dynamics that guides the damped
cillations to this equilibration is of the TDGL form. This
analog suggested an appealing picture of sequential-s
evolution for post-quench nucleation and hierarchi
growth, accounting for nonuniform textures.

We adopt the strain picture in simulations, with strains
the basic variables on sites of a reference lattice, driven
symmetry-allowed terms of the Ginzburg-Landau free e
ergy, and by anisotropic, symmetry-specific, long-ran
compatibility forces. The free energies are in a standardi
form, with dimensionless parameters related to experim
Simulations show that the generalized~D.1! BG dynamics
has rich texturing properties, including repulsive velocit
resonant compatibility potentials that can drive interfaces
speeds~nearly! equal to the speed of sound.

We now place our results in perspective with some of
other models that have earlier provided valuable insigh
Baus and Lovett30 invoked the 19th century work of St
Venant28,29 on the compatibility condition for the strain ten
sor, in the context of surface tension in liquids. They cons
ered strain as the basic variable in the argument, and not
might be useful in elastic solids. We similiarly work in th
strain picture, differing in this respect from previous14,15,24

simulations that work withuW gradients, i.e., in the displace
ment picture.

In an interesting and important paper, Karthaet al.24 per-
formed Monte Carlo simulations to find static textures. Th
used the SR free energy that is sixth power in the deviat
strain order parameter and harmonic in the compressio
and shear non-OP strains, and the simulations were in te
of the displacement, so effectivelyV5V($uW %). Since strik-
ing textures, such as unequal-separation diagonal dom
walls ~and tweed! were obtained, they attempted to unde
stand theseuW simulation textures by using compatibility29,30

to eliminate non-OP strains in the free energy, plotti
~static! compatibility potentials. However, these effectiv
strain-strain correlations were not directly used in the sim
lations. Such explicit implementation of the compatibili
forces was done in TDGL dynamics, where quasitwins,
elastic Meissner effect~expulsion of non-OP strains!, and
tweed were investigated.10 Other TDGL simulations also
used compatibility forces to investigate tweed alone.12 ~The
tweed terms considered10,12,24were all different.!

Our work has the same Lagrange-Rayleigh start
point5,26 as Refs. 16 and 17, which focus early on in th
argument on an overdamped-displacement dynamics. We
4-19
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low a different path and derive an OP-only underdamp
strain dynamics, finding it is of a generalized BG form; a
that the late-time limit is a TDGL-type equation.

Our approach differs from an underdamped dynamic14

for the SR case, which did not explicitly consider non-O
strains; and phenomenologically added a static anisotr
long-range potential between squares of strains to exp
acoustic signals.25 We derive the BG structure from a La
grangian with both non-OP strains and compatibility co
straints, and find aretardedanisotropic long-range force in
terms of the OP strains themselves~and not their squares!.
Our dynamics in the TDGL limit also differs from a TDG
dynamics,8,42 where strains have been eliminated in favor
morphological profile variables,ha(r ,t), with a labeling the
structural variants. The static potentials between square
the morphological variables were obtained from elastic fie
due to inclusions.27

Our approach is in the spirit of the Landau description
phase transitions:56 working with the order parameters as th
basic and physically relevant variables, and focusing on
order-parameter symmetries~as encoded in the compatibilit
factors!, as the source of ferroelastic static and dynamic t
turing.

Further work could include a detailed understanding
2D nucleation,57 growth, and interfacial profiles; extension
to 3D symmetries such as cubic to tetragonal11 (Nop52,n
54,Nc56); extensions to improper ferroelastics whe
strain acts as a secondary OP~Ref. 58!; generalizations to
include defects, in a broader ‘‘strain elastodynamics’’ fram
work; making contact with phenomenologies of plastici
simulations and calculations of experimentally measura
strain correlations and nonlinear susceptibilities; and exp
ing a hierarchical scenario for shape memory.41

The symmetry-specific, compatibility-focused unde
damped ferroelastic dynamics for the strain order param
encode, in their very structure, the possibility of an evo
tionary textural hierarchy in both space and time, and a t
dency for interfaces to be driven at the speed of sound,
plaining some of the fascinating but puzzling features
martensitic dynamics. The dynamical equations could be
plied to a wide variety of textural evolutions that includ
improper ferroelastics, leading to a deeper understandin
many materials of technological interest such as ferroe
trics, magnetoelastics, colossal magnetoresistance man
ites, superconducting cuprates, and shape memory mate
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APPENDIX A: SQUARE TO RECTANGLE TRANSITION
DYNAMICS

We need to demonstrate explicitly that the same dynam
results whether displacements or strains are treated as
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basic independent variables. We derive, in two self-contai
subsections the~same! underdamped dynamics for the S
case,~a! by varying the displacement, and~b! by varying the
strains subject to compatibility.

1. Variation of displacements

The (n52) non-OP strains are here the compressio
(e1) and shear strains (e3), and theNop51 deviatoric strain
(«2) is the OP,

e1

c1
5

1

2
~Dxux1Dyuy!,

«2

c2
5

1

2
~Dxux2Dyuy!,

e3

c3
5

1

2
~Dxuy1Dyux!, ~A1!

with the free energyV5 f 1F, where

f 5
1

2 (
r

~a1e1
21a3e3

2!. ~A2a!

The Rayleigh dissipation function is

Rtot5
1

2 (
r

@a18ė1
21a38ė3

21A28«̇2
2#. ~A2b!

From Eq.~A2! and varying with respect touW as in Eq.~2.1!
and ~2.2! ,

r0üx5
1

2
$Dx@ f 11R1#1Dy@ f 31R3#1Dx@G21R2#%,

~A3a!

r0üy5
1

2
$Dy@ f 11R1#1Dx@ f 31R3#2Dy@G21R2#%.

~A3b!

This is the result of Ref. 17, where

f 1,3[c1,3

] f

]e1,3
, G2[c2

]F

]«2
,

R1,3[c1,3

]Rtot

]ė1,3

, R2[c2

]Rtot

]«̇2

. ~A3c!

The underdamped strain equations withDW 2[Dx
21Dy

2 ,D̂2

[Dx
22Dy

2 , are

r0ë15
c1

4
@D2~ f 11R1!12DxDy~ f 31R3!1D̂2~G21R2!#,

~A4a!

r0«̈25
c2

4
@D̂2~ f 11R1!1DW 2~G21R2!#, ~A4b!

r0ë35
c3

4
@2DxDy~ f 11R1!1DW 2~ f 31R3!#. ~A4c!

We also have the compatibility relation of Eq.~3.6!,
4-20
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FERROELASTIC DYNAMICS AND STRAIN COMPATIBILITY PHYSICAL REVIEW B67, 024114 ~2003!
Q̂1e11Q̂2«21Q̂3e350, ~A5!

whereQ̂15DW 2/c1 ,Q̂252D̂2/c2 ,Q̂3522DxDy /c3. By tak-
ing derivatives of Eq.~A4! we see that Eq.~A5! is identically
satisfied. Thus we can take Eqs.~A4a!, ~A4c!, and ~A5! as
the three equations to determine the three strains, since
two of the equations are linear. Fourier transforming th
three equations, we obtain fore1,3(kW ,v),«2(kW ,v),

r0v2«25
1

4
@c1c2~kx

22ky
2!a1ve11c2

2k2~F22 ivA28«2!#,

~A6a!

r0v2e35
1

4
@c1c32kxkya1ve11c3

2k2a3ve3#, ~A6b!

Q1e152Q3e32Q2«2 , ~A6c!

where F25]F/]«2* (kW ,v), a1v[a12 iva18 , a3v[a3

2 iva38 , andQ15k2/c2 ,Q25(kx
22ky

2)/c2 ,Q352kxky /c3.
Defining bv[@a3v2r0(2v/k)2#/a1v and Bv[1

1bv(Q1 /Q3)2, we obtain

e1~kW ,v!5~Q1 /Q3!bve3~kW ,v!,

e3~kW ,v!52~Q2 /Q3Bv!«2~kW ,v!. ~A7!

Using Eq.~A6!, and Eq.~A7!,

r0v2«25
c2

2

4
k2@F22 ivA28«21a1v~Q2 /Q3!2~bv /Bv!«2#.

~A8!

The dynamics is written out in BG form and discussed at
end of Sec. III.

2. Variation in strain

By varying Eq.~3.1! with respect toe1,3(rW,t),«2(rW,t), we
obtainN1Nc531154 equations,

r22«̈21r21ë152
dF

d«2*
2Q2L2A28«̇2 , ~A9a!

052a3e32a38ė32Q3L, ~A9b!

$r11ë11r12«̈2%52a1e12a18ė12Q1L2a38e3̇, ~A9c!

Q1e11Q3«352Q2«2 . ~A9d!

In (kW ,v) space fore1,3(kW ,v),«2(kW ,v) and with a1v[a1
2 iva1 ,a3v[a32 iva3, there is one nonlinear equation,

v2r22«21v2r21e15
dF

d«2*
1Q2L2 ivA28«2 ~A10!

andn1Nc53 linear equations

052a3ve32Q3L, ~A11a!
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2v2S r0

c3
2c1Q3

D e352a1ve11Q1L50, ~A11b!

Q1e11Q3e352Q2«2 , ~A11c!

where we have used a relation as in Eq.~3.21!. From Eq.
~A11a! we have the Lagrange multiplier,

L~kW ,v!52
a3ve3

Q3
, ~A12!

and hence the non-OP strains in terms of each othere1
5bv(Q1 /Q3)e3. Finally, in terms of the OP,

e352~Q2 /Q3!«2 /Bv , ~A13a!

where

bv[
@a3v2r0~2v/k!2#

a1v
, Bv[11bv~Q1 /Q3!2.

~A13b!

Then

4r0v2

c2
2k2

«25@F22 ivA28«21W«2#, ~A14a!

where

W[
4r0v2

c2
2k2

2v2F r222
Q1Q2

Q3
2

bvr21

Bv
1a3v

~Q2 /Q3!2

Bv
G .

~A14b!

We use the definitions ~3.12! of r225r115(4r0 /
c3

2k2)(c1Q1 /c3Q3)2, r215(4r0 /k2c3
2)(Q1Q2/Q3

2)r12, and
(Q1

22Q2
2)/Q3

25(c3 /c2)251/2 to obtain

r0v2«25
c2

2

4
k2@F22 ivA28«21a1v~Q2 /Q3!2~bv /Bv!«2#.

~A15!

Comparing with Eq.~A8!, we see that the same dynami
results, whether displacement or strain is regarded as
independent variable, with compatibility enforced in the la
ter case. The BG evolution equation is discussed at the
of Sec. III.

A useful intermediate equation, obtained by substitut
e1 in terms ofe3 into Eq. ~A10! and using Eq.~A12! for the
Lagrange multiplier, expresses the equations as a couple
for the OP and non-OP shear. This dynamics is given in
~3.32!, and is entirely equivalent to the OP-only retard
equation of Eq.~A15!.

APPENDIX B: SCALING OF FREE ENERGY

Here we generalize the free-energy scaling of Barsch
Krumhansl32 to scale theLagrangiansuch that the Landau
free energy is in a standard polynomial form; all the para
eters are dimensionless; strains are of order unity and ti
are scaled in a characteristic time unit.
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The symmetric strain tensor is related to displacement
rivatives through

fmn5
1

2 F S ]Um~rW !

]xn
1

]Un~rW !

]xm
D 1(

r

]Ur

]xm

]Ur

]xn
G ~B1!

and we retain the ‘‘geometric nonlinearity,’’ showing when
is negligible later. The symmetry-adapted compressio
(f1), deviatoric (f2), and shear (f3) strains are

f1 /c15
1

2
~fxx1fyy!, f2 /c25

1

2
~fxx2fyy!,

f3 /c35
1

2
~fxy1fyx!, ~B2!

where c1 ,c2 ,c3 are symmetry-specific constants. The fr
energy depends on the order parameter through a Lan
term, and has non-OP and gradient contributions,

F5FLandau1Fnon1FGrad . ~B3!

The order-parameter Landau energy is

FLandau5E d3r F(
,

1

2
B(2)~T!f,

21FpolyG , ~B4a!

whereB(2)(T)5B0(T2Tc) vanishes at a characteristic tem
peratureTc , and Fpoly is a temperature-independent O
polynomial with powers higher than quadratic, which is d
ferent for the SR and TR cases. The non-OP contributio

Fnon5
1

2E d3r(
i

Bif i
2 , ~B4b!

while the gradient term is

FGrad5E d3r(
,

1

2
K@¹W f,#2. ~B4c!

We assume uniformity in thez direction, of thicknessh,
and pass over to a 2D reference lattice of lattice constanao
~square or triangular for SR and TR cases!. Derivatives are
converted to discrete lattice differences, and displacem
are scaled inao . Thus

]

]xm
→ 1

ao
Dm , E d3r→hao

2(
rW

. ~B5!

We further scale strains in a typical valuel chosen for con-
venience later, so that a scaled strain tensorEmn is then de-
fined through

fmn5lEmn5
l

2 F $Dmun1Dnum%1l(
r

DmurDnurG ,
~B6!

so ¹mUn→lDmun , where uW is a dimensionless scale
displacement.59 The scaled OP and non-OP strains are

f,5l«, , f i5lei . ~B7!
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The free energy~B3! can be written in terms of thes
scaled strains as

F5F0~$«,%,t!1 f ~$ei%!1Fgrad~$DW «,%!, ~B8!

where

Fnon /E0[ f 5
1

2 (
rW,i

aiei
2 , ~B9a!

FGrad /E0[Fgrad5(
rW,,

K0

2
~DW «,!2. ~B9b!

Here we multiply and divide by an energy densityD0 chosen
later, to get the overall energy scaleE05ha0

2D0 ~this drops
out in the end!. The scaled parameters are

ai5
Bil

2

D0
, K05

Kl2

~ao
2D0!

. ~B10!

The scaled OP free energy is

FLandau/E0[F05(
rW,,

~t21!«,
21F00, ~B11a!

where F00[Fpoly /E01( rW,,«,
2 . The scaled temperaturet

contains a physical temperatureT0 that fixes wheret51,

t[
~T2Tc!

~T02Tc!
, S B0l2

D0
D[

1

~T02Tc!
. ~B11b!

We now consider the SR and TR symmetries separately.

SR case scaling

For the SR case,Nop51, there is only the deviatoric
strain, asf2 is the order parameter and the polynomial is

Fpoly5E d3r @2B(4)f2
41B(6)f2

6#. ~B12!

In scaled form, the term in Eq.~B11a! is

F005(
rW

@«2
22C0«2

41«2
6#, ~B13!

where we have factored out an energy densityD05B(6)l6 so
the coefficient of the sixth-order term is unity, andC0
[B(4)l4/D0. Now we choosel to fix C0 so that for three
(a51,2,0) roots«̄2

a at t51, the conditions of degenerac

F00„$«̄,
(a)~1!%…5F0„$«̄,

(a)~1!%,t51…50, ~B14!

and normalization

(
,

@ «̄,
(6)~1!#251 ~B15!

are satisfied, and hence determine the typical strainl and all
scaled parameters. For the SR case,

C052, l5~B(4)/2B(6)!1/2, D05~B(4)/2!3/~B(6)!2,
~B16!
4-22
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with theC0 ‘‘completing the square’’ inF00 and thus the OP
free energy is

F05(
r

~t21!«2
21«2

2~«2
221!2. ~B17!

The t51 roots,«̄2
(6)561, then manifestly satisfy the con

ditions ~B14! and ~B15!.
To get an idea of parameters, we use FePd shape me

alloy values,24 for the SR case with energy densities in un
of ergs/cm3, B151.431012, B252.831012, C251.7
31012, D25331017, K/ao

252.531011, and Bo52.4
3109 ergs/cm3 K. This gives, from Eq.~B6!, the typical
strain valuel50.02, elastic constantsa15155'a3/2; OP
variation scaleAK0'5, an elastic energy densityE0 /a0

2h
5D053.83106 ergs/cm3, and a temperature separationT0
2Tc57 K. ~The magnitude ofD0 corresponds to a mag
netic energy densityH2/8p for fields ;1 T.! Note thatl
!1, thus in Eq.~B6! we may drop the ‘‘geometric nonlin
earity’’ and work with the linear Cauchy strain tensor, as
the text, that satisfies the simple St. Venant compatibi
condition. External stresses~e.g., compressional! enter asF
→F1( rp1e1 with scaled pressurep151 corresponding to
D0 /l50.02 GPa.

Inertial and damping terms

Using the same kind of transformations, the dimensi
less inertial~T! and damping (Rtot) contributions to the La-
grangian are

T5
1

2E d3rrmS ]U

]t D 2Y Eo5
1

2 (
rW

r0u̇2 ~B18a!

and

Rtot5
1

2E d3r (
j 51,2,3

Bj S ]f j

]t D 2Y E0

5
1

2 (
r

@a18ė1
21a38ė3

21A28«̇2
2#, ~B18b!

where the dots are dimensionless time derivatives, and
introduce a characteristic time unitto , with dimensionless
densityr0 and friction coefficientsa1,38 andA28 defined as

r05
rml2ao

2

to
2Do

,
a1,38

a1,3
5

B1,38

B1,3to
2

, A285
B28/Boto

2

~To2Tc!
.

~B19!

Here we have used Eqs.~B10! and ~B11b! for a1,3 and (To
2Tc). Wave propagation crossing a nanometer in a picos
ond corresponds to a sound speed of 1000 m/s. We taketo to
be of the order of inverse phonon frequencies and the sc
friction coefficientsa1,38 ,A28 are then less than unity. With
mass density ofrm510 g/cm3, lattice constantao;3 Å,
andto;10212 s the dimensionless density, or ratio of kine
and elastic energy densities isr0;1. We work with param-
eters r051,K051,t051 picosecond, a fixed ratioa3 /a1

52.1, anda15100 or 10, witha18 ,A28 ,a38 as unity or less.
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TR case scaling

For the TR case we start from6,16 a free-energy density in
Fpoly;2B(3)(f2

323f2f3
2)1B(4)(f2

21f3
2)4. We follow

the same procedure as above:~i! scaling strains as in Eq
~B7!; ~ii ! pulling out a common factorD0[B(4)l4; ~iii !
choosingl in C0[B(3)l3/D0 to satisfy Eq.~B15!. This
gives

C052, l5B(3)/2B(4), D05~B(3)/2!4/~B(4)!3.
~B20!

The scaled free energy is then

F005(
rW

~«2
21«3

2!22~«2
323«2«3

2!1~«2
21«3

2!2 ~B21a!

5(
rW

3~112«2!F«3
22

1

3
~12«2

2!G1@«2
21«3

221#2.

~B21b!

Here the second form explicitly displays the~B14!,~B15!
conditions, for t51 , when the roots are («2

(0) ,«3
(0))

5(1,0); («2
(6),«3

(6))5(2 1
2 ,6A3/2), and lie on aunit

circle.

Connection to other scalings

The SR free energy of Ref. 17 can be written as our E
~B9!, ~B17!, and ~B18b! by a scaling of strains ina5106,
giving an overall factor1

2 a2 absorbed in the TDGL time
~The elastic and frictional constants are then half ourai ,ai8 .!
A similiar TR scaling ina5103 yields our Eq.~B21!, with a
common factor of 1

2 relating elastic/friction constants.16

Similar scaling can be performed for other symmetries.

APPENDIX C: TRUNCATED DISPLACEMENT DYNAMICS
AND TDGL EQUATIONS

We have shown that the BG equations, dropping str
accelerations in anv vs k regime, yield TDGL equations. On
the other hand, droppingdisplacementaccelerations in Eq.
~2.8! or Eq. ~A3! yields equations stated to be different16,17

from the TDGL form. In this appendix, we demonstrate th
equivalence to TDGL.

More generally, the truncation is like dropping all the i
ertial terms in the Lagrange-Rayleigh equations~3.1! and
~3.2!,

(
n

]nsmn52(
n

]nsmn8 , ~C1!

given as a balance17 between derivatives of the stress tens
smn5dL/dEmn and the damping force tensorsmn8

5dRtot/dĖmn . Clearly,17 one cannot proceed in two dimen
sions by simply dropping the]n derivatives in Eq.~C1!.
Such a procedure would givesmn52smn8 , which is not
4-23
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quite correct. For the SR transformation, for example, thi
ė1,352(a1,3/a1,38 )e1,3; and «̈252(1/A28)(]F/]«2), where
F;«2

6 is just the local triple-well free energy. This is th
kind of overdamped dynamics,7 without compatibility con-
tributions, that would emerge if all the strains were indep
dent.

We now show that the truncated displacement dynam
~C1! is in fact a TDGL dynamics.

TR case displacement truncations

Dropping $üm% and keepingDmu̇n in Eq. ~2.8! yields16

equations that in Fourier space are

a18kxė11A28kx«̇21A38ky«̇352$a1kxe11kxF21kyF3%,
~C2a!

a18kyė12A28ky«̇21A38kx«̇352$a1kye12kyF21kxF3%.
~C2b!

Using compatibility~3.18d! we can eliminate

e152@Q2~kW !«21Q3~kW !«3#/Q1~kW !, ~C3!

whereQ2 /Q15@(kx
22ky

2)/k2#; Q3 /Q152kxky /k2. Further,
Eq. ~C2! can be written in matrix form as

M S «̇2

«̇3
D 52S kx ky

ky 2kx
D S F21F2

c

F31F3
cD , ~C4!

where M ,,8 is defined asM225kx@A282a18Q2 /Q1#,M33

52kx@A382(ky /kx)a18(Q3 /Q1)#, M235ky@A382a18(kx /
ky)(Q3 /Q1)#, M325ky@A281a18(Q2 /Q1)#. Here F2

c ,F3
c are

chosen to match the right-hand side terms of Eq.~C2!, so
that F2

c5a1@(Q2
2/Q1

2)«21(Q2Q3 /Q1
2)«3#, and F3

c

5a1@(Q2Q3 /Q1
2)«21a1(Q3 /Q1)2«3# and can be written as

derivatives of a compatibility potentialFc,

F2,31F2,3
c 5

]~F1Fc!

]«2,3
! ~kW !

, ~C5!

where Fc5 1
2 a1(kWU,,8

c «,(kW ,t)«,8
* (kW ,t) with U,,8

c

[Q,Q,8 /Q2
1. Inverting the matrixM of Eq. ~C4! yields

Eq. ~5.2!, and then the TDGL link is as in the text. For
choice16 a1850, one gets the ordinary~local, instantaneous!
TDGL equation, namely, Eq.~5.5!.

SR case displacement truncations

Similarly for the SR case, dropping displacement acc
erations compared to gradients of displacement velociti17

in Eq. ~A3! yields the Fourier space equation, withaiv[a1

2 ivai8 ,

S c1

c2
Da1ve11S c3

c2
Da3vS ky

kx
De352@2 ivA281F2#, ~C6a!

S c1

c2
Da1ve11S c3

c2
Da3vS kx

ky
De35@2 ivA281F2#. ~C6b!

Then compatibilitye11(Q2 /Q1)«21(Q3 /Q1)e350 gives
02411
is

-

s

l-

e15S Q1

Q3
D S a3v

a1v
De3 ,

e352F S Q2

Q3
D

11S a3v

a1v
D S Q1

Q3
D 2G «2 . ~C7!

Hence

2 ivA28«252F21F a3vS Q2

Q3
D 2

11S a3v

a1v
D S Q1

Q3
D 2G «2 . ~C8!

FIG. 9. ~Color! Evolution from single-site initial condition for
SR case under ordinary TDGL dynamics. Times aret
50.13,0.16,0.18, 0.24 ps, withDt51024. The initial condition is

«2(rW,t50)50.0001 at a single site and zero elsewhere. Non-
friction constants area18505a38 . Left column: ‘‘soft’’ case, a1

52,a352,t5250,A2852. Right column: ‘‘hard’’ case, a1

52000,a352000,t5250,A2852. ~Since colors are relative, the
background changes, with changes in evolving average intensi!
4-24
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Separating real and imaginary parts of the square brack
and using the notation of Eq.~3.35!,

2 iv«252l~ k̂,v!@F21a1Uc~ k̂,v2,0!«2#, ~C9!

where nowl( k̂,v)51/@A281a18h
c( k̂,v2,0)#. This is mani-

festly a generalized TDGL as in Eq.~5.6a!, but with a partial
truncation of the kernel, which drops the~resonant! inertial
delay terms (r0 /a3)(v/k)2 and keeps only frictional retar
dation. It is thus valid for a narrowly restricted, intermedia
length and time regime roughly estimated asLD(t).Lp(t)
.L andt,t f ~see Sec. V!. Taking a more well-defined limit
of late times~dropping allv2) the static kernelUc( k̂,0,0)
becomes a good approximation, and the nonlocal TD
~5.4! with ,,,852 holds. Fora1,38 /a1,3!A28 as for ‘‘hard’’
systems,17 this collapses to alocal TDGL, as in Eq.~5.5!.
Thus, overdamped displacement equations16,17 are TDGL
equations in disguise and not a new dynamics. As expec
simulation of TDGL equations produce the same textures16,17
o-
K,

-

l.

a

R.

y

A

ee

R
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from similar initial conditions.
Figure 9 shows ordinary TDGL simulations with an initi

condition17 of strain nonzero at a single point and zero els
where. This is like a stress applied at a single point and t
removed. Flowerlike or diagonal-cross textures similiar
Ref. 17 are obtained, for both ‘‘soft’’ and ‘‘hard’’ materials

Reference 17 could not reproduce a TDGL structure giv
in Fig. 4~b! of Ref. 10, part of a multipanel figure that dis
plays stress effects for soft materials. In the intermedia
temperature (1.t.0) phase, Ref. 10 considered the effe
of two Lorentzian deviatoric stresses, fixed and continuou
maintained. The motivation was to see if a stress seed an
gous to a seed crystal in a supercooled melt, could y
stress-induced martensitic twins even for positivet50.3.
The Ref. 17 simulations did not have the applied const
stress of Ref. 10, and moreover, were at very low tempe
turest5250. We conclude that the difference in results
due to a difference in states investigated, andnot a difference
in dynamics, which is TDGL-like in both cases.
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