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Elasticity of carbon allotropes. I. Optimization, and subsequent modification, of an anharmonic
Keating model for cubic diamond

C. S. G. Cousins
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

~Received 10 May 2002; published 22 January 2003!

The inner elastic constants of single-crystal diamond at the second and third order characterize the response
of the crystal to the internal displacement of its component sublattices, of which there are two, either alone or
coupled to external strain. These constants feature in the decomposition of the macroscopic elastic constants at
second and third order, and give rise to one linear and three quadratic independent internal strain parameters.
All these constants have been obtained via the implementation of a Keating potential notionally restricted to
two-body and three-body interactions between nearest neighbors. Four harmonic parameters have been opti-
mized to reproduce the second-order elastic constants, the frequency of the~triply degenerate! optical mode at
the zone center and the internal strain parameter. The resulting fit is excellent and also accounts very well for
the frequencies of the TO modes at theX andL critical points. Excessively large frequencies predicted for the
TA modes at these points are shown to be due to a particular four-body interaction that cannot be separated
elastically from the three-body bond-bending interaction. The assignment of a fifth parameter allows all the
critical point frequencies to be well fit, the largest discrepancies being 3% and 6% for the TA modes. One of
six anharmonic parameters is shown to be statistically insignificant. The remaining five are fit to the pressure
derivatives of the second-order elastic constants and to the various stress derivatives of the frequency of the
zone-center modes. These parameters are used to predict the values of all the third-order elastic and inner
elastic constants, and of the quadratic internal strain parameters. Finally the Keating strain is redefined so that
the parameters of the model no longer depend on the dimensions of the unit cell chosen to describe the
structure. New expressions are obtained for all elastic constants and the optimized parameters are appropriately
modified.

DOI: 10.1103/PhysRevB.67.024107 PACS number~s!: 62.20.Dc, 63.20.2e, 81.40.Jj
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I. INTRODUCTION

A comprehensive treatment of general and specific
pects of the elasticity, through third order, of four carb
allotropes@cubic and hexagonal diamond~cD, hD!, and hex-
agonal and rhombohedral graphite~rG, hG!#, has recently
been given.1 The formal treatment of inner elastic constan
and zone-center optic modes has been presented in R
~hereafter C1! and of the anatomy of the macroscopic elas
constants and detailed protocols for their computation in R
3 ~hereafter C2!. The four allotropes make an interestin
group: the two with two atoms in the basis have the high
and the lowest symmetries, the two with four atoms in
basis have the same intermediate macroscopic symmetry
different microscopic symmetry; a different pairing contra
the sp3-bonded diamonds with thesp21pz-bonded graphi-
tes and the remaining pairing comprises two stable struct
on the one hand with a pair that consists of a structure ra
seen outside the high-pressure cell and a structure tha
never been isolated on the other.

In this series of papers the elasticity of these allotrope
viewed in terms of a single model. Attention is focused i
tially on cD as it has the simplest structure and provide
natural starting point.

Over the years a number of valence-force-field a
proaches have been developed and~or! used to treat
elasticity,4–9 lattice dynamics,10,11 and piezo-Raman
spectroscopy,12–15 in covalently bonded materials. Thes
range from Keating’s original two-parameter model5 dealing
0163-1829/2003/67~2!/024107~13!/$20.00 67 0241
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with harmonic properties to the massive 21-term databas
Vanderbilt et al.8 that handles harmonic, third-order an
fourth-order anharmonic properties of silicon.

In the desire to achieve a good description of both h
monic and third-order anharmonic properties of cubic d
mond with the smallest number of parameters it was deci
to develop and optimize the original Keating model5,6 by
including only such further interactions as were strictly ne
essary.

The elasticity of cD is detailed in C2 in a manner th
explicitly reveals the contribution of inner elastic constan
and internal strain. The key points are summarized in Sec
In C1 it is shown how zone-center mode frequencies a
eigenvectors are related to the inner elastic constants,
how the definition of effective inner elastic constants leads
expressions for the pressure derivatives of the mode freq
cies. Section III contains a summary of the essential res
and also an extension of them to cover the uniaxial stre
dependence of the frequencies~phonon deformation poten
tials! so that a wealth of experimental data12–15 can be con-
sidered.

Previous applications of the Keating model are review
in Sec. IV and the method is extended to include all th
nearest-neighbor three-body interactions at the second o
The optimization of the four parameters of its harmonic p
is carried out. It is shown that the bond-bending parame
obtained this way always contains implicitly a four-bod
contribution that cannot be separated from the normal th
body contribution by consideration of elasticity alone. Sep
ration is achieved by fitting phonon frequencies at theX and
©2003 The American Physical Society07-1
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L points of the Brillouin zone.
Additionally six anharmonic terms have been conside

at the third order.6,15 In an exact fit of these to experiment
values of the three pressure derivatives of the second-o
elastic constants and of the three-phonon deformation po
tials that describe the stress dependencies of the Ra
frequency14,15 it was found that one parameter was insign
cant. For the optimized anharmonic potential the other fi
force constants were fit by least squares with almost
change in values. The full array of results is summarized
Sec. V. Finally in Sec. VI the elasticity of cD is express
relative to rhombohedral axes. When compared with
standard cubic approach this reveals the drawback to
Keating model: namely that the model parameters depen
some lattice parameter. The situation is avoided by remov
explicit references to the latter from the energy expressio
The resulting model parameters are then independent o
choice of unit cell.

II. ELASTICITY

The general formalism and symmetry analysis for the
plicit development of elasticity in terms of partial, inner an
total elastic constants is given in Refs. 16 and 17. Spec
application to cD is given in C2.

As a crystal with a basis of only 2 atoms, neither of whi
occupies a site with inversion symmetry, cD requires a sin
inner displacement vectorzW and 6 components of Lagrangia
strain h to describe fully its elasticity. Symmetry analys
reveals the nonzero components of all the elastic and
inner elastic constants and these are shown in Table I.

The inner displacement vectorzW is related toh by the
components

z15A14h41A114h1h41A124~h21h3!h41A156h5h6 ,

z25A14h51A114h2h51A124~h11h3!h51A156h4h6 ,

z35A14h61A114h3h61A124~h11h2!h61A156h4h5 ,
~1!

whereA14 andA114 etc. are components of the internal stra
tensors which are 336 and 33636 arrays. Their values
come from applying internal equilibrium conditions, see C
and are given by

A1452D14/E11 ~2!

and

A11452~D1141A14E111!/E11,

A12452~D1241A14E112!/E11,

A15652~D15612A14E1261A14
2 F123!/E11. ~3!

Eliminating thezW from the elastic energy leads to the fin
expressions for the total elastic constants:

C115C11
0 ,
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C125C12
0 ,

C445C44
0 2A14

2 E11, ~4!

at the second order and

C1115C111
0 ,

C1125C112
0 ,

C1235C123
0 ,

C1445C144
0 12A14D1141A14

2 E111,

C1555C155
0 12A14D1241A14

2 E112,

C4565C456
0 13A14D15613A14

2 E1261A14
3 F123, ~5!

at the third.

A. Second- and third-order compliances

Second-order compliancesSIJ enter the general expres
sions for the effective elastic constants that are needed in
anharmonic parametrization. They are obtained from
stiffnessesCIJ through the following relations,18

TABLE I. The symmetry of the elastic constants and the inn
elastic constants. The first column contains the sets of compon
of each that have been selected as independent and the secon
umn contains the relationships~other than by legitimate permuta
tion of subscripts,CIJ5CJI , DiJK5DiKJ , andEi jK 5EjiK , for ex-
ample! between the remaining nonzero components and
independent ones.

C11 C225C335C11

C12 C135C235C12

C44 C555C665C44

C111 C2225C3335C111

C112 C1135C1225C1335C2235C2335C112

C123

C144 C2555C3665C144

C155 C1665C2445C2665C3445C3555C155

C456

D14 D255D365D14

D114 D2255D3365D114

D124 D2355D3165D1345D2155D3265D124

D156 D2465D3455D156

E11 E225E335E11

E111 E2225E3335E111

E112 E1135E2215E2235E3315E3325E112

E126 E2345E1355E126

F123
7-2
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ELASTICITY OF CARBON ALLOTROPES. I. . . . PHYSICAL REVIEW B67, 024107 ~2003!
k[S1112S1251/~C1112C12!,

k8[S112S1251/~C112C12!,

k9[S4451/C44. ~6!

The abbreviationsk, k8 andk9 serve to simplify the follow-
ing expressions for the third-order compliances:19

K5S11116S11212S12352k3~C11116C11212C123!,

S11123S11212S12352k
8
3
~C11123C11212C123!,

S1112S12352kk
8
2
~C1112C123!,

S14412S15552kk
9
2
~C14412C155!,

S1442S15552k8k9
2
~C1442C155!,

S45652k
9
3C456. ~7!

wherek andK are the harmonic and anharmonic linear co
pressibilities, respectively. The latter feature in the expr
sions that represent relative changes in lattice parameta
and unit cell volumeV as a function of pressure, see C2:

Da/a052kp1
1

2
~K2k2!p2,

DV/V0523kp1
3

2
~K1k2!p2. ~8!

B. Pressure derivatives of the elastic constants

The hydrostatic pressure derivatives of the elastic c
stants are given by the following expressions:

C118 52k~C111C11112C112!,

C128 52k~C1212C1121C123!,

C448 52k~C441C14412C244!, ~9!

and

B852
1

3
2

k

3
~C11116C11212C123!, ~10!

where the bulk modulusB5(C1112C12)51/3k.

III. ZONE-CENTER OPTICAL MODES

The general results for optical mode frequencies a
eigenvectors in thissemiclassicalapproach are given in C1
Strictly speaking the frequencies should be directly relate
the adiabatic tensorsEi j

S , the second derivatives of thepo-
tential energy U via the Hamiltonian in a quantum
mechanical formulation20 or via the Lagrangian in a classica
approach.16,21 The Ei j used in the present development a
isothermal tensors, second derivatives of thefree-energyF
[U2TS and thus only approximately correct. The discre
02410
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-
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d
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ancies betweenEi j
S andEi j are extremely small because th

vibrational energy is very much smaller than the poten
energy for strongly bonded materials at modest temperatu

The strain-dependence of the optic mode frequencie
terms of theEi jK is subject to the same approximation b
any discrepancies are expected to be very small for the s
reason as before. A model that derives the strain-depend
of frequency from the difference of harmonic frequencies
strained and unstrained states is said to bequasiharmonic. A
fully anharmonic model is a quantum-mechanical one t
treats phonon-phonon interactions in terms of both third- a
fourth-order anharmonicity.

A. The secular equation at equilibrium

For diamond the secular equation for the optical mod
reduces to a 333 determinant with a triply degenerat
root.21

v25
4

r0
E115

a3

2M
E11, ~11!

wherer0 is the equilibrium density andM is the mass of a
carbon atom.

B. The secular equation under stress

The procedure leading to the strain-dependence of the
tic mode frequencies is cast in terms of third stra
derivatives of the free energy rather than of the poten
energy. Any discrepancy is expected to be very small for
same reason as before.

The effective inner elastic constantsĒ for arbitrary strain
are shown in C1 to be

Ē115E11~11h12h22h3!1E111h11E112~h21h3!,

Ē225E11~12h11h22h3!1E111h21E112~h11h3!,

Ē335E11~12h12h21h3!1E111h31E112~h11h2!,

Ē125~E111E1261A14F123!h6 ,

Ē135~E111E1261A14F123!h5 ,

Ē235~E111E1261A14F123!h4 . ~12!

The secular equation for the optical modes under a st
s is

UĒi j 2
r

4
v2U50 ~13!

in which

r0

r
511ks. ~14!
7-3
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The phonon deformation potentials that describe the str
dependence of the mode frequencies depend on the s
derivatives of bothĒi j andr.

Under hydrostatic pressurep the effective constants are

Ē115Ē225Ē335E11~11pk!2pk~E11112E112! ~15!

and the eigenvalues remain triply degenerate with

vH
2 5

4

r
Ē11. ~16!

For a uniaxial stresss in the direction,W the stress com-
ponents are given bysJ5s, i, j , whereJ is the conventional
contraction ofi j . Hooke’s law,h I5SIJsJ , can now be used
to eliminateh I from the effective inner elastic constants
favor of s, i, j and derivatives with respect to stress foun

Three situations are relevant to the work described in
paper.

1. s along †0 0 1‡

This is a tetragonal deformation and the effectiveE tensor
now has two different diagonal components

Ē115Ē225E11~12sS11!1s@S12E1111~S111S12!E112#,

Ē335E11~12s~2S122S11!!1s~S11E11112S12E112!.
~17!

The eigenvalues consist of a doublet and a singlet given

vd
25

4

r
Ē11 ~18!

and

vs
25

4

r
Ē33. ~19!

2. s along †1 1 1‡

This is a trigonal deformation in which

Ē115Ē225Ē335E11F12
1

3
s~S1112S12!G1

1

3
s~S1112S12!

3~E11112E112!,

Ē125Ē135Ē235
1

3
sS44~E111E1261A14F123!. ~20!

The eigenvalues are

vd
25

4

r
~Ē112Ē12! ~21!

and

vs
25

4

r
~Ē1112Ē12!. ~22!
02410
s-
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3. s along †1 1 0‡

In this orthorhombic deformation an off-diagonal comp
nent is introduced

Ē115Ē225E11~12sS12!1
1

2
s@~S111S12!E111

1~S1113S12!E112#

Ē125
1

2
sS44~E111E1261A14F123!

Ē335E11~12sS11!1s~S12E1111~S111S12!E112!.
~23!

Degeneracy has now been removed and three eigenvalue
obtained

v6
2 5

4

r
~Ē116Ē12! ~24!

and

v3
25

4

r
Ē33. ~25!

C. Phonon deformation potentials

There are several differentad hoc definitions and nota-
tions used to describe the strain dependence of the o
mode frequencies at the zone center.12,22 Ki j []v2/]h i j and
K̃ i j [] ln v2/]hij5(1/v0

2)Ki j are general expressions whil
p5K11, q5K12 andr 5K44 are parameters specific to cub
symmetry. When the eigenvalue expressions in the prev
sections are differentiated with respect to stress, relati
precisely the same as those given in Ref. 12 are obta
with

p

2v0
2 511

E111

2E11
,

q

2v0
2 5

E112

2E11
,

r

v0
2 511

E1261A14F123

E11
, ~26!

together with the mode Gru¨neisen parameter

gG52
1

3 S 11
E11112E112

2E11
D . ~27!

A slighty different approach has been adopted
Nielsen23 who defines aphonoelastictensorV as the square
root of the dynamical matrix. Elements of this tensor, e
panded in powers ofh, combine to give frequencies unde
strain. Certain of the linear coefficients then correspond
phonon deformation potentials:V11,V12, and 2V44 corre-
sponding to the left-hand sides of the three members of
~26! above.
7-4
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IV. THE KEATING MODEL

The Keating formalism5 models the strain energy onl
and does not provide values for the cohesive energy or
lattice parametera. The unit cell in diamond is defined by th
vectorsaW 15(a/2)@0,1,1#, aW 25(a/2)@1,0,1# and aW 35(a/2)
3@1,1,0#, wherea53.567 Å. The basis consists of two a

oms with position coordinates~0,0,0! and (1
4 , 1

4 , 1
4 ).

The original strain variables are (rW i
•rW j2rW i0

•rW j 0)/(a/2)
[D i j /(a/2), wherei and j label atoms neighboring a pa
ticular reference atom,s, and i0 and j 0 label the unstrained
configuration. The connection betweenD i j , the finite strain
tensorh and the inner displacement vectorzW follows from
the definition of homogeneous deformation. IfJ is the defor-
mation gradient matrix anddW is the sublattice displacemen
then I 12h5 J̃J and zW5 J̃dW . From this we obtainrW i5JrW i0

6 J̃21zW , where the sign depends on which sublattice the
erence atom lies on,

D i i 52r p
i0hpqr q

i062r p
i0zp1zpzp ~28!

and

D i j 52r p
i0hpqr q

j 06~r p
i01r p

j 0!zp1zpzp , ~29!

where terms of order three and higher have been omitte

A. Harmonic interactions

The tetrahedral cluster and the four basic interactions
shown in Fig. 1. The harmonic energy per cell stems fr
the nearest-neighbor two-body interaction~stretch!, three
nearest-neighbor three-body interactions~bend, stretch-bend
and stretch-stretch! and a certain four-body interaction.
takes the form

FIG. 1. Tetrahedral cluster and four basic interactions.
02410
e

f-

re

E(2)5
1

a2 (
s51

2 F(
i 51

4

aD i i
2 1(

i 51

3

(
j 5 i 11

4

@2bD i j
2 12tD i i D j j

1s~D i i 1D j j !D i j #1(
i 51

4

(
j 51

4

8 kD i j D ikG . ~30!

The k term is related to thef ff* valence force field param
eter introduced by McMurryet al.10 as an essential ingredi
ent in the treatment of the flattening of the transverse aco
tic dispersion curves towards theX and L points in the
Brillouin zone. It relates to a chain of three bonds in a 18
dihedral-angle configuration. The prime on the final summ
tion indicates thatj Þ i and the absence of a summation ov
k arises as follows. The bonds labeledj andk are attached to
opposite ends of bondi and are parallel. Under homogeneo
deformation the outer bonds are strained in the same w
forcing the two angles of the chain to change in the sa
way. This results inD i j D ik5D i j

2 and the interaction become
formally indistinguishable from the simple three-body bon
bending interaction. Elastic constants and the zone-ce
frequency cannot be used to separateb from k. However the
expressions for some of the phonon frequencies at the z
boundary mixb and k in different proportions thereby en
abling the separation to be made.

The second-order elastic, inner elastic and internal st
parameters are given by the following, in whichb* denotes
b1k:

C115
1

a
~a13b* 2s13t!,

C125
1

a
~a2b* 2s13t!,

B5
1

a S a1
1

3
b* 2s13t D ,

C44
0 5

1

a
~a1b* 2s2t!,

D145
4

a2 ~a2b* 2t!,

E115
16

a3 ~a1b* 1s2t!,

A1452
a

4 S a2b* 2t

a1b* 1s2t D ,

zK52
4

a
A14, ~31!

where B is the bulk modulus,zK is the Kleinman internal
strain parameter and the remaining total second-order c
stantC44 is given by Eq.~4!.
7-5
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TABLE II. Parametrization of the harmonic part of the Keating model. As explained in the text all fi
b to experimental data are in fact fits ofb1k: this is indicated below by the use ofb* . Units are GPa for
CIJ andB, GPa Å22 for E11, and GPa Å fora etc.

← a,b* fittings → a,b* ,t a,b* ,s Present work

← Exact → LSq Exact Exact LSq Observed

C11 Fit Fit 756 433 990 1051 Fit Fit 1072 1079~5! a

C12 Fit 2199 Fit 447 69 100 Fit Fit 131 124~5! a

E11 756 Fit Fit Fit 666 770 Fit Fit 562 553.4~8! b

C44 576 350 567 213 520 589 593 Fit 574 578~2! a

B ~Fit! 226 335 Fit 376 417 ~Fit! ~Fit! 445 442~4! a

zK 0.206 20.45 0.28 1.02 0.131 0.20 0.12 0.074 0.093 0.125~20! c

a 1294 430 1006 1582 1068 1304 1056 987 1009
b* 852 1140 564 212.2 821 848 852 852 840
s 2238 2250 2234
t 233 19 21

aReference 24.
bReference 25.
cReference 26.
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In addition, becauseD i i andD i j contain terms inz2, the
‘‘harmonic’’ energy contains small anharmonic contributio
via E111 andE112. These are given by

E111
(2)5E112

(2)5
16

a3 ~a2b* 1s13t!. ~32!

Initially the model was limited to thea andb* terms alone
and applied to Group IV elements and III–
semiconductors.5,7 The targets for fitting wereC11, C12, and
C44.

Values ofa andb* deduced24 from C11 andC12 gaveC44
to more than 0.3%.5 This very encouraging result hid
37% error inE11 or a 17% error in the Raman frequenc
v0.25 It also predicted a value of 0.21 forzK . This was later
measured and the much smaller value of 0.12560.020 was
obtained.26 With more experimental data available differe
fits can be made and these are listed in Table II. For colum
2 through 5 two data are used to determinea andb* and the
implications set out: at least one quantity is very poorly p
dicted each time andzK in particular is bad. In column 6 a
least-squares fit to four data by Anastassakiset al.15 leads to
a51068 GPa Å andb* 5821 GPa Å. This gives a value o
zK close to that measured, thoughv0 is still 10% too large
andC12 is 44% too small.

The first extension of the Keating model to include
additional interaction was made by Bashenovet al.27 who
introduced~usingg) the term denoted here byt. Column 7
lists the quoted values; the precise method of calcula
remains unclear.

The case for the inclusion of the other three-body te
was discussed by Ru¨cker and Methfessel.28 They pointed out
that a good agreement forC11, C12, C44, and v0 in dia-
mond could be obtained using justa, b* , ands (g in their
paper! whereas it appeared important to introducet to im-
prove the fit to the phonon dispersion in Si and Ge. Colu
02410
ns

-

n

n

8 shows the result of this fitting. Each fit generates a uniq
relation forzK in terms of the fitted parameters–in this ca

122zK5S 4a~C1123C12!

Mv0
2 D 1/2

. ~33!

This gives a valuezK50.102 that is close to a theoretica
calculation23 and reasonably close to the experiment.26 The
predicted value forC44 is now 593 GPa, much closer to th
observed 578 GPa.

The inclusion of both extra terms will now be considere
Inversion of the earlier equations forC11, C12, E11, andD14
~aszKE11) yields

a5
a

8
~C111C12!1

a3

64
E11~112zK!,

b* 5
a

4
~C112C12!,

s52
a

2
~C112C12!1

a3

16
E11~12zK!,

t52
a

8
~C1123C12!1

a3

64
E11~122zK!. ~34!

These then imply

12zK5S 8a~C112C122C44!

Mv0
2 D 1/2

~35!

giving zK50.074, a value that is somewhat lower than eith
the measured value or theoretical predictions. If the to
ances on the experimental data are taken into account a r
of values is obtained:zK50.07460.009. Although this is not
quite enough to bracket the experimental range there are
sons, discussed in Sec. V, for supposing that the experime
7-6
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TABLE III. Phonon frequenciesf ([v/2p) at theG, X, andL points. Units: THz forf, GPa Å forb* etc.

Point Mode Exact fit Least-sq. fit Observed

G LO,TO 39.93 39.93 40.23 40.23 39.93

X LO,LA 37.09 35.36 37.09 35.45 35.80
TO 31.36 31.36 31.68 31.68 32.39
TA 29.41 24.78 29.20 24.78 24.04

L LO 40.42 36.77 40.29 36.80 37.21
LA 30.91 30.40 31.05 30.57 31.00
TO 35.90 35.90 36.21 36.21 36.25
TA 20.80 17.52 20.65 17.52 16.55

b* 852 840
b 605 605
k 0 247 0 235

aReference 25: errors are estimated at 2–3%
ur
io

he
ar

re-

ns,
very
value may have been slightly overestimated. This fo
parameter fit is listed in column 9. A least squares solut
involving the observed value ofzK produces the fitting
shown in column 10.

To check further the quality of the fits and to resolve t
b/k problem involves consideration of the zone-bound
phonons. At theX point these have frequencies given by

MvLO,LA
2 54a18b14t14k54a18b* 14t24k,

MvTO
2 58a28t,

MvTA
2 58b58b* 28k, ~36!

and at theL point by
02410
-
n
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MvLO
2 52a113b1s14t14k52a113b* 1s14t

29k,

MvLA
2 56a1b23s56a1b* 23s2k,

MvTO
2 58a14b14s28t14k58a14b* 14s28t,

MvTA
2 54b54b* 24k. ~37!

Columns 3, 5, and 7 in Table III show the frequencies p
dicted using the four parametersa, b* , s, andt ~i.e., with
no explicitk term!, in both exact and least-squares versio
and those observed. The least-squares fit appears to be
slightly better. The TO modes, which have no explicitk
component, are well predicted with errors of only22% and
of the
ionless.
TABLE IV. Parametrization of the anharmonic part of the Keating model using pressure derivatives
second-order elastic constants and the phonon deformation potentials. All input quantities are dimens
The units forg etc. are GPa.

Input Ref. 14 Ref. 15 Present work Observed

C118 7.31 Fit 6.97 6.98~70! a

C128 3.23 Fit 2.09 2.06~70! a

C448 4.40 3.95 Fit 4.12 3.98~30! a

(C118 2C128 )/2 2.45 2.46~10! a

(C118 1C128 12C448 )/2 8.65 8.50~60! a

(p12q)/2v0
2 23.35 23.19 Fit 23.18 23.18(24)b

(p2q)/2v0
2 20.50 20.52 Fit 20.52 20.52(8) b

r /v0
2 21.2 21.89 Fit 21.89 21.9(2) b

g 21670 21478 21200 21198
d 95 140 164 166
e 2499 2654 2567 2566
h 2227 2139 2138
u 181 145 143
j 0.55

aReference 24.
bReference 14.
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TABLE V. The inner elastic constants and internal strain parameters. Units are GPa Å21 for D, GPa Å22

for E, GPa Å23 for F and Å for A.

D14 46.6 E11 561.9 A14 20.083
zK 0.093 0.108a

D114 2259 E111 22705 A114 0.06 1.39a

D124 2529 E112 2998 A124 0.79 1.11a

D156 21028 E126 21860 F123 22879 A156 1.32 1.96a

aReference 23.
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20.1%. Apart from one the remainder are overestimated
particular the errors in the TA modes are 22% atX and 25%
at L. This characteristic failure to pick up the flattening of t
TA modes near the boundary is markedly reduced by set
k5247 GPa Å in the exact andk5235 GPa Å in the least
squares fittings to give the values listed in columns 4 and
the errors in the TA modes are now 3% and 6%, respectiv
and the separation ofb* has now been achieved withb
5605 GPa Å in each case.

With the simple model under consideration there is
way to improve all the zone-boundary frequencies. It can
shown29 that the most general force constant fitting to near
and next-nearest neighbor interactions imposes a cond
on the calculated frequencies:

2~vLA
2 2vLO

2 1vTO
2 2vTA

2 !L53~vTO
2 2vTA

2 !X . ~38!

Observed values do not satisfy this equation: the left-
right-hand sides differ from their mean by 6%, a figure th
suggests that the above fit is as good as it can be.

The inner elastic constants and internal strain parame
are collected together in summary Table V in Sec. V and
decomposition of the calculated constants and the assoc
compliances are shown in summary Table VI.

B. Anharmonic interactions

Keating extended his method to the anharmonic re´gime6

by considering theg, d, and e terms in the following ex-
pression for the anharmonic energy per cell
02410
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6:
ly

o
e
st
on

d
t

rs
e
ted

E(3)5
8

3a3 (
s51

2 F(
i 51

4

gD i i
3 1(

i 51

3

(
j 5 i 11

4

@2dD i j
3 13e~D i i

1D j j !D i j
2 13h~D i i

2 1D j j
2 !D i j 16uD i i D i j D j j

13jD i i D j j ~D i i 1D j j !#G , ~39!

where all nearest-neighbor two-body and three-body inte
tions have been written down. He successfully applied t
model to fitting the third-order elastic constants of Si and G
The direct measurement of these constants for diam
would be extremely difficult for several reasons and h
probably not been attempted. Nevertheless experimental
are available that relate to the third-order elastic consta
through pressure derivatives of second-order constants,24 and
to third-order inner elastic constants, in the form of stre
derivatives of the Raman frequency.14 The pattern of analysis
used here is essentially the same as the one developed in
15. The latter work however involved only a two-parame
harmonic fitting and this affects, in principle, the fits toE111
and E112 and causes poorly fitted quantities (E11, B, and
perhaps,zK) to distort the anharmonic fitting.

The third-order elastic and inner elastic constants
given by the following expressions:

C1115g2d19e23h23u19j,

C1125g2d1e23h23u19j,

C1235g13d23e23h23u19j,
. 24
TABLE VI. The elastic constants: stiffnesses are in GPa, compliances are in (TPa)21 at the second-order and in (TPa)22 at the third.

Present work Observed g,d,e fit Ab initio Observed

Stiffness Partial Internal Total Ref. 24 Ref. 14 Ref. 23 Ref. 28 Compliance Total via Ref

C11 1072.3 1072.3 1079~5! 1050~10! 1104. S11 0.958 0.949~5!

C12 130.7 130.7 124~5! 127~4! 149. S12 20.104 20.098(3)
C44 577.9 23.9 574.0 578~2! 550~5! 581. S44 1.742 1.730~6!

C111 26475. 26475. 26260 26300(300) S111 4.609
C112 21947. 21947. 22260 2800(100) S112 0.936
C123 982. 982. 112 0~400! S123 21.698
C144 91. 24. 115. 2674 0~300! S144 22.230
C155 23079. 81. 22998. 22860 22600(100) S155 7.807
C456 2355. 219. 2135. 2823 21300(100) S456 0.716
7-8
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C144
0 5g1d2e23h1u1j,

C155
0 5g2d13e23h23u1j,

C456
0 5g23h13u23j,

D1145
4

a
~g2d2e2h13u1j!,

D1245
4

a
~g1d2e2h1u1j!,

D1565
4

a
~g2h1u23j!,

E111
(3)5

16

a2 ~g1d13e1h15u1j!,

E112
(3)5

16

a2 ~g2d2e1h1u1j!,

E1265
16

a2 ~g1h2u23j!,

F1235
64

a3 ~g13h23u23j!. ~40!

The full E111 andE112 are then given by

E1115E111
(2)1E111

(3) ,

E1125E112
(2)1E112

(3) , ~41!

and the remaining total third-order constants,C144, C155,
andC456, by expressions in Eq.~5!.

The target quantities related to the pressure derivative
the second-order constants areC11112C112, 2C1121C123,
and C14412C155, given by Eq.~9!, where values ofCIJ8
have been derived from Ref. 24. The latter work actua
determines pressure derivatives of ultrasonic wave prop
tion coefficients and theirC118 and C448 values must be in-
creased by unity andC128 decreased by unity for consistenc
with the definitions in Eq.~9!. The targets related to th
phonon deformation potentials areE11112E112, E111
2E112, andE1261A14F123, given by Eq.~26!, where values
of p, q, andr have been deduced from Ref. 14 andE11 and
A14 have been carried forward from the least-squares
monic fit. The~equal! values ofE111

(2) and E112
(2) arising from

the fitting of the harmonic energy should be removed fr
the first of the above three targets. This quantity is, howe
very small: for the exact fitting it is220.6 GPa Å and a
minute20.4 GPa Å for the least-squares fitting.

With six targets and six force constants an exact fitting
possible. This gives a value forj ~0.55 GPa! that is over 250
times smaller than the next smallest. It quantifies and c
firms the observation in Ref. 15 that this term, which in
cates anharmonic crosstalk between contiguous bo
should probably be small. Whenj is neglected~on grounds
02410
of

y
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of statistical insignificance! and the remaining five constan
fit by least-squares the new values differ from the old by
more than 1.4%. The results of these fittings are displaye
Table IV together with the earlier fitting based on two ha
monic terms and three anharmonic ones,14 and that of Ref.
15. Differences between the present results and those in
15 are initially puzzling since the same basic approach
the same input data have been used in each case. Sma
ferences are to be expected as a consequence of the u
different values ofzK , E11, andB. The force constants de
rived in Ref. 15 are consistent with the values of the thi
order constants and with the three-phonon deformation
tentials but return values of 5.21, 3.32, and 11.33 for
three pressure derivatives on which they are supposed t
based. A clue is provided by Eqs.~7! in Ref. 15 where two of
the three expressions contain twice the correct contribu
of second-order constants: in fact all the three derivati
have been so used. The error arises from the inapprop
use of equations developed by Thurston and Brugger30 to
facilitate the determination of third-order elastic consta
from ultrasonic measurements by including compensa
for changes in specimen dimensions under stress.

One of the conclusions drawn in Ref. 15 was that t
force constantsh andu made a relatively small contribution
to the elastic constants but were crucial to fitting the phon
deformation potentials. The present results make this p
even more strongly: the two constants almost comple
cancel and provide less than 0.5% of the elastic constan

All the calculated anharmonic constants have been
tered in Tables V and VI in the following section.

V. SUMMARY OF RESULTS

The inner elastic constants and internal strain parame
are shown in Table V. Most of these are appearing for
first time. Only E11 and A14/zK are known experimentally
~see Table II!. The calculated value ofE11 is just 1.5% too
large whereaszK at 0.093 is somewhat smaller than th
0.125 measured. The only other calculation ofzK is due to
Nielsen23 who used local-density functional theory withab
initio pseudopotentials. It is intriguing that the value he o
tained in the course of fitting all the elastic constants to
local-density approximation output was 0.092~2!, essentially
the same as the present one. The value he actually repo
0.108~1!, was obtained by a quite separate, albeit more
rect, calculation. The possibility that the experimental va
is too large follows from the fact that the sample was su
jected to a uniaxial stress of 6.2 GPa parallel to@1,1,0#. This
is large enough to induce quadratic components in the in
displacement and leads to an effective parameter

zK52
4

a
$A141s@S12A1141~S111S12!A124#%. ~42!

Inserting calculated values shows that the experiment p
ably yielded a value too high in the ratio 0.087 to 0.083. T
would reducezK to 0.119, a shift of 5%, well within the
already large experimental uncertainty. At the third order
present values are rather less than those obtained in Ref
7-9
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TABLE VII. Calculated second-order partial and inner elastic constants of cubic diamond with resp
both cubic and rhombohedral axes. Units are GPa forCIJ

0 , GPa Å21 for DiJ and GPa Å22 for Ei j .

Cubic Rhombohedral Cubic Rhombohedral

C11
0 1072.3 C11

0 1179.4 D14 46.6 D16 38.0
C12

0 130.7 C12
0 95.0 D15 226.9

C44
0 577.9 C13

0 59.3 D31 226.9
C33

0 1215.0 D33 53.8
C44

0 506.5 E11 561.9 E11 561.9
C14

0 250.5 E33 561.9
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The anatomy of the elastic constants is shown in Table
where the difference between partial and total constant
illustrated. At the second-order additionalab initio calcula-
tions, in which the full-potential linear muffin-tin orbita
method has been used, are available.28 These are clearly o
similar quality to those in Ref. 23. Inspite of its simplicit
the four-parameter Keating model clearly matches the p
dictions of more sophisticated calculations with regard
elastic constants and the zone-center phonons.

At the third order the present results are quite similar
the previous three-parameter fit of Grimsditchet al.14 This is
expected as it is known that the extra two-parameters in
duced in Ref. 15 and used here have their major impac
the phonon deformation potentials. Nielsen’s calculatio
provide the only theoretical comparison. These have b
included even though they are quoted to only two signific
figures. The two largest constants,C111 and C155, are in
reasonable agreement with this work butC456 seems rather
inflated, the present value is much more in keeping with
relative size of this constant in other diamond-structure m
terials.

The calculated compliances are essentially of the sa
quality as the stiffnesses. They can be used directly to g
the linear compressibilities at second and third orderk
50.749 TPa21 andK56.83 TPa22. The corresponding vol-
ume compressibilities arekv53k52.25 TPa21 and Kv
53K520.5 TPa22.

VI. A MODIFIED KEATING MODEL

There is a drawback to the use of the Keating model:
parameters are not independent of the unit cell. This
appears to have passed unnoticed because the mode
been applied exclusively to the diamond and zincblen
structures. The problem arises from Keating’s inclusion
the structure-specific lattice parametera in his definition of
strain.5 It manifests itself most clearly in the attempt to a
count for the elasticity of hD which should be almost t
same as that of cD insofar as the atoms in the two struct
have precisely the same nearest neighbor configuration.

A. Cubic diamond referred to rhombohedral axes

The simplest way to illustrate the problem is to refer t
elasticity of cD to rhombohedral axes. If these are taken to
Ox1i@11̄0#, Ox2i@112̄# and Ox3i@111# the resulting sets o
elastic and inner elastic constants have the forms approp
02410
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to the rhombohedral Laue group RI. Each set divides i
two subsets: the group of elements that corresponds to
agonal symmetry and the group of elements that disapp
if there is no rhombohedral symmetry. The transformed p
tial elastic and inner elastic constants are given in terms
the cubic constants by the expressions listed in Table 4 in
and Table 2 in C2. Total elastic constants transform in
same way as the partial constants because any inner e
contributions to them transform compatibly.

The Keating parameters are not tensor components
there is no rule for their transformation. The Keating expr
sions for the partial and inner elastic constants can be tr
formed, however, and give rise, for example, to

C11
0 5

2

a
~a1b* 2s1t!

etc., wherea is the lattice parameter of the cubic unit ce
The harmonic energy per cell in the cubic system is given
Eq. ~30!. This energy does not change when the axes
rotated, nor do theD i i and D i j , being differences of scala
products and thus independent of coordinate system. Ye
would not expect to finda appearing in the equation if we
were starting directly from the rhombohedral descriptio
which involves a unit cell containing six atoms and latti
parametersah5a/A2 andch5A3a, see Fig. 1 in C1. If Eq.
~30! is used withah in place ofa ~explicitly in the initial
factor and implicitly inD i i andD i j ) it is necessary to halve
the harmonic Keating parameters to regain accepta
second-order constants, the same bulk modulus for exam
Similarly, for the anharmonic energy and third-order co
stants, division by 2A2 is necessary. Using the paramete
deduced earlier in this way generates the quasi-rhombohe
partial and inner elastic constants listed in Tables VII a
VIII.

B. Recasting the energy expressions

The simplest satisfactory solution emerges if thea22 and
a23 factors are removed fromE(2) andE(3). Additionally a
cosmetic alteration in the coefficients of individual terms
E(2) andE(3) will remove various powers of 2 whose pre
ence is due to Keating’s use ofa/2 in place of a in his
original definition of strain. The modified energies per c
become
7-10
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TABLE VIII. Calculated third-order partial and inner elastic constants of cubic diamond with respect to both cubic and rhomb
axes. Units are GPa forCIJK

0 , GPa Å21 for DiJK , GPa Å22 for Ei jK and GPa Å23 for Fi jk .

Cubic Rhombohedral Cubic Rhombohedral Cubic Rhombohedral

C111
0 26475 C111

0 212317 D114 2259 D116 21161 E111 22705 E111 23712
C112

0 21947 C113
0 2131 D124 2529 D126 2188 E112 2998 E112 2662

C123
0 982 C133

0 21484 D156 21028 D136 275 E126 21860 E113 2326
C144

0 91 C333
0 210520 D145 2353 E126 21525

C155
0 23079 C144

0 2304 D314 2243 E135 21189
C456

0 2355 C244
0 21371 D115 821 E331 2326

C344
0 22833 D125 223 E333 24047

C166
0 21610 D135 239 E114 475

C266
0 23482 D311 610 E136 475

C366
0 2196 D312 2389

C114
0 185 D313 538 F123 22879 F112 22351

C124
0 164 D333 22596 F113 1662

C134
0 754 D344 94 F333 23325

C444
0 2908
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aD i i
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i 51

3

(
j 5 i 11

4

@b* D i j
2 1s~D i i 1D j j !D i j

1tD i i D j j #G ~43!

and

E(3)5(
s51

2 F(
i 51

4
1

2
gD i i

3 1(
i 51

3

(
j 5 i 11

4

@dD i j
3 1e~D i i 1D j j !D i j

2

1h~D i i
2 1D j j

2 !D i j 1uD i i D i j D j j

1jD i i D j j ~D i i 1D j j !#G , ~44!

where factors of a half have been left in those interacti
that are counted twice. The previous notation has been
tained so that confusion is avoided: expressions for ela
constants will change~as shown below! but the conceptua
foundation of the model remains the same.

C. Modified Keating parameters

Identification of the old and the new strain and ener
expressions indicates how the parameters of the model m
be modified: for example

amod5
2

a2 a ~45!

and

gmod5
16

3a3 g. ~46!

The modified results for all the parameters deduced for
by least squares fitting in Sec. IV are listed in Table IX.
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D. Modified cubic diamond referred to cubic axes

All that remains is to collect together the modified expre
sions for the different categories of elastic constant. Pow
of 4/a in the unmodified expressions for the inner elas
constants and the internal strain arose from component
the unstretched bond and are replaced here by power
A3/r 0. At the second order

C115
a

2
~a13b* 22s13t!,

C125
a

2
~a2b* 22s13t!,

B5
a

2 S a1
1

3
b* 22s13t D ,

C44
0 5

a

2
~a1b* 22s2t!,

D145
a

2

A3

r 0
~a2b* 2t!,

TABLE IX. Modified Keating parameters.

Previous Modified

a 1009 GPa Å 158.6 GPa Å21 0.9899 eV Å24

b* 840 132.0 0.8238
s 2234 218.36 20.1147
t 21 3.31 0.0207
g 21198 GPa 2140.8 GPa Å23 20.8788 eV Å26

d 166 19.56 0.1221
e 2566 299.78 20.6226
h 2138 224.29 20.1516
u 143 50.55 0.3155
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E115
a

2

3

r 0
2 ~a1b* 12s2t!,

A1452
r 0

A3
S a2b* 2t

a1b* 12s2t D ,

zK52
A3

r 0
A14, ~47!

wherer 0 is the equilibrium bond length. Also

E111
(2)5E112

(2)5
2

a

3

r 0
2 ~a2b* 12s13t! ~48!

represent the anharmonic contribution to the harmonic
ergy.

At the third order

C1115
3a3

16
~g2d16e22h2u16j!,

C1125
a3

16
~3g23d12e26h23u118j!,

C1235
3a3

16
~g13d22e22h2u16j!,

C144
0 5

a3

16
~3g13d22e26h1u12j!,

C155
0 5

a3

16
~3g23d16e26h23u12j!,

C456
0 5

3a3

16
~g22h1u22j!,

D1145
a3

16

A3

r 0
~3g23d22e22h13u12j!,

D1245
a3

16

A3

r 0
~3g13d22e22h1u12j!,

D1565
a3

16

A3

r 0
~3g22h1u26j!,
r.

02410
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E111
(3)5

a3

16

3

r 0
2 ~3g13d16e12h15u12j!,

E112
(3)5

a3

16

3

r 0
2 ~3g23d22e12h1u12j!,

E1265
a3

16

3

r 0
2 ~3g12h2u26j!,

F1235
a3

16

3A3

r 0
3 ~3g16h23u26j!. ~49!

The full E111 andE112 are then given by

E1115E111
(2)1E111

(3) ,

E1125E112
(2)1E112

(3) ~50!

as before.

VII. CONCLUSION

The original goal of finding a simple model to characte
ize both the harmonic and anharmonic aspects of the ela
ity of diamond has been achieved: the four-parameter h
monic model provides an excellent fit to the second-or
experimental data and the five-parameter anharmonic fit
predicts third-order elastic constants that are in reason
agreement with both a previous three-parameter model
an ab initio calculation. Fewer parameters always lead to
poorer fit.

The single unexpected outcome has been the implicat
supported by an earlierab initio calculation, that the interna
strain parameterzK is possibly even smaller than observe
where it is already less than 25% of the values found
other group IV elements and III–V semiconductors.

Finally the Keating model has been recast in a form t
makes the parameters characteristic of the bonds alone,
not dependent on the dimensions of the unit cell chosen
describe the structure. This means that the elasticity of
can be referred to rhombohedral axes without altering
model parameters. In the following paper it is shown ho
these same parameters may be used to study hD.
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