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Elasticity of carbon allotropes. III. Hexagonal graphite: Review of data, previous calculations,
and a fit to a modified anharmonic Keating model

C. S. G. Cousins
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

M. I. Heggie
School of Chemistry, Physics and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdo
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The experimental data relating to the second- and third-order elasticity and the zone-center optic modes of
hexagonal graphite are reviewed and some amendments proposed. A modified Keating model involving three
sets of interactions, one planar and two interlayer, has been developed. The harmonic parameters, four planar
and seven interlayer, have been fitted by least-squares procedures to five second-order elastic constants, five
zone-center optic-mode frequencies and two assumptions relating to internal strain. The anharmonic param-
eters comprise three planar and three interlayer ones. They have been fitted to the pressure derivatives of the
five second-order constants and of three of the optic-mode frequencies. The full spectrum of inner elastic
constants and internal strain tensors is given, the composition of the second- and third-order elastic constants
is exposed, and the corresponding elastic compliances calculated. A pressure-induced phase transition is cor-
rectly predicted at around 16 GPa.
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I. INTRODUCTION

The formal aspects of the elasticity through third order
two diamond and two graphite allotropes of carbon ha
been presented in Refs. 1 and 2~hereafter C1 and C2!. In the
first paper of the present sequence3 @paper I~C3!# attention
was focused on cubic diamond~cD! and an optimized Keat
ing model was developed whose parameters, four harm
and five anharmonic, provide an excellent account of
elastic constants, pressure derivatives of the elastic const
the frequency of the optic mode at the zone center, and
various phonon deformation parameters. In anticipating
application of the model to hexagonal diamond~hD! it was
realized that, unlike valence force field models, the Keat
model suffers from an infelicity of strain definition whereb
the parameters of the model depend on a dimension of
chosen unit cell. A slight modification to the definition o
strain removes the problem with the result that hD is v
successfully handled in Paper II.4

The ~almost?! exclusive use of the Keating formalism i
connection with cubic diamond- and zinc-blende-stuct
materials has led to its identification as a model of the co
lent bond. In fact there is no ‘‘physical’’ content in the Kea
ing model—it is simply a way of associating strain deriv
tives of energy with the structural variables, interatom
separations and angles, that are thought likely to be sig
cant for whatever reason. In this paper we have extended
modified Keating model to hexagonal graphite~hG!.

The elasticity of hG is a challenge from both theoretic
and experimental points of view on account of the extre
anisotropy of the structure. If the elasticity of cD is referr
to Cartesian axes with Ox1i@11̄0# and Ox3i@111# the greater
part of the resulting quasirhombohedral set of elastic c
stants~given in full in C3! may be compared directly to th
hG set. Both the differences and the similarities are startl
0163-1829/2003/67~2!/024109~12!/$20.00 67 0241
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hG’s C33 at 36.5 GPa is a mere 3% of its cD equivalent, 12
GPa, while the combination that relates to uniform stra
within layers,C111C12, is 1240 GPa in hG and 1274 GPa
cD. Thus hG is as stiff as cD within a layer but 30 tim
more compliant between layers. A consequence of this is
ease with which irregularity of stacking can take place a
accounts for the fact that single crystalline regions of natu
graphite are always both limited in extent and contain a m
ture of the hexagonal and rhombohedral forms. Such m
rial cannot be used for ultrasonic determinations of ela
constants but, in powder form, can be compressed
changes in the lattice parameters followed by x-r
diffraction.5,6 In this way both second- and third-order com
pressibilities may be determined.

Second-order elastic constants may be obtained from
trasonic experiments on compression-annealed pyrol
graphite.7–9 This material consists of layers that are stack
with high precision (c axes parallel within 0.5°) but whosea
axes are distributed at random. In spite of this it is still po
sible to find the single-crystal constants because seco
order elasticity is isotropic in the basal plane, rendering
randomness invisible. This isotropy does not extend to
third-order elastic constants. Since the latter are usually m
sured by determining the uniaxial stress dependence of u
sonic wave velocities through single crystals it is unlike
that they will be determined directly in the foreseeable
ture. Some combinations may be determined indirec
through the pressure dependence of the second-order
stants, however.

The theoretical challenge arises from two sources. F
there is the relative complexity of the structure. The ba
consists of four atoms, none of which occupies a site w
inversion symmetry. Thus, as shown in C1 and C2, there
numerous inner elastic constants besides the five indepen
second-order and ten independent third-order constants
material belonging to Laue group HI. To extract a fu
©2003 The American Physical Society09-1
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complement of components using any model in which
energy is not a simple function of interatomic separatio
unit-cell volume, etc., requires the calculation of the ene
for more than 280 000 configurations! This makes the de
opment of a parametrization of the bonding in hG high
desirable.

Second there is the anisotropy. It is often reasonable in
case of close-packed structures, such as the fcc and the
to fit Lennard-Jones potentials to second-order elastic c
stants and to transfer the parameters to defect situations.
cannot be done for hG: there is no way to define a p
potential that can represent a binding energy of 7 eV/a
and a nearest-neighbor distance 1.42 Å within a layer as
as the values 0.02 eV/atom and 3.35 Å between layers.10 To
improve the situation an empirical potential for carbon
voking three-body contributions was introduced by Stilling
and Weber,11 and Tersoff produced another that takes va
able atomic coordination into account via a many-bo
term,12 giving a reasonable account of the in-plane bondi
This was extended by Nordlundet al.,13 who added an inter-
action to accommodate the weak interlayer bonding. A f
ther development, due to Heggie,14 resulted in a carbon po
tential capable of interpolating smoothly betweensp2 and
sp3 configurations. Part of this potential involved Keatin
like terms, though these were limited to just the bon
stretching and bond-bending ones of the original15 model. As
the development and optimization of a Keating model h
been so successful for cD,3,15–18 it was felt worthwhile to
extend the ideas to hG. As indicated in Ref. 3 this mode
semiclassical, quasiharmonic and slightly approximate
that it ignores the distinction between adiabatic and isoth
mal elastic constants. Any discrepancies are likely to be v
small at modest temperatures. The elastic constants fall
two groups: one contributed to principally by th
sp2-bonding interactions within the graphene planes and
other byp bonding between planes.

In Sec. II we review the experimental data and justify o
model. The development of the model is carried out in S
III and the fitting and the results are presented and discu
in Sec. IV.

II. MODELING THE ELASTICITY

A. Appraisal of input data

1. At the second order

The five second-order elastic constants of pyrolytic gra
ite were determined by Blaksleeet al.7 and three of these ar
taken as target values here. Revised values are used foC13
andC44.

The reported values forC44 ranged from 0.18 to 0.35 GP
and are very small. They arise from the anomalously l
velocities of transverse ultrasonic waves propagated a
the c axis and stem from the mobility of dislocations. Whe
the latter is eliminated by neutron irradiation values up to
GPa are found. The high values are believed to be chara
istic of ideal single-crystal material. Sensitivity to the state
the crystal has been demonstrated by Grimsditch19 using
Brillouin surface scattering. He confirms the value 5.
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60.35 GPa found earlier for a sample of natural graphit20

and confirms also what appeared at first sight to be a con
dictory value 3.2560.015 GPa, reported in Ref. 21 fo
highly oriented pyrolytic graphite. The difference is cons
tent with the influence of crystallite grain size on the spe
of surface waves. The higher value has been adopted he

Zhao and Spain22 used their compressibility data to prob
the linear modulusBa([1/ka) and presented a case for rai
ing the value ofC13 from 15 GPa to 2262 GPa. Unfortu-
nately they inadvertently used the expression for theplanar
modulus! If their procedure is carried through correctly t
value ofC13 is lowered to 7.963.5 GPa.

Five of the six zone-center optic-mode frequencies
known, of which two can be converted directly to inner ela
tic constant values. TheE1u mode23,24 at 1587 cm21 ~47.58
THz! gives E11

125253.0 GPa Å22 and the A2u mode25 at
868 cm21 ~26.0 THz! givesE33

12575.66 GPa Å22.

2. At the third order

The anharmonic part of the potential determines the n
linear part of the compressibility and the pressure derivati
of the second-order constants and of the zone-center o
mode frequencies.

We have taken the early work on the compressibility
graphite carried out by Lynch and Drickamer6 and fitted their
tabulated values ofa/a0 and c/c0 to quartics inp. We find
for the linear compressibilitieska514.431024 GPa21 and
kc52.2431022 GPa21. The former value is high compare
to that derived by inversion of theCIJ , 6.431024 GPa21,
and casts some doubt on thea(p) measurements. The valu
of kc is much closer to the inversion value of 2
31022 GPa21. Other experiments7,8 gave (2.6860.13)
31022 GPa21 and (2.460.2)31022 GPa21. The nonlinear
compressibilities areKa52.831024 GPa22 and Kc54.66
31023 GPa22. This value ofKa is actually rather large and
indicates a perceptible nonlinearity in the in-plane compre
ibility. Kelly 26 observes that this nonlinear variation ofa can-
not be correct in the light of the work of Hershbach a
Laurie,27 in which indirect information on the anharmonicit
of planar bonds is obtained by analyzing C-C bond fo
constants. Zhao and Spain22 reported that the pressures
Ref. 6 are probably overestimated increasingly with high
pressure, thereby introducing the suspect nonlinearity
the pressure dependence ofa. Their own work showed no
such behavior.

A more recent study of finely ground natural graphite
Hanfland et al.28 presents compressibility data via a on
dimensional analog of the Murnaghan equation of state:29

r /r 05@~b8/b0!p11#21/b8,

wherer is a or c, b0
2152(d ln r /d p)p505kr is the linear

compressibility andb8 is the pressure derivative ofb. The
valueska58.031024 GPa21 andkc52.831022 GPa21 are
implied. Expansion of the above expression to second o
in p leads to the identification
9-2
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b85221
Kr

kr
2

and their value of 10.8 forb8 when r 5c then implies that
Kc510.031023 GPa22.

The full set of pressure derivatives of second-order ela
constants was presented by Gauster and Fritz.9 The value of
C448 at 0.0023 was problematic, likeC44, a victim of dislo-
cation mobility. A later study8 reassesses the derivative to
0.8160.15 and also raises the earlier value ofC338 from 9.6
to 14.661.1.

The Raman shifts under pressure of theE2g modes have
been measured28 and yielddv/dp of 0.140 and 0.145 THz
(GPa)21 for the E2g2 andE2g1 modes, respectively. Simila
measurement30 on the B1g1 mode gives dv/dp
50.572 THz ((GPa)21.

B. Justification of model

As indicated in the Introduction it is the large anisotro
of graphite that makes the modeling of elastic constants
ticularly difficult. Most early work, as reviewed in Kelly,26

concentrated on explaining the interlayer constants,C33,
C44, and their pressure derivatives. In particular the exp
mental work of Blaksleeet al.7 and Greenet al.8 was fol-
lowed by theoretical studies using, first, simple pairwise
tentials~Lennard-Jones and exponential core! in Ref. 31 and,
second, parabolic and other band models for the electr
contributions to the constants in Ref. 32.

In an unpublished investigation we have used the Ew
summation technique33 to calculate the full spectrum of con
tributions to elastic and inner elastic constants through th
order for all inverse powers of atomic separation fromn
54 to n514. It was impossible~i! to combine any two of
these in such a way that the structure was in equilibrium
the observed lattice parameters, i.e., with the first-order c

FIG. 1. A unit cell of the crystal structure of hG.
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stantsC1 andC3 simultaneously zero, or~ii ! to combine any
three in such a way thatC15C350 withoutC33 being nega-
tive andC44 always far too small or negative. In addition a
zone-center optic-mode frequencies involving theE33

lm were
imaginary.

The notion that elastic constants may be simulated byany
combination of pair potentials can be ruled out by referen
to one of the two second-order Cauchy relations. Cen
forces within the graphene planes implyC11

0 53C12
0 . The

observed values areC115C11
0 2D51060 GPa andC12

5C12
0 1D5180 GPa, whereD is the internal strain contri-

bution. This givesC11
0 5930 GPa, C12

0 5310 GPa, andD
52130 GPa. A value ofuDu equal to 40% ofC12

0 is unrea-
sonably large, implying enormous internal strain in total co
trast to cD where it is very small. Thus we expect stro
noncentral forces within the layers. The second relation
C135C44. As shown above the relevant values areC13
57.963.5 GPa andC4455.0560.35 GPa. Within the large
experimental error the Cauchy relation is satisfied althou
the quoted value ofC13 exceeds that ofC44 by 57%. We
therefore suspect and assume the presence of weak no
tral forces between the layers.

Nemanichet al.25 who reported an experimental determ
nation of theA2u mode frequency, 868 cm21, drew attention
to previous calculations based on various force field mod
in which frequencies in a wide range from 600 to 1300 cm21

were predicted. They asserted that the nature of the la
dynamics of graphite is such that even a valence force mo
with bond-stretching, bond-bending, and three-body ter
cannot describe theA2u mode: a four-body force, characte
ized by a puckering of the layer planes, is required. We h
not found this problem with the model developed here.

FIG. 2. Configurations of bonds in the Keating model. Fille
atoms are Bernal type A, empty atoms are type B. Upper right: th
in-plane BA bonds. Lower right: an AA8 and three AB8 bonds.
Lower left: three AB8 bonds. Upper left: a BB8 and two BA8
bonds. The associated interactions are described in the text.
9-3
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TABLE I. The SWMcC model parametersg i ~data and attribution taken from Ref. 40! and the bond
interactions selected for the Keating model.

g i Value ~eV! Arising from Bond stretching Bond bending

g0 2.598 AB and BA in-plane interactions AB BA AB/AB BA/BA
g1 0.364 AA8 interlayer interactions AA8 AA 8/AB8

~determines width ofp bands at theK point!
g4 0.177 AB8 and BA8 interlayer interactions AB8BA8 AB8/AB8 BA8/BA8
g3 0.319 BB8 interlayer interactions BB8 BB8/BA8
g5 0.036 AA9 alternate layer interactions
g2 20.014 BB9 alternate layer interactions

~determinesp band overlap!
g6 20.026 Chemical shift between A and B atoms
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Nemanichet al.23 measured theE2g2
frequency as well as

that of theE1u mode and found the splitting between them
be 150 GHz. They argued that to fit thev(E1u).v(E2g2

)
observation it is necessary to include second-near
neighbor out-of-plane interactions, a conclusion suppor
by Al-Jishi and Dresselhaus in their lattice-dynamic
model.34 Such interactions are included in this developme

III. MODIFIED KEATING MODEL

The structure of hG is shown in Fig. 1 and fully describ
in C1. Briefly, the basis consists of two sets of two ato
occupying inequivalent sites. Their position coordinates a
the indices assigned to their related sublattices are show
Table I in C1. We shall also use Bernal notation35 in which

TABLE II. Target data for the harmonic part of the modifie
Keating model. Units are GPa forCIJ and GPa Å22 for Eii

lm .

Experiment Assumed Fit

C13 7.963.5a 7.9
C33 36.561.0b 36.5
C44 5.0560.35c 5.05
E33

12 75.6660.09d 75.663
E33

112E33
121E33

33 75.65 75.65

1
2 (C11

0 1C12
0 ) 620628 620

1
2 (A16

3 2A16
1 ) 20.082 20.082

‘‘ zK’’ 0.115 0.115
C11

0 1063.85 1063.85
C12

0 176.15 176.15
C11 1060620 b 1060
C12 180620 b 180
E11

12 253.060.5e 253.0
E11

112E11
121E11

33 251.660.5e 251.6

aRe-evaluation of conclusion drawn in Ref. 22.
bReference 7.
cReference 19.
dReference 25.
eReference 23.
02410
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the inequivalent sites are designated A~sublattices 3 and 4!
and B ~sublattices 1 and 2!.

A. Strain variables

With four atoms in the basis the strain variables are m
complicated than those of cD because of the three dist
inner displacement vectorszWl. The strains may be expresse
as

D i i 52r p
i0hpqr q

i012r p
i0zp

p1zp
pzp

p ~1!

and

D i j 52r p
i0hpqr q

j 01r p
i0zp

r1r p
j 0zp

p1zp
rzp

p , ~2!

where terms of order three and higher have been omitted
the significance ofzWp and zWr is as follows. Consider the
reference atom belonging to sublattice 2 in the central la
in Fig. 2. It has three bonds to atoms on sublattice 4 wit
the layer and four sets of three bonds to sublattices 1 and
the layers above and below. Wheni refers to sublattice 1
zWp52zW1 ~minus because a positive value indicates 2 relat
to 1, 3 relative to 2 or 1, or 4 relative to 3, 2, or 1!. Similarly
when i refers to sublattice 3zWp51zW2 and when it refers to
sublattice 4 thenzWp5zW21zW3 because ‘‘4 relative to 2’’ is
equivalent to ‘‘3 relative to 2’’ plus ‘‘4 relative to 3,’’ simi-
larly for j andzWr, and for the remaining reference atoms.

B. Model parameters

The electronic structure of graphite is successfully a
proached by the Slonczewski-Weiss-McClure~SWMcC!
model36–40 and leads to a parametrization in which the e
ergy of p bonding is associated with various vectors (AA8,
AB8, BA8, and BB8) between adjacent layers, vectors (AA9
and BB9) between alternate layers, and with the neare
neighbor in-plane vectors~AB and BA!. We reproduce in
Table I the SWMcC parameters deduced by Charlier, Gon
and Michenaud40 in their first-principles study of the elec
tronic properties of hG, together with a brief indication of th
significance of these parameters, as given in their Appen
This provides a guide to selecting specific sets of vector
9-4
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parametrize the elasticity of hG. Corresponding to the f
largest parameters we focus initially on four sets: one pla
and three interlayer.

~i! The planar part of the energy per cell is modeled ana
gously to cD. The three nearest-neighbor A atoms to a
atom, see upper right portion of Fig. 2, give rise to thr
two-body ‘‘bond-stretching’’ BAi interactions, three three
body ‘‘bond-bending’’ BAiBA j interactions and various cou
plings between them. The same number of interactions a
from each A atom. Up to four harmonic parameters (a, b,
s, and t) and six anharmonic parameters (g, d, e, h, u,
andj) may be needed here.

~ii ! This set comprises the two-body AAi8 interaction be-
tween nearest neighbors in adjacent planes, see lower
portion of Fig. 2, and the three-body interactions that cou

TABLE III. Target data for the anharmonic part of the modifie
Keating model. Units are GPa22 for theKi and THz GPa21 for the
f 8. TheCIJ8 are dimensionless.

Experiment Assumed Fit

C138 3.160.5a 3.05
C338 9.660.8a

15.261.1b 14.6 12.7
C448 0.8160.15b 1.9
f 8(E2g1) 0.14560.012c 0.145
f 8(B1g1) 0.57260.020d 0.663

C118 39.063.9a 39.0
C128 11.061.1a 11.0
f 8(E2g2) 0.14060.001c 0.140
106Ka 282,e 1.92c O~5.8! 5.8
103Kc 4.66,e 10.0c O~10! 11.8

aReference 9.
bReference 22.
cReference 28.
dReference 30.
eReference 6.
02410
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the AAi8 with the three neighboring oblique interlayer ve
tors ABj8 . Up to ten more parameters may be needed~with
superscript8).

~iii ! This set comprises the three two-body ABi8 interac-
tions and the three three-body interactions involvi
AB i8AB j8 pairs, see lower left portion of Fig. 2, together wi
the symmetrical group of two-body BAi8 and three-body
BA i8BA j8 interactions. Up to ten more parameters may
needed~with superscript9).

~iv! This set comprises the three two-body BBi8 interac-
tion between nearest neighbors in adjacent planes and
three-body interactions that couple each BBi8 with the two
closest neighboring oblique interlayer vectors BAj8, see up-
per left portion of Fig. 2.

These sets are also shown in Table I in line with t
SWMcC parametersg i with which they are associated. Th
fourth set can be discarded, however, because of geome
interdependence. This arises as follows. Starting and fin
ing at a B site there are several loops of four vectors, sy
bolically BB81B8A 1 AA 81A8B50, which may be used
to express allD i i andD i j belonging to set 4 in terms of th
strain variables of the other three sets.

With a possible 12 harmonic and 18 anharmonic para
eters arising from the remaining three sets we are loath
introduce the AA9 and BB9 interactions. In fact these in
volve vectors joining pairs of atoms on the same sublat
and their bond-stretching aspect thus makes no contribu
to the inner elastic constants.

C. Energy

The three sets of parameters defined above, together
the bookkeeping, results in expressions considera
lengthier than those relating to cD.3 Not all terms are des-
tined for use. In keeping with the streamlining introduced
the modified model the only coefficients that are not un
are the halves associated with terms that are counted twic
the summations over sublattices.
layer
TABLE IV. The modified Keating parameters. Note the smaller units for the anharmonic inter
parameters.

Planar Interlayer

GPa Å21 eV Å24 GPa Å21 eV Å24 GPa Å21 eV Å24

a 266.21 1.6615 a8 39.55 0.2469 a9 3.231 0.02016
b 240.53 1.5013 b8 3.005 0.01875 b9 0.289 0.00180
s 30.12 0.1880 s8 25.035 20.03143
t 53.50 0.3340 t8 26.120 20.03820 t9 1.445 0.00902

GPa Å23 eV Å26 MPa Å23 meV Å26 MPa Å23 meV Å26

g 2688.00 24.2941 g8 197.5 1.233 g9 235.87 20.2239
d 2965.44 26.0258
e 2366.84 22.2896

j9 25.44 20.0339
9-5
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TABLE V. The inner elastic constants. TheD tensors are in GPa Å21, theE tensors in GPa Å22, and theF tensors in GPa Å23.

D16
1 -19.5 D16

3 20.0

D136
1 22.4 D136

3 22.4
D145

1 21.6 D145
3 21.6

D211
1 26262 D211

3 6262
D222

1 5440 D222
3 25439

D314
1 22.4 D314

3 22.4

E11
11 253.0 E11

12 253.0 E11
13 0.93 E11

33 251.6
E33

11 75.663 E33
12 75.663 E33

13 1.63 E33
33 75.65

E111
11 24569 E111

12 24569 E111
13 5.9 E111

33 24581
E112

11 1082 E112
12 1082 E112

13 6.1 E112
33 1070

E113
11 13.9 E113

12 13.9 E113
13 21.7 E113

33 13.9
E135

11 23.3 E135
12 23.3 E135

13 23.3 E135
31 23.3 E135

33 23.3
E331

11 114.9 E331
12 114.9 E331

13 1.0 E331
33 103.0

E333
11 242.3 E333

12 242.3 E333
13 257.9 E333

33 25.7

F112
111 2773.4 F112

112 2773.4 F112
113 20.15 F112

123 20.15
F112

133 20.15 F112
223 773.1 F112

333 773.1
has
the

in
erms
ua-
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e
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1. Harmonic terms

The second-order energy per unit cell is

E(2)5 1
2 (

s51

4

(
i 51

3 S aD i i
2 1(

j 51

3

8 @bD i j
2 1s~D i i 1D j j !D i j

1tD i i D j j #1a9D i i
2 1(

j 51

3

8 @b9D i j
2 1s9~D i i 1D j j !D i j

1t9D i i D j j # D 1(
s53

4

(
i 51

2 S 1
2 a8D i i

2 1(
j 51

3

@b8D i j
2

1s8~D i i 1D j j !D i j 1t8D i i D j j # D . ~3!

2. Anharmonic terms

The third-order energy per unit cell is

TABLE VI. The internal strain tensors in Å. The actual in-plan
internal strain is given byAiJ.

1 1AiJ.
2 in one layer and byAiJ.

2

1AiJ.
3 in the other. These components are equal and opposite

the first of them is given in the fifth column.

iJ. AiJ.
1 AiJ.

2 AiJ.
3 AiJ.

1 1AiJ.
2

16 21.21 1.29 -1.37 0.082

136 0.8 -0.8 0.8 0
145 7.4 -7.4 7.4 0
211 253.7 78.2 2102.7 24.5
222 54.3 279.2 104.1 224.9
314 21.2 1.2 21.2 0
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D. Elastic constants

Every independent elastic and inner elastic constant
been obtained in terms of these parameters by applying
generalized method of homogeneous deformation~described
in C2! to a unit contribution of each Keating parameter
turn. Each of these numerous constants has many more t
than its cD counterpart: so instead of listing them as eq
tions we have tabulated them in the Appendix.

IV. FIT AND THE RESULTS

As we possess only a limited amount of experimental d
we cannot fit more than a few parameters. Even with
excellent match to all data there is no guarantee of uniq

nd
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TABLE VII. The composition of the calculated elastic stiffnesses and the corresponding complianc
compressibilities. Stiffnesses are in GPa, second-order compliances in TPa21, and third-order compliances in
TPa22.

←CIJ.→ SIJ.

IJ. Partial Internal Total Total

11 1063.85 23.85 1060.0 0.973
12 176.15 3.85 180.0 20.164
13 7.9 7.9 20.175
33 36.5 36.5 27.47
44 5.05 5.05 198.0

ka 0.634
kc 27.1
kv 28.4

111 28641.4 23049.5 211 690.5 7.0
113 214.1 6.7 27.4 23.3
133 2120.0 2120.0 21.4
333 2572.0 2572.0 11 765
144 24.4 24.2 28.6 2214.7
244 29.0 4.2 24.8 2384.9
344 274.7 274.7 80 400
166 25887.1 2899.7 26786.8 34.9
266 2046.7 21074.7 972.0 210.6
366 23.4 6.8 3.4 25.7

Ka 5.8
Kc 11 752
Kv 11 764
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ness. At the second order the interlayer constants are fit
The primary target data, see Table II, areC13, C33, C44, and
E33

12, deduced from the frequency of theA2u mode. In addi-
tion the combinationE33

112E33
121E33

33 is tentatively deduced
from the values of the frequencies of theB1g1 and theB1g2
modes. No experimental value exists for the latter but in
lattice dynamical literature41,34 it is shown as nearly degen
erate with theA2u mode—so a close value has been
sumed. Interlayer interactions are responsible for the s
ting between theE1u and E2g2 modes. A near-perfect fit is
found by scanning possible sets of parameters interacti
using MATHEMATICA software.42 The parameters so foun
contribute to bothC11

0 andC12
0 . These values are subtracte

from the observed values and, together with the frequenc
theE1u mode, are used to determine the planar paramete
degree of freedom exists because the experimental dat
not fix the ~unknown! internal strain. In view of the ex-
tremely small value found in cD we set this arbitrarily so th
1
2 (A16

3 2A16
1 ), which governs the in-plane inner displac

ment, was equal to20.082 and equivalent to a quas
Kleinman parameterzK of 0.115. The harmonic paramete
are listed in the upper part of Table IV.

The anharmonic parameters were fit by a similar proc
using the target data in Table III. The quality of the expe
mental data is mixed and it was very difficult at first to fin
a realistic fit at all. Eventual success depended on solv
02410
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two problems. The first of these occurred in the interlayer
where a value near to zero was always predicted forf 38 , the
pressure dependence of the frequency of theE2g1 mode,28

one of the more reliable pieces of experimental informati
It was resolved when it was realized thatC448 and f 38 have
almost identical dependence on the Keating parameters
that a fit could be achieved by raising the target value ofC448
from 0.81 to 1.9 GPa, about 60% ofC138 . This appears to be
totally reasonable in thatC44 is about 60% ofC13. The quan-
tities C338 and f 68 are similarly linked. Remarkably only thre
interlayer parameters are required and none of them invo
bond bending. The second problem is the prediction of
third-order compressibilitiesKa and Kc . The former is
heavily dominated byC133 and the latter byC333. Although
these stiffnesses are fully determined by the interlayer
rameters the planar fit has to be obtained beforeKa andKc

can be found.
The planar fit is based onC118 , C128 , f 28 , andKa . These

involve the six parameters in only four combinations: 2g
1u, d, 2e1u28j, and h1u24j. In addition there is a
linear relation between the four targets limiting the numb
of planar parameters to 3. We have seth5u5j50 and
solved for g, d, and e. This least-squares fit givesKa
52231026 GPa22. As there is no reliable value forKa we
have assumed that it will be similar to that of cD in view
9-7
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TABLE VIII. Zone-center optic modes. Experimental frequencies are given in both cm21 and THz, the pressure derivatives
THz GPa21.

Mode~s! Eigenvector~s!

Frequencyf Derivatived f /dp

Experiment Calculated Experiment Calculated

E1u z1
251,z1

15z1
350 z2

251,z2
15z2

350 1587a 47.58 47.58 0.142

E2g2 z1
1'2z1

3'
1

A2
, z1

2'0 z2
1'2z2

3'
1

A2
, z2

2'0 1582a 47.43 47.43 0.140e 0.140

E2g1 z1
1'2z1

2'z1
3'

1

A3
z2

1'2z2
2'z2

3'
1

A3
42b 1.26 1.41 0.145e 0.145

A2u z3
251,z3

15z3
350 868c 26.02 26.02 20.53

B1g2 z3
1'2z3

3'
1

A2
, z3

2'0 25.74 20.96

B1g1 z3
1'2z3

2'z3
3'

1

A3
127d 3.81 3.82 0.572f 0.663

aReference 24.
bReference 23.
cReference 25.
dReference 41.
eReference 28.
fReference 30.
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the great similarity of the planar elasticity of hG to that
cD, to which attention was drawn in the Introduction. Sin
ka proved to be 15% lower than its cubic counterpart
have chosen a similarly reduced target forKa . This is easily
reached by making very small adjustments to the interla
parameters. Although this is a departure from the optim
least-squares fit it does not significantly affect the other
gets. The results of the anharmonic fitting are summarize
the lower half of Table IV.

The most striking feature of the parameters overall is th
relative size. The harmonic ones drop roughly an order
magnitude in going from set to set:a to a8 to a9, for ex-
ample. While this is expected on the basis of the relat
sizes of the various second-order elastic constants it is
guide to the startling anharmonic patterns. First the expe
order-of-magnitude increase in passing from harmonic to
harmonic planar parameters,a to g say, is totally reversed
for the two interlayer sets. Second it appears thatg8 is more
than 3000 times smaller thang implying that anharmonicity
is almost exclusively a planar feature. Third the planar
has bond bending parameters of similar size to its bo
stretching ones in marked contrast to the interlayer s
where bond-stretching dominates.

The above fit translates into the inner elastic consta
shown in Table V. These clearly reflect the contrast j
noted between constants that involve the planar parame
and those that do not.

The internal strain tensors are shown in Table VI. T
value of the linear internal strain was arbitrarily pre-select
The components of the quadratic internal strain have b
included because they follow directly from the inner elas
constants, as shown in C1. They do not affect elasticity
low the fourth order. From a formal perspective they app
well behaved: for example theA1JK

1 1A1JK
2 are all zero. This

is certainly to be expected asy components alone would b
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involved in the relative displacement of sublattices if A a
B sites were equivalent. TheA2JJ

1 1A2JJ
2 are the only com-

ponents that involve the planar parameters, hence their l
values.

The decomposition of the elastic stiffnesses and com
ances is shown in Table VII. The five second-order consta
selected as targets came from various sources, includin
re-analysis of a previously modified value ofC13. Their in-
version therefore generates a different set of second-o
compliances which, since the fitting procedure reprodu
the experimental stiffnesses exactly, may be taken as thde
facto experimental values also. Derived quantities, such
the compressibilities, follow directly, as shown in C2.

The spectrum of the third-order stiffnesses of hG
shown. TheCIJK display the now-familiar planar/interlaye
contrast. Whereas the magnitudes of the internal strain c
tributions to the second-order constants were from 0.4 to
at the third order they range from 15 to 110%. On invers
to compliances just two components dominate,S333 and
S344, as didS33 andS44 at the second order. The great di
parity betweenS333 on the one hand andS111, S113, andS133
on the other is precisely what is needed to achieve the
parity betweenKa andKc .

The zone-center optic-mode properties are shown in Ta
VIII. The modes and eigenvectors are described in C1. T
two larger in-plane mode frequencies were targeted and t
was no difficulty in reproducing the experimentally observ
150-GHz difference. In their Born–von Ka´rmán lattice dy-
namical study,34 Al-Jishi and Dresselhaus found, in agre
ment with Nemanichet al.,23 that the above difference coul
be accounted for only by the inclusion of a second-neigh
interlayer interaction. They further added that all the zon
center frequencies and elastic constants, apart fromC13,
could be fitted using only two interlayer and four plan
neighborhoods. To fit bothC13, which they took to be 15
9-8
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GPa, and the frequency difference required extension to
interlayer neighborhoods. Whether the value of 7.9 GPa
has been used here would have improved their fit is
known: what we have shown is that all the second-or
elastic constants and zone-center frequencies can be

FIG. 3. Pressure dependence of the zone-center optic-m
frequencies.
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using one planar and two interlayer sets of interactions.
The pressure derivatives of the frequencies were base

three experimental data, two of which were exactly match
with the third overestimated by 16%. Of the remaining thr
derivatives that of theE1u mode is clearly very reasonable
The other two are larger in magnitude and opposite in si
The actual variation of frequency with pressure for all t
modes is shown in Fig. 3. These results are particularly
isfying because they characterize the behavior of a mate
approaching a pressure-induced phase transition: the a
modesA2u and B1g2 show immediate softening while a
initial hardening ofB1g1 is followed by increasing softening
from about 9 GPa. The frequency becomes zero, and
structure unstable, at 15.9 GPa. This value is perhaps a
high because of propagation of error from the overestima
value of the initial hardening.

Numerous investigations have shown that hG underg
some sort of transition in just that range: Bundy and Kaspe43

achieved synthesis of hD by subjecting well-crystallized
to a static pressure exceeding 13 GPa and a tempera
above 1000 °C; Hanflandet al.28 observed theE2g2 Raman
line, noting a broadening that began at 9 GPa and the di
pearance of the signal at 14 GPa; Yagiet al.44 used a variety
of high-pressure devices and synchrotron radiation to cla
structural details of the transition, finding that it occurred

de
lastic
TABLE IX. Coefficients of the modified Keating parameters in the second-order partial and inner e
constants. The common factors are expressed in terms of the lattice parametera and the interlayer spacingd,
with t standing forA3.

Planar Interlayer: NN Interlayer: NNN

Factor a b s t a8 b8 s8 t8 a9 b9 s9 t9

C11
0 2ta2/3d 1 1 22 1 2 2 24 2

C12
0 2ta2/9d 1 21 22 5 2 22 24 10

C13 4td/3 2 2 4 24 4 8
C33 16td3/a2 1

3 2 4 2 2 4 8 4
C44 4td/3 1 2 4 2 4 24
D16

1 a/3d 2 22 21 22 4 24 22 24
D16

3 a/3d 22 2 1 2 2 4 24 22 24
E11

11 2t/3d 2 1 2 22 4 2 4 24
E11

12 2t/3d 2 1 2 22 4 2 4 24
E11

13 2t/3d 1 4 2 4 24
E11

33 2t/3d 2 1 2 22 2 2 4 2 4 24
E33

11 4td/a2 1 2 4 8 16 8
E33

12 4td/a2 1 2 4 8 16 8
E33

13 4td/a2 2 4 2 4 8 16 8
E33

33 4td/a2 4
3 5 10 4 4 8 16 8

E111,112,331
11(2) 2t/3d 2 22 2 4 4 24 4 8

E111,112,331
12(2) 2t/3d 2 22 2 4 4 24 4 8

E111,112,331
13(2) 2t/3d 1 4 24 4 8

E111,112,331
33(2) 2t/3d 2 22 2 4 2 4 4 24 4 8

E113,333
11(2) 8td/a2 1 1 2 4 8 4

E113,333
12(2) 8td/a2 1 1 2 4 8 4

E113,333
13(2) 8td/a2 1 2 1 2 4 8 4

E113,333
33(2) 8td/a2 2

3 2 5 3 2 4 8 4
9-9
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TABLE X. Coefficients of the modified Keating parameters in the third-order partial elastic constants and theD andF tensors. Common
factors expressed as in Table IX.

Planar Interlayer: NN Interlayer: NNN

Factor g d e h u j g8 d8 e8 h8 u8 j8 g9 d9 e9 h9 u9 j9

C111
0 ta4/d 1 21 2 22 21 2 2 22 4 24 22 4

C113
0 8ta2d/3 1 1 3 3 22 21 8

C133 32td3/3 1 2 1 3 3 23 6 3 12
C333 32td5/a2 1 6 12 12 6 12 6 12 24 24 12 24
C144

0 2ta2d/9 1 4 12 212 26 12 24
C244

0 2ta2d/3 1 4 12 2 4 28
C344 8td3/3 3 6 8 2 4 12 6 12 24
C166

0 ta4/9d 3 2 26 1 22 6 4 212 2 24
C266

0 ta4/9d 1 24 6 22 23 2 2 28 12 24 26 4
C366

0 8ta2d/9 1 1 3 6 23
D136

1 4ad/3 2 2 6 26 26 6 23
D136

3 4ad/3 2 4 1 2 6 26 26 6 23
D145

1 2ad/3 1 4 12 23 26 12 212 224
D145

3 2ad/3 3 5 8 12 23 26 12 212 224
D211

1 a3/3d 3 3 22 23 21 2 6 6 24 26 22 4
D211

3 a3/3d 23 23 2 3 1 22 2 6 6 24 26 22 4
D222

1 a3/3d 25 21 2 5 21 2 210 22 4 10 22 4
D222

3 a3/3d 5 1 22 25 1 22 2
10
3 210 22 4 10 22 4

D314
1 2ad/3 1 4 12 212 212 12 26

D314
3 2ad/3 3 8 2 8 12 212 212 12 26

F112
111 a/3d 12 23 26 12 212 224 24 26 212 24 224 248

F112
112 a/3d 12 23 26 12 212 224 24 26 212 24 224 248

F112
113 a/3d 4 24 26 212 24 224 248

F112
123 a/3d 4 24 26 212 24 224 248

F112
133 a/3d 2 8 24 26 212 24 224 248

F112
223 a/3d 212 3 6 212 12 24 8 24 26 212 24 224 248

F112
333 a/3d 212 3 6 212 12 24 6 6 12 24 26 212 24 224 248
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about 14 GPa and that the martensitically transformed ph
was hD.

V. DISCUSSION

A widely used alternative to valence force field or Keati
models is the Tersoff potential for carbon.12 Its parametriza-
tion was undertaken by optimizing a large number of co
sive energies of carbon polytypes, vacancy formation e
gies, together with the lattice constant and the bulk modu
of cD. The emphasis was thus on energy rather than en
derivatives. Recently an interlayer potential of the Ters
type was proposed for graphite in Ref. 13. We have tes
this modified energy algorithm by incorporating it in o
scheme in place of the Keating energy algorithm. The res
were poor. For exampleC11 was down by 60%,C12 was very
negative, andC33 was down by 75%. In additionC13 andC44
were essentially zero and some zone-center frequencies
imaginary, results indicating insufficient bond-bending co
tent in the interlayer modification. This highlights the impo
tance of having realistic energy derivatives.

The Keating model is a simple vehicle for carrying su
derivatives through third order. We have extended the mo
02410
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s
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ts
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with rigor to a noncubic structure. As a preliminary it wa
necessary to review experimental data and an errone
modification toC13 was identified and corrected. The param
etrization is compact and involves only the nearest neighb
within a layer and the nearest- and next-nearest neigh
between layers. The quality of the harmonic fitting is ve
good, there was no difficulty in achieving a convincing fi
though it must be borne in mind that the fit is not unique. T
planar parameters have substantial bond-bending chara
qualitatively similar to those of cD~see C3!, while the inter-
layer ones are biased in favor of bond stretching.

A single targetC448 had to be changed~from 0.81 to 1.9!
in order to obtain any credible anharmonic fitting. The fin
result is particularly impressive in three respects. Firs
gives a good account of the pressure dependence of th
maining four second-order elastic constants, three op
mode frequencies, and the two third-order compressibili
in terms of just six parameters, only one more than w
necessary for cD. Second the huge contrast between the
of the planar and the interlayer parameters emphasises
difference between the covalent, strongly angularly dep
dent, planar interaction and the weak, almost central, in
9-10
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TABLE XI. Coefficients of the modified Keating parameters in the third-orderE tensors. Common factors expressed as in Table IX

Planar Interlayer: NN Interlayer: NNN

Factor g d e h u j g8 d8 e8 h8 u8 j8 g9 d9 e9 h9 u9 j9

E111
11(3) ta2/3d 6 1 2 24 12 2 4 28

E111
12(3) ta2/3d 6 1 2 24 12 2 4 28

E111
13(3) ta2/3d 12 2 4 28

E111
33(3) ta2/3d 6 1 2 24 12 2 4 28

E112
11(3) ta2/9d 6 26 23 6 12 12 212 26 12 24

E112
12(3) ta2/9d 6 26 23 6 12 12 212 26 12 24

E112
13(3) ta2/9d 2 12 212 26 12 24

E112
33(3) ta2/9d 6 26 23 6 12 2 4 12 212 26 12 24

E113
11(3) 4td/3 4 4 12 6 12 24

E113
12(3) 4td/3 4 4 12 6 12 24

E113
13(3) 4td/3 2 6 1 4 12 6 12 24

E113
33(3) 4td/3 6 8 8 2 4 12 6 12 24

E135
11(3) 2td/3 2 8 24 12 24 48

E135
12(3) 2td/3 2 8 24 12 24 48

E135
13(3) 2td/3 4 12 2 8 24 12 24 48

E135
31(3) 2td/3 3 6 12 24 12 24 48

E135
33(3) 2td/3 9 16 16 6 8 24 12 24 48

E331
11(3) 4td/3 1 4 12 212 24 12 48

E331
12(3) 4td/3 1 4 12 212 24 12 48

E331
13(3) 4td/3 2 6 1 4 12 212 24 12 48

E331
33(3) 4td/3 5 8 6 16 12 212 24 12 48

E333
11(3) 8td3/a2 3 6 8 2 4 12 24 48 48 24 48

E333
12(3) 8td3/a2 3 6 8 2 4 12 24 48 48 24 48

E333
13(3) 8td3/a2 6 12 12 6 12 12 24 48 48 24 48

E333
33(3) 8td3/a2 4 15 30 32 14 28 12 24 48 48 24 48
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layer interaction. Third because of its clear indication of t
pressure-induced phase transition.

At first sight it appears paradoxical that thelinear varia-
tion of a ~small Ka) and thequadraticvariation ofc ~large
Kc) as functions of pressure6 should be associated with th
strong planar andweak interlayer anharmonicities, respe
tively. The paradox arises in the inversion of third-order st
nesses to compliances and stems from the strong aniso
of hG. BecauseC111 is so much larger thanC333 the recip-
rocal nature of the inversion makesS111 very much smaller
thanS333 and so on. ThusKc is dominated byplanar anhar-
monicity, Ka by interlayeranharmonicity and the paradox
resolved. This argument will apply to other layer structur
such as hBN.

In the fourth paper45 ~Paper IV! of this sequence the
model developed here is applied to rhombohedral grap
and includes a study of the postulated rG-to-cD transform
tion.
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APPENDIX: ELASTIC CONSTANTS IN THE MODIFIED
KEATING MODEL

Each constantMi is written as a linear combination o
Keating parametersK j with coefficientsm j and a common
factorFi : Mi5Fi3(m jK j . The second-order constants a
pear in Table IX and the third-order ones in Tables X and
The common factors in these tables have been express
terms of the interlayer spacingd rather than the lattice pa
rameterc to facilitate comparison with the treatment of rG
Ref. 45.
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