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We investigate the conditions in which superconductivity may develop in ropes of carbon nanotubes. It is
shown that the interaction among a large number of metallic nanotubes favors the appearance of a metallic
phase in the ropes, intermediate between respective phases with spin-density-wave and superconducting cor-
relations. These arise in samples with about 100 metallic nanotubes or more, where the long-range Coulomb
interaction is very effectively reduced and it may be overcome by the attractive interaction from the exchange
of optical phonons within each nanotube. We estimate that the probability for the tunneling of Cooper pairs
between neighboring nanotubes is much higher than that for single electrons in a disordered rope. The effect of
pair hopping is therefore what establishes the intertube coherence, and the tunneling amplitude of the Cooper
pairs dictates the scale of the transition to the superconducting state.
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[. INTRODUCTION count for the observation of superconductivity intrinsic to the
ropes of nanotubé¥.In these systems, the Coulomb interac-
During recent years there has been growing evidence dfon can be significantly reduced depending on the number of
the existence of superconducting correlations in carbometallic nanotubes in the rope. One has to incorporate there-
nanotubes. In the first place, the proximity effect has beeffiore the balance between the repulsive electron interaction
observed in ropes of nanotubes placed between supercoand the effective attractive interaction coming from phonon
ducting contact$:? Quite remarkably, it has been shown that exchange. It has been shown that, in the case of samples with
the nanotubes may support supercurrents below the criticabout 300 nanotubes, such as those displayed in Ref. 3, the
temperature of the contactd.ater on, there have been ex- superconducting correlations prevail in the system. The in-
periments directed to probe the superconductivity inherent ttertube coherence is established mainly through the tunneling
nanotubes.In some of the ropes, a transition has been ob-of Cooper pairs, which gives rise to the superconductivity in
served at a temperature below 1 K, with a drop of two ordershe bulk under suitable conditiof.
of magnitude in the resistance down to a value consistent One of the aims of the present paper is to unveil the
with the finite number of channels in the rope. different phases that arise in the competition between the
From a theoretical point of view, the electronic interac-repulsive Coulomb interaction and the attractive interaction
tions in the nanotubes have also been the subject of mudnom phonon exchange in the ropes of nanotubes. For this
attention?~’ The nanotubes may show metallic propertiespurpose we will map the phase diagram of these systems
depending on the helicity with which the graphene sheet isaking the strength of the phonon couplings and the number
wrapped to form the tubule. The experimental re§uisve  of metallic nanotubes as the relevant variables. We will show
agreed on that point with the theoretical predictidBiven  that the region where superconductivity may develop opens
that the conduction takes place in a one-dimensighBl) up for relatively large contents of metallic nanotubes. The
structure, it has been proposed that the nanotubes should pbase with spin-density-wave correlations characteristic of a
ideal systems for the observation of the so-called Luttingerepulsive interaction is confined to the cases where there are
liquid behaviort®~**Actually, there have been measurementsonly a few nanotubes in the rope.
providing evidence of the power-law dependence of the tun- We assume in any event that the formation of spin or
neling conductanc¥:'® which is a signature of the men- charge order in the bulk is prevented by the fact that the
tioned behavior. These experiments seem therefore to prob@notubes have a random distribution of helicities in the
a regime in which the repulsive Coulomb interaction turnsropes. These do not have a crystalline structure from the
out to be dominant in the nanotubes. three-dimensional point of view, and the only possible long-
On the other hand, the interaction with the elastic modesange order arises in the superconducting phase. We will see
of the nanotube plays an important role in the developmenthat, between the phases with superconducting and spin-
of the superconducting correlatiofsThe magnitude of the density-wave correlations, there is a metallic phase with no
supercurrents measured in Ref. 1 is in some instances up signal of instability in any direction. This is the phase most
40 times larger than expected from the estimate within thdikely to be found when measuring ropes with belewi00
conventional proximity effect. It has been shown that themetallic nanotubes.
temperature dependence of the supercurrents is characteristicWe will also address the question of the maximum tran-
of the 1D behavior of the system. Moreover, their values carsition temperature that can be reached in the ropes. There
be only explained by taking into account the attractive elechave been recent experimental measures in carbon nanotubes
tronic interaction coming from the exchange of phonons, orof minimum diameter inserted in a zeolite matrix, from
top of the repulsive Coulomb interactiof. which a critical temperature of about 15 K has been
Recently, a microscopic model has been elaborated to adaferred'® The small radius and high curvature of these
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FIG. 1. Different subbands of @0,10 armchair nanotube. The indices 1 and 2 as shown in the figure. In the case of the
energyE is measured in units of the hopping paramefeand the  armchair nanotubes, these subbands correspond to the modes
momentumk is in units of the inverse of the lattice spacing. with vanishing transverse momentum in the nanotube, which

are governed by the one-particle Hamiltortfan
nanotubes lead to an enhancement of the electron-phonon

coupling. This would explain in turn the increase in the criti-
cal scale for superconductivity. 0 1—2cog \/3ka/2)
One has to bear in mind, however, that the correlations in H=t ,
individual nanotubes provide an indirect measure of the su- 1-2cog \3kal2) 0
perconducting state. We will show that, in the three-
dimensional structure of the rope, the transition temperature being the hopping amplitude between neighboring sites.
is dictated by the amplitude for the Cooper pairs to tunnel The amplitudes of the modes behave differently in the
between neighboring nanotubes. Even in samples with largeanotube lattice, depending on whether they belong to one or
numbers of metallic nanotubes, the opening of the superconhe other subband. In the case of the subband with bonding
ducting phase depends finally on the existence of intertubgharacter in an armchair nanotube, the amplitude is a smooth
coherence. The most efficient way to increase the transitiofunction of the position, while the modes in the other sub-
temperature may come actually from devising some mechaand have an amplitude that alternates the sign between the
nism to enhance the tunneling rate of the Cooper pairs bawo sublattices of the honeycomb lattice. In general, we may
tween the nanotubes. compose a spinor out of the relative electron amplitudes in
The content of this paper is organized as follows. In Secthe two sublattices, such that the corresponding spinor ex-
Il we analyze the origin of the different interactions in the pression is different for the two subbands that cross at a
individual nanotubes. Section Il is devoted to the elaboragiven Fermi point. In the case of a metallic nanotube with
tion of the model that takes into account the interactionhelicity, the respective spinors for the two linear branches
among the metallic nanotubes, ending up with the discussiotake the form
of the possible phases of a rope. In Sec. IV we incorporate
the effect of the tunneling of the Cooper pairs, performing
some estimates of the transition temperature under different 1 1
conditions. Finally, Sec. V is devoted to the discussion of g/’ : (2)
some of the assumptions under which our general analysis
applies.

_eld

where the anglep vanishes for armchair nanotubes and
equalsw/2 for zigzag nanotube'S. These symmetry proper-
ties have important consequences regarding the form of the
electron-electron interactions as well as the coupling of the
We begin by considering the band structure of the indi-electrons to the elastic modes of the lattice.
vidual metallic nanotubes. We work in detail the case of the In what follows, we undertake the analysis of the low-
so-called armchair nanotubes, which have the structure denergy regime in which the physical properties are domi-
picted in Fig. 11 in Appendix A. The treatment of other typesnated by the branches with approximate linear dispersion
of metallic nanotubes with nontrivial helicity bears greatnear the Fermi level. For this purpose, we introduce an en-
similarities, since the low-energy properties of all of themergy cutoff E. below the energy of the bottom of the first
rely on the existence of gapless subbands crossing at a painoccupied subband, together with its counterpai, be-
of Fermi points. In Appendix A, it will be shown, in particu- low the Fermi level. The different branches are labeled by an
lar, how the symmetries of the electron-phonon couplingsndexr = * denoting the right- or left-moving character, and
extend to the general case of chiral carbon nanotubes. by the Fermi pointi==* to which they are attached, as
Figure 1 represents, for instance, the spectrum of ahown in Fig. 2. Correspondingly, we end up with a collec-
(10,10 armchair nanotube, which has a radiRs:15a/7 in  tion of electron fields¥,; .(x), to which one more indea
terms of the carbon-carbon distaneeWe will concentrate  will be added later on to label the nanotube in the rope.
on the case of undoped nanotubes, in which the Fermi level The electron interactions that we are going to consider
is at the crossing point of gapless subbands, labeled with theave, in general, the form

II. ELECTRON INTERACTIONS
IN CARBON NANOTUBES
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FIG. 3. Small momentum-transfer processes that are enhanced FIG. 4. Flavor-changing processes with small contribution from
by the long-range Coulomb interaction. the Coulomb interaction.
ke ke Ke ‘ + lattices of the nanotube. When the distance between the two
Lk dkﬁk dpﬁk dq¥ i ,(p+K) Vs (P)VKW currents that interact is much larger than the nanotube radius,
¢ ¢ ¢ the matrix element of the interaction averages to zero over
X(q—K)W (). ©) the section of the nanotube.

. Thus, the long-range repulsive interaction reflects in an
The processes between the different branches can be caighhancement of the interbranch and intrabranch couplings
loged according to the notation of Ref. 5. They fall into 12 082, g%, gf? andg{?. The flavor-changing processes as-
different classes with respective couplings denotedy$V, sociated withgs?, g§, g{*, andg{® survive in the form
the indices taking the values=1, 2, 4 andj=1,...,4.  of 5 residual short-range interaction. Its strength, however, is
The lower label keeps track of the combination of FerMicorected by a factor of the order 6f0.1a/R in comparison
points of the respective fields, following the convention thatyy the nominal strength of the long-range Coulomb
assignsi =1 to backscattering processes; 2 to scattering  interaction®”’ This represents, in general, a relative reduction

between currents at different Fermi points, ardd to scat-  py two orders of magnitude, for the nanotubes that are typi-
tering between currents at the same Fermi point. The UPP&Jly found in the ropes.

nations of left movers and right movers, including the possithe order of~2kg . These processes probe the interaction at

bility of having umklapp processeg < 3). _ short distances. It has been shown that the corresponding

ing processes from the interactions present in the nanotubes.q 15/R relative to the strengtle?/4m2 of the forward-

scattering processés<.
A. Electron-electron interactions The couplings for large momentum transfer, as well as

We deal with the situation in which the Coulomb interac- 95+ 9(23)_’ 9,511)' andg?, are marginally relevant in the
tion is not screened by external gates. It is known that théenormalization-group sense. This means that they have
Coulomb potential remains long ranged in one spatia@réater strength_ as the theory is s_caled to sn_1a|_|er energies,
dimensior?® In the case of the carbon nanotubes and for thé?ut the rate of increase starts being quadratic in the same
sake of making the projection on the longitudinal direction,CoUPIlings:” Thus, one has to proceed to extremely low en-
the interaction has to be averaged over two nanotube sectiofédies, many orders of magnitude bel&y, to have a sig-
placed at a given spatial separatfofaking the Fourier nificant increase of the couplings with respect to their nomi-
transform with respect to that longitudinal distance, the Coual values’
lomb potential gets an expression of the fétm

B. Electron-phonon interactions

Ve(k)=(e*/2m)In| (ke + k)/K]. ) The electron-phonon interactions give rise to a retarded
The large momentunk,, of the order of~1/R, is the interaction betw_een the electrons_, which may become attrac-
memory that the one-dimensional interaction keeps of thdive at frequencies below the typical energy of the phonons.
finite radius of the nanotubes. The potential for the effective interaction has the form
The repulsive interaction is therefore enhanced at small
momentum transfer, as in the processes shown in Fig. 3.
However, processes such as those in Fig. 4, in which the
flavor r is changed by the interaction, are highly suppressed.
This is due to the fact that, as shown above, the scalar prodvhere v is the phonon energy and tlwg - (k) are appro-
uct of the amplitudes for ingoing and outgoing electrons lo-priate electron-phonon couplings described in Appendix A.
cated in different branches alternates the sign in the two subFhe form of the interaction is dictated by the latter, whose

V(ko)=—Gpp (K (K—a—3, ()
— ot oy
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dependence on the momentum transfer varies according fthese relations between the couplings of the phonon-
the kind of phonons exchanged. mediated interactions are actually valid for any metallic
Acoustic phonondn this casew, is proportional tgk| at  nanotube since, as shown in Appendix A, the symmetry
small momentum transfer. This means that, regarding the inproperties on which they are based can be extended to nano-
terbranch and intrabranch processes, the range of energiestirbes with nontrivial helicity.
which the effective interaction becomes attractive is greatly We finally remark that the Debye frequency of the
reduced. This instance has been studied in detail in Ref. 23honons in the nanotubes can be estimated to be between 0.1
looking for the regime in which the retarded interaction mayand 0.2 eV. This is of the same order of magnitude as the
drive the transition to a state with superconducting correlacutoff E., which marks the energy below which the nano-
tions. Taking the parameters appropriate for the nanotubes, fitibes can be viewed as simple 1D systems. In that regime,
can be seen that the critical exponents estimated in this watphe effective interactions coming from the exchange of
are very small. Therefore, the acoustic phonons at small mghonons can be matched against the interactions of purely
mentum transfer do not play a role in the superconductivityelectronic origin. We will adopt henceforth this procedure, as
observed in the nanotubes. long as the electronic properties in which we are going to be
Moving now to the processes with large momentum transinterested refer to energies much lower th&n
fer k~2kg, the phonon energyy_ becomes of the order of

the Debye frequencwp . This provides then a significant
range in which the effective interaction becomes attractive.
The precise couplings to the acoustic phonons in the nano-
tubes can be found in Ref. 23. It has been shown there that We turn now to the processes that take place between the
some restrictions arise in the exchange of phonons dependanotubes in a rope. A property to be taken into account is
ing on the bonding or antibonding character of the subbandthat the rope is made of a disordered mixture of nanotubes
involved. In the case of longitudinal acoustic phonons, thewith all kinds of diameters and helicities. Given their random
processes cannot take one electron from a given subband distribution, the lattices of neighboring nanotubes are not
the other. Moreover, the couplings have opposite signs whealigned, in general. This so-calle®mpositional disordéf

the scattered electron is in one or the other subband. THeads to electronic properties that differ from what could be
exchange of phonons leads then to the effective couplingexpected in a crystalline rope with perfect alignment of the

Ill. ELECTRONIC INTERACTIONS IN ROPES
OF NANOTUBES

below the Debye frequency, nanotube lattices. In that case, it has been shown that the
L 5 coupling between the tubes opens a pseudogap of about
g4h= —a5h<o0. (6)  0.1eV in the density of statés.In the disordered ropes,

. however, there is, in general, a mismatch in the position of

In the case of the transverse acoustic phonons, thge respective Fermi points of neighboring nanotubes, which
phonon-exchange processes in which the electrons remain geciudes the precise conservation of the longitudinal mo-
thg} same fu_bba”(_j are forbidden. Processes associated ntum in the tunneling processes. At the one-particle level,
9{” andg{" in which the electron shifts from one subband the electronic states appear to be localized along the indi-
to the other could play, in principle, a role, but there is ayidual nanotubes, and the intertube coherence is strongly
kinematic factor that vanishes when the incoming and Outsuppressed’
going modes have opposite momenta. There are, therefore, The expression for the tunneling amplitude between nano-
no more contributions from the acoustic phonons when th%bes in the Compositiona"y disordered ropes has been com-
system is precisely at half-filling. puted in Ref. 24. In the case of nanotubes with the same

Optical phonons The Debye frequency is of the same helicity and aligned lattices, the estimate for the tunneling
order as the energy of the acoustic phononsiat,2so that  amplitude ist;~0.01 eV. This value implies, for instance,
we can expect the effective couplings to be comparable tghe appearance of a pseudogap of the order b2t in the
those in Eq(6). The different symmetries of the modes with crystalline ropes, in agreement with the computations in Ref.
bonding and antibonding character impose again restrictionss \When there is a mismatafk between the Fermi points
in the way the optical phonons can be exchanged, as showst neighboring nanotubes, it has been found that the ampli-
in Appendix A. In the case Of the transverse Optical phononst,ude for e|ectr0n hopp|ng between them is Suppressed by a
the electron modes have to remain within the same subbangh|ative factor~ exf —Ray(5K)%/4], wherea, is a parameter
while the longitudinal phonons force the electron to shiftof the order of~0.5 A. This reduction of the intertube cou-
from one of the subbands to the other. The effective coupjing has been observed in the measurements of the coupling

plings that we get have the following signs resistance between the tubes, which seems to be from two to
Q) _ (3 four orders of magnitude above the typical resistance of the
Jerl.2= ~ eif 20, @) individual metallic nanotube¥. These experi
. perimental results
@) _ @) are consistent with the average estimate of the above factor,
9eit2™ ~ Deft2= 0, (8 \which, for a typical nanotube radif&=7 A, can be taken to
W _ @ be of the order of-0.005.
Oeffa= ~ Jef 4= 0, ©) The presence of compositional disorder has also impor-
@) @) tant consequences regarding the kind of electronic instabili-
Oeffa= — Jeff 4= 0. (100 ties that may develop in the rope. Depending on the point of
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the phase diagram, the individual nanotubes may suppognd their spin-density counterparts. We define further the lin-
2kg charge-density-wave and superconducting correlationgar combinations
or 2kg spin-density-wave correlations. It is clear, however,

that the absence of a three-dimensional crystalline structure P2 x)=p®, 00 +p@. (%), (14)
precludes the development of charge or spin order in the bulk
of the rope. The transition to a superconducting state is there- PR0x)=p@ (x)+p®, (x) (15)
. 2p P+ -p p=- +p .
fore favored when the correlations are strong enough to force
symmetry breaking in that direction. Obviously,p(li‘,)(x) is made of the modes with bonding char-

The possibility of havi_ng a superconducting transition inacter, Whileﬁ(za)(x) contains those with antibonding charac-
the rope of nanotubes arises from the balance of the effectlvTé r

attractive interactions due to phonon exchange and the repul- We recall that, in the case of the attractive interaction

sive inter_actions of pu_rely electronic charact_er. At the dia-rom the exchange of phonons, the sign of the coupling de-

grammatic level, for mstance,. the correlations _Wlth thepends on the bonding or antibonding character of the cur-

swave lorder parzameter are driven by the Cgupllgé@, rents involved. Thus, a great simplification is achieved by

gt g8, andg{”, as shown in Appendix B’ The ob-  introducing the operators

struction to having superconducting correlations in the nano-

tubes comes, in principle, from the large contribution of the _ 1 _

Coulomb potential to the coupling$? . In this respect, the P (x)= T[P(ﬂ)(x)ﬁLP(ﬁ)(X)], (16)

processes associated wight) andg$" contribute to the en- 2

hancement of the superconducting correlations when they are

able to develop, but they play a secondary role in the deter- 'B(a)(x): i[

mination of the phase diagram of the ropes. o V2
It is therefore necessary to build a model that takes into ) ) ) )

account the competition between attractive and repulsive inln€ Coulomb interaction acts on the symmetric combina-

teractions in the interbranch and intrabranch proceg§ds  tions p®)(x), while the effective attractive interaction only

05", g§?, andg? . This model can be solved by means of couples the antisymmetric combinatigsf)(x). The Hamil-

bosonization techniques. With this method, one boson field isonian (12) can be rewritten in the form

introduced for each of the linear branches beBwin each

metallic nanotube. At this point, we need to introduce a new 1 ke ) )

index a labeling the metallic nanotubes in the rope, so that HO:EUFLK dk 2, :pi(K)pTo(—k):

the fermion fields read nO\AP(f"‘)(x). The correspondence

rno

00501, (17)

ario

between each of these and the respective boson operator is 1 (ke ~@a) 1, VelK) <~
given by 5] Cdk ; pﬂ,(k)?% P (—k)
AP @T )1 (@ () — (@) o
'\I}rla' (X)q’rla(x)- prIU'(X)1 (11) _1_% ; p@;(k)p@z(—k)), (18)

where the colons represent normal ordering aﬁ@(x) )
stands for the density operator associated with the giveMhere we have defined

branch. @ g@= — W= _ @
Neglecting for the time being the tunneling between the 9=02 =04 =~702'=~02". (19
nanotibes, i Hanlonia o L model, nEUANS,2 <9 afr the decouping of he Coulom and th cffecive
' ' ’ attractive interaction, we observe that the latter affects up to
1 " a numbem of the 4n density operators, while the Coulomb
Ho=—va ¢ dk> 1p@ (k) p@(—k): interaction acts only on the channel of the total charge den-
2 —k; ario sity. That is, the Hamiltonial8) can be completely diago-
1 nalized by changing variables to the symmetric combination
+ _f ¢ dkz p@ (k) 2 V(f"‘b)-(k)p“.’) (—k) of the charge-density operators of all the metallic nanotubes.
2) -« ame Ty SRSl ' This is a consequence of the long-range character of the Cou-
(12) lomb interaction, which allows us to assume that, in the in-
terbranch and intrabranch processes, the different nanotubes
wherek; is related toE, through the Fermi velocity,, interact among themselves with the same strength. _
ke=E./vE. A balance between the long-range repulsive interaction
The interaction term in Eq(12) can be better organized @nd the effective attractive interaction is possible, as the
by introducing the charge-density operators former turns out to be greatly reduced for large values.of

The attraction from phonon exchange is otherwise an in-
1 tratube effect that does not depend on the number of nano-

@)= —[p@(x)+ p¥(x)] (13  tubes. Itis then interesting to draw the phase diagram of the
Prip Nl Pl ropes in terms of the number of metallic nanotubes and the
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strength of the attractive interaction. At large values @ind
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1 (ke w(k) ~
sufficiently large values ofg|, there must exist a phase Xsdw(X-t)=exp(—%J dk— —[1-codkx)codvekt)] .
where the attractive interaction prevails, with the develop- 0

ment of superconducting correlations in the individual nano-
tubes. For low values af and smallg|, the electronic prop-

(25)
with the same correspondence between the differeind

erties have to be dictated by the Coulomb interaction, W|t|’C' N andF as for the propagator of the Cooper pairsl
the appearance of the Spm'denSIty'Wave correlations charac- The correlators in the individual nanotubes cannot dlSplay

teristic of the Luttinger liquid behavior.

an instability for any finite value of the frequentyThe way

The different phases can be identified by looking at theg discern the tendency to form long-range order is to deter-
correlators of the model. The bosonization techniques allovnine whether the correlations are enhanced at large distances
us to compute them by using the correspondence between tiger the values in the absence of interaction. When this hap-

fermion fields and the respective boson operafdrs

1
v, ,00=—=exd =id®, (0],

= (20
p@ (x):iexp[iifb(_a), ()1, (22)
F—0 \Ec T

whered, ® @ (x)=2mp@ (x) anda, is a short-distance cut-

rno

off of the order ofk; *.
We deal first with the propagat@'®)(x,t) of the Cooper

rno

pairs in the individual nanotubes. This term factorizes int

pens, the Fourier transform of the corresponding propagator
at zero temperature diverges at zero frequency and momen-
tum. At nonvanishing temperature, the propagators remain
finite but the intertube coupling may give rise to the break-
down of the symmetry if the correlations in the nanotubes
are sufficiently enhanced. We will address this question in
the following section. The computation of the propagators
(22) and(24) can be extended to the case of temperaiure
#0, just by inserting the factor#2/[ exp{e|k/T)—1] in the
integrand of expressions such as E@8) and (25).1°

At this point, we stick to the model at zero temperature
and map the regions with enhanced superconducting or spin-

0density—wave correlations. The propagat(®) and(24) do

the different channels that appear after diagonalizing the,q show a perfect scaling behavior at large distances, due to

Hamiltonian,

DO(x,t)=(¥A" (x,n)H T@T (x,) ¥@. (0,0 F,,(0,0)
3n—1

= eI N I Fix.
1 1

ac

(22

The first factor corresponds to the channel of the total charge
density of the metallic nanotubes, whil, stands for the

contribution of the antisymmetric combination of the charge,
in the two subbands. The rest of the factors correspond to the

channels with no interaction.

The different factors in Eq22) can be computed in terms
of the respective boson propagators, which leads to expres-

sions of the form

1 (ke 1 ~
Xsc(x,t)zexp(—%jo dkm[l—cos(kx)cos(vpkt)] .
(23)
In  the case X {X,t)=Cgs{x,t), we have pu(k)

=1/1+4nVc(K)/mve andve(K)=ve/ (k). For Xe(X,t)
=Ng{x,t), we have the constant parameterg

=1\1-4|g|/7vr andve=ve/u.

the momentum dependence of the Coulomb potential. We
may take, however, an effective vallgg of the momentum
in the infrared to approximate the behavior of each propaga-
tor by a power law with a constant exponent.

In the case 0D9(x,t), the decay at large distances takes
the form

DO (x,0)~ 14277, (26)

where the anomalous scaling dimension is given by

_ 1 1 N 1 1 5
772720 Znpikg) 27
Similarly, D{%(x,t) has a large-distance behavior
DO x,0)~1/x>~? (29)
with an anomalous exponent
1 p 1 w(ko)
=27 2% on 29

The same technique can be applied to the computation of We have represented in Fig. 5 the different phases that
the propagatob (J)(x,t) of the spin-density waves along the arise by varying the number of metallic nanotubes and the

nanotubes. The correlator is given by

DGO =(TET ()T () ¥ (0,0%,(0,0)
3n—-1

1 n
=—2C3dw(x,t)1:[ Neaw(X,t) ]:[ F(x,t).

A

(29)

Each of the factors in Eq24) has now the representation

strength|g| of the intratube attractive interaction. For the
Coulomb interaction, we have taken the values/zZr%v ¢
=1.0 andk,= 10 3k., which are appropriate for typical ex-
perimental sample¥. At sufficiently large values oh, a
phase with superconducting correlations opens up, character-
ized by positive values of the anomalous dimensjorThis
phase is placed above the upper full line in the diagram.
Another phase with spin-density-wave correlations shows
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L.O 3= the single-particle transverse hopping. This leads to a scaling
N equation for the pair-hopping amplitudeof the form
087 -
] N el SC dJ
; AN —=AJ+ct?, (30)
0.6 4 S dl
Algl/ e 5’\ \\\;\\ wherel is the logarithm of the energy scale aAdis the
0.4 1| - scaling dimension of the pair-hopping oper&tbi®Since the
n;elfzilgc Cooper pairs are formed at zero total momentum, they do not
0.2 ] \ find an obstacle in the tunneling processes from the misalign-
L ment of the nanotube lattices. For this reason, one has to take
0.0 15 T in the inhomogeneous term of E(BO) the transverse hop-
0 20 40 60 80 100 120 140 ping parameter estimated from that of graphitg;
n ~0.01 eV

FIG. 5. Phase diagram showing the regions where the supercon, As has been established in Ref. 29, the pair-hopping in-

duing S0 coraton s e spr-censyuagow core- 0L LA Wher e cominen heactons 0 e
lations prevail, in terms of the strengt| of the effective attractive y ) ’ 9

interaction and the number of metallic nanotubes. dimensionA coincides With, the anomalous dim_ensi(ﬁ?)
computed for the propagation of the Cooper pairs, while the

. u . 2 . . _ _ .
2up, below the lower full line in the diagram. This region c0€fficient in front ofty in Eq. (30) is c=y— 4. This means

corresponds to the points characterized by positive values ¢f@t the pair-hopping amplitude grows at low energy scales
5 in the region of the phase diagram where the superconduct-

We observe also the existence of an intermediate region iffi9 correlations develop. ,
which neithery nor & are positive. This represents a phase | N€ model of the preceding section has to be corrected
with intrinsic metallic properties, where no correlations arethen by adding to the Hamiltoniaf18) the term describing
enhanced and no order would develop, irrespective of thi€ tunneling of the Cooper pairs,
value of the intertube coupling in the roffeln our model, ‘ ‘ ‘
this phase arises from the balance between the Coulomb and 1 = 3 ()\Z)abf ¢ dkf ¢ dpf ¢ dp' ¥ @ (k
the effective attractive interaction. The former remains long (a,b) —k¢ —ke¢ —kg
ranged, but the interaction among a large number of metallic (@t (b) — ,
nanotubes is what favors the appearance of the metallic PV (=P (= p)Wgji(k+p),
phase, as a bridge to the development of the superconducting (31)

correlations. ) )
where the sum runs over all paifa,b) of nearest-neighbor

metallic nanotubes. As any coupling for a four-fermion inter-
action, the pair-hopping couplinga ) ,, are dimensionless
in a nave power counting, and their order of magnitude is

In the preceding section we have neglected the effect dgiven by the relation X,) .p~ a2J.”
tunneling between metallic nanotubes, relying on the small- The probabilities of the single-particle hopping and the
ness of the amplitude for that process. We have seen howevegir hopping between nanotubes can be compared then by
that, in the absence of intertube hopping, the model canndheasuring the respective amplitudes with respect to the en-
develop any instability at finite temperature. In this respectergy cutoffE.. We can take this quantity to be of the order
the upper full line in Fig. 5 has to be considered as a firsof ~0.1 eV, which is the scale below which the nanotubes in
approximation to the boundary where the superconducting rope are seen as 1D objects. The scaling behavinp o
phase opens up in real samples. The tunneling amplitudeepresented, for instance, in Fig. 6, after expressing the so-
between neighboring nanotubes in a rope is actually whattion of Eq. (30) in units of E2. On the other hand, the
dictates the transition temperature to the superconductingingle-particle hopping has a relative weight of the order of
state, as we study in what follows. ~0.5x10 %, when measured in units d&&;. The single-

As mentioned before, the single-particle hopping betweenparticle hopping has its own scaling dimension but, starting
neighboring nanotubes is strongly suppressed in a disorderadth such small values, its effects are not enhanced over
rope. The tunneling amplitude between nanotubes with difthose of the pair hopping at the energy scales relevant for the
ferent helicities can be estimated to be of the order ofexperiments.
~0.5x10 * eV. Its smallness stems from the obstruction to  We observe from Fig. 6 that the pair-hopping coupling
having precise momentum conservation in the hopping behas a more pronounced increase for larger superconducting
tween the misaligned lattices of the nanotuffetn these correlations within the nanotubes. In any case, the values
conditions, the tunneling of Cooper pairs turns out to be aemain in the weak-coupling regime down to the transition
much more important effect. temperatures measured in the experiments. A valule=af

The generation of the pair-hopping interaction comes, ircorresponds approximately to an energy scale three orders of
general, from the contribution of second-order processes imagnitude belovE,. . That scale translates into a temperature

IV. SUPERCONDUCTING TRANSITION IN ROPES
OF NANOTUBES
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FIG. 6. Scaling dependence of the pair-hopping couphng T
The solid (dashedl lines give the behavior for a numben
=100 (40) of metallic nanotubes and different couplings
4|g|/ mve=0.75 (upper curvesand 0.5(lower curves.

FIG. 8. Plot of the propagatd?)gg) at zero frequency and mo-
mentum vsT/E., for 2e?/(w?%vg)=1.0. The dashed line corre-
sponds to the case=1 andg=0, and the solid lines ta =100

and the respective valueffrom top to bottom 4|g|/
of the order of 1 K. The small values of, allow us to  _ ;.- 5 8 ¢ P M 4lgl/(mue)

consider the pair-hopping interaction as a correction on top
of the above 1D description of the rope, while making pos-
sible the discussion of the effects that rely on the coherence
in the transverse dimensions.

As long ash, remains small, we may include the effects

of pair hopping by summing up multiple processes in which  According to the conventional interpretation, the transi-
a Cooper pair, propagating along a nanotube with the amplition to the superconducting state is given by the point at

tude(22), tunnels to a neighboring metallic nanotube. Let us,,ich D(0:0,0) develops a pole. This may happen only
denote byl, the position of nanotuba in the transverse 0) s

N
section of the rope. We will assume that the metallic nanoll’Vhti”Dsc (0,0) zec?mes Igrge ?r;ﬁughhat Io(\;\.’ tempert?]tures.
tubes are dense in the collection of nanotubes of the Ybpe. n the superconducting region of the pnase diagram, the cor-

Then, we may write the propagator of the Cooper pairs be[elations grow large in the limit of vanishing temperature, as

tween the metallic nanotuteeand the metallic nanotubieas ShOW’? in Fig. 8._The only Iimitatic_m_ to the development of a
a function D(I,, 1, X, t). This object is related to real divergence is placed by the finite length of the system, as
a’ 1 1 .

(0) 3 . . .we discuss later on.
D¢/(x,t) through the self-consistent equation represented in The parameter that plays the major role in setting the

Fig. 7 m_the approach that takek asa per_turbatlon to the values of the transition temperature is the weigh{0) for
Hamiltonian (18). For the sake of simplifying the calcula- __. hoDpDi 0 look
tion, we will suppose that the positiog form a periodic pair hopping at zero transverse momentum. One can 100k,
' . . for instance, for the points of the phase diagram with transi-
arrangement in the transverse section of the rope. Then w,

= —3 i
can take the Fourier transform of these variables as well as %E)nqgggfui;aguéech ;LoOr EEE.O-I;.h:VVE}II':iir?;:II”]eeSFi)riztrjril;gi a
C_ . . =

the distancex along the nanotube. The equation for theate valuen ,(0)=0.025, the points form the boundary repre-

DY0,0

D(0;0,0= — .
(0:00 1-2,(0)D(0,0

(33

Fourier-transformed propagatbr(q;k, wy) reads sented by the dashed line in Fig. 5. The curve has the same
~ =0 ~ 0 _ shape as the boundary of the superconducting phase deter-
D(a;k, ) =D (K, ) + DL (K, )N o(q) D a1k, wy). mined from the expressid27) of the anomalous dimension.

(32 However, we see that the region wit>10 °E. above the

) o dashed line is sensibly smaller than that of the whole super-
The measure of the condensation of Cooper pairs in thgonducting phase.

rope is given by the propagator at zero frequency and mo- \we have represented in Fig. 9 the contour lines for differ-
mentumD(0;0,0). This accounts for the propagation of aent critical temperatures in the space of the pair-hopping pa-
Cooper pair from a metallic nanotube to the rest in the roperameter\,(0) and the numben of metallic nanotubes, fix-
From Eq.(32) we obtain the expression ing the coupling of the attractive interaction atghf wv
=0.75. We observe that a slight change in the value of the
D D© D© D tunneling amplitude leads to a significant increase in the
= "y 2 transition temperature. Considering ropes with larger con-
‘ = Sab @ + Z 2‘ tents of metallic nanotubes may also help to enhahgcge
L= I—~"1, 2 L~ I Iy although the figure shows that very high valuesdfave to
be reached to find a sensible variation.

FIG. 7. Self-consistent diagrammatic equation for the propaga- Finally, we remark that the finite length of the nanotubes
tor D of Cooper pairs along the rope. imposes a limit on the strength of the correlations. The exis-

014528-8



SUPERCONDUCTIVITY IN CARBON NANOTUBE ROPES PHYSICAL REVIEW B7, 014528 (2003

0.06 1 this paper, since, according to it, a transition with critical
] B temperaturd ;=0.1 K, for instance, should not be present in
\ the samples below Lm. In general, it turns out that a
] ~ Nﬂo_z Ee sample with lengti. cannot have a transition at temperatures
0.04 A — \\ T lower than 0.2 /L, as is observed in the samples consid-
] — 107 E, ered in Ref. 3.
)\2 \\\\ T
] ~ T V. DISCUSSION
4 -2
0.0= 1 N . In this paper we have shown that superconductivity is a
] 10 E, plausible effect in the ropes of nanotubes. The ropes with
greater number of metallic nanotubes have, in general, larger
000 1 I superconducting correlations. We have seen that the long-
100 1000 range Coulomb interaction is reduced very effectively in
n ropes with 100 metallic nanotubes or more. On the other

hand, the coupling to the elastic modes within each nanotube
provides the attractive interaction leading to the electronic
pairing. We have shown that the low-momentum optical
phonons have suitable properties to balance the effect of the
) ) repulsive Coulomb interaction.

tence of a length scale spoils the scaling of the model and, e have dealt with a model providing an exact descrip-
therefore, the approximate power-law behavior of the corryjon of the competition between the Coulomb interaction and
elators. Thus, the divergence of the propagators at zero frgne effective attractive interaction in interbranch and intra-
quency and momentum is cut off in practice at a temperaturgranch processes. Proceeding in this way, we have disre-
scale that is betweeng /L and one order of magnitude be- garded the effect of other processes coming from phonon
low that value. This effect is illustrated in Fig. 10, which exchange. These contribute to the backscattering and um-
displays the behavior ob{2(0,0) for ropes with different klapp couplingg{?, g, g, andg®. Only the first and
numbers of metallic nanotubes=40, 100, 400, 1000 and the third kind of processes play a role in the development of
finite lengthL = 1000K. . the superconducting correlations, as analyzed in Appendix B.

The constraint on the superconducting correlations due t¥hese couplings are marginally relevant in the
the finite-size scaling may have been observed in the experienormalization-group sense but, as we have already re-
ments reported in Ref. 3. It is shown there that the large dropnarked in the paper, the effects derived from
in the resistance is present in two samples with respectiveenormalization-group scaling turn out to be very soft down
lengths of 1.6um and 1 um. The effect is absent in a third to the energies where we look for a superconducting transi-
sample which is 0.3:m long. Assuming that the typical tion.
transition temperature for these samples is around The significance of the backscattering processes is found
~0.5 K, the relative small length of the third sample wouldin that they determine the symmetry of the order parameter
explain the absence of superconductivity. The minimum tranwhenever the system becomes superconducting. According
sition temperature that could be supported in that case is ab the analysis in Sec. II, botf? andg$" correspond to an
the order ofT,~0.1v/L~10 “eV ~1 K. The same argu- effective attractive interaction. Then, from the inspection of
ment provides a definite check of the model elaborated inhe different order parameters considered in Appendix B, we
conclude that singlet pairing is enhanced by the backscatter-
ing interactions. We observe also that therave symmetry
with positive amplitude in all the branches is favored over
more exotic possibilities such as tdevave symmetry of the
order parameter.

In our description of the mechanism of superconductivity,
we have taken into account the fact that the ropes are made
of nanotubes with a random distribution of helicities. This
prevents the development of any ordered charge or spin
structure from the coupling of the nanotubes. Moreover, this
kind of disorder implies a strong suppression of the intertube
single-particle tunneling. This picture of the compositionally

i A —— disordered ropes is supported by the experimental analysis of
0.0001 0.001 T 0.01 0-1 the intertube coupling in ropes carried out in Ref. 26. There,
the coupling resistance between tubes has shown wide varia-

FIG. 10. Logarithmic plot o®? at zero frequency and mo- tions when measured in different samples, the values ranging
mentum vsT/E;, for 2e?/(w?vg)=1.0 and 4g|/(mvg)=0.75. from 2 MQ to 140 M. It has been argued that this can be
From top to bottom, the curves correspond to different numbers obnly explained by assuming that transport in the transverse
metallic nanotubes =1000,400,100, and 40. directions of the ropes takes place by tunneling between me-

FIG. 9. Contour lines for the critical temperatufg depending
on the pair-hopping parametkp(0) and the numben of metallic
nanotubes.

1007
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tallic panotut_)es of the same helicity. The Iarg_e values of th%utgoing modesjgp)(k) and u('?')(k’) in the respective sub-
coupling resistance are consistent with relatively large tu”bandsp andp’, taking the fosrm

neling distances, where the transport would still be possible '

by intermediate hopping mostly through semiconducting

nanotubeg® (kK')=

In the presence of superconducting correlations, the rel-gp"" '
evant tunneling process is given then by the hopping of Coo-
per pairs between neighboring metallic nanotubes. The am- X[es(k—k')— e (k=k")]-VI(s,s"). (A1)
plitude for that process is, in general, small, which explains . ) )
the relatively low transition temperatures measured experiln the above expression, the sum is restricted to nearest
mentally. In any event, there are arguments that make plai€ighbors of the atoms in the unit cell of the nanotube,
sible the robustness of the superconductivity of nanotubd(S:S’) is the matrix element of the atomic potential con-
ropes. On one hand, it is known that the lattice defects of th&ecting orbitals as ands’, w is the phonon frequency, and
individual nanotubes have an effect that is averaged over thé IS the mass per unit length. _ .
circumference of the tube, reducing their influence on the Letus consider first the case of optical phonons with lon-
conduction propertie On the other hand, the ropes may gltudlnal polarization in an armchal_r nanotube. The polariza-
have impurities intercalated in the space between the nandl®n vector depends only on the distarmeneasured along
tubes, but the main interaction between these and the impd0€ nanotube, but it has opposite amplitudes in the two sub-
rity charges is of electrostatic character. In these conditiondattices shown in Fig. 11 so that
the effect of the impurities is to contribute with a forward-
scattering interaction in the nanotubes, which is known to es(k)=zexp(ikzs) for black points, (A2)
have no impact on the superconducting correlatiins.

The main influence of the impurities in the ropes comes
then from the effect of doping the nanotubes. By a suitable
injection of charge carriers, the density of states at the Fermi _ . S . -
level may be increased, with a consequent enhancement 6fbe|ng the qmt vector in the axis direction. It is not d|ff|,cult
the superconducting correlations in the nanotubes. Anyhow? S€€ that, if the modes belong to the same sublipang
the effect of pair hopping has the most direct influence on thof an arr_nchaw nanotube, the different terms in the sum of the
transition to the superconducting state. In this respect, thEXPression(Al) cancel among themselves. Then, we have
statistical effects related to the percolation of the Coopefnat in the case of longitudinal optical phonons,
pairs by tunneling between metallic nanotubes should be
studied on more quantitative grounds to have an estimate of 911(k,K") =gz Ak,k")=0. (A4)

the maximum transition temperature reachable in the ropes.

In this sense, good prospects should exist to increase th&hen the incoming and outgoing electron modes are in dif-

transition temperatures, either by intercalation or modificaferent subbands, the electron-phonon coupling does not van-
tion of the internal structure of the ropes. ish. Using the fact that the amplitude of the modes with

antibonding character changes its sign under the exchange of
the two sublattices, we obtain the result

7 3, W 00u )

s,s’)

(p og—kr)

(k)= —iexp(ikzs) for white points, (A3)
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APPENDIX A:  SELECTION RULES FOR THE
COUPLING TO OPTICAL PHONONS

The different symmetry of the modes in the two gapless
subbands leads to definite relations between the various
electron-phonon couplings. This can be observed in the re-
sults of Ref. 23, where the full expressions of the couplings ;
to the acoustic phonons in armchair nanotubes have been
obtained. In this appendix we exploit the mentioned symme- ;
try to get the corresponding relations in the case of the opti-
cal phonons and for any kind of metallic nanotubes.

The use of the tight-binding approximation is appropriate
for the carbon nanotub&s The electron-phonon coupling FIG. 11. Scheme of the unit cell of an armchair nanotube, rep-
can be written in terms of the polarization veci(k) de-  resented between the vertical dashed lines. The arrows correspond
pending on sites and the amplitudes of the incoming and to the displacements for a longitudinal optical phonon.

o
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3 3 p S Y, ., Ty Y,
ORRCO)
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o

Hy Ty Ty

G FIG. 14. Contributions to the response functiondewave pair-
; ; ing, with the same representation as in Fig. 13.

discussed in Sec. Il, the relative electron amplitudes in the
$wo sublattices of the nanotube can be combined into the
spinors quoted in Eq(2) for the two linear branches at a
given Fermi point. Then, just making use of the fact that the
sum in Eq.(Al) runs over pairs of atoms that belong to

FIG. 12. Same scheme as in Fig. 11, but representing the di
placements for a transverse optical phonon.

Moving now to the case of transverse optical phonons, w
have a picture like that shown in Fig. 12. The polarization

vector is different sublattices, one can immediately conclude the gen-
eral result
es(k)=0expikzs) for black points, (AB6) gr1(kk ) =—gaAk,K'). (A10)
e(k)=—0expikzy) for white points, (A7) A similar argument shows that, when the electron is scat-

tered from one of the subbands to the other, all the terms in

@ being a unit vector tangential to the nanotube. When th%q. (A1) differ by a minus sign, depending on whether the
incoming and outgoing electron modes belong to the SaMEansition is from subband 1 to subband 2 or vice versa.

nd of an armchair nan we have now
subband of an armchair nanotube, we have no Thus, we also have the general result

gl,l(kik ) gZ,Z(krk ) (A8) gl,Z(kvk,): _92,1(k:k,)- (All)
If the modes are in different subbands, the terms in the ex- . . )
pression(Al) cancel out in pairs and we have The relations(A10) and (A11) have been obtained with-
out making any particular assumption about the form of the
014k,k")=0,1(k,k")=0. (A9)  phonons involved. This is very convenient, since, in general,

the form of the phonon displacements in the nanotubes can-
We observe that the situation is reversed with respect tiot be reduced to simple longitudinal or transverse
the case of the acoustic phonons, in which the relati®8  polarizations>*¢ The symmetry expressed by Eq#10)
and (A9) apply to the longitudinal branch while Eq&A4)  and (A11) ensures the validity of the various relations be-
and (A5) hold for the transverse branéh. tween the phonon-mediated electron-electron interactions
The above relations between electron-phonon couplingdiscussed in Sec. I, including the cases of metallic nano-
are actually a special case of the symmetry properties thatibes with a helical arrangement of carbon rings.
apply, in general, to nanotubes with nontrivial helicity. As

APPENDIX B: PAIRING SYMMETRY OF THE

g S kS ¥y v, SUPERCONDUCTING CORRELATIONS
><‘>< =+ ><‘>< There are several response functions that give a measure
N P N 87 of the superconducting correlations in the nanotubes, each of
— —t —i +Hi them corresponding to a different symmetry of the pair wave
function. They have the general form
+ ( >< + >< In the case of singlet and triplet pairing, the operafgk,t)
corresponds, respectively, to the uppersign and the lower
p A g Ty p A + sign of the expression
' FIG. 13 Contributions_to the_ response functions fpr singlet and ox)=v, V¥__ 5V, ¥v__,
triplet pairing, where the filled circles represent the different renor-
malized vertices. TV _ Y FY_ Y. (B2)
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There are also more exotic possibilities like thevave sym-  in Fig. 13, with respective upper and lower signs. Then, the
metry of the Cooper pairs, corresponding to enhancement of the singlet pairing response function is
driven by the combination of renormalized coupling§’
O O)=W ¥ =¥ Wy +gM+gP+g{?, while in the case of triplet pairing the
—(V_, ¥, —V_, ¥, ). (B3 combination isg?—g{"+gs"—g{¥.
. ) For the response function withwave symmetry of Coo-
The symmetry of the superconducting correlations can b&g, hairs, the structure of the contributions is represented in
obtained by using a diagrammatic gnalyss of t_he d|ﬁgr¢n ig. 14. The enhancement is controlled now by the combi-
response functions. In the case of singlet and triplet pairing ation of counlinasa®+ g —g®—g@
the contributions to the correlator have the structure depicteg Pingsgz o179z o1
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