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Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes,
and phase transformation using transferred Keating parameters

C. S. G. Cousins
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

~Received 10 May 2002; published 22 January 2003!

Early work indicates that this never-isolated ‘‘allotrope’’ is a mosaic distribution of microcrystalline defect
regions embedded in a hexagonal graphite host. These regions are nevertheless large enough to merit treating
rhombohedral graphite as a true allotrope. A modified Keating model is set up and full sets of partial and inner
elastic constants at both second and third order are obtained in terms of the Keating parameters. When the
parameters derived for hexagonal graphite are used the resulting elastic constants are very similar. Small
differences are due to the lower symmetry of the rhombohedral material and the consequently greater number
of internal strain components. The single major difference is in the in-plane anharmonic compressibility which
is 5.8 TPa22 for the hexagonal material but230.5 TPa22 for the rhombohedral. The two zone-center optic-
mode frequencies and their pressure derivatives match precisely two of the hexagonal modes. A pressure-
induced phase transition is indicated at around 22 GPa. A simple switching function is used to interpolate
between rhombohedral graphite and cubic diamond parameter sets enabling the proposed transition between
those structures to be explored in detail. A degeneracy of the optic-mode frequencies is found in the transition
region when the axial bond has a length of 1.9 Å . This corresponds to the symmetry-imposed level crossing
at theG point associated with the transition fromsp21pz to sp3 bonding. Hydrostatic and other compression
paths are also discussed.
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I. INTRODUCTION

In Paper II of this sequence1 the modified Keating param
eters deduced for cubic diamond~cD! in Paper I ~Ref. 2!
were transferred to hexagonal diamond~hD! with success,
judging by the satisfactory prediction of the few experime
tal data available. In the same spirit the Keating parame
deduced for hexagonal graphite~hG! in Paper III ~Ref. 3!
will be used to discuss rhombohedral graphite~rG! about
which very little is known experimentally.

There are several theoretical studies in the literatu
band-structure studies by Haering,4 theoretical investigations
of the rG-to-cD conversion by Kertesz and Hoffmann,5 and
Fahyet al.,6 and comparativeab initio studies of a number o
forms of graphite by Charlieret al.7 All refer to the fact that
rG has never been isolated and state that it constitutes fro
to 15% of most naturally occurring graphite. Since an al
trope is defined as adistinct crystalline formof an element it
is possible that rG may not be a genuine allotrope but
there is neverthelesssomethingwhose nature is worthy o
study. A clearer idea of what that is may be inferred from
original structure investigations.

II. DOES THE RHOMBOHEDRAL ALLOTROPE EXIST?

The earliest work is that of Lipson and Stokes8 who were
led to study an x-ray powder photograph of arc-crystalliz
graphite in order to elucidate some faint lines that could
be explained by the accepted structure of hG.9–11 Such lines
had been found quite generally in photographs from a w
variety of natural and artificial specimens. When they w
indexed on the basis of a hexagonal cell they were foun
have simple fractional, indices that were always multiple
of 2

3 . The simplest explanation was a structure with a u
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cell whosec parameter was32 times the usual one mixed in
with the ordinary one. Careful measurements of the inten
ties of all the lines showed that some had contributions fr
both structures, some were unique to the hexagonal form
some to the rhombohedral. Quantitatively, however, the
hancement of the intensities of the common lines was
quite right and Lipson and Stokes attempted to remove
new structure by digestion with concentrated sulphuric a
nitric acids. The faint lines were removed but the enhan
lines were as enhanced as before. They concluded, first,
the action of the acid had been to rearrange the layer
atoms rather than to remove the new structure, a view s
ported by the broadening of lines with, nonzero~the regular
arrangement of layers had been disturbed! and the un-
changed width of lines with, zero ~the integrity of planar
layers had been preserved! and, second, that there woul
always be a proportion of disordered material. All the inte
sity data would be consistent if their sample comprised 1
of the rhombohedral, 80% of the hexagonal, and 6% of
disordered structures. The structure they proposed for rG
a52.456 Å, c510.044 Å, andu5 1

6 . They also stated tha
the valueu50.164 would give slightly better agreement wi
the observed x-ray intensities. This point is taken up late

The other major study is that of Freise and Kelly12 who
deformed natural graphite single crystals and polycrystal
room temperature and coupled optical and electr
microscopic investigations of these with x-ray investigatio
of the appearance and disappearance of the peaks c
sponding to the rhombohedral form. Before detailing th
own experiments they summarized earlier work on the d
location structure of natural graphite: all total dislocatio
are observed to have Burgers vectors of the typea/3 ^112̄0&.
In addition these dislocations are observed to split into p
©2003 The American Physical Society10-1
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tial dislocations with Burgers vectors of the typ
a/3 ^11̄00&. In a graphite crystal with the layer planes a
ranged in the hexagonal stacking sequence, the assoc
stacking fault becomes a region arranged in the rhombo
dral stacking sequence. They report values of the stack
fault energy centered on 0.55 erg/cm2,13,14equivalent to 0.09
meV per atom in the plane.

Their first experiment showed that their starting mater
both single-crystal and polycrystalline samples, had
rhombohedral component. Next they compressed their si
crystals along thec axis between not-quite-parallel platen
This axial loading was necessary to enable shear to be
plied in the basal plane without wholesale cleavage.
rhombohedral form was induced by shear. However, w
they took filings from the single crystal, a process that
volves much greater shear deformation, a large fraction
the rhombohedral form was detected. Extensive annea
studies were then carried out to characterize the rhomb
dral domains. Directly after deformation they were about
layers thick. With increasing annealing temperature both
thickness of the domains and the volume fraction of
rhombohedral material decreased. The annealing behavi
independent of time at a particular temperature, indicat
that the disappearance of the rhombohedral form is no
activated process. The authors emphasize that randoml
ranged isolated stacking faults will not give rise to rhomb
hedral reflections, only broadened hexagonal ones. The
regular arrangement that fits observation is one stacking f
on every other plane. Any other sequence must give ris
extra reflections, and these are not observed. They fur
conclude, on the basis that the chance of finding ten plane
the correct sequence is about 0.1%, that some ordered
rangement of dislocations occurs during deformation. R
gions of rhombohedral stacking can become unobservab
just one or two dislocations glide through the stack. T
work of Bakeret al.13 and Siemset al.14 had shown that the
total dislocations lying on the basal planes in graphite w
always split into widely separated partial dislocations b
tween 1000 and 2000 Å apart. This large separation me
that a dislocation density of 1012 cm22 will produce stacking
faults over half the area of every layer plane. A larger den
does not increase the proportion of stacking faults ove
single plane. In the work under discussion the dislocat
density in annealed samples was 100–1000 times sma
and smaller still in the undeformed material.

In toto their work suggests that rhombohedral stacking

• is produced by severe basal shear;
• is around ten layers thick;
• extends over an area of around 23105 unit rhombi;
• is limited to half a layer;
• is reduced by annealing, and completely removed if

temperature reaches 3000 °C;
• and can be removed by dislocation glide.

This interpretation clearly explains why isolated rhomb
hedral graphite cannot be produced from hexagonal grap
There is no true allotrope—just a mosaic distribution of m
crocrystalline defect regions embedded in the hG host. E
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defect region is, however, large enough to justify theoreti
study of its structure as a quasiallotrope, and this paper
been prepared in that spirit.

III. COHESIVE ENERGY

hG and rG consist of strongly bonded graphene lay
stacked under the influence of relatively weak forces
ABAB and ABCABC sequences, respectively, to use a co
mon description. One expects their energies to be very c
and this turns out to be the case. Measured stacking f
energies in hG~Refs. 13 and 14! are always positive~around
0.09 meV/atom! showing that hG is the more stable allo
trope. This is confirmed by energy calculations: for examp
Furthmüller et al. find that the cohesive energy of hG e
ceeds that of rG by 0.9 meV/atom.15 This value is reduced to
a mere 0.11 meV/atom, suggestively close to the stack
fault energy, in the work of Charlieret al.7

With regard to the elasticity, for which no complete ca
culations have yet appeared, Fahyet al.16 assert: ‘‘Because
the number of bonds between the layers is the same in rh
bohedral graphite and in hexagonal graphite we expect t
behavior under compression to be very similar.’’ The bon
between layers may be the same in number but their di
butions are significantly different. The most important diffe
ence is a consequence of symmetry: in hG, where e
graphene layer is a mirror plane, the internal strain is entir
confined to those layers but in rG, whose only mirror plan
are normal to the layers, the internal strain is free to oc
along the unique axis as well. By taking the Keating para
eters for hG and transferring them to rG it is possible
make good the previous lack.

Equilibrium structure

The comment reported above that the experimental res
in Ref. 8 were better served byu50.164 than by the plana
value u5 1

6 has the implication that the planes are buckle
with atomic displacements of60.03 Å, a shortening of the
3.35 Å bond by 1.8%. A very simple picture, Fig. 1, explai
the origin of such buckling. An eclipsed atom in hG, say
has equal and opposite ‘large’ interlayer forces acting o
due to the eclipsing atoms above and below it, similarly
uneclipsed atom, say 1, experiences equal and oppo
‘small’ interlayer forces due to the noneclipsing atoms abo
and below it. Both atoms have extremely large and balan
in-plane forces acting on them. No net forces act upward
downwards and the integrity of the planes is ensured. N
consider those forces transferred to planar rG. No atoms
eclipsed on both sides and each atom has one large and
small interlayer force acting on it besides the very large
plane forces. Atom 2 is drawn towards the atom below it a
atom 1 towards the atom above. Small components of w
were the in-plane forces will now be sufficient to augme
the small forces so that together they balance the la
forces. In principle this could give rise to buckled rG. How
ever, an observable effect is unlikely: a recentab initio
calculation18 of the total energy for a small range of values
u around the planar value shows a minimum foru50.1666
0-2
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FIG. 1. Force diagram for~a! hG, ~b! planar
rG, and~c! buckled rG.
om
ur
r

nt
Th
th

llo
h

fe
h

h
on
a
m
m

n
et

o
a
e

t
an

a

dy
-

e-
om

ight-
hat
r
e

ay
-

ng
er

ane
ned

of
e-
Any
itly
rre-
iva-

of
ffer-

as

in
60.0003 which indicates that the net axial force on an at
is no greater than 0.2% of the in-plane force, a realistic fig
consistent with the very small interlayer Keating paramete

IV. MODIFIED KEATING MODEL

It is not in general possible to transfer force consta
between different crystal structures of the same element.
is shown vividly by comparing the number and values of
parameters found for cD and hG in preceding papers.

Transferability of parameters between the diamond a
tropes was possible because all atoms in both structures
the same local configuration, thereby rendering the dif
ence in crystal structure invisible to the Keating models. T
same conclusion is reached for hG and rG though wit
slightly more elaborate argument. The planar configurati
are identical but the interlayer configurations differ: hG h
two distinct symmetric ones and rG has two identical asy
metric ones. However, the asymmetric configuration co
bines halves from each symmetric one and this results
identical summations in the Keating energy expressio
There is then no reason to suppose that different param
are required by the two allotropes.

The structure of rG is fully described in Ref. 17. Tw
layers of it are shown in Fig. 2 and the three sets of inter
tions corresponding to those used for hG are indicated. B
nal notation~as used with hG! is no longer meaningful but i
is useful to refer to the atoms on sublattices 1 and 2 by A
B, with superscript primes to indicate adjacent layers.

~i! The planar part of the energy per cell is the same
that in hG. The three nearest-neighbor A atoms to a B atom,

FIG. 2. Configurations of bonds in the Keating model. The
teractions are described in the text.
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see lower center portion of Fig. 2, give rise to three two-bo
‘‘bond-stretching’’ BAi interactions, three three-body ‘‘bond
bending’’ BAi BA j interactions, and various couplings b
tween them. The same number of interactions arise fr
each A atom. Four harmonic parameters (a, b, s, and t)
and six anharmonic parameters (g, d, e, h, u, andj) may
be defined though not all of them are used.

~ii ! This set comprises the two-body AB8 interaction be-
tween nearest neighbors in adjacent planes, see the r
hand portion of Fig. 2, and the three-body interactions t
couple AB8 with the three neighboring oblique interlaye
vectors AAi8 . Unlike the hG case this set is limited to th
plane above. There is a corresponding set of BA8 interac-
tions confined to the plane below. Ten more parameters m
be defined~with superscript8, corresponding to the equiva
lent parameters in hG!.

~iii ! This set comprises the three two-body AAi8 interac-
tions and the three three-body interactions involvi
AA i8AA j8 pairs, see the left-hand portion of Fig. 2, togeth
with the symmetrical group of two-body BBi8 and three-body
BBi8BBj8 interactions. There is a set of each above the pl
and below the plane. Ten more parameters may be defi
~with superscript9).

In hG it was possible to ignore a potential fourth set
interactions, BB8, by noting a geometrical dependence b
tween its strains and the strains of the other three sets.
Keating parameters associated with this set were implic
included in the parametrization of the other sets. The co
sponding case applies here through the numerous equ
lences of the form B8B5B8A 1 AB. Because this is a dif-
ferent relation from the one in hG the implicit contribution
these interactions to the parameters above will also be di
ent.

A. Strain variables

The strains in the modified model for rG are the same
those for cD:

D i i 52r p
i0hpqr q

i062r p
i0zp1zpzp ~1!

and

D i j 52r p
i0hpqr q

j 06~r p
i01r p

j 0!zp1zpzp , ~2!
-

0-3
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TABLE I. The modified Keating parameters.

Planar Interlayer

GPa Å21 eV Å24 GPa Å21 eV Å24 GPa Å21 eV Å24

a 266.21 1.6615 a8 39.55 0.2469 a9 3.231 0.02016
b 240.53 1.5013 b8 3.005 0.01875 b9 0.289 0.00180
s 30.12 0.1880 s8 25.035 20.03143
t 53.50 0.3340 t8 26.120 20.03820 t9 1.445 0.00902

GPa Å23 eV Å26 MPa Å23 meV Å26 MPa Å23 meV Å26

g 2688.00 24.2941 g8 197.5 1.233 g9 235.87 20.2239
d 2965.44 26.0258
e 2366.84 22.2896

j9 25.44 20.0339
e
-

th
lim

m
y

where terms of order 3 and higher have been omitted. Wh
the sign is undetermined the1 sign is taken when the refer
ence atom lies on sublattice 1, the2 when it is on 2.

B. Energy

The expressions for the modified energies per cell are
same as those for hG except that summations are now
ited to two sublattices. The subscriptsi and j are solely for
the sake of bookkeeping—keeping in touch with the nu
bers of neighbors. Where, for the first time, there is onl
single neighbor to consider~the AB8 interaction set! the
bond has been indicated by a subscript 1.

1. Harmonic terms

The second-order energy per unit cell is
s
f

d
he
t

ve
on
hG
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2. Anharmonic terms

The third-order energy per unit cell is
E(3)5 1
2 (

s51

2

(
i 51

3 S gD i i
3 1(

j 51

3

8 @dD i j
3 1e~D i i 1D j j !D i j
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3
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C. Elastic constants

Expressions for the partial and inner elastic constant
terms of modified Keating parameters have been obtained
the planar rG structure by the method of homogeneous
formation. They have been listed in the Appendix. T
second-order constants are presented in Table VII and
third-order ones in Table VIII. All possible parameters ha
been included for the sake of completeness even though
a small number of them were non-zero in the case of
in
or
e-

he

ly
.

Comparison with Tables IX, X, and XI in Ref. 3 shows th
all the partial constants have the same expressions in
graphite allotropes. The most notable difference is the lac
any contribution to the inner elastic constants from the ne
nearest-neighbor~NNN! interlayer interactions. This is be
cause the AA8 ~and BB8) connect points on the same su
lattice. At the third order five of the sixDiJK that involvej8
will be zero because the transferred parameters do no
clude it.
0-4
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TABLE II. Calculated second- and third-order partial and inner elastic constants. Units are GPa forCIJ.
0 ,

GPa Å21 for DiJ. , GPa Å22 for Ei j . , and GPa Å23 for Fi jk .

Partial Inner Partial Inner

C11
0 1063.85 D16 39.5 C111

0 28641.4 D136 0. E111 29161
C12

0 176.15 D15 24.7 C113
0 214.1 D145 0. E112 2139

C13
0 7.9 D31 239.9 C133

0 2120.0 D211 12 524 E113 31.1
C33

0 36.5 D33 20.04 C333
0 2572.0 D222 210 879 E135 0.

C44
0 5.05 C144

0 24.4 D314 0. E331 216.1
C14

0 1.6 E11 502.8 C244
0 29.1 D311 0. E333 99.1

E33 148.0 C344
0 274.7 D312 0.

C166
0 25887.0 D313 0.

C266
0 2046.7 D333 227.8

C366
0 23.4 D344 0 F112 1547

C114
0 22.4 F113 48.8

C124
0 20.5 F333 166.8

C134
0 215.8

C444
0 11.0
om
ed

be
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D
i-
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The partial and inner elastic constants derived fr
Tables VII and VIII using values from Table I, and check
by a homogeneous deformation calculation,19 are shown in
Table II. The large number of nullDiJK andEi jK components
is a pseudosymmetry effect arising from the limited num
of interactions taken in the model combined with the
sumption of planar layers. A similar effect was seen in h1

when the lattice parameters were chosen to give the quas
configuration: the linear compressibility became isotropic
new feature is the appearance of additional anharmonic
tributions,F113

(2) andF333
(2) , to the harmonic energy.

When the pseudosymmetry is broken by the buckling
layers thenu is no longer1

6 , but smaller, and many coeffi
cients that are zero~i.e., blank spaces! in Tables VII and VIII
will become nonzero, as will the associated constants.

The internal strain component common to the two al
tropes is slightly different, as shown in Table III, and the n
value forA33 is another pseudosymmetry consequence.

The full decomposition of the constants is given in Tab
IV. The overall picture reveals that the two graphite al
tropes are remarkably similar. The calculated values ofC11
and C12 in rG are a little smaller than they are in hG o
account of the extra contributions of internal strain and t
in turn makeska a little bigger than it is in hG. At the third
order it is onlyC133 that is greatly changed by internal strai
but this givesS133 the value239.5 TPa22 whereas it is

TABLE III. The internal strain tensors in Å . The values for r
appear on the left. The actual in-plane internal strain in hG is sh
on the right for comparison.

iJ AiJ AiJ
2 1AiJ

3

16 20.079 20.083
15 0.009
31 0.269
33 0.0
02411
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TABLE IV. The composition of the calculated elastic stiffnesse
and the corresponding compliances and compressibilities. S
nesses are in GPa, second-order compliances in TPa21 and third-
order compliances in TPa22.

← CIJ. → SIJ.

IJ. Partial Internal Total Total

11 1063.85 213.86 1049.99 0.980
12 176.15 27.64 168.51 20.157
13 7.90 20.01 7.89 20.178
33 36.5 0.0 36.5 27.47
44 5.05 20.04 5.01 200.1
14 1.56 0.37 1.93 20.438

ka 0.645
kc 27.1
kv 28.4

111 28641.4 22863.4 211 504.8 7.36
113 214.2 7.4 26.7 22.81
133 2120.0 61.4 258.6 239.5
333 2572.0 0.2 2571.8 11 809.9
144 24.4 0.2 24.2 2221.7
244 29.1 20.8 29.9 2342.0
344 274.7 0.0 274.7 81 921.7
166 25887.1 2853.4 26740.5 35.1
266 2046.7 21030.2 1016.5 210.4
366 23.4 0.2 23.2 25.1
114 22.4 113.6 111.2 221.0
124 20.5 0.7 0.2 24.6
134 215.8 20.1 215.9 274.8
444 11.0 0.0 11.0 288 123.3

Ka 230.5
Kc 11 646
Kv 11 585
0-5
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C. S. G. COUSINS PHYSICAL REVIEW B67, 024110 ~2003!
21.4 TPa22 in hG. This causes the one upset in the fitting
produces a negativeKa . This was the most difficult target to
fit in hG because, as explained in Ref. 2, it depends on
interlayeranharmonicity and particularly on the smallness
S133 relative to S333. The remaining compressibilitieskc ,
Kc , kv , and Kv are effectively identical in the two allo
tropes.

The pressure derivatives of the second-order constant
shown in Table V. The first five are essentially the same
the fitted values of the anharmonic targets for hG.

D. Zone-center optic modes

The Eg mode in rG mimics theE2g2 mode of hG with a
frequency of 47.43 THz and a pressure derivative of 0.1
THz/GPa. Likewise theA1g mode mimics the B1g2 with val-
ues of 25.74 THz and20.96 THz/GPa. The behavior unde
pressure is shown in Fig. 3 and indicates a phase transitio
about 21.7 GPa.

V. RG-TO-CD TRANSFORMATION

Although rG has never been isolated this has not inhib
study of its possible conversion to cD. A continuous tra
formation between the two structures can be envisaged
cause cD can be described by a primitive rhombohedral
with two atoms in the basis in just the same way as rG. T
quasi-rD picture is illustrated in Ref. 17. The top two rows
Table VI show the lattice parameters~of the triple hexagona
cell!, the volume~of the primitive rhombohedral cell!, and
the atomic position parameters of the two structures
volved. Also listed are the lengths of the axial bondsR, the
nonaxial bondsr, and the buckling angleu. These latter
parameters, indicated in Fig. 4, are related to the former

R52uc, ~5!

TABLE V. Pressure derivatives of the second-order stiffnes
compared with target data for hG.

C118 C128 C138 C338 C448 C148

rG 38.8 10.9 3.1 12.7 1.9 0.4
hG target 39.0 11.0 3.1 14.6 1.9
02411
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r cosu52cS u2
1

6D , ~6!

and

r sinu5
a

A3
. ~7!

The volume per pair of atoms is

Vc5
A3

6
ca2. ~8!

R, r, andu all change continuously during such a transfo
mation and there is no uniquely constrained path. From
purely geometrical viewpoint the values ofa, c, andu may
be interpolated uniformly between their extreme values a
R, r, andu calculated by the equations above. This would
to ignore the physics, though, particularly the internal stra
Two physical approaches have been developed: one inv
ing energy minimization, the other enthalpy minimizatio
along a hydrostatic compression path. These are descr
briefly below, accompanied by complementary deductio
using the Keating model.

A. Energy-minimization calculations

In Ref. 5 Kertesz and Hoffmann presented an orb
model for this solid-state, high-pressure, transformation,
lating it to chemical reactions having orbital symmetry co
straints. They tookR as the independent reaction coordina
and optimizedr andu at each value using extended Hu¨ckel
band calculations. They identified a transition state at
maximum of the total energy versusR curve. This occurred

FIG. 3. Pressure dependence of the zone-center frequencie

s

.2
.4
4.0

.8
TABLE VI. End points and transition-state parameters.

a c Vc u R r u

rG 2.460 10.048 17.554 1
6 3.350 1.420 90.00

cD 2.522 6.178 11.346 1
8 1.545 1.545 109.47

Ref. 5 2.519 6.684 12.243 0.139 1.86 1.50 104
Ref. 6~1! 2.513 7.088 12.920 0.182 2.07 1.48 101
Geometrical path 2.504 6.810 12.304 0.140 1.91 1.49 10
Ref. 6~2! 2.372 6.770 11.0 0.155 2.1 1.38 97.0
Compression path 2.435 6.488 11.1 0.152 1.97 1.42 97
0-6
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FIG. 4. rG-to-cD transformation path~a! ini-
tial rG, ~b! intermediate stage, showing the esse
tial parameters, and~c! final cD.
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at R51.86 Å, r 51.5 Å, andu5104.2°. The energy barrie
EB was about 0.6 eV/atom. The transition state theref
occurs whena52.519 Å, c56.684 Å, andu50.139. These
results have been entered in the third row of Table VI.

They used the small initial rate of increase ofr with R to
argue that the graphene layers do not buckle at low press
In connection with the~unstable! transition state they remar
that it is customary to relate different solid-state structures
studies of hypothetical, sometimes unstable, structural m
els.

Fahy, Louie, and Cohen6 subsequently made a pseudop
tential total-energy study of the transformation. In the first
two calculations they followed the rationale of the abo
work and found an energy barrier of 0.33 eV/atom whenR
52.07 Å, r 51.48 Å, andu5101.4°. This result has bee
entered in row 4 of Table VI. In this study they followed th
charge density in the plane of Fig. 4~b! along the energy-
minimizing path. They concluded, first, that only whenR
,2.1 Å did the charge density between the layers beco
substantially inhomogeneous and accumulate along the a
bond and, second, that not untilR,1.8 Å did the double
peak, characteristic of thesp3 bond in cD, appear.

These observations have been used to provide limit
the algorithm that handles the merging of the cD and
parametrizations. The Keating energy is taken as

E5 f ErG1~12 f !EcD , ~9!

where, withRmin51.8 andRmax52.1, the switching function
is

FIG. 5. Second-order elastic constants along a transforma
path.C13 andC14 are shown at310 magnification. Terminal value
on the right are quasi-rD values.
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2
cosS p~R2Rmin!

Rmax2Rmin
D for Rmin<R<Rmax,

1 for Rmax,R.
~10!

In the following illustrationc, a2, and uc are interpolated
uniformly between their extremes. This procedure has
effect of making the initial variation ofa small, in keeping
with the anisotropy of the linear compressibilities. As bothc
anduc are changed proportionately the variation ofu itself is
also small initially: buckling is therefore slow to start, a
found in the studies under discussion. The results for
second-order elastic constants are illustrated in Fig. 5, for
internal strain parameters in Fig. 6 and for the zone-cen
optic-mode frequencies in Fig. 7. Each display is divid
into 3 by the upper and lower limits of the switching fun
tion. On the left only the rG parameters are involved, a
variations being due solely to the changes in the geometr
the cell, and on the right only cD parameters are involv
The mixing of the two re´gimes occurs in between.

It is partly the geometrical aspect of the partial constan
the disposition ofa and d in the common factors in Table
VII, and partly the internal strain that determines the over
variation of the total constants seen in the rG region. Th
both C11

0 and C12
0 , which vary asa2/d, increase in size by

44% across the rG region. Roughly equal contributions fr
inner displacement are subtracted from each, about 5%
C11

0 but 25% ofC12
0 at the limit, leaving the variation ofC11

to dominate the picture. The only other feature that me
comment is the variation ofC13: this very small constan
makes a negative excursion in the rG region and th

n
FIG. 6. Internal strain parameters along a transformation p

Terminal values on the right are quasi-rD values.
0-7
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uniquely, rises to a maximum in the middle of the transiti
region. The significance of this is not clear. The appar
constancy ofA16(52D16/E11) is due to its net common
factor of a which increases by only 1.4% across the rG
gion.

The one interesting feature of the optic-mode frequenc
is their degeneracy in the transition region atR51.9 Å,
close to the value at which the onset of peaks in the elec
density along the axial bond occurs6 and reasonably close t
the value 1.76 Å, deducible from measurements on Fig.
Ref. 5, where a symmetry imposed level crossing at theG
point occurs. The latter is related to the change fromsp2

1pz to sp3 bonding, essentially the same fact. The data
the present transition point have been added to Table VI
comparison.

B. Hydrostatic compression path

Fahy, Louie, and Cohen’s second calculation followed
hydrostatic pressure path. The cell volumeVc was interpo-

FIG. 7. Zone-center frequencies along a transformation p
The terminal value on the right is the quasi-rD value.
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lated between its extremes and extrapolated beyond. The
sociated enthalpy,E1pVc , at each point was minimized
The results were very different from those based on ene
minimization. The path for example does not lead contin
ously to the cD structure but terminates whenp580 GPa
and Vc511.0 Å3 at which pointR52.1 Å, r 51.38 Å, and
u597°. This result has been entered in row five of Table

The compression path is simulated here by steppinc
uniformly in 4% increments of the difference between
extreme values. From the initially uncompressed rG the p
sure increment required to drive the structure to the next s
is deduced fromDc/c52kcp1 1

2 (Kc2kc
2)p2, the corre-

sponding increment ina from Da/a52kap1 1
2 (Ka2ka

2)p2

and the ~purely axial! increment in R from DR
52p(2A31ka1A33kc). Over the rG region the pressure in
crements are small, starting at 0.65 GPa and dropping to

h.

FIG. 8. Second-order elastic constants along a hydrostatic c
pression path.C13 and C14 are shown at310 magnification. The
vertical line marks the state whereu andu are extremal.
lastic
TABLE VII. Coefficients of the modified Keating parameters in the second-order partial and inner e
constants. The common factors are expressed in terms of the lattice parametera and the interlayer spacingd,
with t standing forA3.

Planar Interlayer: NN Interlayer: NNN
Factor a b s t a8 b8 s8 t8 a9 b9 s9 t9

C11
0 2ta2/3d 1 1 22 1 2 2 24 2

C12
0 2ta2/9d 1 21 22 5 2 22 24 10

C13
0 4td/3 2 2 4 24 4 8

C33
0 16td3/a2 1

3 2 4 2 2 4 8 4

C44
0 4td/3 1 2 4 2 4 24

C14
0 2a/3 1 4 24 22 24

D16 2a/3d 22 2 1 2 1
D15 4t/3 1 1
D31 4t/3 1 2
D33 16td2/3a2 1 3 6 3
E11 4t/3d 2 1 2 22 1
E33 8td/3a2 2 3 6
E111,112,331

(2) 8t/3d 1 21 1 2 1
E113,333

(2) 16td/3a2 1 3 3
F113

(2) 8t/3a2 2 3
F333

(2) 8t/a2 2 3
0-8
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TABLE VIII. Coefficients of the modified Keating parameters in the third-order partial elastic constants and inner elastic co
Common factors expressed as in Table VII.

Planar Interlayer: NN Interlayer: NNN

Factor g d e h u j g8 d8 e8 h8 u8 j8 g9 d9 e9 h9 u9 j9

C111
0 ta4/d 1 21 2 22 21 2 2 22 4 24 22 4

C113
0 8ta2d/3 1 1 3 3 22 21 8

C133 32td3/3 1 2 1 3 3 23 6 3 12

C333 32td5/a2 1 6 12 12 6 12 6 12 24 24 12 24

C144
0 2ta2d/9 1 4 12 212 26 12 24

C244
0 2ta2d/3 1 4 12 2 4 28

C344 8td3/3 3 6 8 2 4 12 6 12 24

C166
0 ta4/9d 3 2 26 1 22 6 4 212 2 24

C266
0 ta4/9d 1 24 6 22 23 2 2 28 12 24 26 4

C366
0 8ta2d/9 1 1 3 6 23

C114
0 2a3/3 1 6 6 24 26 22 4

C124
0 2a3/9 1 6 26 26 6 212

C134
0 4ad2/3 2 6 1 4 12 212 212 12 26

C444
0 2ad2 21 22 24 28 2 4 28 8 16

D136 2ad/3 4 4 2

D145 2ad/3 3 4 4

D211 2a3/3d 23 23 2 3 1 22 1

D222 2a3/3d 5 1 22 25 1 22 2
5
3

D314 4ad/3 1 2 1 4

D311 4ta2/3 1 2

D312 4ta2/9 1 2

D313 8td2/3 2 2 3 8

D333 32td4/a2 1 3 6 6 3 6

D344 4td2/3 3 6 4 4 8

E111
(3) 2ta2/3d 6 1 2 24 1

E112
(3) 2ta2/9d 6 26 23 6 12 1

E113
(3) 8td/3 3 2

E135
(3) 16td/3 3 4 2

E114
(3) 2a/3 3 2

E136
(3) 2a/3 2 2

E331
(3) 8td/3 1 2 4

E333
(3) 16td3/a2 2 3 6 8 2 4

F112
(3) 2a/d 24 1 2 24 4 8 1

F113
(3) t/3 12 8

F333
(3) 8td2/a2 4 3 6 12
il
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GPa, and accumulate to 9.6 GPa. As soon asR falls below
2.1 Å, however, the steep reductions in axial compressib
ties mean that very large pressure increments, 9 GPa
escalating, are needed to generate successive states
variation of the elastic constants is shown in Fig. 8 a
function of cell volumeVc for ease of comparison with th
results in Ref. 6. The path is traversed from right to left. T
vertical line indicates the state at whichu andu are extremal:
it occurs whenp519.1 GPa,Vc511.1 Å3, u50.152, and
02411
i-
nd
The
a

e

u597.8°. These parameters have been added to Table
Apart from the pressure these parameters are close to t
of the metastable state identified in Ref. 6. The pressure it
is close to the critical value 21.7 GPa indicated by the pr
sure dependence of theA1g mode frequency. To the left o
this line the structure becomes more graphitic. The stat
the extreme left has thec value of cD and is attained at
pressure of 72.6 GPa. It is remarkably similar to cD ela
cally: the bulk modulus is 1.8% down, the axial modulus ju
0-9
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0.3% down. The bond configuration, though, is a highly d
torted tetrahedron in whichR51.88 Å, r 51.38 Å, andu
597.5°.

C. Other paths

A triaxial step-by-step process has been studied in wh
equal positive stress incrementss1 ands2 stretch the basa
plane at the same time as a negative increments3 squashes
the planes together. The procedure leads to the cD cell
rameters in 100 steps but is less successful than the hy
static procedure in attaining a cD atomic configuration. T
stretching of the basal plane inhibits buckling of the lay
and the parameteru never drops below 0.161.

The single reason that such processes cannot lead from
to cD is the phenomenon of internal strain. The relative co
pression of the axial bondR does not keep pace with th
relative compression of the cell parameterc because relative
displacement of sublattices will always occur to minimi
the deformation energy.

The best practical route to an rG-to-cD conversion
probably that of uniaxial stress. A compressive stresss3
changes the lattice parameters according to

Da/a5S13s31 1
2 S133s3

2 ~11!

and

Dc/c5S33s31 1
2 S333s3

2 . ~12!

Since S13,0 and S33.0 the compressive stress~which is
negative! causesa to increase andc to decrease simulta
neously.

It may be that all these approaches are of academic in
est only. In a molecular-dynamics simulation of the conv
sion by Scandoloet al.20 it was found that hG was converte
into both cD and hDvia an intermediate orthorhombic phas
of graphite. This process resulted in different orientation
lationships between the initial and final crystal structu
from the one implicit in the discussions above. Although
was not explicitly studied it seems likely that it will behav
in a similar way.

VI. SUMMARY

This paper began with a discussion of the precise na
of rhombohedral graphite, focusing on the initial structu
studies of natural graphite and work on defects to be s
therein. It was concluded that the rhombohedral form w
02411
-

h

a-
ro-
e
s

rG
-

s

r-
-

-
s

re
l
n
s

not a true allotrope but a mosaic distribution of microcry
talline defect regions embedded in the hG host. These
gions could be sufficiently large, however, to merit the
study as if they were truly allotropic. The issue of wheth
the equilibrium state consisted of planar or buckled lay
was resolved in favor of planar layers.

The elasticity in terms of the modified Keating model w
then calculated for the planar structure. The transfer of Ke
ing parameters from hG to rG showed that the two allotro
were elastically extremely similar, apart from the negat
anharmonic in-plane compressibilityKa . The possession o
a set of elastic constants for this as-yet-uncharacterized
terial provided an opportunity to explore the rG-to-cD tran
formation in greater detail.

VII. MODIFIED KEATING MODEL: SCOPE FOR
FURTHER APPLICATION

The successful use of the modified Keating model w
hG suggests that the model will be well suited to study
the elasticity and the vibrational properties of nanotubes
fullerenes. As previously the model can be used in conju
tion with specific interatomic potentials if that appea
appropriate—to handle the Coulomb interaction in an io
solid, for example. In such cases a first-order Keating ene
has to be introduced to balance the first-order part of
additional potential and to annul the first-order elastic co
stants that arise.

Further possible synoptic studies of cases where a par
lar structural motif underlies a variety of crystal structur
spring to mind: SiO2 units in quartzes, tridymites, cristo
balites, coesite, and stishovite; H2O in various ices~in IceI
the O atoms occupy a quasi-hD configuration! and BN in its
zinc-blende, wurtzite, and graphitic versions. Rationalizat
of data via the modified Keating model may also serve a
useful preliminary in the derivation of a more sophisticat
transferable interatomic potential.

APPENDIX: ELASTIC CONSTANTS IN THE MODIFIED
KEATING MODEL

Each constantMi is written as a linear combination o
Keating parametersK j with coefficientsm j and a common
factorFi : Mi5Fi3(m jK j . The second-order constants a
pear in Table VII and the third-order ones in Table VIII. Th
common factors in these Tables have been expressed in t
of the interlayer spacingd rather than the lattice parameterc
to facilitate comparison with the treatment of hG in Ref.
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