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Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes,
and phase transformation using transferred Keating parameters
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Early work indicates that this never-isolated “allotrope” is a mosaic distribution of microcrystalline defect
regions embedded in a hexagonal graphite host. These regions are nevertheless large enough to merit treating
rhombohedral graphite as a true allotrope. A modified Keating model is set up and full sets of partial and inner
elastic constants at both second and third order are obtained in terms of the Keating parameters. When the
parameters derived for hexagonal graphite are used the resulting elastic constants are very similar. Small
differences are due to the lower symmetry of the rhombohedral material and the consequently greater number
of internal strain components. The single major difference is in the in-plane anharmonic compressibility which
is 5.8 TPa? for the hexagonal material but 30.5 TPa? for the rhombohedral. The two zone-center optic-
mode frequencies and their pressure derivatives match precisely two of the hexagonal modes. A pressure-
induced phase transition is indicated at around 22 GPa. A simple switching function is used to interpolate
between rhombohedral graphite and cubic diamond parameter sets enabling the proposed transition between
those structures to be explored in detail. A degeneracy of the optic-mode frequencies is found in the transition
region when the axial bond has a length of 1.9 A . This corresponds to the symmetry-imposed level crossing
at thel™ point associated with the transition frasp?+ p, to sp® bonding. Hydrostatic and other compression
paths are also discussed.
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[. INTRODUCTION cell whosec parameter wag times the usual one mixed in

with the ordinary one. Careful measurements of the intensi-

In Paper Il of this sequent¢he modified Keating param- ties of all the lines showed that some had contributions from
eters deduced for cubic diamordD) in Paper I(Ref. 2 both structures, some were unique to the hexagonal form and
were transferred to hexagonal diamofitD) with success, some to the rhombohedral. Quantitatively, however, the en-
judging by the satisfactory prediction of the few experimen-hancement of the intensities of the common lines was not
tal data available. In the same spirit the Keating parametergyite right and Lipson and Stokes attempted to remove the
deduced for hexagonal graphiteG) in Paper Ill (Ref. 3 ey structure by digestion with concentrated sulphuric and
will be used to discuss rhombohedral graphit®) about pitric acids. The faint lines were removed but the enhanced
which very little is known expe_:rlmentall_y_ ) . lines were as enhanced as before. They concluded, first, that
There are Se"efa' theoretlgfz‘il StUd'?S n the_ Ilte_raturet'he action of the acid had been to rearrange the layers of
band-structure studies by Haerihtheoretical investigations atoms rather than to remove the new structure, a view sup-

of the rG-to-cD conversion by Kertesz and Hoffmanand . . )
Fahyet al.® and comparativab initio studies of a number of ported by the broadening of lines winonzera(the regular
’ arrangement of layers had been distupbeshd the un-

forms of graphite by Charlieet al.” All refer to the fact that . ; . . .
rG has never been isolated and state that it constitutes from%hanged width of lines witht zero (the integrity of planar
layers had been preseryednd, second, that there would

to 15% of most naturally occurring graphite. Since an allo- . : ‘ .
trope is defined as distinct crystalline formof an element it &/ways be a proportion of disordered material. All the inten-

is possible that rG may not be a genuine allotrope but tha$ity data would be consistent if their sample comprised 14%
there is neverthelessomethingwhose nature is worthy of Of the rhombohedral, 80% of the hexagonal, and 6% of the
study. A clearer idea of what that is may be inferred from thedisordered structures. The structure they proposed for 1G has
original structure investigations. a=2.456 A, c=10.044 A, andu=35. They also stated that
the valueu= 0.164 would give slightly better agreement with
the observed x-ray intensities. This point is taken up later.

The other major study is that of Freise and K&lyho

The earliest work is that of Lipson and Stokegho were ~ deformed natural graphite single crystals and polycrystals at
led to study an x-ray powder photograph of arc-crystallized’0om temperature and coupled optical and electron-
graphite in order to elucidate some faint lines that could nofnicroscopic investigations of these with x-ray investigations
be explained by the accepted structure ofh&.Such lines of the appearance and disappearance of the peaks corre-
had been found quite genera”y in photographs from a W|d§pond|ng to the rhombohedral form. Before detailing their
variety of natural and artificial specimens. When they wereOWn experiments they summarized earlier work on the dis-
indexed on the basis of a hexagonal cell they were found téocation structure of natural graphite: all total dislocations
have simple fractional indices that were always multiples are observed to have Burgers vectors of the 843e(1120).
of £. The simplest explanation was a structure with a unitin addition these dislocations are observed to split into par-

Il. DOES THE RHOMBOHEDRAL ALLOTROPE EXIST?
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tial dislocations with Burgers vectors of the type defect region is, however, large enough to justify theoretical

a/3 (1100). In a graphite crystal with the layer planes ar- Study of its structure as a quasiallotrope, and this paper has
ranged in the hexagonal stacking sequence, the associatBgen prepared in that spirit.
stacking fault becomes a region arranged in the rhombohe-
dral stacking sequence. They report values of the stacking-
fault energy centered on 0.55 ergfhi'*equivalent to 0.09
meV per atom in the plane. hG and rG consist of strongly bonded graphene layers
Their first experiment showed that their starting material,stacked under the influence of relatively weak forces in
both single-crystal and polycrystalline samples, had ncABAB and ABCABC sequences, respectively, to use a com-
rhombohedral component. Next they compressed their singlgon description. One expects their energies to be very close
crystals along the axis between not-quite-parallel platens. and this turns out to be the case. Measured stacking fault
This axial loading was necessary to enable shear to be apnergies in hGRefs. 13 and 1@are always positivéaround
plied in the basal plane without wholesale cleavage. N@.09 meV/atom showing that hG is the more stable allo-
rhombohedral form was induced by shear. However, whenrope. This is confirmed by energy calculations: for example,
they took filings from the single crystal, a process that in-Furthmiller et al. find that the cohesive energy of hG ex-
volves much greater shear deformation, a large fraction ofeeds that of rG by 0.9 meV/atoliThis value is reduced to
the rhombohedral form was detected. Extensive annealing mere 0.11 meV/atom, suggestively close to the stacking
studies were then carried out to characterize the rhombohéault energy, in the work of Charliest al.’
dral domains. Directly after deformation they were about ten With regard to the elasticity, for which no complete cal-
layers thick. With increasing annealing temperature both theulations have yet appeared, Fatiyall® assert: “Because
thickness of the domains and the volume fraction of thethe number of bonds between the layers is the same in rhom-
rhombohedral material decreased. The annealing behavior ihedral graphite and in hexagonal graphite we expect their
independent of time at a particular temperature, indicatindbehavior under compression to be very similar.” The bonds
that the disappearance of the rhombohedral form is not abetween layers may be the same in number but their distri-
activated process. The authors emphasize that randomly dsutions are significantly different. The most important differ-
ranged isolated stacking faults will not give rise to rhombo-ence is a consequence of symmetry: in hG, where each
hedral reflections, only broadened hexagonal ones. The onlyraphene layer is a mirror plane, the internal strain is entirely
regular arrangement that fits observation is one stacking fauionfined to those layers but in rG, whose only mirror planes
on every other plane. Any other sequence must give rise tare normal to the layers, the internal strain is free to occur
extra reflections, and these are not observed. They furthetlong the unique axis as well. By taking the Keating param-
conclude, on the basis that the chance of finding ten planes igters for hG and transferring them to rG it is possible to
the correct sequence is about 0.1%, that some ordered amake good the previous lack.
rangement of dislocations occurs during deformation. Re-
gions of rhombohedral stacking can become unobservable if
just one or two dislocations glide through the stack. The
work of Bakeret al!® and Siemst al'* had shown that the ~ The comment reported above that the experimental results
total dislocations lying on the basal planes in graphite werén Ref. 8 were better served hy=0.164 than by the planar
always split into widely separated partial dislocations bewalueu=3% has the implication that the planes are buckled,
tween 1000 and 2000 A apart. This large separation meangith atomic displacements of 0.03 A, a shortening of the
that a dislocation density of #cm™2 will produce stacking  3.35 A bond by 1.8%. A very simple picture, Fig. 1, explains
faults over half the area of every layer plane. A larger densitythe origin of such buckling. An eclipsed atom in hG, say 3,
does not increase the proportion of stacking faults over &as equal and opposite ‘large’ interlayer forces acting on it
single plane. In the work under discussion the dislocatiordue to the eclipsing atoms above and below it, similarly an
density in annealed samples was 100—1000 times smallanneclipsed atom, say 1, experiences equal and opposite
and smaller still in the undeformed material. ‘small’ interlayer forces due to the noneclipsing atoms above
In toto their work suggests that rhombohedral stacking and below it. Both atoms have extremely large and balanced
in-plane forces acting on them. No net forces act upwards or
downwards and the integrity of the planes is ensured. Now
. extend f & 20° unit rhombi- consider those forces transferred to planar rG. No atoms are
extends over an area 0_ aroun unit rhombot, eclipsed on both sides and each atom has one large and one
° s limited to half a Iaye_zr, , small interlayer force acting on it besides the very large in-
* is reduced by annealing, and completely removed if the,ane forces. Atom 2 is drawn towards the atom below it and
temperature reaches 3000°C; _ atom 1 towards the atom above. Small components of what
* and can be removed by dislocation glide. were the in-plane forces will now be sufficient to augment
the small forces so that together they balance the large
This interpretation clearly explains why isolated rhombo-forces. In principle this could give rise to buckled rG. How-
hedral graphite cannot be produced from hexagonal graphitever, an observable effect is unlikely: a recexft initio
There is no true allotrope—just a mosaic distribution of mi- calculatiort® of the total energy for a small range of values of
crocrystalline defect regions embedded in the hG host. Each around the planar value shows a minimum ter 0.1666

Ill. COHESIVE ENERGY

Equilibrium structure

« is produced by severe basal shear;
 is around ten layers thick;
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+0.0003 which indicates that the net axial force on an atonsee lower center portion of Fig. 2, give rise to three two-body
is no greater than 0.2% of the in-plane force, a realistic figurébond-stretching” BA interactions, three three-body “bond-
consistent with the very small interlayer Keating parametersbending” BA; BA; interactions, and various couplings be-
tween them. The same number of interactions arise from
IV. MODIFIED KEATING MODEL each A atom. Fou_r harmonic parametets (8, o, and 7)
and six anharmonic parameterg, (8, €, 7, 6, and§) may
It is not in general possible to transfer force constantde defined though not all of them are used.
between different crystal structures of the same element. This (ii) This set comprises the two-body ABnteraction be-
is shown vividly by comparing the number and values of thetween nearest neighbors in adjacent planes, see the right-
parameters found for cD and hG in preceding papers. hand portion of Fig. 2, and the three-body interactions that
Transferability of parameters between the diamond allo€ouple AB with the three neighboring oblique interlayer
tropes was possible because all atoms in both structures hadctors AA . Unlike the hG case this set is limited to the
the same local configuration, thereby rendering the differplane above. There is a corresponding set of Brterac-
ence in crystal structure invisible to the Keating models. Theions confined to the plane below. Ten more parameters may
same conclusion is reached for hG and rG though with @&e definedwith superscript’, corresponding to the equiva-
slightly more elaborate argument. The planar configurationsent parameters in hG
are identical but the interlayer configurations differ: hG has (i) This set comprises the three two-body Aterac-
two distinct symmetric ones and rG has two identical asymtions and the three three-body interactions involving
metric ones. However, the asymmetric configuration COmaa/AA/ pairs, see the left-hand portion of Fig. 2, together
pme; halves from eac_h symmetrlq one and this resullts ivith the symmetrical group of two-body BEand three-body
'dﬁm'cﬁ" f]ummatlons in the Keatln% elzjgf[fgy expreSSIOnSBBi’BBj’ interactions. There is a set of each above the plane
;reerreec;zi:eﬁnbr}]lotr:gi\sl’v%nefl(l)o?rt:)%?sset at different parametelay pelow the plane. Ten more parameters may be defined
: (with superscript”).

o e e o mc: |1 NG L W2 pssi 0 gnore  potetil fourhset o
tions corresponding to those used for hG are indicated. Berlpteracnons, BB, by noting a geometrical dependence be-

nal notation(as used with his no longer meaningful but it tween its strains and the strains of the other three sets. Any
9 9 Keating parameters associated with this set were implicitly

'; ﬁﬁ;ugj%girﬂt&tgﬁrggngs ?nrliiscljat::aagljcjzz:n?TgyzerzyA an?ncludgd in the parametrization of the other sets. The corre-

' ' sponding case applies here through the numerous equiva-
Tences of the form BB=B'A + AB. Because this is a dif-
ferent relation from the one in hG the implicit contribution of
these interactions to the parameters above will also be differ-
ent.

that in hG. The three nearest-neighbor A atoma B atom,

A. Strain variables

The strains in the modified model for rG are the same as
those for ¢D:

Ai =210 gl 0 =28 X p+ Lol 1)

and

FIG. 2. Configurations of bonds in the Keating model. The in- 0 i 0, .jo
teractions are described in the text. Aij=2ry mpgfq = (ry 1) 8p+ Epdp, 2
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TABLE |. The modified Keating parameters.

Planar Interlayer

GPa At ev A4 GPa A? ev A4 GPa A? ev A4
@ 266.21 1.6615 a’ 39.55 0.2469 a” 3.231 0.02016
B 240.53 1.5013 B’ 3.005 0.01875 B’ 0.289 0.00180
(o 30.12 0.1880 o’ —5.035 —0.03143
T 53.50 0.3340 7' —6.120 —0.03820 7' 1.445 0.00902

GPa A3 ev A6 MPa A2  mev A6 MPa A2 mev A6

—688.00 —4.2941 v 197.5 1.233 v’ —35.87 —-0.2239
1) —965.44 —6.0258

—366.84 —2.2896
&' —5.44 —0.0339

where terms of order 3 and higher have been omitted. Where 2
the sign is undetermined the sign is taken when the refer- E(2)=%2

3
ence atom lies on sublattice 1, the when it is on 2. s=1i=

3

3
B. Energy +rAnA,-,»]+a"Aﬁ+jZl’ [B/A%+ 0" (A +A5)A)

The expressions for the modified energies per cell are the
same as those for hG except that summations are now lim-
ited to two sublattices. The subscripteindj are solely for
the sake of bookkeeping—keeping in touch with the num-
bers of neighbors. Where, for the first time, there is only a
single neighbor to considefthe AB’ interaction set the JFAii)AliJ“”,AllAij])' ©)
bond has been indicated by a subscript 1.

3

A ] Fa’AlF 2 (B4 40 Ay

2
+2
=]

1. Harmonic terms 2. Anharmonic terms

The second-order energy per unit cell is The third-order energy per unit cell is

3
yAﬁ+j§l’ [SA]+ e(Aji+Aj )AL+ n(Af+ A7) A+ 08 Ajj A+ EAGA (A +Aj))]

2 3
013, 3

s=1

3
+y"Aﬁ+j§1’ [8"AF +€"(Aj+Aj)AY + n"(Aﬁ+A%>A”+0"AnAuAu+§"AHA,—J-<AH+AH>])

2
+2
§=1

3
37/t 2 [8'AY+€ (Mgt )AL+ 7' (AT +Af) Ay + 0" A1l yjA, +§'A11A“(A11+A,»j>]).

4

C. Elastic constants Comparison with Tables IX, X, and Xl in Ref. 3 shows that

Expressions for the partial and inner elastic constants iRl the partial constants have the same expressions in both
terms of modified Keating parameters have been obtained féaphite allotropes. The most notable difference is the lack of
the p|anar rG structure by the method of homogeneous d@.ny contribution to the inner elastic constants from the next-
formation. They have been listed in the Appendix. Thenearest-neighbotNNN) interlayer interactions. This is be-
second-order constants are presented in Table VII and theause the AA (and BB) connect points on the same sub-
third-order ones in Table VIII. All possible parameters havelattice. At the third order five of the si;, that involve¢’
been included for the sake of completeness even though onlyill be zero because the transferred parameters do not in-
a small number of them were non-zero in the case of hGelude it.
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TABLE II. Calculated second- and third-order partial and inner elastic constants. Units are GEa for

GPaA ! for Di; , GPaA 2 for E;; , and GPaA?® for Fy; .

Partial Inner Partial Inner
cY  1063.85 Dy 395 Y, -8641.4 Diss 0. Eyy -—9161
cl, 176.15 Dis —4.7 c‘l’13 -14.1 Ds 0. Ey, 2139
c, 7.9 Dy; —39.9 C%; —120.0 D,y 12524 Ejqys 31.1
Cc% 36.5 Dg; —0.04 C%,; —572.0 Dy, —10879  Ejss 0.
cS, 5.05 Cou —4.4 Das 0. Es; 216.1
c?, 1.6 E.. 5028 CY, -9.1 Dant 0. Egg 99.1
Ess 1480 CY,, —74.7 Daro 0.
CcY%s —5887.0 Dais 0.
Coes  2046.7 Dsa3 227.8
Cs -34 Daas 0 Fy, 1547
Cls —2.4 Fiis 48.8
c%y, -0.5 Faas 166.8
cl,  —158
Cos 11.0

The partial and inner elastic constants derived from TABLE IV. The composition of the calculated elastic stiffnesses,
Tables VII and VIII using values from Table I, and checkedand the corresponding compliances and compressibilities. Stiff-
by a homogeneous deformation calculatidrare shown in  nesses are in GPa, second-order compliances in TRad third-
Table II. The large number of nul;,x andE;j, components ~ order compliances in TP&.

is a pseudosymmetry effect arising from the limited number

of interactions taken in the model combined with the as- — Cy. — Su.
sumption of planar layers. A similar effect was seen inhD 13- Partial Internal Total Total
when the lattice parameters were chosen to give the quasi-cby 1063.85 1386 1049.99 0.980
configuration: the linear compressibility became isotropic. Ao 176.15 764 168.51 0157
new feature is the appearance of additional anharmonic corl3 790 001 789 0178
tributions, F{2) andF 3}, to the harmonic energy. 365 0.0 365 97 47
When the pseudosymmetry is broken by the buckling of 505 _0.04 501 2001
layers thenu is no longers, but smaller, and many coeffi- 14 156 0.37 103 0438
cients that are zer@.e., blank spacgsn Tables VII and VIII
will become nonzero, as will the associated constants. K 0645
The internal strain component common to the two allo- ka 27'1
tropes is slightly different, as shown in Table IIl, and the null k° 28'4
value forA,; is another pseudosymmetry consequence. v '
The full decomposition of the constants is given in Table
IV. The overall picture reveals that the two graphite aIIo—Eé _S_ij'; _286?1 -1 5_0(;1'78 - 27;6
tropes are remarkably similar. The calculated value€ gf : : : '
and Cy, in rG are a little smaller than they are in hG on 133 ~1200 61.4 —586 —395
account of the extra contributions of internal strain and this>oo —572.0 0.2 —571.8 11809.9
in turn makesk, a little bigger than it is in hG. At the third —44 0.2 —4.2 —22L.7
order it is onlyC,35that is greatly changed by internal strain, —91 —08 —9.9 —342.0
but this givesS,s; the value —39.5 TPa? whereas it is Te 5_8::;71 85??-2 6_7314(;; 81 9:;;
_ _ _ 266 2046.7 —1030.2 1016.5 -10.4
TABLE lIl. The internal strain tensors in A . The values for rG 34 0.2 392 51
appear on the left. The actual in-plane internal strain in hG is showr114 o4 113.6 111.2 210
on the right for comparison. 124 05 0.7 0.2 46
iJ A Aizﬁ"Af] 134 —15.8 -0.1 —-15.9 —74.8
444 11.0 0.0 11.0 —88123.3
16 -0.079 —0.083
15 0.009 K, -30.5
31 0.269 K¢ 11 646
33 0.0 K, 11585

024110-5



C. S. G. COUSINS PHYSICAL REVIEW B7, 024110 (2003

TABLE V. Pressure derivatives of the second-order stiffnesses

E

compared with target data for hG. 50 %PH_H_g._H_Fﬁ —

~N

Ci Ci Cis Css Cia Cia é 407

G 388 109 31 127 19 04 g 304

£ L
hG target 390 110 31 146 19 =201 ‘*%

i LY

10 e

—1.4 TPa 2 in hG. This causes the one upset in the fitting: it o ™
produces a negativi€, . This was the most difficult target to 0 5 10 15 20 25
fit in hG because, as explained in Ref. 2, it depends on the Pressure (GPa)

interlayeranharmonicity and particularly on the smallness of  F|G. 3. Pressure dependence of the zone-center frequencies.
Sy33 relative to Sz33. The remaining compressibilitiels,

K¢, k,, andK, are effectively identical in the two allo- 1

tropes. r cosf= Zc( u— E) , (6)
The pressure derivatives of the second-order constants are

shown in Table V. The first five are essentially the same agnd

the fitted values of the anharmonic targets for hG. a
rsinf=-—. 7

J3

D. Zone-center optic modes . .
The volume per pair of atoms is

The E; mode in rG mimics thde,;, mode of hG with a
frequency of 47.43 THz and a pressure derivative of 0.142 J§ )
THz/GPa. Likewise thé;; mode mimics the By, with val- Ve=—gca’. ®)
ues of 25.74 THz and-0.96 THz/GPa. The behavior under

pressure is shown in Fig. 3 and indicates a phase transition & Fi and ¢ all char_lge contl_nuously dunng such a transfor-
about 21.7 GPa. mation and there is no uniquely constrained path. From a

purely geometrical viewpoint the values afc, andu may
be interpolated uniformly between their extreme values and
V. RG-TO-CD TRANSFORMATION R, r, and @ calculated by the equations above. This would be
to ignore the physics, though, particularly the internal strain.
Although rG has never been isolated this has not inhibitediwo physical approaches have been developed: one involv-
study of its possible conversion to cD. A continuous trans-{ng energy minimization, the other enthalpy minimization
formation between the two structures can be envisaged bedong a hydrostatic compression path. These are described
cause cD can be described by a primitive rhombohedral celbriefly below, accompanied by complementary deductions
with two atoms in the basis in just the same way as rG. Theaising the Keating model.
quasi-rD picture is illustrated in Ref. 17. The top two rows of
Table VI show the lattice parametgief the triple hexagonal
cell), the volume(of the primitive rhombohedral celland i
the atomic position parameters of the two structures in- N Ref. 5 Kertesz and Hoffmann presented an orbital
volved. Also listed are the lengths of the axial borRjshe quel_for this sqlld—state,' hlgh—prgssure,_transformatlon, re-
nonaxial bondsr, and the buckling angle. These latter lating it to chemical reactions having orbital symmetry con-

parameters, indicated in Fig. 4, are related to the former byStraints. They toolR as the independent reaction coordinate
and optimized and ¢ at each value using extended dkel

band calculations. They identified a transition state at the
R=2uc, (5) maximum of the total energy versscurve. This occurred

A. Energy-minimization calculations

TABLE VI. End points and transition-state parameters.

a C V. u R r 0

rG 2.460 10.048 17.554 z 3.350 1.420 90.00
cD 2.522 6.178 11.346 % 1.545 1.545 109.47
Ref. 5 2,519 6.684 12.243 0.139 1.86 1.50 104.2
Ref. 61) 2,513 7.088 12.920 0.182 2.07 1.48 101.4
Geometrical path 2.504 6.810 12.304 0.140 1.91 1.49 104.0
Ref. 62) 2.372 6.770 11.0 0.155 21 1.38 97.0
Compression path 2.435 6.488 11.1 0.152 1.97 1.42 97.8
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(]
=

— D ) - T FIG. 4. rG-to-cD transformation patta) ini-
tial rG, (b) intermediate stage, showing the essen-
tial parameters, an¢t) final cD.

(=)
IS
¥

@ (b) ©

atR=1.86 A, r=1.5 A, and§=104.2°. The energy barrier
Eg was about 0.6 eV/atom. The transition state therefore
occurs whera=2.519 A,c=6.684 A, andu=0.139. These f=
results have been entered in the third row of Table VI.

They used the small initial rate of increaserafith R to for Rpa<R.
argue that the graphene layers do not buckle at low pressure. (10
In connection with théunstable transition state they remark o ) 5 )
that it is customary to relate different solid-state structures byn the following illustrationc, a“, anduc are interpolated
studies of hypothetical, sometimes unstable, structural modiniformly between their extremes. This procedure has the
els. effect of making the initial variation o& small, in keeping

Fahy, Louie, and Cohérsubsequently made a pseudopo-W'th the anisotropy of the I||jear compress[b|l'|t|es.. As bpth
tential total-energy study of the transformation. In the first ofanduc are changed proportionately the variatioruafself is
two calculations they followed the rationale of the above@S0 small initially: buckling is therefore slow to start, as
work and found an energy barrier of 0.33 eV/atom wien found in the studu_as under dlscus§|0n. The.res_ults for the
—207 A, r=1.48 A and6=101.4°. This result has been _second-ordq elastic consta}nts are illustrated in Fig. 5, for the
entered in row 4 of Table V1. In this study they followed the INtérnal strain parameters in Fig. 6 and for the zone-center
charge density in the plane of Fig(b} along the energy- pptlc-mode frequencies in Fig. 7. Each dlsplgy is divided
minimizing path. They concluded, first, that only whén into 3 by the upper and lower limits of the sw_ltchmg func-
<2.1 A did the charge density between the layers becomlON- On the left only the rG parameters are involved, any
substantially inhomogeneous and accumulate along the axiéﬁ"”at'ons being due solely to the changes in the geometry of
bond and, second, that not unB<1.8 A did the double the cel_l,_and on the ngh'_t only cD parameters are involved.
peak, characteristic of thep® bond in cD, appear. The mixing of the wo rgimes occurs in between.

These observations have been used to provide limits inh It is part_ly the geometrl_cal aspect of the partial constants,
the algorithm that handles the merging of the cD and rGih€ disposition ofa andd in the common factors in Table

for R<Ruin,

1 R—R
— ECOS{ u for Rpin=R=R;ax

Rmax_ Rmin

= Nk O

parametrizations. The Keating energy is taken as VII,_ and partly the internal strain that Qetermines th.e overall
variation of the total constants seen in the rG region. Thus
E=fE,g+(1—f)Ep, (99  bothCY; andCY,, which vary asa?/d, increase in size by

44% across the rG region. Roughly equal contributions from
inner displacement are subtracted from each, about 5% of
C9, but 25% ofCY, at the limit, leaving the variation of;;

to dominate the picture. The only other feature that merits

where, withR,;;,=1.8 andR,,,= 2.1, the switching function
is

1500 . o .
comment is the variation o€,3: this very small constant
G1 makes a negative excursion in the rG region and then,
12504 .
10001
0004 0.504 Ay,
7504 < A
Z 0252 »
=
5004 2 Ais
g o A
2504 s g - N
= 16
T -0.25 /
s === T
G 3.0 2.5
Axial Bondlength : R (A) G 30 75 20 D
) _ Axial Bondlength : R (&)
FIG. 5. Second-order elastic constants along a transformation
path.C,3;andC,, are shown ak 10 magnification. Terminal values FIG. 6. Internal strain parameters along a transformation path.
on the right are quasi-rD values. Terminal values on the right are quasi-rD values.
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FIG. 7. Zone-center frequencies along a transformation path.
The terminal value on the right is the quasi-rD value.

Cell volume : V. (A3

FIG. 8. Second-order elastic constants along a hydrostatic com-
ression pathC,; and C,, are shown at<x 10 magnification. The

uniquely, rises to a maximum in the middle of the transition
Eertical line marks the state wheueand 6 are extremal.

region. The significance of this is not clear. The apparen
constancy ofAig(=—D;5/E1q) is due to its net common
factor of a which increases by only 1.4% across the rG re-lated between its extremes and extrapolated beyond. The as-
gion. sociated enthalpyE+pV,, at each point was minimized.

The one interesting feature of the optic-mode frequencieThe results were very different from those based on energy
is their degeneracy in the transition region Rt1.9 A,  minimization. The path for example does not lead continu-
close to the value at which the onset of peaks in the electroously to the cD structure but terminates whes 80 GPa
density along the axial bond occlimnd reasonably close to and V.=11.0 A at which pointR=2.1 A, r=1.38 A, and
the value 1.76 A, deducible from measurements on Fig. 3 ip=97°. This result has been entered in row five of Table VI.
Ref. 5, where a symmetry imposed level crossing atlthe The compression path is simulated here by stepming
point occurs. The latter is related to the change frepd uniformly in 4% increments of the difference between its
+p, to sp® bonding, essentially the same fact. The data forextreme values. From the initially uncompressed rG the pres-
the present transition point have been added to Table VI fosure increment required to drive the structure to the next state
comparison. is deduced fromAc/c= —kcp+%(KC—k§) p?, the corre-
sponding increment ia from Aa/a=—k,p+ 3(K,— kfl) p?
and the (purely axia) increment in R from AR

Fahy, Louie, and Cohen’s second calculation followed a= —p(2A3:k,+AzK:). Over the rG region the pressure in-
hydrostatic pressure path. The cell voluvig was interpo- crements are small, starting at 0.65 GPa and dropping to 0.4

B. Hydrostatic compression path

TABLE VII. Coefficients of the modified Keating parameters in the second-order partial and inner elastic
constants. The common factors are expressed in terms of the lattice parametethe interlayer spacirdy
with t standing fory/3.

Planar Interlayer: NN Interlayer: NNN

Factor [} B o T a' B ! o' rd a" B” P 7
ch 2ta?/3d 1 1 -2 1 2 2 -4 2
cd, 2ta?/9d 1 -1 -2 5 2 -2 -4 10
c, 4td/3 2 2 4 -4 4 8
cl 16td%/a? i 2 4 2 2 4 8 4
Caa 4td/3 1 2 4 2 4 —a
cs, 2a/3 1 4 -4 -2 -4
D1g 2a/3d -2 2 1 2 1
D5 4t/3 1 1
D 4t/3 1 2
Dss 16td?/3a2 1 3 6 3
= 4t/3d 2 1 2 =2 1
Eas 8td/3a? 2 3 6
E(121)1,112,331 8t/3d 1 -1 1 2 1
E(121)3,333 16td/3a 1 3 3
F2, 8t/3a’ 2 3
F&) 8t/a? 2 3
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TABLE VIII. Coefficients of the modified Keating parameters in the third-order partial elastic constants and inner elastic constants.
Common factors expressed as in Table VII.

Planar

Interlayer: NN

Interlayer: NNN

Factor % S € 7 /] g S’ €’ 7]/ 9’ g/ '}’” S’ €’ 7)” 9" g/r
cly ta*d 1 -1 2 -2 -1 2 2 -2 4 -4 -2 4
cy, 8ta%d/3 1 1 3 3 -2 -1 8
Cizs 32d%3 1 2 1 3 3 -3 6 3 12
Ciys  32td%/a? 6 12 12 12 6 12 24 24 12 24
cY, 2ta%d/9 1 4 12 -12 -6 12 24
Cou  2ta’d/3 1 4 12 2 4 -8
Cauq  8td%3 3 6 8 2 4 12 6 12 24
Cles  ta*/od 2 -6 1 -2 6 4 -12 2 -4
Cos  ta*/od -4 6 -2 -3 2 2 -8 12 -4 -6 4
Cls 8ta’d/9 1 1 3 6 -3
cl, 2a%3 1 6 6 -4 -6 -2 4
cl, 2a%9 1 6 —6 -6 6 -12
cY, 4ad¥3 2 6 1 4 12 -12 -12 12 -6
Ccly  2ad? -1 -2 -4 -8 2 4 -8 8 16
Dizs  2ad/3 4 4 2
Dys  2adi3 3 4 4
Dy, 2a%3d -3 -3 2 3 -2 1
Dy, 2a%3d 5 1 -2 -5 -2 -3
Das  4adi3 1 2 1 4
Da;  4ta?3 1 2
Da,  4ta?/9 1 2
Da3  8td%3 2 2 3 8
Dsys  32td¥/a? 3 6 6 3 6
Dy 4td%3 3 6 4 4 8
EZ), 2ta%3d 6 1 -4 1
EG, 2ta®d 6 -6 -3 12 1
EG,  8td/3 3 2
EG.  16td/3 3 4 2
ES), 2al3 3 2
EGs  2a3 2 2
EY,  8tdi3 1 2 4
EQ, 16td%/a? 3 6 8 4
FG, 2ad -4 1 2 -4 4 8 1
F, t/3 12
FE,  8td¥a? 3 6 12

333

GPa, and accumulate to 9.6 GPa. As soorRdalls below

#=97.8°. These parameters have been added to Table VI.

2.1 A, however, the steep reductions in axial compressibiliApart from the pressure these parameters are close to those
ties mean that very large pressure increments, 9 GPa araf the metastable state identified in Ref. 6. The pressure itself
escalating, are needed to generate successive states. Thelose to the critical value 21.7 GPa indicated by the pres-
variation of the elastic constants is shown in Fig. 8 as asure dependence of th,, mode frequency. To the left of
function of cell volumeV, for ease of comparison with the this line the structure becomes more graphitic. The state at
results in Ref. 6. The path is traversed from right to left. Thethe extreme left has the value of cD and is attained at a
vertical line indicates the state at whialand @ are extremal: pressure of 72.6 GPa. It is remarkably similar to cD elasti-

it occurs whenp=19.1 GPa,V,=11.1 A, u=0.152, and cally: the bulk modulus is 1.8% down, the axial modulus just
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0.3% down. The bond configuration, though, is a highly dis-not a true allotrope but a mosaic distribution of microcrys-
torted tetrahedron in whiclR=1.88 A, r=1.38 A, and# talline defect regions embedded in the hG host. These re-
=97.5°. gions could be sufficiently large, however, to merit their
study as if they were truly allotropic. The issue of whether
the equilibrium state consisted of planar or buckled layers
C. Other paths was resolved in favor of planar layers.

A triaxial step-by-step process has been studied in which The elasticity in terms of the modified Keating model was
equal positive stress increments and o, stretch the basal then calculated for the planar structure. The transfer of Keat-
plane at the same time as a negative incrensgnsquashes ing parameters from hG to rG showed that the two allotropes
the planes together. The procedure leads to the cD cell pavere elastically extremely similar, apart from the negative
rameters in 100 steps but is less successful than the hydrénharmonic in-plane compressibilily, . The possession of
static procedure in attaining a cD atomic configuration. Thea set of elastic constants for this as-yet-uncharacterized ma-
stretching of the basal plane inhibits buckling of the layersterial provided an opportunity to explore the rG-to-cD trans-
and the parametar never drops below 0.161. formation in greater detail.

The single reason that such processes cannot lead from rG
to cD_is the phenorr_]enon of internal strain. The relati_ve COM- /i MODIEIED KEATING MODEL: SCOPE FOR
pression of the axial bon® does not keep pace with the FURTHER APPLICATION
relative compression of the cell parametdrecause relative
displacement of sublattices will always occur to minimize The successful use of the modified Keating model with
the deformation energy. hG suggests that the model will be well suited to studying

The best practical route to an rG-to-cD conversion isthe elasticity and the vibrational properties of nanotubes and
probably that of uniaxial stress. A compressive stregs fullerenes. As previously the model can be used in conjunc-

changes the lattice parameters according to tion with specific interatomic potentials if that appears
appropriate—to handle the Coulomb interaction in an ionic
Aa/a=S;303+ 3S1305 (11)  solid, for example. In such cases a first-order Keating energy

and has to be introduced to balance the first-order part of the

additional potential and to annul the first-order elastic con-
AC/C=Sya03+ 1 Sa3002. (12  stants that arise. . _ .
Further possible synoptic studies of cases where a particu-
Since S;3<0 and S33>0 the compressive streswhich is  |ar structural motif underlies a variety of crystal structures
negative causesa to increase and to decrease simulta- spring to mind: SiQ units in quartzes, tridymites, cristo-
neously. balites, coesite, and stishovite,® in various iceqin Icel
It may be that all these approaches are of academic intefhe O atoms occupy a quasi-hD configuratiand BN in its
est only. In a molecular-dynamics simulation of the conver-zinc-plende, wurtzite, and graphitic versions. Rationalization
sion by Scandolet al*®it was found that hG was converted of data via the modified Keating model may also serve as a

into both cD and hlvia an intermediate orthorhombic phase yseful preliminary in the derivation of a more sophisticated
of graphite. This process resulted in different orientation retransferable interatomic potential.

lationships between the initial and final crystal structures
from the one implicit in the discussions above. Although rG
was not explicitly studied it seems likely that it will behave

in a similar way.

APPENDIX: ELASTIC CONSTANTS IN THE MODIFIED
KEATING MODEL

Each constanM; is written as a linear combination of
Keating parameterk; with coefficientsu; and a common
factorF;: M;=F;XXuK;. The second-order constants ap-

This paper began with a discussion of the precise naturpear in Table VII and the third-order ones in Table VIII. The
of rhombohedral graphite, focusing on the initial structuralcommon factors in these Tables have been expressed in terms
studies of natural graphite and work on defects to be seeaf the interlayer spacing rather than the lattice parameter
therein. It was concluded that the rhombohedral form wado facilitate comparison with the treatment of hG in Ref. 3.

VI. SUMMARY
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