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We derive underdamped evolution equations for the order-pararif@Brstrains of a proper ferroelastic
material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free
energy as a polynomial expansion in tNe=n+N,, symmetry-adapted strains. Thg, strain equations are
structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding
(BG), with “strain accelerations” proportional to a Laplacian acting on a sum of the free-energy strain deriva-
tive and frictional strain force assuming geometric linearity. The tensorial St. Venant's elastic compatibility
constraints that forbid defects, are used to determinenthen-order-parameter strains in terms of the OP
strains, generating anisotropic and long-range OP contributions to the free energy, friction, and nasend he
OP equations are obtained by either varying the displacement vector components, or by varNrsiréies
subject to theN. compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than
one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear
(strain oscillators labeled by wave vectlr with competing short- and long-range couplings. The oscillators
have different “strain-mass” densitigs(k) ~ 1/k? and dampings- 1/p(k) ~k?, so the lighter largéc oscilla-
tors equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a
sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting
inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-
dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for
special parameter values. We consider in detail the two-dimeng@balnit-cell transitions from a triangular
to a centered rectangular lattictl{,=2,n=1N.=1) and from a square to a rectangular lattié¢ (=1,n
=2/N.=1) for which the OP compatibility kernel is retarded in time, or frequency dependent in Fourier space
(in fact, acoustically resonant im/k). We present structural dynamics for all other 2D symmetry-allowed
proper ferroelastic transitions: the procedure is also applicable to the 3D case. Simulations of the BG evolution
equations confirm the inherent richness of the static and dynamic texturings, including strain oscillations,
domain-wall propagation at near-sound speeds, grain-boundary motion, and nonlocal “elastic photocopying”
of imposed local stress patterns.
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[. INTRODUCTION chanical hysteresis and mechanicdligversibly switchable
domain patterns. Usually ferroelasticity occurs as a result of

Structural phase transitions in solids have attracted a great phase transition from a nonferroelastic high-symmetry
deal of interest over a century, both for their conceptual im-‘parent” phase and is associated with the softening of an
portance as symmetry-changing phase transitions, and falastic modulus with decreasing temperature or increasing
their role in inducing technologically useful properties in pressure in the parent phase. Since the ferroelastic transition
materials. Both the diffusion-controlled replacive and the dif-is normally weakly first order, or second order, it can be
fusionless displacive transformations have been studied, atlescribed to a good approximation by the Landau theory
though the former have received more attention because theiith spontaneous strain or deviation of a given ferroelastic
reaction kinetics is more conducive to control. orientation state from the parent phase as the order param-

We consider here the class of materials known as fereter. The strain can be coupled to other fields such as electric
roelastic martensites. Ferroelasticity is defined as the exigolarization and magnetic moment and thus the crystal can
tence of two or more stable orientation states of a crystal thdtave more than one transition. Depending on whether the
correspond to different arrangements of the atoms, but argpontaneous strain is the primary or a secondary order pa-
structurally identical or enantiomorphoti$. In addition, rameter at a given transition, the lower symmetry phase is
these orientation states are degenerate in energy in the atalled a proper or an improper ferroelastic, respectively.
sence of mechanical stress. The term “martensitic” refers tdNVhile some martensites are proper ferroelastics, examples of
a diffusionless first-order phase transition that can be deimproper ferroelastics include ferroelectrics and magne-
scribed in terms of on¢or several successiyshear defor- toelastics.
matior(s) from a parent to a product phas&he morphology There is a further subset of ferroelastic martengigéther
and kinetics of the transition are dominated by the straimonelemental metals or alloy systentisat exhibit the shape
energy. The transition results in a characteristic lamellar omemory effect: These materials are characterized by highly
twinned microstructure. mobile twin boundaries andoften) show precursor struc-

Salient features of proper ferroelastic crystals include metures above the transition. Furthermore, these materials have
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small Bain strain, elastic shear modulus softening, and anodels considered displacement accelerations equated to
weakly to moderately first-order transition. Some exampleglisplacement gradients of the free energy as forces; or strain
include InTl, FePd, NiTi, and AuCd. TDGL equations coupled to vacancy field dynaniitssi-

Dynamics plays a central role in proper ferroelasticnally, the Lagrange-Rayleigh procedtfé® has recently
transitions>®~1/As noted, these materials undergo diffusion-been appliet?'*” in two dimensions, yielding an under-
less, displacive transitions, with strafpomponentsas the damped dynamics for the displacement, which is truncated to
primary order parameter, and develop complex microstruceverdamped equations that are seemingly different from the
tures in their dynamical evolution, finally forming spatially TDGL form.
varying, multiscale “textures” or strain patterns. When  While these and other models yield valuable insights into
qguenched, some martensitic materials develop interfacefgrroelastic texturing(i.e., single-crystal microstructure
moving at near-sound speeds. Textured improper ferroelashere is clearly a need, through explicit derivation, to obtain
tics include materials of technological importance such asn underdamped, symmetry-specific OP strain dynamics for
superconducting cupratdsand colossal magnetoresistanceD>1; to find the precise form of long-range potentiéifs
manganites® Many dynamical models have been invoked toany) that emerge; and to determine the regime of valigiity
follow aspects of(prope) ferroelastic pattern formatign'’ it exist9 of some form of TDGL equations.
such as nucleated twin-front propagation, width-length scal- In this paper, we use the Lagrange-Rayleigh variational
ing of twin dimensiong®?! tweed?*~**stress effects, elastic procedure to derive a ferroelastic strain dynantinsluding
domain misfits, and acoustic noise generation. noise terms A central role is played by thbl, St. Venant

In a one-dimensionallD) model, Bales and Goodiflg compatibility condition&***?*2-3%or the N=N,,+n sym-
considered a displacementand a sixth-order free energy metry adapted strains, which enforce the absence of defects
F(e), nonlinear in the strain, that in one dimension is simply(and lattice integrityat each instant, and allow tmenon-OP
a derivative,e = gu/dx. With Lagrangian dynamics, a Ray- strains to be expressed in terms Wf, order parameter
leigh dissipatiorf® and variation inu, a single strain evolu- strains. We show the following.

tion equation was obtained in one dimension, (i) An underdamped set ™,,, equations can be obtained
for the OP strains alone, which is of a generalized BG form,
9% | 6F - with naturally emerging anisotropic long-ran¢&LR) con-
PoE = P EJFA e, (1.D) tributions to OP potentials, friction, and noig&or theN,,

=1 case these are, in general, also explicityarded in
where A’ and p, are the scaled frictior{coefficien} and  time)
mass density, respectively. In a low-frequency—large-wave- (ii) The sameOP equations can be obtained, either by
vector regimepw<A’k?, where the inertial term is small, a varying thedisplacementor by varying thestrainssubject to
simple time-dependent Ginzburg-LandaIDGL) equation the compatibility constraint through dynamic Lagrange mul-

is obtained® in one dimension, tipliers.
(iii) Dropping strain inertial terms yields strain TDGL
1 6F equations, with nonlocal Onsager coefficients, that reduce to
8:—;5- 1.2 constants for special friction values, resulting in a local

TDGL dynamics. These act as a late-time dynamics for the
For thek#0 modes in one dimension the strain is a one-damping envelope of textural oscillations.
component “vector” that in Fourier space is simply propor-  We explicitly demonstrate), (i), (i) above for the 2D
tional to the scalar displacement; and there is only one Bralfiangular to centered rectangular or TR lattice transition
vais lattice. In higher dimensiond>1, the strain (Nop=2n=1N.=1) and for the square to rectangular or
(displacementis a tensor(vectod, and there are many pos- SR lattice transition Ny,=1n=2N.=1), as well as
sible discrete lattice symmetries. The central question isPresent dynamics for all other allowed 2D symmetries. The
what is the general form of the underdamped evolution equaProcedure can be generalized to three dimensions, e.g., the
tions for (order-paramet@istrain-tensor components, for fer- cubic to tetragonal No,=2,n=4,N.=6) transition where
roelastic transitions of different symmetries? (statio compatibility potentials in a TDGL dynamics pro-

A wide variety of dynamical models have been used toduce rich textureSt Our central result is a generalized BG
date. These include a 2D or 3D TDGL dynamics in morpho-dynamics written in the OP straing}, {=1,2,... Ngp
logical variables for structural variants, with a long-rangeonly,
potential between squares of these variablemtivated by
ideas of elastic inclusior€. Other work in 2D and 3D has ) c? . [ 8(F+F% S8(R+R°)
used a TDGL equation for the order-paramegt®P) strains PoE (=4 2 + :
only, with a long-range potential emerging between the OP
strains themselvé% 1% (not their squaras by optimizing . . .
non-OP strains. Some authttassumed the validity of a 2D wherec, is a symmetry—spec'lflc constant, apglis a scaled
Bales-Gooding (BG) form from a Lagrangian without mass density.F°({e.}),R°({e,}) are the compatibility-
non-OP strains, and then phenomenologically added a londoduced symmetry-specific contributions that emerge natu-
range potential between squares of the OP strains. A TDG[Ally from the non-OP free energy as additions to the OP free
equation in the displacements has also been tiSéet other  energyF and OP Rayleigh dissipatioR, while g7 is the

+9,+9¢, (1.3

58( 58@
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corresponding noise term that adds to the OP ngjseln  leigh dissipation harmonic in the non-OP strairtand time
Eq. (1.3 and subsequently, we use the syml&oto denote derivatives, can be written in terms of OP strains. With elas-
dimensionlesddiscrete derivatives on a reference lattigk, UC constantsa;,

The generalized BG equations can be written as Langevin

~ RN 1 1
equation fore,(k,t) andv,=e.(k,t), yielding statistically f=§ 2 ai|ei|2=§ E Ueereeey, =F({e(}).
equivalent Fokker-Planck equations for the probability ik €Lk 15
P({e¢,veht). (1.59

In the strain-variation derivation of the BG dynamics This defines the compatibility kernels
above, we introduce the concept of a strain mass-density
tensor whose component$n Fourier spacke behave as *
pss(K)~po/k?, which is responsible in coordinate space, UN':Z S S (1.5b
for the Laplacian on the right-hand side of EG.3). This
generalization of the 1D case expresses the physical idea thfar F¢ (and similarly for R®) of Eq. (1.3 in the desired
long-wavelength strains are extended lattice deformation®P-only dynamics. Thus the problem reduces to finding the
and hence have greater inertia. We present a physically illusroportionality constantsS,, for each symmetry-based
minating analogy ofgeneralizel BG dynamics as an array phase transition.
of coupled nonlineak-space oscillators that have an intrin- ~ The plan of the paper, with self-contained sections, is as
sically hierarchical equilibration, with largé oscillators ~ follows. In Sec. Il the OP dynamics for the TR case is de-
damping out first. rived byu variation. In Sec. lll we demonstrate that the same
The N, strain order-parameter equations with derivedTR dynamics is obtained by strain variation, with enforced
anisotropic long-range terms are equivalent to Ehelis-  compatibility. Results for the SR case are stated and ana-
placement equations that do not explicitly have such termdyzed, with derivation details in Appendix A. Numerical
The advantage of the OP strain approach is that it displaysimulations of some interesting BG dynamic evolutions are
and uses such anisotropic long-range correlations that apresentedusing standardized scaled enerdfeand dissipa-
valuable in understanding simulated textures, as demortions, as in Appendix B Noise contributions are derived,
strated below. and a Fokker-Planck formalism is set up. Section IV dis-
More generally, in the displacement)( picture, the Cusses the equivalent inhomogeneous oscillator description
strains are derived quantities and the compatibility conditiorPf the BG dynamics. Section V deals with its TDGL trunca-
is an incidental identity, expressing the single-valuedness dfon. aiso derived in Appendix C from truncated displace-
u. This is analogous to describing magnetic problems i ent dynamics™ Section VI presents the compat|b|_I|ty
e s > ernels for other 2D symmetries. Finally, Sec. VIl contains a
terms of the vector potentiagh, with B just a label forA

R L summary and discussion.
XA, and withA-(AXA)=0 just expressing a vector iden-

tity. By contrast, in the strain-only picture, the geometrically Il ORDER-PARAMETER STRAIN DYNAMICS BY
linear strain tensor componenks,, are the physical vari- DISPLACEMENT VARIATION

ables, and the compatibility conditiond x (AXE)T=0
(with T denoting transposeare tr_eated as mg:iependent field Consider a Lagrangian density(a,a)= [dtS(T—V)
equations expressing the physical constraint of no defects. : > I

This is analogous to working with the magnetic inducti®n that depends on a variabie(r,t) through a kinetic termi

— Y= -1 2 H —

where the Maxwells field equatiod -B=0 expresses the — (@)= Zrzpoa”, and a potential termV=V(a). Then,
absence of magnetic monopoles. Similarly, the compatibilipwith a Rayleigh dissipatidfi R''=R+R°= [dr3 na?
conditions can be viewed as the integrability conditions for(where is the friction coefficient we have, by variation in
the strain tensor as a function ¢br with respect tpthe  «, the Lagrange-Rayleigh equation,
displacement field® The compatibility equation for strain
has been used for a consistent description of forces in d oL JL IRt
liquids;*° here we use it to develop a consistent OP dynamics dt yo da 9o
for ferroelastics.

The basic idea is quite simple. Compatibility implies
non-OP strainge;} are proportional in Fourier space to OP
strains{e},

(2.1

In this section we work in the displacement picture, and
consider variations in displacement(r,t)—u,(r,t) that

will generatexu=1, ... D equations, forfjﬂ in D dimen-
sions. The potential or Gibbs free energydepends on dis-
ei=2 Ser. (1.4 placement derivatiyes 'that are\|=N0p+n. symmetry- .
T adapted linear combinations of the symmetric Cauchy strain
tensor,
It is convenient to henceforth notationally distinguish be-
tween n non-order-parameter straiff®;} and N,, order- E =}(A U +ALU,) 2.2
parameter strainse,}. The non-OP free enerdy(and Ray- A '
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R[] » I] =%(_Axux_—Ayuy) and shear straim3:%(A?(uy+AyuX). The
deviatoric strain can be regarded as a simple shear rotated by
[N\ wld.
RO [ g D |j| Then Eq.(2.3) for the non-OP compressional energy is
J f=3:1a,e],R°'=13{ales+ (A,e3+ALed)]. The anhar-
SC @ - monic and fourth-order(triple-well) free energy F for
€5, €3, IS given below in Eq(3.273, although this explicit

form is not needed in the derivation.
TR %"% Defining OP free-energy derivativege., stressgsF,

=0F/de, Ar,t), the Lagrange-Rayleigh variation with re-

AV spect to displacements(r,t) gives for the dynamics of Eq.
(2.1
© D=L " Lo,
Pouxzi[aleel"—AXF2+AyF3]+ E[a:,LAxel+AéAx82

so []-+»\\//1]1] +ALA 5], 2.49

FIG. 1. Symmetry-allowed transitions in two-dimensions for the . 1 ) .
four crystal systems. The dark lines are guides to the eye, for de- pouy=§[a1Aye1—AyF2+ AF3]+ E[aiAyel—AéAysz
formations. There is a one-component strain order parametés)for
the square to rectangle or SR case, driver fy(b) the rectangle to IA
obliqt(je or RO case? driven hby,; and (c) th%y(square to cegr]nered TAAEs] (2.4
rectangle or SC case, driven ley. A two-component OP, otwo  These displacement equations have been obtained
one-component OP’s, le@) to (d) the triangular to centered rect- previously}6 but were then truncated by dropping the dis-
angle or TR case, driven by, e3; (€) the triangle to oblique or TO  placement acceleratiofsecond time derivatiyeto yield re-
case, driven by,,e3; and (f) the square to oblique or SO case, duced equations that are analyzed further in Appendix C.
driven by e, and e, independently[The oblique to oblique fer- |nstead, we pursue here the underdamped OP-strain equa-
roelastic p2 to p1) transition that involves merely a loss of inver- tions and find they have a generalized BG form.

sion symmetry is not consideré&ef. 35.] The strains obey the compatibility constraints, which in

) - _ ) . the displacement picture ensure thiais single valuedi.e.,
We neglect “geometric” nonlinearity, as justified by the scal- ¢ross.derivatives commuyteThe equation for the 2D case is,
ing of Appendix B, where such corrections are higher ordetyt eyery instant,

in a typical (smal) strain value. We notationally distinguish

between OP straing ,} and non-OP strainge;}. The poten- 5261_(Ai_M)SZ_ZAxAy%:o. (2.5
tial V=F({e,})+f({e}) is anharmonic througlF in the Y
N, order-parameter strains, and harmonic throfighthe n Taking spatial derivatives of E¢2.4) we obtain the full

non-OP strains, while the Rayleigh dissipation underdamped equations for the strains,
R©°{({g,},{e;}) is harmonic in both the strain rates,

- A2e;+(A2—A2 o +2A,A o
) X . Po1= 7| 21A%€1+ (AL y)gz Ay oo
=2 sael, RO=3 SAi+> a/el. (23 1 s ,

ri re ri +Z[aiAzel-i—Aé(Ax—Ay)82+2AéAXAy83],

Here, as in Appendix B{A.},{a;} and{A;}{a/} are, re- (2.6
spectively, OP and non-OP second-order elastic and friction
coefficients, and the sum is over sités of a reference

a;(A2-A2)e +52£-+E[a’(A2—A2)é
lattice, whilet is a scaled time. B Fy/=t 41910 5% Sy/El

de3)

.01
PoSz:Zr

20
TR dynamics from displacement variation TAA%,], (2.6
Consider the TR transition, for whidN,,=2 andn=1. .1
Figure 1 shows the TR, the SR, and other lattice transitions. PoEs=y,
(While it is true'®’ that these correspond to 2D projections/

L, OF] 1 :
2a;A,A e + AZE +7[2a1A,4,0,

analogs of hexagonal to orthorhombic, and tetragonal to +A55253]_ (2.60
orthorhombic lattice transitions, respectively, we will reserve
this 3D terminology for full 3D analyses, elsewherghe By taking appropriate derivatives of E@.6), it is easy to

symmetry-adapted non-OP compressional strasy see that the compatibility conditio2.5) is satisfied as an
=3(Auy+ Ayuy), whereas the OP are the “deviatorie’,  identity. Thislinear equation, Eq.(2.5), can then be used
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instead of the nonlinear E@2.63, to eliminate the non-OP velop on cooling below transition, as a consequence of the

straine; (k, ) in terms of the OP strains, K, w), assum- dynamics. The OP strain is in this case like a “charge” that is
ing periodic boundary conditions. ’ generated in sign-balancing pairs, and the notion of elastic

. . _ % /0 _ later.
and withF, s now defined ag s=JF/dz; (k. ), the com The SR dynamics, driven by a deviatoric strain OP, can
patibility constraint(2.5),

similiarly be shown by displacement variation to be also of
- - - the generalized BG form, as given in the first part of Appen-

Qiey(K,@) +Qaea(K,w) + Qaea(kiw)=0, 2.7 4 A However, we now proceed to derive the strain dynam-

with Q,=— kz,stkf—kf, ,Qs=2k.k,, is used to elimi- ics through strain variation.

nate e;(K,w), giving Nop=2 order-parameter strain-only

equations! lll. OP STRAIN DYNAMICS BY STRAIN VARIATION

WITH COMPATIBILITY CONSTRAINTS

+F,—iwA)e,|, In discussions of ferroelastics, it is common to assert that
] although the free energy is in terms of the strains, the true
(2.8a basic variables for such systems are displacements, since
strains are just displacement derivatives. Thus Monte Carlo
simulations, numerical solutions of dynamic equations, and
+Fs—iwAges|. static analyses of textures, even when expressed in terms of
] strains, are all finally performed in terms of displacements.
(2.80 Following the electromagnetic analogy mentioned in the In-
These can be succinctly written as an OP dynamics fo];roductign, an alternative treatment is in termssnhins as
e,(r,t) with (£=2,3) the basic variables. The free energy for a first-order transi-
JARE] 19/ . 6 . .
tion, say,Fo~¢°, is then regarded as zeroth order in deriva-
S(F+F% &(R+R°) tives, whereas in the displacement picture it is a sixth power
5o, + 5 : (2.9 of derivatives. In this section, we derive ferroelastic dynam-
¢ ics for the TR and SR cases, using strains as the variational
where F¢ and R® are compatibility-induced contributions quantities. Results for external stress and noise are also
from the non-OP free enerdyand dissipatiorR written in  Stated. We use periodic boundary conditions througtidtt
terms of the OP strains, and transform between coordinateand wave vectok de-
scriptions, as convenient. The Lagrange-Rayleigh dynamics

1 . R R . . .
FC=—31)E ij(k)se(k,t)s*{,(k,t), (2.103 equation for a general variabte is

2. _
Pow Er=", —ext——-¢&3
1 1

k2| (Q§ Q.Qs
alm

k2| (QzQs Q2
lw

2
powez=—|a S &2t —¢&3
41 Q1 Q1

1.

Poé€:Z 2

2 k,€,¢"
ddL dL  JR™ @1
1 o . N . N - T T T = A ; .
R°:§ai“2€, 75 (e K e* o (Kt), (210D dtoa da oa
Y A A and we consider here the strains as the variables,

where the orientation-dependent kefdl; ,, (k) = 77, (k) )
is defined implicitly above, and given explicitly in E(B.29 a—{E,,(r,t)}. 3.2
of Sec. lll, following a strain-based derivation of the same
dynamics. In total, if we consider all space groups in two dimen-

The system oN,,=2 underdamped equatiorg.9) de- sions, there are 23 ferroelastic transitidh two dimen-
rived for the strains is clearly of a Bales-Gooding fdirom-  Sions. Figure 1 shows the six symmetry-allowed transitions
pare with Eq.(1.1)], but now generalized in three ways: by in two dimensions for the four crystal systems with mon-
the derived replacemeaf/ax2—>52' by the appearance of a atomic basis. We will present the initial part of the argument
compatibility-induced (ALR) interaction, betweere,-g,, ' 9eneral form, before focusing on the triangular(¢en-
(and ot £2-52 ): and of a similiar compatibility-induced tered rectangular lattice or TR case; and the square to rect-

meTeh o ) angle or SR case, with other 2D transitions considered in
ALR dissipation, between -, strain rates. Sec. VI.

An interesting consequence of th% BG structure with pe- The Lagrangian contains the potentidland kinetic en-
riodic boundary conditions is that thek*=0" (or more pre- ergy T that depend on symmetry-adapted strains which are
cisely, k—0) OP strain obeyg,e,(k=01)=0, so macro- the basis functions of irreducible representations of the unit-
cell symmetry group. In general, these are linear combina-

ic strai tumpoe ((k=04)=0 i $ .
scopic strain momentunpe )=0 is conserve fons of the strain tensor(E,.}. The s=12,...N

unaffected by internal forces and dissipations. The solution i . . . !
symmetry-adapted strains are written{ag}, with N=3 in

2¢(k=01)=&((k=0,0)t+e,(k=0,0). In the special case of 1, gimensiongand 6 in three dimensionsin two dimen-
an alustenlte phase with initial conditiong k=0,0)=0, and  sjons, except for the RO case, the compressioag), (de-
e¢(k=0,0)~Z2,g,(r,0)=0, strains ofboth signs will de- viatoric (e,), and sheard;) strains are defined by
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e, A. Kinetic energy in terms of strain rates

e 1 1
- = E(Exx'l' Eyy)u C_2: E(Exx_ Eyy)-

Since Newtonian dynamics is fguoint particles, the ki-
netic energy in terms of displacements is

1

€3 1

—=5(ExytEy, (3.3

cg3 2 1 s 1 e

3 T= Epoz us(r t)= Epoz lu,(kb)| (3.9
wherec,,c,,c3 are symmetry-specific constants. fou Ko
The strain tensofneglecting geometric nonlinearity as ] ] )

justified in Appendix B obeys the St. Venant compatibility in coordinate and wave-vector spaces, wheyes a dimen-
condition, which is here a field equation forbidding defectsSionless mass density that is a ratio of typical kinetic and

such as dislocations and vacanéle§ at every instant, elastic energy densitig@ppendix B. In the strain picture,
the displacement can be defined in terms of the strains
AX[AXE(r,1)]"=0, (3.49  through the Kirchhoff-Cesaro-Volterra relatidn
KXE(K.0)xK=0, (340 Q)= [ BN +HT-PXTXED) o,
= C(ro.r)
with no source term on the right-hand side. Tipe (3.93

=1,2,... N, compatibility conditions are
where the line integral is along any contoGfr,,r) to r
cP=> QPey(r,t)=0, (3.5  from ro, which is a fixed point of the deformation. This is
s valid up to a global translation and a global rotation, that can

be viewed as integration constaittaken to vanish for peri-
‘odic boundary conditionsTherefore, taking derivatives with
respect tor, the symmetric combination is the same as Eq.
(2.2) as it must be:

where Q" are second-order derivative operators, from Eq
(3.43. In two dimensions there is only one compatibility
equationN.=1, and the operators in Fourier space are

Qu(K)=—K/cy, Qa(K)=(Ki~Kj)/co, Qa(K)=2kyk,/cs.
Thus Eq.(3.5 for ey(k,t) is, from Eq.(3.4b),

Qe+ Qze,+Q3e3=0. (3.6

The anisotropic compatibility factor®; ,«(k) encode the In two dimensions, two of the displacement gradients can
discrete symmetries of the compressional, deviatoric, anfle obtained from Eqg2.2) and(3.3) and expressed in terms

shear strains. The symmetry constants for the TR case akd order parameter strain symmetry coordinates as
ci=C,=c3=1, whereas for the SR case they arg=c,

=42,c3=1. The compatibility constraint will be invoked e, & e, €

repeatedly in the derivations below. The physical meaning of Auy=—+—, Au=—-—. (3.10a

the constraint is that order parameter strains should not tear, 1 %2 €. ¢

or cause defects in the lattice, i.e., lattice integrity is main-_ i o . )

tained. Suppose, in a sea of square unit cells, one cell Wa'gakmg time derivatives and transforming to Fourier space
made rectangulaflocal deviatoric strain It is clear that in ~ 91Ves forky,k,#0,

order to maintain lattice integrity, the neighboring cells must

1
5 (AU, 8,0,)=E,,. (3.9H

also deform, inducing all three strains in an interrelated way, e, & e, &
with a similar(but smalley deformation of the larger number o + c e Ch
. . - 1 C . 1 Co
of further neighbors. The requirement of a smooth, compat- Uy(k,t)=— v Uy(kt)=— (3.10bh
ible fitting together of neighboring unit cells will cause the ik iky

disturbance to propagate outwards, and in an anisotropic way ) ) ) o
(due to discrete crystal symmetry and elastic constatite  Inserting Eq.(3.10b into Eq. (3.8) yields the kinetic energy
local condition hasglobal consequences. that isnonlocalin terms of the strain rates,

The LagrangianL also contains the compatibility con-
straints through dynamic Lagrange multipliges® (r t)},

[ o

We now(a) obtain the kinetic energV({'eM}) in terms of
the time derivatives of the symmetry-adapted strains;(Bhd where we have introduced an anisotropic “strain mass-
use this to derive the TR and SR dynamics by strain variadensity tensor” whose components turn out to be related to
tion, incorporating the compatibility constraint. ratios of the compatibility factors of E¢3.6),

1 o
T= 2 Spss(Kes (ke (k)
k,s,s’
T-V-2, APCP |, (3.7 1 o
X = > Epss,(r—r’)eg(r,t)esr(r’,t), (3.11)

rr'ss’
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pss (K)=p(k)

=p(k)

This strain mas

(Q2Q1> c_i( g)z
| Q3 ¢\ Qs

YNAMICS AND STRAIN COMPATIBILITY

1 K 1 (ki—kj)
ci kZk? C1C2  kZk?
1 (ki—kd) 1 K
C1C2  kZk? c5 Kk}
(%)2 Q1Q2
Qs Qg
(3.123

s-density

tensor is a kinematic time

PHYSICAL REVIEW B67, 024114 (2003

1 L1 .
RO'=5 2 ajef+ 52 Ajsf, (3.19
ir or
wherea; ,a; are the non-OP elastic and friction constants.

The kinetic energy in terms of strain rats},{,}, from
Eqg. (3.1)), is

= >

1 I,
Ep(/{/r(k)b‘z(k,t)é‘(r(k,t)
k,¢,¢'

+ 2

K,i,i’

1 L
Ep“,(k)ei*(k,t)ei/(k,t)}. (3.16

‘Using Egs. (3.14b, (3.19, and (3.16, the Lagrange-

independent quantity true for all 2D symmetries and has

determinant (211C2kxky)2. Here ar‘?ayle|gh dynamics for OP and non-OP strains are given by

directly varying thestrainsin Egs.(3.1) and(3.7),
_ 4po

c3k?
and therefore long-wavelength strains over many lattice
spacings are effectively more “massive,” as is physically

reasonable. In 2D coordinate spaggy (R) ~ (4p0) IN(|R). It > pivertae+ae+ > QPAP =3 pep,
is this inverse Laplacian dependence that gives rise to the i’ p ¢

. . JF .
D peEe+ X pari=———2, Q%p)A(p)_Aéé‘ev
¢! i’ 0"85 p
(3.173

Bales-Gooding structurd..3) of the underdamped dynamics. (3.17b
The strain kinetic energy can be expressed only in terms of
the compressional and deviatoric strain rates, i.e., the “shear (P) m _ (p)

) iVe=— . 3.17
components” of the strain mass tensor are zgrg=pss 2. Qe ; Qe ( 9

=0. This is because from Eq$3.3) and (3.9h), the shear

strain rate We have written the equations in a general form for future

3D BG generalizations such as the cubic to tetragonal
transition’! There are 1+ N,) linear equationg3.17h and
(3.179 for (n+N,) variables{e;},{ AP} that can be written
in matrix form, and inverted to yield the dynamics for the OP
is not independent, but is related to the other strain rates by strains{e,}. We do not pursue this general treatment here,
consistency condition through E@.10b, which turns outto  but now specialize to the TR case and give the result for SR
be precisely the compatibility constraint. case at the end of the section. Other symmetries are consid-
ered in Sec. VI.

es(K)

C3

= %[ikxuy(lZ)Jr ikyuy(K)1, (3.13

B. Dynamics by strain variations
TR underdamped dynamics

For the TR transitionn=1,N,,=2,N.=1; the non-OP
strain is compressiona;; the OP strains are “deviatoric”
and shear £, ,=4 respectively; whereas the symmetry con-
stants of Eq.(3.6) are c;=c,=c3=1. The strain mass-
density components arep;;=p(K)(Q1/Q3z)?=p22.p12
=p(k)(Q1Q2/Q%) =pa1. We haveNg+n+N,=2+1+1
=4 equations like Eq(3.17),

The compatibility conditiong3.5) become

CP(r,t)=2 QP (r,+2 QPe(r,t)=0,
€ i
(3.143
and therefore in Fourier space

c<p><|2,t>=§ QP (ke (k,t)+ > QP (K)e(k,t)=0.

(3.14h p22€2t p21€1=— P —QxA—Aze,, (3.183
&
The Gibbs free energ¥({e.}, {e;}) depends harmoni- ?

cally on the non-OP strains throudland anharmonically on JF
OP strains througlf, whereas the Rayleigh dissipati&®i* 0=— —QaA —Ales, (3.18b

to the lowest order depends harmonically on all strain rates. des

Thus,
1 p1€1tp1gr=—a1e1— a8~ Q1A,  (3.180
V=fdeh+F({ed), f=52 ael,

i Q181= — Q82— Qse3. (3.180

024114-7
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There areN,,=2 nonlinear equations foe,; and n
+N¢ =2 linear equations foe;,A. We can use the compat-

ibility equation(3.189 for the strain mass densi{y)ss,(IZ)}
components in Eq3.12) to write the expression on the left-
hand side of Eq(3.180 as

P1191+P1282:Q_83- (3.19
3

The Lagrange multiplier of Eq.3.1809 is determined by
the OP strains as

a1,€2 + ale3 +

(3.20

where a;,=a;—iwa;. Substituting Eq.(3.20 into Egq.
(3.18 with the identity

A(K, @) !
0)=—
Q3

4Pow2Q1> e
Q /7°

_ Qe
P22 .021Ql

4po
k2

yields the TR equations in terms of the OP strains afne,

: (3.21)

[ sF

k2 Q5 Q.Qs
2 _ . ’
wE,=— +a,| —e gq| —1wAse, |,
Po 277 _58; 1 ( i 2 % 3 282
(3.223
w’e =—k2 oF _Qzst —Qgs —iwAie
Po 377 _58; lo i 2 i 3 3€3 -
(3.22h

define

Q(k)

Qu(k)
The non-OP strain in Eq3.18d is aderivedquantity,

Qe.o(k)= (3.23

eq( k,w)=— [Q24( ke k,w)+ Qa,l(R)Sa( E,w)]

=S8+ S3¢3, (3.29

defining for the TR case, the consta|$$(R) mentioned in
Eq. (1.4), which depend only on the wave vector directign

i.e., no nontrivial length scaf®,and not on its magnituclé|
(i.e., no length scaje
In a compact form withf =2,3,

, K[ S8(F+Fy)  S8(R+R%)
pow e =" Tt = . (3.2
dey (K,w) deo* (K ,w)
This is written as an OP strain-only dynamics feq;r(ﬁt),
.o 1.,[8(F+F° S8(R+R%)
poe(r,t)=ZA ——+———= , (3.26
47\ Seurt)  sl(rh)

PHYSICAL REVIEW B7, 024114 (2003

which can be written as a strain-momentum continuity
equatiort® The OP free energy from Appendix B is

Fo=E

r

% ; (&85)24-(7— 1)(8§+ sg)-i-{(sg-i- 8:2;)

—2(e3—3s,e3) +(s3+£3)%)|. (3.273

This free energy is invariant under them®én point
group operations. Specifically, under three fold rotations,
Exx' =Exd4+3E,y/4+ (\3/12)Eyy;  Eyryr=3ExtiEy

- (\/§/2)Exy; Exryr=— (\/5/4) (Exx— Eyy) - %Exy and the
non-OP and OP strains transform a$=e;,s,=—3s,
—(\/3/2)e3,e5=(\/3/2)e,— L&5. The(anharmonig OP free
energy has not been explicitly used in the derivation of the
dynamics, whose structure depends only on the number and
nature of the(harmonig¢ non-OP strains.

The compatibility induced OP-OP interaction is the
non-OP free energy written in terms of the OP strains,
fles({e ) 1=F({e¢}) with (€=2,3),

1
2%

Fe=Zay > eNOUG  (T=1ee(r 1)

Tl e

1 . "
=5a > Ui (Redksl (k). (327H
k,€,¢"

The Rayleigh dissipation function for the OP is

1 .
R== > Ajs2, (3.283
2 re

and the compatibility-induced contributid®f is the non-OP

Since ratios of compatibility factors recur, it is useful to dissipation written in terms of the OP strain rates

C_ai ) g C YA Zr
R =5 2 s€(r,t)nu,(r—r Yeo(r',t)
rr’ .,
ai C T 2° » Tk »
:?wze’ nm,(k)w se(k,t)s€,(k,t). (3.28h

Thus, explicitly

S(R+R% 2 NI (3.280
—_ s = € ,@), .
58?(k,w) o et
where the effective OP friction is
A =ALSe e tarmg . (3.280

Here the(frequency-independenpotential and friction ker-
nels emerging from the dynamics are the same,

ns (k) =Ug, (k), (3.293

where

UL/ =S1¢S1¢:=Q¢1Q¢ 1=Q¢ Q¢ /Qi,

and (as from static-constrained minimizatign

(3.29H
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L (K2—K3)? k2e; — 8K,k e3— (k2—k?)e,=0. (3.30
gk =—3"==(Q:/Qv%  (3.299 PO e
The strain mass components are;=p(k)(Q;/Q3)?
=p22, p12=p(K)Q1Q2/Q5=pp1. We have n+Nyp+N;
- 2 =2+1+1=4 equations like Eq.3.17), and with arguments
US(k) =42 =(Q5/Q,)? imili
33 k) K (Qs/Qy)%, similiar to the TR case we have, from the second part of

Appendix A, Eqs.(A9) for £,,e;,€3,

2
X

2Kk, (KZ—K2)

U§3(R): KA =

. § . SF
Q,Q3/QF=Ug,(k). p2oEat p2i€1=— .
2

—Q,A—Aje,, (3.313

Both the friction and potential kernels depend on the wave-
vector direction k, are independent oflk| for long
wavelengths! and are “anisotropic long-range” functions
encoding the discrete symmetry of the lattice, which fall off pri€1tpiEs=—ae—aje;—QiA,  (3.310
in coordinate space with a dimensional power,
7°(R),U(R)~1/RP. At k=0, the potentials are undefined
and we setU§'€,=O. (A Coulomb potential, by contrast,

diverges for long wavelengths as1/k? and falls off as I . . .
~1/RP-2)) Substituting for the compressional straie, yields

Although Eg. (3.26), derived from strain variation will coupled equations betweeg ande,. As in Eq.(3.23, itis

give the same results as H@.4), derived from displacement convenient to define a variable for the ubiquitdQgatios,
variation, they are conceptually distinct. In the displacemen{hroughQH’EQf/Qf’ . Then,
picture, Eq.(2.8), or any equation obtained from it, is solved

0=—aze;—aje;— QsA, (3.31b

Qie1+Q3ze3= —Qzey. (3.310d

with (uy,uy) on a lattice, with both initial and boundary . cgEZ - 5
conditions applied to the basic variablgs Strains are de- ~ Pog2= ~ 5 [Q21Qz(a183+ a183) +(21Q5 182+ F2)
fined as derivatives of the basic variables, and are derived _

quantities, e.g.F~&7 is a fourth power of derivatives. By +(a1Q3 1+ AYesl, (3.323
contrast, Eq.(3.26 is an OP-strain-only dynamics, and is

solved in the strain picture, witlk,,e; on a lattice; with 200

initial and boundary conditions applied to the basic variables
{&,}; and with theF ~ &7 term as zeroth order in derivatives.
(Indeed, the highest-order derivatives are strain-gradient L o
squared or Ginzburg termsThe non-OP strain is a derived +(agta;Qzes]. (3.32b
quantity, obtained after solving for the OP and thenusing Eq. _ ) )

(3.24), the displacement can also, in principle, be derived Eliminatinges, these yield the final resufA15) in terms

.. 3 - 2
po€3=— T[Q2,1Q3,1(3182+ ajey) +(az+a;Q3 )e;

using Eq.(3.9). of the OP strain alone,
In displacement-picture simulations, terms of the Landau
free energy and Rayleigh dissipation are all anisotropic, be- c%kz SF N by (Q,/Q3)2

ing powers of the various displacement-derivative combina- p0w282=T er—iwAje,|.
tions. In strain-picture simulations, the anisotropy is in the
symmetry-specific compatibility kernels, with OP strains nu- (3.33
merically treated as isotropic “scalars.” The strain picture _ 2, 219 _ S
has advantages, as it works directly with the physical strairff‘ Se bk‘*;n[;?’i‘;_n(gve Oﬁe/(l:f;(nl]/ %16‘” ’erlv(;‘;:?a;r’; ac‘;io_n;wlzix, as is
variables, and uses compatibility kernels evaluated once ar}ﬁe connectior(A13) tg non-)é)P sptrains ' PIEx,

for all, which encode the unit-cell symmetries and give in- '

sight into energetically favored textures.

a1
58; Bw

(Q:Q2/Q))
SR underdamped dynamics €1= S8z, S12=— B, b,,  (3.343
We now turn to the square-rectangle or SR case, which
shows a different structure, nameliyne-retardedOP poten- (Q,/Q3)
tials and friction. For the SR case=2,N,,=1,N.=1; the e3=S55¢5, ="—"pg (3.34b

w

non-OP strains are compression and steare;; the OP
strain is deviatorice,; the symmetry constants am=C;  whereB,=1+b,(Q,/Qs)2. The compatibility condition is
=42,c3=1. The compatibility factors are Q4(k) manifestly satisfied as an identity.

= —k?/\2,Q,= (ki —k3)/\/2,Q3= 2kck, . Then the compat- It is convenient to write the second term on the right-hand
ibility constraint(3.6) become¥?4 side of EQ.(3.33 in terms of real and imaginary parts,
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~ w

kl 21 1,

@ ( k)

Qz)2
2
~ w
il
(3.39

Q3
with U¢, 5° given explicitly later. With this separation,

=a,U° —iwa;n° ,
w

2 c C
c S(F+F S(R+R
p0w282=—2 2| 2 = )+ (.* = ) , (3.3
4| sk (k,w) Bes(k,w)
wherec§:2. The OP dynamics foafz(F,t) is then
. 1., IF+F® 9(R+R"
pog2(r,t)=5A —+—>—| (337
27 | dey(r,t)  deo(r,t)

where the OP triple-well free energy is the same as in Ap-

pendix B,

Ko -
Fo=2 (1-1)e3+es(e3- 1)+ 5 (Asp)2 (3383
r

Under fourfold  rotations, E,,—Ey,Ey,—E,Exy
——Eyy, the non-OP and OP strains transform eg

—e,e0— —&,,63— — €3, leaving the free energy invariant
and similarly for other #nm point group operations. The

(anharmonit OP free energy is not explicitly used in the

PHYSICAL REVIEW B7, 024114 (2003

a
l+ a |bw|2Qi3}
3

~ 3
U°(k,w2,vz)=a—lQ§,3

derivation, and the dynamics depends only on the numbey;in

and type of the non-OP strains.

We note thaiw dependences carry an infinitesimal imagi-

nary part to maintain causality, and thus E8.37 has con-
tributions only from earlier times,

IF® t . B,
—=a1f dt’ > US(r—r' t—t")e,(r’ t').
(982 ) I7

(3.38h
The OP dissipation in addition to

1 .
R=> > Agel, (3.393
r

now also has a retarded compatibility contribution,

t - - . -
f=aij dt’ > 7o(r—r’,t—t")e,(r't").
— 0 r!
(3.39H

Both are ALR functiondJ®, °~ 1/RP as before but are also

retarded in time For negligible non-OP frictiom;=a;=0,

the compatibility-induced friction vanishes; n°=0. The
non-OP compressional and shear str@gg{?,t) arederived
guantities obtained after solving fmrz(F,t) and using Eq.

(3.34), and the constant§;, are frequency-dependent and

therefore retarded in time, like the compatibility potential.

The real and imaginary parts of the kernel of E8.35
that give rise to the compatibility-induced OP potentitl
and the friction coefficient;® are explicitly

[(1+b,Q] 9% +b7Q1 4]’
(3.40a
where the “velocity”v=w/k, and
a; ag ag | a; ag
g+ w?— — —wlg—— —
as aj ag ai a; as
b= — "% b= N2
a, way wa;
1+ _) 1+ _)
a; a,
1\ 2
2 9°+| —
as a
|bw|25br2+bi2=(—) ——. (3.40h
al wal
a
Similarly,
4 2 aé 4
(Q1,8Q29%|bul|*+ = (Q29
re(k 0?07 = -
[(1+b,Q12%+b(Q19"]
(3.400
4pg w)z
=1-——. 3.40
o=1- (% (3409

Note that both the static and dynamit® are zero for
diagonal orientations, whe@,=0. The zero-frequency limit
U°(k,0,0)=US(k) is the static bulk compatibility
potentiat®?* used in earlier TDGL simulation'd,and is

US(k)=Q3 /[1+(a;/a3)Q3 4. (3.41a

This favors diagonak,/k,=*1 textures(when Q,=0),
and the derived non-OP strairg,e, are expelled in a kind
of “elastic Meissner effect,*® as can be seen from Eq.
(3.34). The bulk static compatibility potential is independent
of |k| for long wavelengths and does not set a domain-wall
separation length scale. Near the center pdintdf the Bril-

louin zone(BZ) the US(R) depends only on the wave vector
direction. It is only in combination with the surface compat-
ibility potentia® USUrfacqk)~1/k that equal-width “true”
twins (that satisfy a width-length scalif?) are obtained®
An exact Fourier transform to coordinate spR@®nfirms

this preference for diagonal orientations: with des -r’,
the coordinate space compatibility potential

. G(60
Ug(r—r’)=— (»)
Ir—r’|?

(3.41b

is found to have in the prefactor, a basic four-lobe structure
from cos 4, with higher harmonics. Wita=8a, /a3,
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sin 26 a® | . a®
5cos4| 1+ +| 17+4 sin26+| 13—4
1+a? 1+a?
G(0)= % , . (3.419
16V(1+a?)| 1+ cos 24
1+a?

Figure 9 in Appendix GTDGL dynamic$, with a single-site  trate the rich variety of texturings, and later outline a tenta-
initial condition, clearly shows multi-lobe strain textures tive scenario for nucleation and growth.
from these higher harmonics. Figures 3 and 4 illustrate SR case simulatiSnsder the
Returning to the dynamic case, we see from E340 BG-equivalent dynamics of Eq3.32, with red, green, and
that the repulsive kernel has \&locity-resonant structure blue representing positive, zero, and negative strains, respec-
through b,=g=1—(v/vo)? strongest at a propagation tively, with relative color intensities. Parameters are in the
speedv =v,=+asldp,, Or a time-dependent propagation captions and quenches are into the martensitic regime
length scale L,(t)=t/t, with t,=(4po/az)*®. These =—0.25. Figure 3 shows time sequences of BG dynamics
non-OP inertial effects, with anisotropic directional modula-for the OP deviatoric strain and the non-OP shear strain.
tion or finite-velocity retardation~(w/k)2, compete with Note the grain-boundary-like regions that rapidly anneal out
frictional delays~ w?, with the peaks becoming singular for by tip growth, carrying the shear strain that is already ex-
vanishing friction. This is somewhat like electrons interact-pelled from the diagonal-domain regions. For these param-
ing by exchanging a photon, where the finiteness of theeters, the propagation timg<tp; the unit-cell relaxation
speed of light produces retarded Coulomb potentialhe  time is defined later. Figure 4 shows the time sequences, for
resonant structure can be thought of as the OP strain texturesnaller elastic constant&@nd hence smaller shear mode
“exchanging a non-OP phonon mode,” causing inertial timevelocities/larger propagation timesot,>tp . We now have
delays.Ly(t) is the time-dependent size of an expandingdomain walls propagating away from each other, giving the
anisotropic “region of influence” within which changes in effect of a “zoom lens” moving in. Note the non-OP shear
texturing at one point enforce compatible changes in texturfronts moving with the OP wallscompare with Fig. § Mi-
ing at other points of the lattice. This phonon mediation iscrostructure as shown in Fig. 3 has been seen in FePd using
also described by the equivalent instantaneous dynamics ghase-contrast microscopfyand twinning waves have been
Eq. (3.32 with deviatoric and shear strains obeying two found in 1D models.
coupled underdamped equations, which are convenient for For parameters as in Fig. 4 and for an intermediate tem-
numerical simulationg® perature,r=0.85, Fig. 5 shows dynamical stress responses
The anisotropic potential kernel)[k, w2, (w/k)2], is to applied static deviatoric streg%(r)=Po/[1+(r/rg)?],
plotted in Fig. 2. This shows plots of the kernel versus scaleavherer,=1 is the width andP,=1 is a time-independent

velocity, namelyp_E [4poTazv and various BZ wave-vector strength. The single-sign induced strain has a large energy,
direction® a=k,/k, for scaled frequencies 2 and the system elastically screens it by nucleating hierarchi-
xRy

=w[(a'/a)]?=0.1, where we takea/a,=aj/la;=a’'la. cal opposite-sign elastic multipoles, with the propagation
U® determines the positive energy costs of the non-OIi‘en.gth sgttmg a spale, and wave fronts moving out. A sinu-
strains, which the system wants to eliminate. The smalles?o'daIIy time-varyingP,(t) can produce even more striking

UC is at diagonal texturinga|=1, and zero velocityp propagating patterns. Similar “elastic photocopying” was

=0. The most-non-optimal strains are the most stronghfound previously u§in0934TDG_L dynamics, with the surface
driven, with largeU®. The striking features of Fig. 2 are comp4a0t‘|1t1)|hty potential™** setting a domain-wall separation

clearly a preferred diagonal orientatiom==+1, and a Scale.
strongest-repulsion textural velocity comparable to sound The last BG simulatioff of Fig. 6 shows, for the TR case
speeds;~ \(ag/dpo)[ 1+ a,/2a3] in the ferroelastic material and Eq.(3.26), plots of the OP sheaa:z,Aswith star-triangle

at long times. An extremal textural profits,(K,») in Fou- patterns as found by other dynantft&**and seen experi-

rier space, if determined from an effective Lagrangian whos&entally in crystals of lead orthovanadate, ;0,),
variation yields Eq.(3.36, will be shaped by this peaked which .undergoes a tr'lgonal to monoclinic tranS|'t.ﬁ3nsefe
structure. This suggests that textures will tilt diagonally and@lso Fig. 8. Once again, theg plot shows that equilibration
thereafter remain stationary and rigid; and that the most uninvolves expelling non-OP straingexcept at OP corners,
stable or strongest-driven transient interfaces between phas#éh e; globally vanishing.
will move/grow at a constant velocity close to the speed of Finally, we note that linearizing the BG dynami(&36)
sound. about equilibrium in the zero-damping limit yields the famil-
A fuller investigation of possible evolutions, with inter- iar wave equation. “Textural phonon” spectra can emerge.
mediate states that can be sensitive to elastic and frictionddor a finite LoX L, system we can also include surface-
parameters, requires further work. Here we will only illus- compatibility restoring forces, with a kern#, usurface
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~(a3/a1L0)/|lZ| The Iong wavelength OP strain oscillations i.e., the bare noise is Markovian. Hefe= kgT/Egy, andEg is

then have velocities (k)/k=uv (k) that are obtained by solv- an OP elastic energy given in Appendix B. For small stress
and noise, a simple use of the substituti@), justified by

ing
a detailed analysis, yields effective OP stresses and noises,
1
2 _~ [({E"Y+a.,UC+a,Usurfac , 3.4
v 2p0[< )tag a; 9 (3.42 p}Ot— Pe+pS, g%ot_gg_}_g(' (3.443

where(F") is a free-energy curvature averaged with a prob-where

ability distribution peaked at the equilibrium structure. For

infinite systems the long-wavelength spectrum is linear. For - -

finite Lo, very long wavelengths probe the system gizand pi=> piSe. 95=2> GiS¢. (3.44b
w~(|k|/Lo) Y2 This is the “dyadon spectrunt® of waves in ' '

twin bands of martensite. Anomalies have indeed beeq\”th constantsS; as in Eqs(3.24 and (3.34, respectively,

observeff in some ferroelastic phonon spectra. However, We&or the TR and SR cases. The total correlations are
do not pursue this conjectured explanation here.

tot ~xtot _
C. External stress and noise terms (g (k,t)g (K )= ZTA" f'(k)gk ko(t=t ()3 449

We now consider strei@s(F)} and delta-correlated noise

{g94(t)}, which modify the free energy as whereas in Eq(3.280),

F—F—2 (Peec+0eee), (3.433 A o=4, e'Ae+2 a{SS, . (3449
€,

_ The elimination of non-OP strains thus induces cross cou-
f—>f—2 (pie;+gig), plings, so non-OP stresses induce OP variations; noise cor-
i relations become spatially nonlocal; and different OP’s ac-
quire cross-correlated noises. The BG deterministic
dynamics then becomes the BG Langevin dynamics of Eqg.
(1.3). For the TR case the noise is delta correlated in time.

where noise correlations are

(9e(r)Gen (' 1)) =2A;T o 67 7 o(t "), For the SR case with OP only, there is frequency depen-
o . dence, but this can be circumvented by considefing e;}
(gi(r,t)gi(r',t")=2aTé ; 6; ;i o(t—t"), of Eq. (3.32 as our system. Thus in both cases we have two

(3.43b variables with Markovian noises.

FIG. 2. (Color) Compatibility
potential Uk, w2, (w/k)2] for
the square-rectangle SR case
versus scaled velocity, v
=(4polaz)’¥wl/k), and direc-
tion parameter a=k,/k, for
frequency/dissipation  parameter
w’=(wa'l/a)?=0.1. ThusU®is a

2 repulsive and dynamic orienta-
tional potential, favoring diagonal
textures, and moving interfaces.
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FIG. 3. (Color) Square-rectangléSR) case: grain-boundary mo-
tion under BG-type dynamics. The columns sh@ep to bottom
temporal sequences for timef 10, 20, 42, and 70 p&ee Appen-
dix B). The initial conditions ares,(r,t=0),e5(r,t=0) random
around zero mean. Parametddefined in Appendix B are pg
=1,7=—-0.25, and the material is “hardd,=100a;=210; with

r__ r__ Al H H _ — 4 .

A;=123=0.1=a;. The time step iAt=10"". Left column: the  _q_The time step is\t=0.002. Left column: the OP deviatoric
OP deviatoric strair,(r,t) under BG-equivalent dynamid8.32,  girain ¢,(r,t) under BG dynamicg3.32, showing domain walls
showing formation of twinlike regions separated by grain bound-ponagating under the repulsive long-range compatibility potential,

aries that are pushed out by domain-wall tip growth. Right column:giying the impression of a “zoom lens” moving in. Right column:
non-OP shear straims(r,t), which is expelled from diagonal-

non-OP shear straiae,(F ,t), propagating outwards with interfaces,

domain regions, and conc_entrate(_:l in the pushed-out grain boundagyncentrated at corners,( not showi. Diagnostics(Ref. 39 att
regions €; not shown. Diagnostics(Ref. 39 at t=70 wereE —1000 were E=—1.4(e,)=0.0044, max-min e,=(1.23,

=—1.08{e,)=0.0012,max-mire,=(1.33-1.35); max-mine; —1.23): max-mines=(0.33~ 0.49).
=(0.062;-0.058).

FIG. 4. (Color Square-rectangléSR) case: interface propaga-
tion under BG-type dynamics. The columns sh@ap to bottom
temporal sequences for tinteof 40, 80, 160, and 1000 ps. The
initial conditions aresz(F,t=O),e3(F,t=O) random around zero
mean. Parametergefined in Appendix B are po=1,7=—0.25,
and the material is “soft,"a;=10a3;=21; with A,=1=aj,a;

D. Fokker-Planck description for the TR case, witlz ;— e; for the SR case. The Langevin

) ) ] ~equations are
Langevin dynamics with delta-correlated Markovian

noise can b¥® equivalently written in a Fokker-PlandleP)
description. The set ofIé% random variables labeled hy

={¢,k} is taken to be 0 () =DV 4T (1), (3.463

Xo(1) =0 (1),

{x ) ={ex(k,t),e3(k,)}, {vt={ea(kt),e5(k,t)}. where the frictional force plus internal stress, or “drift” term
(345 is
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e e

FIG. 5. (Color) SR case: strain evolution under BG-type dynam- FIG. 6. _(Color) Triangular to centergd rectangldR) case:
nested strain texturing under BG dynamics of E2j26). The col-

ics, with a fixed, time-independent, Lorentzian-profile local stress. 7
The sequencétop to botton, for time t=40, 60, 76, and 106 ps umns show temporal sequences, with tinoé 10, 4(1, 250, and$620
with the same parameters as Fig. 3, but now0.85. Left column: ~ PS: The initial conditions for the OP strains arg(r,t=0),e5(r,t
dynamic texturing of deviatoric straiafb(F,t). The system reduces =0) random around zero mean. Par,ame(dlea‘lnedrln text are

the energy from the imposed single-sign strain by “elastic photo?0~ 1, 7= ~50,8,=1000,a;=2100;A;=1,8;=1,2,=0 and
copying,” or adaptive screening of the long-range elastic interache time step is\t=10"°. Left column: the OP shear strain(r 1)

tion, generating higher multipoles that propagate here. Right colshowing formation of nested star and triangle domains. Right col-
umn: non-OP compression straéE(F,t), concentrated near domain
corners, and expelled elsewhere. DiagnostRef. 39 at t=620
were E=—43.2, (g,)=—0.003 16{g3)=—1.05< 10 >, max-min

umn: the non-OP shear straéag(ﬁt) follows the OP propagation.

1 J(F+F°) £,=(4.45~2.62),max-mine ;= (3.63~ 3.65).
DS):_WT_E Difl,vau (3.46b 2=( ) a=( )
“ “ The FP equation in Kramers foffh for the time-

whereM (K)=4po/K? is a strain mass. The Langevin noise d€Pendent probabilit(ix,},1v}.1) is

correlation is - - -
aPlot=LP=[LD+L@]P, (3.473
<fa(t)f‘a’(t/)>:ZDESLré(t_t,)v (3.460  where the Fokker-Planck operator for ferroelastics is a sum
of drift and diffusion terms, respectively, given by

with “diffusion coefficient”
J J

L=y, D,

D? =5k TA,  (KIM(K)2. (3.460 axE axt
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X(t)~—N[dF/ax(1)], (4.33

whereN=1/A" describes the damped behavior. Outside this
regime, it approximately describes the exponentially decay-

A formal solution for the probability in terms of the initial ing envelope of the oscillations, at low frequencies/long
distribution i¢® times,

. 92
A=Y ——p®@ | (3.47H

* * a,a’
o IXEOXE,

P({x} (v D= TP(x,}{v},0). (348 0<AIM,  t27MIA’. (4.3b

The FP operator carries the nonlinearity, symmetriesNote that from Eq.(4.10, and (4.3b, larger frequency/
anisotropies, and long-range spatial correlations. Its eigersmaller mass oscillations are damped out earlier.

values and eigenfunctions can be used to describe dynamic We now turn to BG-type evolution equations that cannot
correlations. Since “potential conditions” hof, the  be obtained by adding simple local inertial terms to the stan-
asymptotic probability is a Boltzmann distribution, whigs ~ dard overdamped dynamics such as Mo#l@r B dynamics
can be checked by substitutioris Py=exp[—[(F+F% for a nonconserved or conserved order parameter,
+33, Mu2]/T}. The free-energy minima thus correspond torespectively’® However, defining an inverse massviik)
probability peaks in OP function space, highest for zero= Lp(K)=K?/4po~k? the apparently unusual BG structure
strain rate. For uniform OP this implies a triple-well free Of EQ.(3.26 for the TR case, say, can be written as

energy, but for nonuniform textures there will be a more . . . . R

complex free-energy landscape. The multiple extrema are the€ ¢(K:)=—[1M(K) JLa(F + F*)/dey (K,1) + Arge(k,D)],

TDGL asymptotic states. (4.49

The FP formalism is convenient for discussing texturalynere for simplicity,a;=0. On comparing with Eq(4.1b)
dynamics, metastability, and glassy behavior; e.g., to detefne gynamics has an intuitively appealing interpretation. It is
mine strain correlations that correspond to experimentally,o dynamics of a set ahonlinear, coupledoscillators, of

probed response functioh$?® or to calculate temperature- i . . -
dependent transformation rates through first-passage fﬁnes.(two component spring extensiol e(k.t), labeled byk

. . — 2 _
Both strains and strain rates appear naturally, as in phenon‘{\fIth different massed (k) ~1/k" that are strongly depen

: gy . : dent on the oscillator labdd: heaviest near the origin, and
enological models of elasticity and plastictfywhich could . o 200
thereby be given a microscopic basis. lightest at the (BZ) edge. Similarly, the damping rate

7o(K) “1=A’/M (k) ~k? is smaller for the larger masses. The

. . C ~ . _
V. BG DYNAMICS AS AN INHOMOGENEOUS ARRAY OF spring couplingu®(k) acts equally over all the BZ oscilla

DAMPED AND COUPLED NONLINEAR OSCILLATORS tors, in a given directiof. Note that there is an intrinsically
large range of damping times~k 2, over orders of mag-

Here, we consider a mechanical analog of nonidenticahitude. (This is reminiscent of decay times at criticality at a
damped oscillators, which suggests a physical scenario fafecond-order critical point From Eq. (4.4a the k—0

nucleation and growth after a temperature quench. We firshfinite-mass oscillator is a special case, with its initial ve-
review well-known damped oscillator results, to fix notation locity é(k—>0 0) unchanged

and terminology, and regimes of validity.

A particle of masdM and friction parametef, driven by
a force —F'=—JdF/dx=—Ax of spring constanA=F",
obeys the underdamped equation

Linearizing around equilibrium extensions, with effective
curvature F"=Fg+Kok?=A(k), and with o}
=A(k)/M(k), the complex frequency is

Mx+A'x=—F’, (4.13 w’=\/wo(k)z—[ro(k)]_z—i;TO(k)_l. (4.4b

which can be written in an equivalent convenient form
The top panel of Fig. 7 shows that the angularly averaged
x=—(1M)[dF/ax+A'x], (4.1b  strain structure factoB(k,t)={|e,(K,t)|?) s or squared os-
cillator extension averaged over a sheflk? is underdamped
Tor smallk oscillators, but is overdamped for largeescil-
lators. The bottom panel shows asymptotic agreement be-

and the general solution is oscillations of exponentially de
creasing amplitude. With natural frequenoﬁzF”/M and

relaxation ratero '=A’/M, the complex frequency 1§ tween BG and TDGL dynamicéSee also Figs. 6 and.8The
1 initial strains are nonzero only in &85 square region, and
S —2_i- -1 the oscillating strains show up as oscillating cold@ret
0 =\w T =79 . 4.1
0~ (7o) 270 (419 shown). The bottom panel shows that for the SR case the

moment(k?) takes on asymptotically the same value in the
BG and TDGL dynamics.
From Eq.(4.4b), the long-wavelength modes are of neces-
Towo<1, (4.2) sity underdamped, V\_/itbor(,—v_ 1m>;, a point made by Reid
and Goodind. We will, for simplicity, consider the regime
when the inertial term is small at all times, and wherenoneof the oscillators are in the overdamped regime

Thus, there is exponential decayithout even one complete
oscillation in the overdamped parameter limit of
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FIG. 8. (Color) Ordinary TDGL dynamics and OP textures. Left
column: evolution for TR case with time=1, 20, and 150 ps and
parameters,; = 10007= —50,A,=A;=1. Right column: SR case,
| . - : a;=100pa;=2107=—-0.25A,=1 showing states evolved from
as ' ' i = : different initial conditions, but the same parameters, illustrating

nearly degenerate multiple free energy minima discussed in the text.

0 100 200 300 400 500 G00 I(F+ FC)

time [ps] ég(lz,t)=—)\m, (4.59

FIG. 7. (Color) Top: angularly averaged square oscillator exten- , ) o )
sion or strain structure factd®(k,t) (defined in the textversus where\ =1/A; . However, the different-mass/friction oscil-

time in picoseconds; for SR-case nonlinear BG-dynamics oscillalators can reach this late-time behavior only at different
tors, labeled byk. The oscillators are at high temperatures4  timesty. Thus for times and lengths introduced through
(where there is only a single-well free energwith parameters as ~27/t,k~ /L, there is a wave vector dependent time scale
in Fig. 4, and an initial condition as in text. The set of inhomoge-t>t or a time-dependent length scalecL(t) for textures
neous strain oscillators of different mask 2 and damping~k?, ~ to achieve the late-time regime, namely,

are averaged over a shell of thicknes&k2n the Brillouin zone.

The heavier, less damped oscillators with smakler0.525 (blue) w<A'IM(K),  t>t,=2m/[(A'l4po)k?],
oscillate, while the lighter, strongly damped oscillators with
=2.65 (red are overdamped. The shells ar$=20.05 and 0.1, L<Lp(t)=(t/tp)*?,  tp=(4po/7A")2 (4.5b

respectively. Bottom: comparison ¢k?) == ,k?|e3|%/2,|e4|? for . . . ]
BG and TDGL dynamics for TR oscillators. The BG litblug ~ Wheretp is the time for relaxation across a unit cell.

asymptotically merges with the TDGL linged). Inset shows early Taking the idea of a late-time equilibration lendtg(t)
time damped oscillations in the BG case and overdamped mondS more generally applicable to the nonlinear case, a tentative
tonic decay for the TDGL case. picture emerges. While damped harmonic oscillators have

trivial and identical final states, an inhomogeneous set of
(4.2), i.e., To(K)wo(K)>1 for all k, even those at the BZ nonlinear oscillators with long-range coupling can have

>

cornerk= \27r. The oscillating, damped texture has to Semek-dgpendent inhomogeneous  final ~ statgs (k,t— o)}

down tosometime-independent state, which from Sec. 111D =1{&(K)}. The oscillations begin around the average value
will be a peak of the probability distribution, where the free- (say, zerd of the initial statee(k,t=0)}, for timest>tp
energy derivative is zero. Then an “envelope dynamics” asafter a temperature quench. Because ofkftependent in-

in Eq. (4.33 for the OP strain is homogeneous damping of E¢..49, the lightest masses near
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the BZ corner, with labelsr>k> 7/L(t)=kp(t) will be /
the first to feel the final state attractor and begin oscillations W=AA;
around the final rather than the initial state. As time pro-

ceeds, the boundary shifts, and the circle lofkp(t)

“initial-state” oscillators shrinks, while the number af2 Since diagonal elements, and the determinant, ofithe
>k>kp(t) “final-state” oscillators increases. Finally, all ex- Matrix are nonzero, EG5.2) implies that asymptotic textures
cept the very smalledt-oscillators are on an equilibration ¢,(k) are determined by the extrema of the total free energy,
path, and the larget-ones[corresponding to structures of which locate stable and metastable textural minima, as in the
time-dependent sizep(t)] have already reached it. There is FP discussion of Sec. 111 D,

thus sequential-scale equilibratigrirom the edge of the BZ

inwards. For the SR casBthe additionaL ,(t) propagation J(F+F%)/de* (K)=0. (5.3
length enriches the scenario. The tentative scenario is consis-

tent with what we have seen in our simulations for givenin coordinate space,

parameters, although the nonlinear mode coupling could in-

14| =] Q3| —]Q31- (529

!
& &

! !
A3 A2

duce more co_mplex relaxation pathways, in more general . .. AF+F9
parameter regimes. el(r)=—2, 2 Neer(r=r")——=—. (59
Thus the unusualBG dynamics implies unusual elastic e de e (r',1)

proper_ties.Sincep(lZ)~1/k2, Iongjwavelength strains are ki- This is a time-dependent Ginzburg-Landau equation, with
nematically blocked from decaying too early, and the scale nsager coefficients that are anisotropic and spatialylo-
dependent damping and equilibration process starts at smaﬁ)-

. o ; al. For negligible non-OP friction parametea(A;—0),
scale textures oriented by compatibility potentials, and ther’?he Onsager coefficient matrix becomes both spatially inde-

spreads to larger length scales, with associated non-OP strg L dent and diagonal in OP labels, yielding an “ordinary”
expulsion. Consequently, materials classes governed by B?DGL equation with a constant isofropic and uniform fric-
dynamics can have rich spatial patterning, metastability an ' '

glassiness, hierarchical multiscale microstructure, and a com-

plex nonequilibrium elastic response.
. 1 J(F+F°
Sg(l',t)z_—,—_,, (55)
V. LATE-TIME —SMALL-SCALE LIMITS OF DYNAMICS Ay de(r,t)

We now show(for all frictions a; ,A; nonzerg that the  put still anisotropic and nonlocal in the elastic forces.
underdamped TR and SR equations are approximated by
TDGL-type equations. The validity of TDGL dynamics in SR case dynamics
any regime was recently questioriédand an alternative
overdamped dynamics, obtained by dropping displacement- o2
acceleration terms in Eq2.8) was proposed®’ Appendix ~ (3-36 in k,w space,
C shows they are equivalent.

For the SR case, from dropping OP inertial terms in Eq.

F2—iw[Aé-i—ainc(k,wz,vz)]sz-kalUC(R,w2,02)82=0.
TR case dynamics (5.6a
For the TR case, the late-time equations, from droppingryis can be written as a generalized TDGL-type equation

8P2§c;ra|n—acceleratlon terms in E(3.26, are with Eq. with retardedOnsager kernela(r —r’,t—t’) in coordinate

space,
S A R=—2EF) sy (F+F°)
(K ep(K)=— ——=—. . . t N J(F+
o e gex (K1) az(r,t)I—f dt' > Nr=r" t—t' ) ————.
—® r’ (982(r,,t,)
This truncation is valid only for textures in a low-frequency (5.6b

large-wave-vector regime as in E@.5b. For a;=0 Eg. ) . i .
(4.53 follows, while for the general case, an inversion yieldsSince the general TDGL structure is a current proportional
to a “force,” the Onsager coefficient\(k,o)=1[A}

< d(F+F°) + 7%k, w%,0?)] is like a dynamic “conductivity.” We con-

ze(k,t)= _; Neer(K) g (Kt) (5.29 sider, however, the low frequenay— 0, or asymptotic long-
e time limit, keeping the linear term in frequency, but neglect-
where the Onsager coefficient matrix is, wAj=Aj, ing the quadratic and higher-ordes?, (w/k)? frequency
dependence in the kernels. The regime of validity is consid-
—1[ Aj+aiQ3, —a;Q.1Qs1 ered below. This yields an instantaneous nonlocal TDGL
A= Cal0,04, AltalQl, | (5.2b  equation as in the TR case, E@5.4), with a single
= 1x2l=3l M2t 912l ¢=2 order parameter. In Fourier spaceF°
with the determinantactually isotropic forA,=Aj) =(a/2)2¢ US(K)|e,(k,1)|2, where the retarded compatibil-
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ity potential reduces to the static expressfitof Eq. (3.41)
and the Onsager coefficient(k) is given by (k)=1[A,
+a} 7°(k,0,0)].

For non-OP frictiona; 4a; 3—~0, »° vanishes, and we
again recover an ordinajocal, instantaneoyd DGL equa-
tion as in Eq.(5.5 and ¢ =2 with compatibility forces re-
maining nonlocal. Thus the model used in previous Wik
a specific limit of the exact dynamics.

In a regime similar to Eq. (450 (with d’?
=max[ajaj/a,as][a)/a)?]}, the non-OP inertial delay
(po/az)(w/k)? and frictional retardation~(wd’)? can be,
respectively, neglected, yielding E5.5), for lengths L
<minLp(t)Lyt)], and times t>t;=(2md’)¥2 These

simple heuristic estimates may not, of course, be strictly
quantitative, but capture the diffusive aspect of the late-timgy,
relaxation. Figure 8, left column, shows that the TDGL

PHYSICAL REVIEW B7, 024114 (2003

dynamics structure will be the same for all types of @bd
indeed, 3D transitions. However, the nature of the non-OP
strains determines the symmetry of the compatibility kernels.

In 2D there areN=3 strains(compressional, deviatoric,
and shegrand one compatibility equatioNi=1). The dis-
tinct ferroelastic transformation@ig. 1), order parameters,
and all possible symmetry-allowed combinations of strains in
the Landau free energy, were found by Hagattal3® using
the computer progransOTROPY. These transformations fall
into two classes determined by the nature and number of
order parameters.

(A) For either a two-component OP or two one-
component OP'sN,,=2,n=1), we have the TR case, the
TO case, and the square to obligl®0D) case, respectively.

(B) For a one-component OPNf,=1n=2), we have
e SR case with deviatoric OP; the square to centered rect-
angle(SO) case with shear OP; and the rectangle to oblique

dynamics? for the TR case yields textures similar to the (RO) case with shear OP.

(longer-run BG dynamics of Fig. 6.

In 2D group theoretical symmetry notation, the transfor-

We note that the free energy can have several metastablg;iions in Fig. 1 aréa) pAmmto p2mm, (b) p2mmto p2

minima with different microstructure, but closeby free-
' ¢) pAmmtoc2mm, (d) pémmtoc2mm, (e) p6mmto p2,
energy densities. Thus the nested stars of Fig. 6, under pe( )P m (dp (© p p

) ) . Ahd (f) pAmmto p2. The OP compatibility kernels are fre-
turbation, yleld rhqmbohedral structures of sI}ghtIy Iower €N-guency independertiependentfor case A(B).
ergy density® (which are also obtained directly with a
different initial random-number segdrhe multiple-minima
picture also emerges in TDGL simulations for the SR case of  A. One non-OP strain, two OP strains(N,,=2,n=1)

Fig. 8 where <_jiff§rent random.-number seeds produce .three TR case, driven by combined deviatoric and shear strains
SR case quasitwin textures, with diagonal domains of differ-

i o .~ &,,e5. This is studied in the text above. The TO case differs
ent number and separatidhSuch quasitwins were previ- from the TR case only in that, [Eq. (3.27a] includes terms

ously obtained in a displacement picture by Monte Carlo

imulation2* The total f b h ¢ up to sixth order in OP strains.
simula |02n. 1€ fotal Ire€ energies in each case are exten-- gq case, driven by independent deviataricand shear
sive ~Lg, while their energy differences behave as the

, . : strains,e5. For the SO case, there are two distinct OP’s that
length ~KyL, of the diagonal domain wallévith compat-

= ag* Pal~  drive the transition, and the OP free energ is
ibility cost from U° vanishing: the free-energy density dif-

ference is then~1/L,. (A surface compatibility potential
sets a domain-wall separation length sth#nd would raise
the degeneracy, favoring equal-width “true” twing.he bar-
rier between states with differing numbers of walls is the cost

~#Aql, of a fractional-length kink in the domain wall and where the constants are merely illustrative. However, the har-

; P AqLo/T) ) ;
the barrier crossing time- ehato/D, _ monic non-OP energy and thus the form of the dynamics and
Thus, in general, the ALR potential can produce athe kernels, are identical in both cases.

multiple-minima free-energy landscape, with nearly degener-

ate, differently textured states separated by large barriers. _ _

Initial conditions or intermediate-state dynamical scales can ~ B. Two non-OP strains, one OP strain(N,,=1n=2)

lock the system into one of the metastable states. The possi- SR driven by deviatoric straine,. This is considered in
bility of multiple minima is consistent with recent analyses jetail in the text above.

of models of competing short- and long-range interactfons. SCdriven by shear straine; The OP free energy now is

In general, the inclusion of noise in BG-Langevin simu- 55 in Eq.(3.383, but is Fo({e3}). The non-OP harmonic
lations will enable the system to more easily find Iow-energyenergy f=13 a,e?+a,e?, and the dissipation iSR!
2

minima. We now turn to other symmetries, and give the dy- . oo h he derivati .
namics for the four crystal systems of 2D ferroelastic transi-— L Z=r21€1 T 862+ Age3]. Thus the derivation carries
tions. over, with the interchange<2 3, and, in particular, the com-

patibility factors and symmetry constants interchanged,
Q,<Q3,C<>c3 in the dynamical kernel of Eq3.40. The
w—0 limit, analogous to Eq(3.41), is the static result.

1
Fo=5 2 Assl+Boe3+Agel+Bgel, (6.
r

VI. OP STRAIN DYNAMICS FOR ALL 2D-SYMMETRY

TRANSITIONS
Since the derivations above involved the generic strain A a;Q%,
mass tensor and the harmonic non-OP strains and did not a,Ug(k)= — - (6.2
involve the details of the anharmonic OP free energy, the BG [1+(a1/a)Q34]
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This is zero fork,=0 or for k,=0, so domain walls are contributions £ and R), additional anisotropic and long-
either vertical or horizontal, as can be confirmed in simulatange contributionsR® and R®) that emerge from eliminat-
tions. The dynamics foe,,e5 are ing the non-OP strains using St. Venant's compatibility con-
ditions. The kernels are explicitly evaluated for all 2D
. 5 . symmetries. There are also compatibility-induced noise con-
po€2=~ ——[Q21Qz1(A1e3+183) tributions, and this BG-Langevin dynamics of E4.3) or
Eq. (3.46 is a central result. A Fokker-Planck equation
+(a,Q5+ay)e,+(a;Q5+aye,, (6.3  (3.47 is obtained. The BG dynamics can be regarded as
nonlinear, nonlocally coupled oscillators labeled lywith
. 3 - unequal masses 1/k2, and dampings- k2. The textures are
Poes=~ 5~ [Q21Qa1(a18,12:€)) the set of final rest positionée (k,t—)}, with largek
] oscillators (small-scale strain texturgsequilibrating first.
+(Fa+a,Q585) +(A3+aiQ5)es].  (6.3D  The late-time envelope dynamics that guides the damped os-
cillations to this equilibration is of the TDGL form. This
RO driven by shear strajres. In this case the symmetry- analog suggested an appealing picture of sequential-scale
adapted strains are the strain tensor components themselvegolution for post-quench nucleation and hierarchical
that is, e. =E,y, e-=Eyy and e3=E,,. The non-OP free growth, accounting for nonuniform textures.
energy Is We adopt the strain picture in simulations, with strains as
the basic variables on sites of a reference lattice, driven by
f 1 2 (a e2 +a e2} symmetry-allowed terms of the Ginzburg-Landau free en-
+C+ === ; ; s
25 ergy, and by anisotropic, symmetry-specific, long-range
compatibility forces. The free energies are in a standardized

c2k?

2|22

and the Rayleigh dissipation is form, with dimensionless parameters related to experiment.
1 Simulations show that the generalizéa>1) BG dynamics
Rtot— > > {Ale2+a,e? +a_e?}, has rich texturing properties, including repulsive velocity-
r

resonant compatibility potentials that can drive interfaces at
, , . - - speedgnearly equal to the speed of sound.

with a?, ?i _}_T]e non-OF;;lI?stlc ag_(;l_ fnqtlon ciefﬁuents, We now place our results in perspective with some of the
respec E’e Y- h € compatibiity con "OE @IzzeJr Q—_lfz_ other models that have earlier provided valuable insights.
+Qa83=0, where in F_ouner ;pac@+—— y Q=K ~ Baus and Lovetf invoked the 19th century work of St.
Qs=2Kkk,. The derivation carries through, and the static\,gnan829 on the compatibility condition for the strain ten-

compatibility kernel sor, in the context of surface tension in liquids. They consid-
) ered strain as the basic variable in the argument, and noted it
oo a+(Qd/Qy) might be useful in elastic solids. We similiarly work in the
a.Ug(k)= = (6.9 L e : 24
a,\[Q_ strain picture, differing in this respect from previdti&
e E) simulations that work withu gradients, i.e., in the displace-
_ _ . . ment picture.
is as in Eq.(6.2) with the substitution 4+, 2—— for sub- In an interesting and important paper, Karttaal > per-
scripts. formed Monte Carlo simulations to find static textures. They
used the SR free energy that is sixth power in the deviatoric
VIl. SUMMARY AND DISCUSSION strain order parameter and harmonic in the compressional

There are two themes in this paper: first, a derivation Ofand shear non-OP strains, and the simuLations were in terms
ferroelastic evolution equations for all 2D symmetries, andCf the displacement, so effectively=V({u}). Since strik-
second, a demonstration of a strain-bageather than a N9 textures, such as unequal-separation diagonal domain
displacement-basgdlescription of elastic phase transitions. Walls (and tweedl were obtained, they attempted to under-

We have, derived th®>1 underdamped dynamics for stand these: simulation textures by using compatibifify*®
ferroelastics in terms of the OP straifis,} alone, showing to eliminate non-OP strains in the free energy, plotting
that the evolution equations are of a generalized Balesstatio compatibility potentials. However, these effective
Gooding form. The strain-based derivation yields a wavestrain-strain correlations were not directly used in the simu-
vector dependent strain massl/k?, thus large-scale strains lations. Such explicit implementation of the compatibility
have greater inertia. The structure is that of an OP straifrc€s was done in TDGL dynamics, where quasitwins, the

leration . " 't Laplaci " h elastic Meissner effectexpulsion of non-OP straipsand
accelerationg ¢, proportional 1o a Lapiacian acting on € y,eaq were investigated. Other TDGL simulations also

?‘;}m c;f an OPd-?(n.I);_ stress a'?d.an %P-?n[y fr|(|:t|ort1al dfor.ce'used compatibility forces to investigate tweed alGhéThe
e stress and friction are strain and strain-velocity derivagcqq terms considerd224were all different)

tives, respectively, of the effective free ener@({e.}) Our work has the same Lagrange-Rayleigh starting

+F({e(}) and effective Rayleigh dissipatioR({s})  poinf?® as Refs. 16 and 17, which focus early on in their
+R°({e¢}). These contain, in addition to direct local OP argument on an overdamped-displacement dynamics. We fol-
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low a different path and derive an OP-only underdampedasic independent variables. We derive, in two self-contained
strain dynamics, finding it is of a generalized BG form; andsubsections thésame underdamped dynamics for the SR
that the late-time limit is a TDGL-type equation. case,(a) by varying the displacement, afo) by varying the
Our approach differs from an underdamped dynaH’iics strains subject to compatibility.
for the SR case, which did not explicitly consider non-OP
strains; and phenomenologically added a static anisotropic
long-range potential between squares of strains to explain
acoustic signal®® We derive the BG structure from a La-  The (n=2) non-OP strains are here the compressional
grangian with both non-OP strains and compatibility con-(e;) and shear strain®g), and theN,,=1 deviatoric strain
straints, and find aetardedanisotropic long-range force in (&,) is the OP,
terms of the OP strains themselvi@nd not their squargs

1. Variation of displacements

Our dynamics in the TDGL limit also differs from a TDGL e 1 g 1

dynamic£? where strains have been eliminated in favor of c, E(Axux+Ayuy)’ C, E(AXUX_AVUV)'
morphological profile variables;,(r,t), with « labeling the

structural variants. The static potentials between squares of e; 1

the morphological variables were obtained from elastic fields o S(Axty+Ayuy), (A1)

due to inclusiong’
Our approach is in the spirit of the Landau description ofwith the free energW=f+F, where

phase transition¥ working with the order parameters as the

basic and physically relevant variables, and focusing on the

_ 2 2
order-parameter symmetriéas encoded in the compatibility f=5 Z (a,e1+2a3€3). (A23)
factorg, as the source of ferroelastic static and dynamic tex-
turing. The Rayleigh dissipation function is

Further work could include a detailed understanding of
2D nucleatior, growth, and interfacial profiles; extensions
to 3D symmetries such as cubic to tetragohéN,,=2,n
=4N.=6); extensions to improper ferroelastics where
strain acts as a secondary @Ref. 58; generalizations to  From Eq.(A2) and varying with respect ta as in Eq.(2.1)
include defects, in a broader “strain elastodynamics” frame-and (2.2) ,
work; making contact with phenomenologies of plasticity;
simulations and calculations of experimentally measurable .01
strain correlations and nonlinear susceptibilities; and explor- ~ Potx=75{Ad fat Ry]+A)[f3+Rs]+A[Go+ Relj,
ing a hierarchical scenario for shape mentdry. (A33)

The symmetry-specific, compatibility-focused under-
damped ferroelastic dynamics for the strain order parameter 1
encode, in their very structure, the possibility of an evolu-  pou, = E{Ay[fﬁ Ri]+ A f3+ R3] —A)[Go+ R}
tionary textural hierarchy in both space and time, and a ten-

1 . . .
Rmt:E Z [aje?+aLel+Abe2]. (A2b)

dency for interfaces to be driven at the speed of sound, ex- (A3b)
plaining some of the fascinating but puzzling features of This is the result of Ref. 17. where
martensitic dynamics. The dynamical equations could be ap- T
plied to a wide variety of textural evolutions that include of JF
improper ferroelastics, leading to a deeper understanding of fi=Cis—, G,=c,—,
many materials of technological interest such as ferroelec- ' "€y 3 dez
trics, magnetoelastics, colossal magnetoresistance mangan-
ites, superconducting cuprates, and shape memory materials. Rt JR'!
R1’3§C1V3 . y RZECZ . . (ASC)
ACKNOWLEDGMENTS 7813 982

It is a pleasure to acknowledge stimulating discussiondhe_underdamped strain equations witff=AZ+A7,D?
with Professor G.R. Barsch, Professor S. Franz, ProfessﬁAi—Ai, are
Y.B. Gaididei, Professor D.M. Hatch, Professor K. Ka-
wasaki, and Professor J.A. Krumhansl. T.L. is gratefulto The . C1 N
University of Western OntarigUWO) and NSERC of pOel:Z[Az(f1+R1)+2AXAy(f3+R3)+D2(G2+R2)]'
Canada for support. S.R.S. thanks The Centre for Chemical (Ada)
Physics at UWO for support and the Theoretical Division,
LANL for hospitality. This work was supported by the U.S. . Cp o, -
Department of Energy. pog2=7 [D(f1+R)+ANG,+Ry)],  (A4D)

APPENDIX A: SQUARE TO RECTANGLE TRANSITION c
. 3 -
DYNAMICS poes= [28,Ay(f1+Ry) +4%(f3+Rg)].  (Ade)

We need to demonstrate explicitly that the same dynamics o _
results whether displacements or strains are treated as thge also have the compatibility relation of E@.6),
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Q1€+ Qe+ Q3e3=0, (A5)

whereQ,=A%/c;,Q,=—D?c,,Q3=—2A,A, /c;. By tak-
ing derivatives of Eq(A4) we see that EqA5) is identically
satisfied. Thus we can take Ed#&4a), (Adc), and(A5) as

PHYSICAL REVIEW B67, 024114 (2003

€3= _alwe1+QlA:O, (Allb)

Po
e
€3¢1Q3

Q181+ Qze3=—Qyey, (Allo

the three equations to determine the three strains, since thgfhere we have used a relation as in £8.21). From Eq.
two of the equations are linear. Fourier transforming theS?Alla) we have the Lagrange multiplier

three equations, we obtain fex fk,w),&,(K, ),

1 o
powzszzz[clcz(ki_ k)z,)alwel‘i‘ Cgkz(Fz_ | (,()AZSZ)],
(A6a)

1
pow’es= 1 [c1Ca2Kykyay,61+C3k%ag,635],  (A6D)

Q16,=—Q3e3—Qzey, (A6c)

where  F,=dF/dei(k,w), aj,=a;—iwaj, ag,=as
—iwa}, andQ;=Kk?/c,,Q,= (ki —k%)/cy,Q3=2kK, /Cs.

Defining b,=[az,—po(2w/k)*]/a;, and B, =1
+b,(Q;/Q3)? we obtain
e:(K,0)=(Q1/Qq)b,es(K,w),
es(k,0)=—(Q2/Q3B,)e(K, @), (A7)

Using Eq.(A6), and Eq.(A7),

2
ZzngF—' Ale,+ /Q3)%(b,, /B
Pow €2=7 [Fo—iwAse,+a;,(Q2/Q3)%(b,/B,)es].

(A8)

The dynamics is written out in BG form and discussed at theMe use

end of Sec. lll.

2. Variation in strain

By varying Eq.(3.1) with respect to:am(ra,t),sz(r*,t), we
obtainN+N.=3+1=4 equations,

. . OoF .
p2sEat pai€1=— — —QA—Azs,, (A93)
oes
0=—aze;—age;— QsA, (A9b)

{p11€1+ p12e2} = —ase;—aje;— QA —ajes, (A9c)
Q161+ Qze3=—0Qse,. (A9d)

In (K,w) space fore; K,w),s,(k,w) and with a;,=a,
—iway,az,=az—iwas, there is one nonlinear equation,

F
+ Q2A - | wAésZ

w?poEat wipyer= — (A10)
€2
andn+N.=3 linear equations
0=—az,e3— QsA, (Alla

(A12)

and hence the non-OP strains in terms of each otbger,
=b,(Q1/Q3)e;. Finally, in terms of the OP,

e3=—(Q2/Q3)e,/B,,, (A13a)
where
as,— po(2wl/k)?
wa[ ° p;:( - )]' BwEl+bw(Q1/Q3)2-
1w
(A13b)
Then
4100602 . ,
212 82:[F2_|0)A282+W82], (A14a)
cok
where
=4Pow2_ | QiQ2 b,p2y a (Q2/Q3)?
_—Cgkz W P22 g B, 307 g :
(Al4b)

the definitions (3.12 of pyy=p11=(4po/

c3k?)(€1Q1/c3Q3)%, par=(4po/k?c3)(Q1Q2/Q%)p12, and
(Q%-Q2)/Q2=(cs/c,)2=1/2 to obtain

2
20— 2K F = i wAje,+ 1Q3)*(b,,/B
powEr=— [Fo—iwAze,+2a1,(Q2/Q3)%(b,/B,)ex].

(A15)

Comparing with Eq.(A8), we see that the same dynamics
results, whether displacement or strain is regarded as the
independent variable, with compatibility enforced in the lat-
ter case. The BG evolution equation is discussed at the end
of Sec. lIl.

A useful intermediate equation, obtained by substituting
e; in terms ofe; into Eq.(A10) and using Eq(A12) for the
Lagrange multiplier, expresses the equations as a coupled set
for the OP and non-OP shear. This dynamics is given in Eg.
(3.32, and is entirely equivalent to the OP-only retarded
equation of Eq(A15).

APPENDIX B: SCALING OF FREE ENERGY

Here we generalize the free-energy scaling of Barsch and
Krumhanst? to scale theLagrangiansuch that the Landau
free energy is in a standard polynomial form; all the param-
eters are dimensionless; strains are of order unity and times
are scaled in a characteristic time unit.
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The symmetric strain tensor is related to displacement de- The free energyB3) can be written in terms of these
rivatives through scaled strains as

F=Fo({e}, N+ f({e}) +Fgad{Aes}), (B9

1[0, ) 0, 00,

21\ ox, ax > X, IX, (B1)

where

M
and we retain the “geometric nonlinearity,” showing when it 1

is negligible later. The symmetry-adapted compressional Fron/Eo=T= > Z a;e?, (B9a)
(¢4), deviatoric (p,), and shear ¢5) strains are i

1 1 _ > Ko Ko)?
¢1/Cl:§(¢xx+ ¢yy)v ¢2/C2:§(¢xx_ ¢yy)a FGTﬁd/EO:FQFad_ = 7( 843) ' (ng)
r

Here we multiply and divide by an energy dendity chosen

1 .
¢3/03=§(¢xy+ byx), (B2) Iater', to get the overall energy scdlg= haSDO (this drops
out in the endl The scaled parameters are

where c,,C,,C3 are symmetry-specific constants. The free

2 2
energy depends on the order parameter through a Landau a,:_B‘)‘ = KA (B10)
term, and has non-OP and gradient contributions, "Dy ° (Do)

F=F andait Front Farad- (B3) The scaled OP free energy is

The order-parameter Landau energy is )
Flanda/Eo=Fo=2> (7= 1)e{+Fe, (Blla
r¢

where FOOEFpo,y/EOnLE;,gs%. The scaled temperature

contains a physical temperatufg that fixes wherer=1,

1
2, 3BT i+ Fpay|,  (B43

I:Landau:f d3r

whereB®)(T)=B,(T—T,) vanishes at a characteristic tem-

perature T, and F,q, is a temperature-independent OP (T—-To) Bo\?2
polynomial with powers higher than quadratic, which is dif- T= (To—To)’ D, = (To—To) (B11b
ferent for the SR and TR cases. The non-OP contribution is
We now consider the SR and TR symmetries separately.
1 3 2
Fnonzif d rEi Bioi, (B4b) SR case scaling

For the SR caseN,,=1, there is only the deviatoric

while the gradient term is strain, ase¢, is the order parameter and the polynomial is

1 .
— 3 2
FGrad_f d r; K[V~ (B4c) Fp0|y=J d3r[—B@Weps+BO ¢S], (B12
We assume uniformity in the direction, of thicknesg,  In scaled form, the term in EqB113 is
and pass over to a 2D reference lattice of lattice constant
(square or triangular for SR and TR casd3erivatives are FOO:E [sg—cos;‘+s§], (B13)
converted to discrete lattice differences, and displacements r
are scaled i, . Thus where we have factored out an energy denBigy= B(®)\6 so
3 the coefficient of the sixth-order term is unity, arth
" —A f d3r—>ha02 (B85) =B®\*D,. Now we choose to fix Cq so that for three
X o (a=+,—,0) rootsey at =1, the conditions of degeneracy
We further scale strains in a typical valdechosen for con- —a) —a)
venience later, so that a scaled strain teriSpy is then de- Fool{e:" () =Fo({e;”(1)},7=1)=0, (B14)
fined through and normalization
A
bu=NE,, =5 {AMUV_I—AVUM}_I_)\% Au“pAv“p}’ 2 [P WP=1 (B15)
(B6)

are satisfied, and hence determine the typical sivaand all
so V,U,—\A,u,, where U is a dimensionless scaled scaled parameters. For the SR case,
dlsplacemen?9 The scaled OP and non-OP strains are
Co=2, A=(BW2B®)12 D, =(B*)/2)%(B®)?,
d¢=Neg, Pi=N\e. (B7) (B16)
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with the C, “completing the square” irFy, and thus the OP
free energy is

Fo=> (r—1)e2+e2(s2-1)2 (B17)

The r=1 roots,e5")=+1, then manifestly satisfy the con-
ditions (B14) and (B15).

PHYSICAL REVIEW B67, 024114 (2003

TR case scaling

For the TR case we start frérif a free-energy density in
F ooy~ —B&(3—3,63) +BU(#5+¢3)". We follow
the same procedure as abovy®: scaling strains as in Eq.
(B7); (ii) pulling out a common factoDy,=B®\*; (iii)
choosing\ in Co=B®\%/D, to satisfy Eq.(B15). This
gives

To get an idea of parameters, we use FePd shape memory

alloy values?* for the SR case with energy densities in units

of ergs/cmi, B;=1.4x10% B,=2.8x10% C,=1.7
x10, D,=3x10Y, K/a?=2.5x10", and B,=2.4
x 10° ergs/cmi K. This gives, from Eq.(B6), the typical
strain valuex =0.02, elastic constants;=155~a3/2; OP
variation scale\JK,~5, an elastic energy densif,/a3h
=D,=3.8x 1P ergs/cm, and a temperature separatidp
—T.=7 K. (The magnitude oD, corresponds to a mag-
netic energy density12/8+ for fields ~1 T.) Note that\
<1, thus in Eq.(B6) we may drop the “geometric nonlin-

earity” and work with the linear Cauchy strain tensor, as in
the text, that satisfies the simple St. Venant compatibility

condition. External stressé€e.g., compressionaknter as-
—F+2,p;,e;, with scaled pressurp;=1 corresponding to
Do/A=0.02 GPa.

Inertial and damping terms

C0:2, A= B(3)/2B(4)' DOZ(B(S)/2)4/(B(4))3.

(B20)
The scaled free energy is then
FOOZZ (8§+8%)—2(82—3828§)+(8§+8§)2 (B213
r
2 1 2 2 2 2
=2 3(1+2¢,)| 3~ 3(1-ed) |+[e5+e5- 117
r
(B21b

Here the second form explicitly displays ttB14),(B15)
conditions, for 7=1 , when the roots are&f”,s{")
=(1,0); 57,e§7)=(-%,%£3/2), and lie on aunit
circle.

Using the same kind of transformations, the dimension-

less inertial(T) and damping R'") contributions to the La-
grangian are

1 U\ ? 1 .
2| g3 7= _= 2
> f d rpm( at) / Eo=> Z; pou® (B183

1 agi\?
tot_— | 43 |22
R Zfdrj=§1;2’381( at) /E0

1 . . .
=5 Z [aje?+aLe+ ALe2],

T=

and

(B18b

Connection to other scalings

The SR free energy of Ref. 17 can be written as our EQs.
(B9), (B17), and(B18b) by a scaling of strains im=10°,
giving an overall factor: «® absorbed in the TDGL time.
(The elastic and frictional constants are then halfaua, .)

A similiar TR scaling ine=10° yields our Eq.(B21), with a
common factor of3 relating elastic/friction constant§.
Similar scaling can be performed for other symmetries.

APPENDIX C: TRUNCATED DISPLACEMENT DYNAMICS
AND TDGL EQUATIONS

We have shown that the BG equations, dropping strain

where the dots are dimensionless time derivatives, and WEccelerations in am vs k regime, yield TDGL equations. On

introduce a characteristic time urtig, with dimensionless
densitypo and friction coefficients; ; andA; defined as

2
Pm)\zao
t2D,

ais  Bis . Bi/Bt;

al,3 Bl,3t§, 2 (TO_TC) .
(B19)

Here we have used Eq&10) and (B11b) for a; 3 and (T,

Po=

the other hand, droppindisplacementccelerations in Eq.
(2.8 or Eq. (A3) yields equations stated to be differtht’
from the TDGL form. In this appendix, we demonstrate their
equivalence to TDGL.

More generally, the truncation is like dropping all the in-
ertial terms in the Lagrange-Rayleigh equatigqBsl) and
(3.2,

—T.). Wave propagation crossing a nanometer in a picosec-

ond corresponds to a sound speed of 1000 m/s. Wet faice

be of the order of inverse phonon frequencies and the scaled

friction coefficientsa; 3,A; are then less than unity. With a
mass density ofp,,=10 g/cn?, lattice constanta,~3 A,

EV r?,,(r#,,=—2v &VO';W,

(CD

given as a balanéébetween derivatives of the stress tensor

andt,~ 1012 s the dimensionless density, or ratio of kinetic 7,,=dL/SE,, and the damping force tensow,,,

and elastic energy densitiesgg~1. We work with param-
eters po=1Ky=1ty=1 picosecond, a fixed rati@;/a,
=2.1, anda; =100 or 10, witha;,Aj,a; as unity or less.

=R"°YSE,,,. Clearly;” one cannot proceed in two dimen-
sions by simply dropping the&, derivatives in Eq.(C1).

Such a procedure would give/“,=—0';w, which is not
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quite correct. For the SR transformation, for example, this is Q.\/as,
15— —(ays/a; Je,s; and e,=—(1/A})(9F/de,), where el:(Q_S YA
F~sg is just the local triple-well free energy. This is the
kind of overdamped dynamicswithout compatibility con- Q>
tributions, that would emerge if all the strains were indepen- Q_3
dent. 3= — a—QZ €p. (C7)

We now show that the truncated displacement dynamics 14| 28 _1)
(C1) is in fact a TDGL dynamics. a1,/ \ Q3

. . Hence
TR case displacement truncations
2

Dropping {u,} and keepingA ,u, in Eq. (2.8) yields'"® as, %)
equations that in Fourier space are —iwAye,=—F ot - 3Q1 )

aikxel+AékX82+Aéky83= _{alkxel+ kXF2+ kyF3}, 1+ a_lw Q_S)

(C2a
ajkye; — Ajkyeo+ Afkye 3= —{askye; —kyFo+k,Fa}.
(C2b
Using compatibility(3.189 we can eliminate
e1=—[Qz(K)z2+Qs3(K)£3)/Q1(K), (C3
where Q,/Q,=[ (ki —k)/k?]; Q3/Q;=2k,k,/K?. Further,

Eq. (C2) can be written in matrix form as

(kx Ky
ok Kk

Fo+F5
Fa+F§

&2
M

: (C4

&3
where M., is defined asM =k, [A;—a;Q2/Q1],M33
= — kA3 (k /k)ai(Qa/Q)].  Mayg=k[As—aj(ky/
k)(Qs/Q1)], Ma=k[A5+a1(Q,/Qy)]. HereF§,F§ are
chosen to match the right-hand side terms of EZR), so
that  F5=a;[(Q5/Q%)e2+(Q2Q3/QF)es], and  F§
=a1[(Q2Q3/Qf)82+ a;(Q3/Q;)%e4] and can be written as
derivatives of a compatibility potentidd®,

IF+F°)

F2‘3+ Fg 3= T . o (CS)
' 682‘3(k)

where  Fe=3a;3:U%, e.(kt)el (kt)  with U,
=Q,Q, /Q?,. Inverting the matrixM of Eq. (C4) yields
Eqg. (5.2), and then the TDGL link is as in the text. For a
choiceé® aj=0, one gets the ordinarffocal, instantaneouis
TDGL equation, namely, E¢5.5).

SR case displacement truncations

Similarly for the SR case, dropping displacement accel-
erations compared to gradients of displacement velotities
in Eqg. (A3) yields the Fourier space equation, wih,=a;

- | (l)a.il y

FIG. 9. (Color) Evolution from single-site initial condition for

Cq C3 ky ) . SR case under ordinary TDGL dynamics. Times ate

ol Ko Rl B =P g e3=—[—loA+F,], (C6a  =0.13,0.16,0.18, 0.24 ps, witht=10"*. The initial condition is

2 2 X sz(F,t=O)=0.0001 at a single site and zero elsewhere. Non-OP
cy Cs Ky . friction constants area;=0=aj;. Left column: “soft” case, a,
—laj.e1+| —|asz, k—)e3=[—|wAé+F2]. (Céb =2a3;=2,7=—50A,=2. Right column: *“hard” case, a,

2 C2 y =2000a;=20007=—-50A;=2. (Since colors are relative, the

Then compatibilitye; + (Q,/Q1) e+ (Q3/Q1)es=0 gives background changes, with changes in evolving average intgnsity.
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Separating real and imaginary parts of the square bracketfpm similar initial conditions.

and using the notation of E¢3.35),

—iwe,=— Nk, 0)[Fo+a,U%(k,w20)e,], (C9

where nowh (k,w)=1[A}+a] 7%k, ®?0)]. This is mani-
festly a generalized TDGL as in E(b.6a, but with a partial
truncation of the kernel, which drops tlieesonant inertial
delay terms fo/a3)(w/k)? and keeps only frictional retar-
dation. It is thus valid for a narrowly restricted, intermediate
length and time regime roughly estimated las(t)>L ,(t)
>L andt<t; (see Sec. Y Taking a more well-defined limit

of late times(dropping all v?) the static kerneUC(R,O,O)

Figure 9 shows ordinary TDGL simulations with an initial
conditiort’ of strain nonzero at a single point and zero else-
where. This is like a stress applied at a single point and then
removed. Flowerlike or diagonal-cross textures similiar to
Ref. 17 are obtained, for both “soft” and “hard” materials.

Reference 17 could not reproduce a TDGL structure given
in Fig. 4(b) of Ref. 10, part of a multipanel figure that dis-
plays stress effects for soft materials. In the intermediate-
temperature (¥ 7>0) phase, Ref. 10 considered the effect
of two Lorentzian deviatoric stresses, fixed and continuously
maintained. The motivation was to see if a stress seed analo-
gous to a seed crystal in a supercooled melt, could yield

becomes a good approximation, and the nonlocal TDGlstress-induced martensitic twins even for positixe 0.3.

(5.4) with £,£"=2 holds. Fora; /a,; 3<A; as for “hard”
systems; this collapses to dcal TDGL, as in Eq.(5.5).
Thus, overdamped displacement equatibhsare TDGL

The Ref. 17 simulations did not have the applied constant
stress of Ref. 10, and moreover, were at very low tempera-
tures 7= —50. We conclude that the difference in results is

equations in disguise and not a new dynamics. As expectedue to a difference in states investigated, antla difference

simulation of TDGL equations produce the same texfirds

in dynamics, which is TDGL-like in both cases.
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