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Elasticity of carbon allotropes. I. Optimization, and subsequent modification, of an anharmonic
Keating model for cubic diamond
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The inner elastic constants of single-crystal diamond at the second and third order characterize the response
of the crystal to the internal displacement of its component sublattices, of which there are two, either alone or
coupled to external strain. These constants feature in the decomposition of the macroscopic elastic constants at
second and third order, and give rise to one linear and three quadratic independent internal strain parameters.
All these constants have been obtained via the implementation of a Keating potential notionally restricted to
two-body and three-body interactions between nearest neighbors. Four harmonic parameters have been opti-
mized to reproduce the second-order elastic constants, the frequency(iplyedegenerateoptical mode at
the zone center and the internal strain parameter. The resulting fit is excellent and also accounts very well for
the frequencies of the TO modes at thendL critical points. Excessively large frequencies predicted for the
TA modes at these points are shown to be due to a particular four-body interaction that cannot be separated
elastically from the three-body bond-bending interaction. The assignment of a fifth parameter allows all the
critical point frequencies to be well fit, the largest discrepancies being 3% and 6% for the TA modes. One of
six anharmonic parameters is shown to be statistically insignificant. The remaining five are fit to the pressure
derivatives of the second-order elastic constants and to the various stress derivatives of the frequency of the
zone-center modes. These parameters are used to predict the values of all the third-order elastic and inner
elastic constants, and of the quadratic internal strain parameters. Finally the Keating strain is redefined so that
the parameters of the model no longer depend on the dimensions of the unit cell chosen to describe the
structure. New expressions are obtained for all elastic constants and the optimized parameters are appropriately
modified.
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[. INTRODUCTION with harmonic properties to the massive 21-term database of
Vanderbilt et al® that handles harmonic, third-order and
A comprehensive treatment of general and specific asfourth-order a_mharmonip properties of siliqor).

pects of the elasticity, through third order, of four carbon In the desire to achieve a good description of both har-
allotropes[cubic and hexagonal diamorfdD, hD), and hex- ~monic and third-order anharmonic properties of cubic dia-
agona| and rhombohedral graphm, hG)], has recenﬂy mond with the smallest number of parameters it was decided
been giverf. The formal treatment of inner elastic constantst® develop and optimize the original Keating mdtfeby
and zone-center optic modes has been presented in Ref.Icluding only such further interactions as were strictly nec-
(hereafter CLand of the anatomy of the macroscopic elasticessahry' asticity of cb is detailed in C2 i )
constants and detailed protocols for their computation in Ref. T_ €e asticity of cD is 'etql edin C2ina manner that
3 (hereafter C2 The four allotropes make an interesting explicitly reveals the contribution of inner elastic constants
group: the two with two atoms in the basis have the highes nd internal strain. The key points are summarized in Sec. Il.
and the lowest symmetries, the two with four atoms in then gr}vgcltzrzhgrvénrglg\tlé dzﬁgi-r?:?:\irer]gg ;iféeg:ﬁggﬁé a;g d
basis have the same intermediate macroscopic symmetry bH X

aiff : . - 3 diff - w the definition of effective inner elastic constants leads to
lfterent microscopic symmetry; a different pairing Cor'traSts‘expressions for the pressure derivatives of the mode frequen-

the sp®-bonded d_|a_m0nd_s_W|th thep?+ p,-bonded graphi- a5 section Il contains a summary of the essential results
tes and the remaining pairing comprises two stable structurég,q ajso an extension of them to cover the uniaxial stress-
on the one hand with a pair that consists of a structure rarelyependence of the frequencigshonon deformation poten-
seen outside the high-pressure cell and a structure that hgg|s) so that a wealth of experimental d¥a'®can be con-
never been isolated on the other. sidered.

In this series of papers the elasticity of these allotropes is Previous applications of the Keating model are reviewed
viewed in terms of a single model. Attention is focused ini-in Sec. IV and the method is extended to include all three
tially on cD as it has the simplest structure and provides aearest-neighbor three-body interactions at the second order.
natural starting point. The optimization of the four parameters of its harmonic part

Over the years a number of valence-force-field ap-is carried out. It is shown that the bond-bending parameter
proaches have been developed afaf) used to treat obtained this way always contains implicitly a four-body
elasticity’™® lattice dynamicg®!* and piezo-Raman contribution that cannot be separated from the normal three-
spectroscopy”*® in covalently bonded materials. These body contribution by consideration of elasticity alone. Sepa-
range from Keating’s original two-parameter modeéaling  ration is achieved by fitting phonon frequencies atXhaend
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L points of the Brillouin zone.
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TABLE I. The symmetry of the elastic constants and the inner

Additionally six anharmonic terms have been considereclastic constants. The first column contains the sets of components
at the third ordef*° In an exact fit of these to experimental of each that have been selected as independent and the second col-
values of the three pressure derivatives of the second-ord&fn contains the relationshigsther than by legitimate permuta-
elastic constants and of the three-phonon deformation pote§on of subscriptsC;;=Cy;, Djjx=Diky, andEjjx =Ejix , for ex-
tials that describe the stress dependencies of the Ram&fTP!® between the remaining nonzero components and the

frequency®*®it was found that one parameter was insignifi-

independent ones.

cant. For the optimized anharmonic potential the other five
force constants were fit by least squares with almost no ~1!
change in values. The full array of results is summarized in <12
Sec. V. Finally in Sec. VI the elasticity of cD is expressed Caa
relative to rhombohedral axes. When compared with the

standard cubic approach this reveals the drawback to theCiu
Keating model: namely that the model parameters depend onCi12
some lattice parameter. The situation is avoided by removing Ci23
explicit references to the latter from the energy expressions. Cias
The resulting model parameters are then independent of theCiss
choice of unit cell. Cuss

Il. ELASTICITY Dys

The general formalism and symmetry analysis for the ex-
plicit development of elasticity in terms of partial, inner and
total elastic constants is given in Refs. 16 and 17. Specific
application to cD is given in C2.

As a crystal with a basis of only 2 atoms, neither of which
occupies a site with inversion symmetry, cD requires a single ~*!
inner displacement vectgrand 6 components of Lagrangian
strain » to describe fully its elasticity. Symmetry analysis
reveals the nonzero components of all the elastic and the
inner elastic constants and these are shown in Table I.

The inner displacement vectdr is related ton by the =
components

124
D 156

112
E126

123

Cp»=Cg3=Cyy
C13=Cp=Cy
Cs5=Ce=Cus

C25= C335=Cy11

C115= C125= C133= C03= Cp35= Cy1»

Cos5= C366= C144

C166= C244= C266= C344= C355= Ci55

D2s=D3=D14

D225=D33s= D114

D235= D316=D134=D215=D326= D124

D246=D345=D1sg

Exn=Es=Epn

E22o=E333=E111
E113= Eoo1= Epps=Ezsi=Eg3=Eapn
E234= E135= E126

{17 Aramat Ar1aniat Arod 12+ 13) mat Arsens 76,
$o=A1amst+ A114m2 15+ Ao 11+ 113) 75+ Atsea 6,

{3=A1amst A114m3 M6+ Ar2d 11+ 12) 16+ Atsea s, @
1

whereA;, andA; 4 etc. are components of the internal strain
tensors which are 86 and 3x6X6 arrays. Their values
come from applying internal equilibrium conditions, see C2,
and are given by

Co= C(1)21

Cas= 024_ A%4E11,

at the second order and

Cu1= an:

Ci1o= Cng!

Cios= C(1)23,
Caas= Clagt 2A1D 114+ AZE 111,
Ci55= Cls57 2A14D 124+ AL E 115,

Cise= Clset 3A1D 156+ 3ATE 106+ A F 123,

at the third.

A=D1l Eyy 2
and
A114= — (D11at ArE110/Eqy,
A124= = (D12at ArsE119/Eqy,
Asse= — (D1sgt 2A1E 126+ AL F129/Eyy . 3

Eliminating theZ from the elastic energy leads to the final
expressions for the total elastic constants:

Cu= Cgl*
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A. Second- and third-order compliances

4

®)

Second-order compliancey; enter the general expres-
sions for the effective elastic constants that are needed in the
anharmonic parametrization. They are obtained from the
stiffnesse<C,; through the following relation¥
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k=S,;+2S,,=1/(C;;+2Cyy), ancies betwee}} andE;; are extremely small because the
vibrational energy is very much smaller than the potential
ki=S;;—S,=1/(C1;—Cyy), energy for strongly bonded materials at modest temperatures.
The strain-dependence of the optic mode frequencies in
k= S544=1/Cy4. (6)  terms of theE;c is subject to the same approximation but

any discrepancies are expected to be very small for the same
reason as before. A model that derives the strain-dependence
of frequency from the difference of harmonic frequencies for

The abbreviationg, k, andk» serve to simplify the follow-
ing expressions for the third-order complianégs:

K=Sy11+ 6S15+ 2S195= —k3(C1q1+ 6C 110+ 2C109), strained and unstrained states is said t@basiharmonicA
fully anharmonic model is a quantum-mechanical one that

3 - i i i ird-
S111— 3S115+ 2S105= —K3(Cq11— 3C 110+ 2C109), treats phonon-phonon interactions in terms of both third- and

fourth-order anharmonicity.

2
S111~ S123= — KK (C111~ C129),
A. The secular equation at equilibrium

Siaat+2Si55= —klé,(c144+ 2C5p), For diamond the secular equation for the optical modes
5 reduces to a X3 determinant with a triply degenerate
S144— Sis5= — KK (C144— Cys9), root?!
Suss= — K7 Cuss- (7) 4 ad
) o w?=—Ep=5-Eq, (19
wherek andK are the harmonic and anharmonic linear com- Po 2M

pressibilities, respectively. The latter feature in the expres- ) _— . .
sions that represent relative changes in lattice parangeter Wherepo is the equilibrium density anM is the mass of a
and unit cell volumeQ as a function of pressure, see C2: carbon atom.

Aalag= —kp+ %(K “K3)p?, B. The secular equation under stress
The procedure leading to the strain-dependence of the op-
tic mode frequencies is cast in terms of third strain-
AQIQq=—3kp+ §(K+k2)p2. ®) derivatives of the free energy rather than of the potential
2 energy. Any discrepancy is expected to be very small for the
same reason as before.

B. Pressure derivatives of the elastic constants The effective inner elastic constarisfor arbitrary strain

The hydrostatic pressure derivatives of the elastic con?'® shown in C1 to be

stants are given by the following expressions: —
E1n=En(1+ m1— 72— 73) +E11ami T Ennd w2+ 173),
C11= —k(Cyy+ Cy11+2Cyyy),

, Ego=E1s(1— 71+ 72— 13) + E111ma+ Evid 71+ 73),
C1o= —Kk(C12+2Cy15+ Co29),

Ciu= —K(Caq+ Craat2Cou0), 9) Ess=E1i(1—m1— 72+ 73) + Ernama+ Epgd 71+ 72),
and E1p=(Enr+ Eqpet ArF 129 76,
1 k o
B'=— 3~ 3(C11t 6C112+2C129), (10 E15= (E11+ Eqo6t A14F 129 775,
where the bulk moduluB=(Cy,+2C4,) =1/3k. Eps= (Eq1+ Epost AraF 123 74 (12)
IIl. ZONE-CENTER OPTICAL MODES The secular equation for the optical modes under a stress

The general results for optical mode frequencies and” 'S
eigenvectors in thisemiclassicabpproach are given in C1.
Strictly speaking the frequencies should be directly related to =_P 5
the adiabatic tensorﬁﬁ, the second derivatives of ttpo-
tential energy U via the Hamiltonian in a quantum- _
mechanical formulatici or via the Lagrangian in a classical N Which
approachi®?! The E;; used in the present development are
isothermal tensors, second derivatives of tle-energyF @=1+ka (14)
=U-—TSand thus only approximately correct. The discrep- '

=0 (13)
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The phonon deformation potentials that describe the stress-
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3.0 along[110]

dependence of the mode frequencies depend on the stress, his orthorhombic deformation an off- diagonal compo-

derivatives of bottE,J andp.
Under hydrostatic pressugethe effective constants are

E11=Ezp=Ess=Ep3(1+pk) — pk(Eqq3+2E5,) (15

and the eigenvalues remain triply degenerate with

:_Ell (16)

For a uniaxial stress in the direction{ the stress com-
ponents are given by,=o{;{;, whereJis the conventional
contraction ofij. Hooke’s law,», = S,;0;, can now be used
to eliminate , from the effective inner elastic constants in
favor of o€;€; and derivatives with respect to stress found.

Three situations are relevant to the work described in this

paper.

1. o along[00 1]

This is a tetragonal deformation and the effectiveensor
now has two different diagonal components

E11=Ez=E1y(1— 0Sy)) + o[ SiE111+ (Sia+ S12) Enaal,

E33= E11(1—0(2S;,—S11)) + 0(S11E111+ 2515E 119

nent is introduced

— 1
E11=Ep=E(1-0Sp) + EU[(SM"‘ S12)E1n

+(S11+ 3519 Eq19l

— 1
E12=5 0Su(Burt Baoet AraF129)

Ess=E11(1— 0Sy) + 0(SyE 11+ (S11+ S10)Engo).- 23

Degeneracy has now been removed and three eigenvalues are
obtained

4 _
:—(En— E1,) (249
and
—fE (25)
-

C. Phonon deformation potentials

There are several differerd hoc definitions and nota-
tions used to describe the strain dependence of the optic

The eigenvalues consist of a doublet and a singlet given bynode frequencies at the zone cenfe K;;=dw? dn;; and

(18
and
(19

2.0 along[111]
This is a trigonal deformation in which

- 1 1
E11=Epp=E33=E | 1— §U(Sll+ 2Sp)) |+ 3 (S111+2S))

X(E111+2E119),

- - -1
En=Ei3=Ex=3

37 Sud(E11t Eqoet ArgF129).  (20)
The eigenvalues are
§=—(En [3%) (22)
and
wg:;(glﬁ' 2E12)- (22

K,j—alnw /an, (1/wO)KIJ are general expressions whilst
p=Ki1, =K, andr=K,, are parameters specific to cubic
symmetry. When the eigenvalue expressions in the previous
sections are differentiated with respect to stress, relations
precisely the same as those given in Ref. 12 are obtained
with

E
b g4 ol 111
2w0 2E11
i: Ei12
2wi  2Epy’
r E1o6T AraF 123
S=lt =, (26)
0 11
together with the mode Gneisen parameter
1 Ei111+ 2B,
=— |1+ ——= (27
e 3( 2E,,

A slighty different approach has been adopted by
Nielserf®> who defines gphonoelastidensor() as the square
root of the dynamical matrix. Elements of this tensor, ex-
panded in powers of;, combine to give frequencies under
strain. Certain of the linear coefficients then correspond to
phonon deformation potential$},,,{Q21,, and 2),, corre-
sponding to the left-hand sides of the three members of Eq.
(26) above.
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[

2 4 3 4

1

E@=5 3 |3 ah2+>, D [2BA%+27A:4
a? & 15

=1

4 4
g +cr(A”+A”)A”-]+iZl Zl’ KA A |- (30)
Cluster ]
The « term is related to thé,,« valence force field param-
@ 0 eter introduced by McMurret all® as an essential ingredi-
@/r@ 0 ent in the treatment of the flattening of the transverse acous-
' © tic dispersion curves towards thé and L points in the
Stretch Bend Brillouin zone. It relates to a chain of three bonds in a 180°
dihedral-angle configuration. The prime on the final summa-
o o tion indicates thaf #i and the absence of a summation over
0 (i) 5 () k arises as follows. The bonds labeleandk are attached to
73 5 5 opposite ends of bonidand are parallel. Under homogeneous
deformation the outer bonds are strained in the same way,
Stretch-Bend Stretch-Stretch forcing the two angles of the chain to change in the same
FIG. 1. Tetrahedral cluster and four basic interactions. way. This results imiink:Aizj and the interaction becomes
formally indistinguishable from the simple three-body bond-
bending interaction. Elastic constants and the zone-center
frequency cannot be used to sepaygtieom «. However the
The Keating formalisth models the strain energy only expressions for some of the phonon frequencies at the zone
and does not provide values for the cohesive energy or theoundary mixg and « in different proportions thereby en-
lattice parametea. The unit cell in diamond is defined by the abling the separation to be made.
vectorsa,; =(a/2)[0,1,1], a,=(a/2)[1,0,1] and az=(a/2) The second-order elastic, inner elastic and internal strain

x[1,1,0], wherea=3.567 A. The basis consists of two at- Parameters are given by the following, in whigfi denotes

oms with position coordinate®,0,0 and G,3,3). Bt

The original strain variables are'¢ri—r'°-ri%j/(a/2) 1
=Aj;/(a/2), wherei andj label atoms neighboring a par- Cllza(a+3ﬂ*—0+37'),
ticular reference atons, andiO andjO label the unstrained
configuration. The connection betweds , the finite strain

tensorz and the inner displacement vectdrfollows from Clzzl(a_lg* —o+37),
the definition of homogeneous deformationJlis the defor- a

mation gradient matrix and is the sublattice displacement

then|+27=3J and {=J5. From this we obtairr'=Jr'° N . EB*—O'+3T ,
+J3~1Z, where the sign depends on which sublattice the ref- a 3

erence atom lies on,

IV. THE KEATING MODEL

1
co =—(a+p*—0o—1),
50 10 500 " a
Aji=2ry gl 25y’ Lot Lol (28

and D14=;(a—ﬂ*—7),

_ 5, i0 jo i0, .jo 16
Aij=2rg mpqgly = (1p + 1) Lo+ Epdp, (29 Eyu=_z(a+pB*+o=1),

where terms of order three and higher have been omitted.

A al a—pB*—71
“m g a+pB*+o—1)’
A. Harmonic interactions
The tetrahedral cluster and the four basic interactions are B 4A 31
shown in Fig. 1. The harmonic energy per cell stems from k=~ a ‘4 (32)

the nearest-neighbor two-body interactigstretch, three

nearest-neighbor three-body interactidghend, stretch-bend where B is the bulk modulus{y is the Kleinman internal
and stretch-stretghand a certain four-body interaction. It strain parameter and the remaining total second-order con-
takes the form stantCy, is given by Eq.(4).
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TABLE Il. Parametrization of the harmonic part of the Keating model. As explained in the text all fits of
[ to experimental data are in fact fits Bf+ «: this is indicated below by the use gf. Units are GPa for
C,; andB, GPa A2 for E;;, and GPa A fora etc.

— a,B* fittings — a,B* 7 a,B%,0 Present work
«— Exact — LSq Exact Exact LSq Observed

Cuy Fit Fit 756 433 990 1051 Fit Fit 1072 10/ 2
Co, Fit —-199  Fit 447 69 100 Fit Fit 131 178) 2
Eix 756 Fit Fit Fit 666 770 Fit Fit 562  553(8)°
Cus 576 350 567 -—13 520 589 593 Fit 574 579 @
B (Fit) 226 335 Fit 376 417 (Fit) (Fit) 445 4424)2
1% 0.206 —-0.45 0.28 1.02 0.131 0.20 0.12 0.074 0.093 0(22p°
@ 1294 430 1006 1582 1068 1304 1056 987 1009
B* 852 1140 564 —12.2 821 848 852 852 840
o -238 —250 -—234
T -33 19 21

%Reference 24.
bReference 25.
‘Reference 26.

In addition, becausd;; andA;; contain terms in’2, the 8 shows the result of this fitting. Each fit generates a unique
“harmonic” energy contains small anharmonic contributionsrelation for ¢y in terms of the fitted parameters—in this case

via E{1; andE 1,. These are given b
111 112 g y 4a(Cyy—3C )| 12

HfK:(W

(33

16
E@=E@="5(a—B*+0+37). 32
= Ei=ga(a= 7 +ot+3n) 32 This gives a value/x=0.102 that is close to a theoretical
calculatior?® and reasonably close to the experim&nthe

Initially the model was limited to ther and 8* terms alone predicted value foC,,4 is now 593 GPa, much closer to the

and applied to Group IV elements and IlI-V observed 578 GPa.
semiconductors’ The targets for fitting wer€,;, C;,, and The inclusion of both extra terms will now be considered.
Cus. Inversion of the earlier equations f@r;, C;,, E;;, andD,,

Values ofa andg* deduced from C;, andC,,gaveC,, (as{xEiy) yields
to more than 0.3%. This very encouraging result hid a 3
37% error inEq; or a 17% error in the Raman frequency _a CoitCrr)+ a_E 1+2
wo.% It also predicted a value of 0.21 fgg . This was later a=g(CutCr+ g Eu(1+240),
measured and the much smaller value of 042320 was

obtainec?® With more experimental data available different L, a

fits can be made and these are listed in Table Il. For columns B ZZ(CM_ C1a,

2 through 5 two data are used to determinand 8* and the

implications set out: at least one quantity is very poorly pre- a as

dicted each time andy in particular is bad. In column 6 a o=~ 5(Cu~Cr+ 75En(1- k),
least-squares fit to four data by Anastassakiall® leads to

a=1068 GPa A an@* =821 GPa A. This gives a value of a a3

{k close to that measured, though is still 10% too large T=— g(Cu— 3Cq) + aE11(1_2£K)- (39

andC, is 44% too small.
The first extension of the Keating model to include an  1hese then imply

additional interaction was made by Basheretal?’ who

introduced(using y) the term denoted here by Column 7 8a(Cy;— Cyp— Cyp)\ Y2

lists the quoted values; the precise method of calculation 1-4k= M w2 (39
0

remains unclear.

The case for the inclusion of the other three-body termgiving {x=0.074, a value that is somewhat lower than either
was discussed by Ruer and Methfesséf They pointed out the measured value or theoretical predictions. If the toler-
that a good agreement f&,,, Ci», Css, and wq in dia-  ances on the experimental data are taken into account a range
mond could be obtained using just 8*, ando (y in their  of values is obtained;x = 0.074+0.009. Although this is not
papej whereas it appeared important to introducéo im-  quite enough to bracket the experimental range there are rea-
prove the fit to the phonon dispersion in Si and Ge. Columrsons, discussed in Sec. V, for supposing that the experimental

024107-6
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TABLE lIl. Phonon frequencie$(= w/2) at thel", X, andL points. Units: THz forf, GPa A for* etc.

Point Mode Exact fit Least-sq. fit Observed
r LO,TO 39.93 39.93 40.23 40.23 39.93
X LO,LA 37.09 35.36 37.09 35.45 35.80

TO 31.36 31.36 31.68 31.68 32.39
TA 29.41 24.78 29.20 24.78 24.04
L LO 40.42 36.77 40.29 36.80 37.21
LA 30.91 30.40 31.05 30.57 31.00
TO 35.90 35.90 36.21 36.21 36.25
TA 20.80 17.52 20.65 17.52 16.55
B* 852 840
B 605 605
K 0 247 0 235

8Reference 25: errors are estimated at 2—3%

value may have been slightly overestimated. This four- M2, =2a+138+0+4r+4k=2a+138* +0o+47

parameter fit is listed in column 9. A least squares solution
involving the observed value ofy produces the fitting

shown in column 10.

To check further the quality of the fits and to resolve the

Mw?,=6a+B—30=6a+ B*—30—«,

Bl k problem involves consideration of the zone-boundary
phonons. At theX point these have frequencies given by

Moo a=4a+8B+4r+4k=4a+8p* + 47— 4k,

Mw2,=8a—87,

M w?,=88=88* — 8k,

and at thel. point by

TABLE IV. Parametrization of the anharmonic part of the Keating model using pressure derivatives of the
second-order elastic constants and the phonon deformation potentials. All input quantities are dimensionless.

The units fory etc. are GPa.

(36)

Mw$o=8a+4[3+40'—87'+4/<=8a+4,8* +40—8,

Columns 3, 5, and 7 in Table Ill show the frequencies pre-
dicted using the four parametess B*, o, andr (i.e., with

no explicit k term), in both exact and least-squares versions,
and those observed. The least-squares fit appears to be very
slightly better. The TO modes, which have no expligit
component, are well predicted with errors of orh2% and

— 9k,

Mw2,=4B8=48* —4k.

Input Ref. 14 Ref. 15 Present work Observed
ol 7.31 Fit 6.97 6.9§70) 2
Ci, 3.23 Fit 2.09 2.0670)2
Cis 4.40 3.95 Fit 4.12 3.980)2
(Cj,—Cip/2 2.45 2.4610)2
(Cjy+Cipt2Chp12 8.65 8.5060) 2
(p+29)/203 -3.35 -3.19 Fit -3.18 —3.18(24f
(p—q)/2w3 -0.50 -0.52 Fit -0.52 -0.52(8) P
rlw? -1.2 —-1.89 Fit —-1.89 —1.9(2) °
y —1670 —1478 —-1200 -—1198
5 95 140 164 166
€ —499 —654 —567 —566
7 —-227 —-139 —138
0 181 145 143
é 0.55

3Reference 24.
bReference 14.
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TABLE V. The inner elastic constants and internal strain parameters. Units are GParfD, GPa A 2
for E, GPa A 3 for F and A forA.

Dy 46.6 = 561.9 A —0.083

{x 0.093 0.108
D114 —259 Elll —2705 A114 0.06 13?
D124 - 529 EllZ - 998 A124 079 1113
D156 - 1028 E126 - 1860 F123 - 2879 A156 132 196’1

8Reference 23.

—0.1%. Apart from one the remainder are overestimated: in g 2[4 3 4

particular the errors in the TA modes are 229and 25% E(3)=£3 D12 yAT+ D D [28A%+3e(4y
atL. This characteristic failure to pick up the flattening of the s=1li=1 1=1j=i+1

TA modes near the boundary is markedly reduced by setting +A11)Ai21 +37(A2 +A]‘2j)Aij +60A;A;A;

k=247 GPa A in the exact and=235 GPa A in the least-

squares fittings to give the values listed in columns 4 and 6:

the errors in the TA modes are now 3% and 6%, respectively +38A;A5(A5i+A5)]1, (39

and the separation g8* has now been achieved with

=605 GPa A in each case. where all nearest-neighbor two-body and three-body interac-

With the simple model under consideration there is notions have been written down. He successfully applied this
way to improve all the zone-boundary frequencies. It can bénodel to fitting the third-order elastic constants of Si and Ge.
showrf® that the most general force constant fitting to nearesf he direct measurement of these constants for diamond

and next-nearest neighbor interactions imposes a conditioyould be extremely difficult for several reasons and has
on the calculated frequencies: probably not been attempted. Nevertheless experimental data

are available that relate to the third-order elastic constants,
(38) through pressure derivatives of second-order consfaatsq
to third-order inner elastic constants, in the form of stress

Observed values do not satisfy this equation: the left- andl€rivatives of the Raman frequentThe pattern of analysis

right-hand sides differ from their mean by 6%, a figure thatUsed here is essentially the same as the one developed in Ref.
suggests that the above fit is as good as it can be. 15. The latter work however involved only a two-parameter

The inner elastic constants and internal strain parametef@2rmonic fitting and this affects, in principle, the fitskg,,
are collected together in summary Table V in Sec. V and thé@nd E112 and causes poorly fitted quantitieg,q, B, and

decomposition of the calculated constants and the associat@§aPs<k) to distort the anharmonic fitting.
compliances are shown in summary Table VI. The third-order elastic and inner elastic constants are

given by the following expressions:

2 2 2 2\ a2 2
2(0fp— 0T 070~ 0Ta)L=3(@T0~ ©Ta)X -

B. Anharmonic interactions Ciyi=y—06+9e—379—360+9¢,
Keating extended his method to the anharmor'!'girm*.\6 Cii= y— 0+ €—39—30+9¢,
by considering they, &, and e terms in the following ex-
pression for the anharmonic energy per cell Ciog=y+36—3€e—379—360+9¢,

TABLE VI. The elastic constants: stiffnesses are in GPa, compliances are in (‘TReajhe second-order and in (TP&)at the third.

Present work Observed v, 8, € fit Ab initio Observed
Stiffness Partial Internal Total Ref. 24 Ref. 14 Ref. 23 Ref. 28  Compliance Total via Ref. 24
Ci1 1072.3 1072.3 1079) 105010 1104. S 0.958 0.94%)
Cio 130.7 130.7 1266) 1274) 149. Si» —0.104 —0.098(3)
Cus 5779 -39 574.0 57@) 55005) 581. S 1.742 1.7306)
Cinn —6475. —6475. —6260 —6300(300) Sin 4.609
Ciio —1947. —1947. —2260 —800(100) Si12 0.936
Cios 982. 982. 112 00 Sio3 —1.698
Cias 91. 24, 115. —-674 Q300 Siaa —2.230
Ciss —3079. 81. —2998. —2860 —2600(100) Siss 7.807
Cuse —355. 219. —135. —823  —1300(100) Sus6 0.716
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C<1)44: y+6—e—3n+0+¢, of statistical insignificangeand the remaining five constants
fit by least-squares the new values differ from the old by no
Cle=y— 6+3e—37—36+¢, more than 1.4%. The results of these fittings are displayed in
Table IV together with the earlier fitting based on two har-
Cgsez y—33+36-3¢, monic terms and three anharmonic ofitand that of Ref.

15. Differences between the present results and those in Ref.
15 are initially puzzling since the same basic approach and
Dus=Z(y=o-e-n+30+ £), the same input data have been used in each case. Small dif-
ferences are to be expected as a consequence of the use of
4 different values offx , E4;, andB. The force constants de-
Diyy=—(y+5—€e—n+ 0+, rived in Ref. 15 are consistent with the values of the third-
a order constants and with the three-phonon deformation po-
tentials but return values of 5.21, 3.32, and 11.33 for the
D156=f(y— n+6—3§), three pressure derivgtives on Whi(_:h they are supposed to be
a based. A clue is provided by Eq9) in Ref. 15 where two of
the three expressions contain twice the correct contribution
of second-order constants: in fact all the three derivatives
have been so used. The error arises from the inappropriate
use of equations developed by Thurston and Brutjger
@) 16 facilitate the determination of third-order elastic constants
Enz=p(y—d—etn+ 6+¢), from ultrasonic measurements by including compensation
for changes in specimen dimensions under stress.
16 One of the conclusions drawn in Ref. 15 was that the
E126=¥('y+ n—60—3¢), force constants; and # made a relatively small contribution
to the elastic constants but were crucial to fitting the phonon
deformation potentials. The present results make this point

3) 16
Elll=gz(y+ 6+3e+n+560+¢),

|:123:6_;1(),+3,7_39_3§)_ (40)  even more stropgly: the two constants almost completely
a cancel and provide less than 0.5% of the elastic constants.
The full E;;; andE; 4, are then given by All the calculated anharmonic constants have been en-

tered in Tables V and VI in the following section.
E1=ER+EQ
V. SUMMARY OF RESULTS
E1o= E(121)2"‘ E(131)2 (41)

The inner elastic constants and internal strain parameters
are shown in Table V. Most of these are appearing for the
Jirst time. Only E;; and A,4/{ are known experimentally
(see Table . The calculated value dE;; is just 1.5% too
large whereasy at 0.093 is somewhat smaller than the

and Cy44+2Cy55, given by Eq.(9), where values ofC, . .
; 0.125 measured. The only other calculation{gfis due to
have been derived from Ref. 24. The latter work actuallyy <023 \who used Iocal-éllensity functional tgr?eory Witth

determines pressure derivatives of ultrasonic wave Propagdssitio pseudopotentials. It is intriguing that the value he ob-

tion coefficients and :[he'cll and C,, values must be in- 1aineq in the course of fitting all the elastic constants to the
creased by unity an@,, decreased by unity for consistency |oc4)-density approximation output was 0.082 essentially

with the definitions in Eq.(9). The targets related to the {he same as the present one. The value he actually reported,
phonon  deformation potentials ar&;;;+2Ey1,, Ei1z 0.1081), was obtained by a quite separate, albeit more di-
—E11p, andE o6+ Aq4F 123, given by Eq.(26), where values  rect, calculation. The possibility that the experimental value
of p, g, andr have been deduced from Ref. 14 a8 and s too large follows from the fact that the sample was sub-
A, have been carried forward from the least-squares ha'je::ted to a uniaxial stress of 6.2 GPa parallgl1dl,0]. This
monic fit. The(equa) values ofE(?} and E{3) arising from s Jarge enough to induce quadratic components in the inner

the fitting of the harmonic energy should be removed fromgisplacement and leads to an effective parameter
the first of the above three targets. This quantity is, however,

very small: for the exact fitting it is-20.6 GPa A and a 4
minute — 0.4 GPa A for the least-squares fitting. k== g1A1t 0[SpALT (St S Al (42)

With six targets and six force constants an exact fitting is
possible. This gives a value f@r(0.55 GPathat is over 250 Inserting calculated values shows that the experiment prob-
times smaller than the next smallest. It quantifies and conably yielded a value too high in the ratio 0.087 to 0.083. This
firms the observation in Ref. 15 that this term, which indi- would reducelx to 0.119, a shift of 5%, well within the
cates anharmonic crosstalk between contiguous bondalready large experimental uncertainty. At the third order the
should probably be small. Whehis neglectedon grounds present values are rather less than those obtained in Ref. 23.

and the remaining total third-order constan®us, Ciss,
and Cysg, by expressions in Eq5).

The target quantities related to the pressure derivatives
the second-order constants @g;;+2Cq12, 2C1151 Cyo3,
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TABLE VII. Calculated second-order partial and inner elastic constants of cubic diamond with respect to
both cubic and rhombohedral axes. Units are GPeCfyr, GPa A for D, and GPa A2 for E;; .

Cubic Rhombohedral Cubic Rhombohedral

cy, 1072.3 cy, 1179.4 D14 46.6 D1 38.0

cY, 130.7 cs, 95.0 Dis -26.9

cl 577.9 cl, 59.3 Da; —-26.9
c% 1215.0 Dss 53.8
co, 506.5 En 561.9 =% 561.9
c?, -50.5 Ess 561.9

The anatomy of the elastic constants is shown in Table Vito the rhombohedral Laue group RI. Each set divides into
where the difference between partial and total constants isvo subsets: the group of elements that corresponds to hex-
illustrated. At the second-order additioreh initio calcula- agonal symmetry and the group of elements that disappears
tions, in which the full-potential linear muffin-tin orbital if there is no rhombohedral symmetry. The transformed par-
method has been used, are avail&Bl&hese are clearly of tial elastic and inner elastic constants are given in terms of
similar quality to those in Ref. 23. Inspite of its simplicity the cubic constants by the expressions listed in Table 4 in C1
the four-parameter Keating model clearly matches the preand Table 2 in C2. Total elastic constants transform in the
dictions of more sophisticated calculations with regard tosame way as the partial constants because any inner elastic
elastic constants and the zone-center phonons. contributions to them transform compatibly.

At the third order the present results are quite similar to The Keating parameters are not tensor components and
the previous three-parameter fit of Grimsditthal 1 Thisis  there is no rule for their transformation. The Keating expres-
expected as it is known that the extra two-parameters introsions for the partial and inner elastic constants can be trans-
duced in Ref. 15 and used here have their major impact oformed, however, and give rise, for example, to
the phonon deformation potentials. Nielsen’s calculations
provide the only theoretical comparison. These have been
included even though they are quoted to only two significant
figures. The two largest constanS;;; and C55, are in
reasonable agreement with this work Ililisg Seems rather

inflated, the present value is much more in keeping with theyc \wherea is the lattice parameter of the cubic unit cell.

relative size of this constant in other diamond-structure MaThe harmonic energy per cell in the cubic system is given by

terials. , _ Eq. (30). This energy does not change when the axes are
The calculated compliances are essentially of the SaMBytated, nor do the\; and Aj;, being differences of scalar

quality as the stiffnesses. They can be used directly to givBqycts and thus independent of coordinate system. Yet we
the linear CCimpl’eSSIbllltleS at 2second and th|rd' order: \would not expect to finch appearing in the equation if we
=0.749 TPa" andK=6.83 TPa“. The corre§eond|ng vol- were starting directly from the rhombohedral description,
ume compresslt;mtles ar&,=3k=2.25TPa" and K,  \hjch involves a unit cell containing six atoms and lattice
=3K=20.5TPa*. parametersy,=a/\/2 andc,=\/3a, see Fig. 1 in C1. If Eq.
(30) is used withay, in place ofa (explicitly in the initial
VI. AMODIFIED KEATING MODEL factor and implicitly inA;; and4j)) it is necessary to halve
There is a drawback to the use of the Keating model: its:the harmonic Keating parameters to regain acceptable
gcond-order constants, the same bulk modulus for example.

parameters are not independent of the unit cell. This facf: . :
appears to have passed unnoticed because the model |g1|larly, for the anharmonic energy and third-order con-

been applied exclusively to the diamond and zincblend&!@nts, division by 22 is necessary. Using the parameters
structures. The problem arises from Keating's inclusion ofd€duced earlier in this way generates the quasi-rhombohedral
the structure-specific lattice parametein his definition of partial and inner elastic constants listed in Tables VII and
strain® It manifests itself most clearly in the attempt to ac- VIil.
count for the elasticity of hD which should be almost the
same as that of ¢D insofar as the atoms in the two structures
have precisely the same nearest neighbor configuration.

CO—E( +B*—o+
11—aa B*—o+7)

B. Recasting the energy expressions

The simplest satisfactory solution emerges if ¢he and
a2 factors are removed frofe(®> andE®). Additionally a
cosmetic alteration in the coefficients of individual terms in

The simplest way to illustrate the problem is to refer theg(2) and E(®) will remove various powers of 2 whose pres-
elasticit_y of cD to rh@bohedral axes. If these are taken to b@nce is due to Keating's use @fi2 in place ofa in his
Ox4]|[110], Ox,|[112] and Ox5|[111] the resulting sets of original definition of strain. The modified energies per cell
elastic and inner elastic constants have the forms appropriateecome

A. Cubic diamond referred to rhombohedral axes
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TABLE VIII. Calculated third-order partial and inner elastic constants of cubic diamond with respect to both cubic and rhombohedral
axes. Units are GPa fa@), GPa A'* for D;;c, GPa A2 for E;jx and GPa A* for Fj .

Cubic Rhombohedral Cubic Rhombohedral Cubic Rhombohedral
c9, -6475  CY; —12317  Dyis —259 D1 —1161 Eig —2705 = —3712
(o3 -1947  CY, —131 Dioa —529 D1 —188 Eio —998 Ei —662
Cys 982  Ci,; —1484 D1ss —1028 D1gs 275 E1z —1860 Eirs —326
o 91 Chas —10520 Dyss —-353 Eiz —1525
Cles -3079 CY, —304 Das —243 Eiss —1189
Clss -355  CY, —1371 Diis 821 Esa —326
Cou —2833 D15 -23 Eass — 4047
C%s —-1610 Diss -39 Ei1a 475
Cles —3482 Dsiq 610 Eis6 475
Co%s —196 Daio —389
i 185 Dais 538 Fios —2879 Fiio —2351
C%y 164 Daas — 2596 Fiis 1662
(o3 754 D3as 94 Fass —3325
Cou —908
, 2 4 , 3 4 , D. Modified cubic diamond referred to cubic axes
= ):Szl [21 §“Aii +i:1 j;rl ['B*Aij +o(Ai+Aj)A All that remains is to collect together the modified expres-
sions for the different categories of elastic constant. Powers
of 4/a in the unmodified expressions for the inner elastic
+ 74541 (43  constants and the internal strain arose from components of
the unstretched bond and are replaced here by powers of
and J3/r,. At the second order
2 4 1 3 4 B a .
ED=3, [ 5T 3 [aAT+e(a+ay)Af Cu=p(a+3p7~20+37),
s= 1= =1 j=i+

: (44)

+EA; A (A +Ay))] a 1
Bzz a+§,8*—20'+37' ,
where factors of a half have been left in those interactions

that are counted twice. The previous notation has been re-

a
tained so that confusion is avoided: expressions for elastic C24=§(a+/5’* —20—71),
constants will changéas shown beloybut the conceptual

foundation of the model remains the same. a \/§

D14:§ » (a—pB*—1),
C. Modified Keating parameters 0

Identification of the old and the new strain and energy TABLE IX. Modified Keating parameters.
expressions indicates how the parameters of the model must
be modified: for example Previous Modified
2 @ 1009 GPa A 158.6 GPa & 0.9899 eV A4
Umod= 2 (45  p* 840 132.0 0.8238
o —234 —18.36 —0.1147
and T 21 331 0.0207
¥ —1198 GPa —140.8 GPa A®  —0.8788 eV A'®
16 8 166 19.56 0.1221
Ymod= 33 V- (46 — 566 ~99.78 —0.6226
7 —138 —24.29 —0.1516
The modified results for all the parameters deduced for cDy 143 50.55 0.3155

by least squares fitting in Sec. IV are listed in Table IX.
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a3 a3
Eu=5 z(a+p*+20-1), EG)= 6 —2(3y+35+65+277+50+2§)
0
_ ro OZ_B*_T a3
A“__ﬁ a+,8*+20'—7')' SH 16—2(37—35—26+277+0+2§).
V3 3
=— A, 4 a’ 3
g “r Eroe=1,7(37 27 0-60),
wherer g is the equilibrium bond length. Also
3
23 a®3y3
EG=ER=— ar? —(a=p*+20+37) (48 I:123:1_6 re (3y+67=36-6¢). 49
0

represent the anharmonic contribution to the harmonic enthe full E,,; andE;, are then given by

ergy.
At the third order

3a®
Clllzﬁ(’y_ 5+6E_277_ 0+6§),

a3
Ci1=74(3y~36+2e-67—36+18),

3
a

3
a
Clum1g(37+35—2e= 67+ 0+2¢),

3
a
c‘1’55:1—6(37— 35+6e—67—360+2¢),

3a 3
Clse—1q (v~ 27+ 6-2),

2

D114 16

2 &

Do 17 (37+35-2e=27+0+2¢),

To(37-30-2e-279+30+20),

3
a’ 3
D156:1_6E(37’_277+ 0—6%),

Ei=E@+E,
E11o= E(121)2+ E(131)2 (50

as before.

VIlI. CONCLUSION

The original goal of finding a simple model to character-
ize both the harmonic and anharmonic aspects of the elastic-
ity of diamond has been achieved: the four-parameter har-
monic model provides an excellent fit to the second-order
experimental data and the five-parameter anharmonic fitting
predicts third-order elastic constants that are in reasonable
agreement with both a previous three-parameter model and
an ab initio calculation. Fewer parameters always lead to a
poorer fit.

The single unexpected outcome has been the implication,
supported by an earligtb initio calculation, that the internal
strain parametefy is possibly even smaller than observed,
where it is already less than 25% of the values found for
other group IV elements and IlI-V semiconductors.

Finally the Keating model has been recast in a form that
makes the parameters characteristic of the bonds alone, and
not dependent on the dimensions of the unit cell chosen to
describe the structure. This means that the elasticity of cD
can be referred to rhombohedral axes without altering the
model parameters. In the following paper it is shown how
these same parameters may be used to study hD.
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