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Phase diagram of Josephson junction arrays with capacitive disorder

F. P. Mancini, P. Sodano, and A. Trombettoni
Dipartimento di Fisica and Sezione I.N.F.N., Universita` di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
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We study the phase diagram at finite temperature of Josephson junction arrays with capacitive disorder~i.e.,
random offset charges and/or random charging energies!: in the limit of large particle numbers per junction,
this is a remarkable physical realization of the disordered boson Hubbard model. By using a mean-field
approximation, we compute the average free energy and the equation for the phase boundary line between the
insulating and superconducting phases. We find that the Mott-insulating lobe structure disappears for large
variance (s*e) of the offset charges probability distribution. Further, with nearest-neighbor interactions, the
insulating lobe aroundq5e is destroyed even for small values ofs. In the case of random charging energies,
until the variance of the distribution reaches some critical value the superconducting phase increases in
comparison to the situation in which all self-capacitances are equal.

DOI: 10.1103/PhysRevB.67.014518 PACS number~s!: 74.25.Dw, 05.30.Jp, 74.50.1r, 85.25.Cp
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I. INTRODUCTION

In practical realizations of Josephson devices,1 one has to
deal with capacitance disorder caused either by offset ch
defects in the junctions or in the substrate~random offset
charges! ~Ref. 2! or by imperfections in the construction o
the devices, which may lead to random capacitances of
Josephson junctions. Random offset charges cannot be m
to vanish by using a gate for each superconducting isl
since in large arrays too many electrodes would be neces
~i.e., too complicated fabrication procedures!. In principle,
an external uniform charge can be introduced and tune
Josephson junctions arrays~JJA’s! by applying a gate voltage
with respect to the ground plane: in Ref. 3 this situation w
analyzed experimentally by placing a gate underneath a
sephson array and it was observed a sensible variat
(;40%) of the resistance between the unfrustrated and f
frustrated arrays. Although from a theoretical point of vie
charge and magnetic frustrations are dual to each other
perimentally it is possible to tune only the magnetic frust
tion in a controlled way. For this reason, it is widely believ
that a challenging task for the theory is to develop relia
techniques to investigate the effects of random charge f
tration on the phase structure of the arrays.

In this paper, we shall address the problem of determin
the finite-temperature phase diagram of JJA’s with capaci
disorder~i.e., with random offset charges and/or random se
capacitances!. To derive the phase boundary between the
sulating and the superconducting phase, we shall use a m
field ~MF! theory approach in the path-integral approach
quantum JJA’s with offset charges and general capacita
matrices.4,5 We find that the charge disorder supports sup
conductivity and that the relative variations of the insulati
and superconducting regions depend on the mean valueq of
the charge probability distribution: whenq50, increasing
the disorder leads to an enlargement of the superconduc
phase. If the charge disorder is sufficiently strong (s*e),
the lobe structure1 disappears: in other words, the pha
boundary line~and the correlation functions! does not de-
pend any longer onq. In the following, we shall provide a
quantitative analysis of this phenomenon. We shall cons
0163-1829/2003/67~1!/014518~7!/$20.00 67 0145
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Gaussian, uniform~as in Ref. 6! andd-like distributions. For
T50 our results agree with the results obtained in Refs
and 7. Also the randomness of the self-capacitances lead
remarkable effects: the superconducting phase increases
respect to the case where disorder is not present. We s
also compare the results of the functional MF approach w
the molecular MF discussed in Appendix B.

The Hamiltonian commonly used to describe the Coo
pair tunneling in superconducting quantum networks defi
the so-called quantum phase model~QPM!. In its most gen-
eral form it is given by

H5
1

2 (
i j

~Qi1qi!Cij
21~Qj1qj !2EJ(̂

i j &
cos~w i2w j !,

~1!

wherew i is the phase of the superconducting order param
at graini. Its conjugate variableni (@w i ,ni#5 i d ij ) describes
the number of Cooper pairs in theith superconducting grain
The symbol ^ i j & indicates a sum over nearest-neighb
grains only. The second term in the Hamiltonian~1! de-
scribes the hopping of Cooper pairs between neighbo
sites (EJ is the Josephson energy!. The first term determines
the electrostatic coupling between the Cooper pairs:Qi is the
excess of charge due to Cooper pairs (Qi52eni) on site i
andCij is the capacitance matrix. An external gate voltageVi
gives the contribution to the energy via the offset chargeqi
5( jCijVj . This external voltage can be either applied to t
ground plane or, more interestingly, it may be induced
charges trapped in the substrate. In the latter situationqi is a
random variable: the effects of this randomness on the ph
diagram are the main object of our investigation. We sh
also treat explicitly the case of random self-capacitanceCii
which corresponds to a random charging energyEC

5e2Cii
21/2.

As is well known,1 the QPM~1! is equivalent to the boson
Hubbard model~BHM! in the limit of large particle numbers
per junction. The BHM describes soft-core bosons hopp
on a lattice6 and is defined as
©2003 The American Physical Society18-1
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H5
1

2 (
i j

niUi j nj2m(
i

ni2
t

2 (̂
i j &

~bi
†bj1H.c.!. ~2!

Here, bi
† (bi) is the creation~annihilation! operator for

bosons andni5bi
†bi is the number operator. By writing th

field bi in terms of its amplitude and phase and by neglect
the deviations of the amplitude from its average, we are l
to the QPM~1!. An exact mapping between the two mode
has been derived in Ref. 8. The hopping term is associ
with the Josephson tunneling (^n&t→EJ) whereas U ij
→4e2Cij

21 describes the Coulomb interactions betwe
bosons. The chemical potential in the BHM plays a ro
analogous to the one of the external charge in the QPMm
→qi). Thus a QPM with random offset charge correspon
to a BHM with random on-site energies.

The disordered BHM has attracted much attention dur
the last decade.6,9–14In the pioneering work of Fisheret al.6

the phase diagram atT50 was studied. Without disorder, th
BHM exhibits two types of phases: a superfluid phase an
Mott insulating phase, with the latter characterized by inte
~or commensurate! boson densities, by the existence of a g
for the particle-hole excitations, and by zero compressibil
The phase structure is determined by the two compe
terms of the Hamiltonian: the charging energy leads to
charge localization in the array, while the Josephson ene
induces a phase coherence giving rise to the overall a
superfluidity. When disorder is present, a third, intermedia
phase occurs: the Bose glass~BG!. This phase has an infinit
superfluid susceptibility, but no gap and finite compressi
ity. It was early realized that considering uniform probabil
distributions there is no BG in the MF.6 However, it has been
shown that introducing a not uniform triangular probabil
distribution of offset charges the BG phase appears in
MF phase diagram.9 A direct Mott insulator to superfluid
transition without an intervening BG phase for weak disor
has been recently investigated in two dimensions.10,11 Very
recently, the phase diagram of the two-dimensional dis
dered BHM has been studied atT50 by means of Monte
Carlo simulations,14 evidencing the existence of a Bose gla
to superfluid transition in the strong-disorder regime.

In the present paper we shall consider uniform disor
distributions: our MF approach distinguishes the phases w
order parameter̂coswi& equal to zero~insulating region! or
different from zero~superconducting region!, but it cannot
capture the BG. Therefore, the full phase diagram is m
richer than the MF one. It is obvious that ford51 ~e.g., JJ
chains15! the MF fails to provide reliable information. How
ever, the MF allows us to take a first step towards the un
standing of the properties of the disordered JJA and BHM
finite temperature. Furthermore, conventional wisdom s
gests that for large dimensions the MF approach provides
correct phase diagram of the system.

The plan of the paper is the following: in Sec. II, w
outline the MF theory for the pure quantum JJA and then
compute the free energy averaged over the disorder. In
way we are able to get a general formula for the ph
boundary line at finite temperature. Section III is devoted
the study of the effects of random offset charges with di
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onal and nearest-neighbor capacitance matrices. In Sec
we consider random self-capacitances. To check our res
we study in Appendix A the infinite-range hopping limit an
provide in Appendix B an alternative and more intuitive M
approach for JJA’s in the presence of capacitive disord
Finally, Sec. V is devoted to concluding remarks.

II. AVERAGE OVER THE DISORDER IN MEAN-FIELD
THEORY

In a functional approach which makes use of t
Hubbard-Stratonovich transformation, the partition functi
of quantum JJA’s may be written as5

Z5E )
i

Dc iDc i* expF E
0

b

dtS 2
2

EJ
(
ij

c i* g ij
21c j D G

3e2SE f f[c] , ~3!

whereb51/kBT andg ij 51 if i,j are nearest neighbors an
equals zero otherwise~i.e., the hopping term just betwee
nearest neighbors!. If g ij 51 for all pairsi,j on the lattice, we
are led to the infinite-range hopping limit which provides
remarkable example of exactly solvable MF theory.6 In the
following we shall treat explicitly also the infinite-rang
case. In Eq.~3!, Se f f is the effective action for the auxiliary
Hubbard-Stratonovich fieldc i :

SE f f@c#52 lnH F E )
i

Dw i expF E
0

b

dt

3S 2
1

2 (
ij

Cij

w i̇

2e

w j̇

2e
1 i(

i
S qi

w i̇

2e
2c ie

iw i

2c i* e2 iw iD G J . ~4!

The field c i may be regarded as the order parameter
the insulator-superconductor phase transition because it t
out to be proportional tôeiw i&. Since the phase transition i
second order,16 close to the onset of superconductivity th
order parameterc i is small. One may then expand the effe
tive action up to the second order inc i , getting

Z5E )
i

Dc iDc i* e2F[c] ; ~5!

F@c# is the Ginzburg-Landau free energy, which—to t
second order inc i—is given by

F@c#5E
0

b

dtE
0

b

dt8(
ij

c i* ~t!F 2

EJ
g ij

21d~t2t8!

2Gij ~t,t8!Gc j~t8!, ~6!

where the phase correlatorGij is given by
8-2
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Gij ~t,t8!5
1

b2

d2SE f f@c#

dc i~t!dc j~t8!
uc,c* 505^eiw i(t)2 iw j(t8)&0 . ~7!

A straightforward, but lengthy, calculation gives5

Grs~t;t8!5d rse
22e2Crr

21ut2t8u
(
[ni]

expF2(
ij

2e2bCij
21~ni1qi/2e!~nj1qj/2e!2(

i
4e2Cri

21~ni1qi/2e!~t2t8!G
(
[ni]

expF2(
ij

2be2Cij
21~ni1qi/2e!~nj1qj/2e!G . ~8!
m
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Here,ni assumes all integer values and( [ni]
is a sum over all

the configurations. If one introduces the Fourier transfor
in the imaginary time and in the space

c i~t!5
1

bN (
km

ck~vm!ei (k• i1vmt), ~9!

Gi~t!5
1

bN (
km

Gk~vm!ei (k• i1vmt) ~10!

~with vm Bose-Matsubara frequencies andk vectors of the
reciprocal lattice!, the Ginzburg-Landau free energy~6!,
reads7,17

F@c#5
1

bN (
mkk8

ck* ~vm!

3F 2

EJ
gk

21dkk82
Gk2k8~vm!

N Gck8~vm!, ~11!

where

g ij
215

1

N (
k

gk
21eik•( i2 j ). ~12!

gk
21 is the inverse of the Fourier transform of the Joseph

coupling strengthg ij ; sinceg ij 51 if i,j are nearest neigh
bors and zero otherwise, we havegk

215((pe
2 ik•p)21,

wherep is a vector connecting two nearest-neighbors si
Expanding ink one getsgk

2151/z1•••, wherez is the co-
ordination number. Substituting in Eq.~11! and keeping only
the lowest-order terms invm , k and 1/z, the MF Ginzburg-
Landau free energy reads

F@c#.
1

bN (
km

F 2

EJz
2G01•••G uck~vm!u2. ~13!

In Eq. ~13!, G0 is

G05
1

N (
r

Gr~vm50,T5Tc!. ~14!

As evidenced in Ref. 5 the MF theory approximatio
amounts to neglect all higher-order terms in Eq.~13!.

For a given realization of the disorder, the Ginzbu
Landau free energy~i.e., the free energy near the transitio!
01451
s

n

s.

-

is given by Eq.~13!. The average of the free energy over a
the possible realization of the disorder allows for evaluat
of the effect of a random charge frustration$qi% or a random
diagonal charging energyU ii54e2Cii

21 : one has then

F̄@c#5E d$X%P~$X%!F@c#, ~15!

where P($X%) is a given probability distribution and
d$X%P($X%)5) idqiP(qi) when one considers random of
set charges ord$X%P($X%)5) idUiiP(U ii) for random
charging energies. The random variables on different s
are taken to be independent. The phase boundary line
tween the insulating and the superconducting phase is d
mined by requiring thatF̄50, which in turn leads to

15z
EJ

2
Ḡ0. ~16!

In Appendix A we will discuss how Eq.~16! is modified in
the infinite-range hopping limit. A comparison of the M
discussed in this section with an alternative MF approach
the presence of disorder is given in Appendix B.

III. RANDOM OFFSET CHARGES

In the following, we shall consider three different rando
offset charges probability distribution with meanq and width
s. That is, a Gaussian distributionP(qi)5const
3e2(qi2q)2/2s2

, a uniform distributionP(qi)5const between
q2s and q1s, and a sum ofd-like distributions P(qi)
5(npnd(qi2ne), with (npn51. For a diagonal capaci
tance matrix, Eq.~16! leads to

1

a
5E dqP~q!g~q,y!, ~17!

with a5zEJ/4Ec , y5kBTc /Ec , and
8-3
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g~q,y!5

(
n

e(24/y)(n1q/2e)2 1

124~n1q/2e!2

(
m

e(24/y)(m1q/2e)2
. ~18!

We observe that the lobes of JJA are invariant underq/2e
→q/2e11 and symmetric aroundq/2e5n11/2, wheren is
an integer:

g~q12ne,y!5g~q,y!, g~n11/21q/2e,y!

5g~n11/22q/2e,y!. ~19!

If one considers the infinite-range hopping limit, one s
gets Eq.~17! provided thata5J/4Ec .

The results obtained from Eq.~17! with a Gaussian dis-
tribution are displayed in Fig. 1. One observes that wh
q/2e50, increasings favors the superconducting pha
while, whenq/2e51/2, increasings leads to the increase o
the insulating phase. For larges ~i.e., s*e), the phase
boundary line is the same for all the values ofq ~in Fig. 1 the
large-s behavior is represented by the bold line!. This is
expected since, whens is large, the average free energyF̄
does not depend any longer onq.

A useful representation of the phase diagram is obtai
by plotting, at fixed temperature, the phase boundary line
the planeq-a. Without disorder one observes the we
known lobe structure.1 In the presence of weak disorder an
at T50, the lobes shrink, evidencing a decrease of the in
lating phase: for a Gaussian~or unbounded! distribution the
insulating phase completely disappears even for an a
trarily weak disorder.6 In Fig. 2 we exhibit the phase bound
ary line on the planeq-a at finite temperature for the Gaus
ian and uniform distributions. Of course, even at fin
temperature, when the disorder increases the lobes fla
and the same lobe structure is obtained from both distr
tions. At T50 we recover the result of Ref. 6. This can
easily seen if one observes that, at low temperatures,
uqu,e, one has7

FIG. 1. Phase diagram for random offset charges with Gaus
distribution (Tc is in units ofkB /EC). The bold line is fors5e and
it represents the case of large variance; it is found for all value
the meanq. To the left~right!, we plotq5e (q50); we uses/2e
50.1 ~dotted line! and 0.25~dashed line!. The I and S indicate,
respectively, insulating and superconducting phase.
01451
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g~q,y→0!5
1

124~q/2e!2
. ~20!

Without disorder (s50), Eq. ~17! simply gives a51
24(q/2e)2. With the Gaussian distribution, sinceg has a
pole in the half-integer value of the Cooper charge, the in
gral in Eq.~17! diverges, anda→0; i.e., the lobes disappea
for every value ofs. As evidenced in Fig. 3, for a uniform
distribution, whens.e, then a→0; when s,e, a→0
only for e2s<q<e1s in agreement with Ref. 6.

We now consider the case

P~qi!5(
n

pnd~qi2ne!, ~21!

an

of

FIG. 2. Phase diagram with diagonal capacitance and ran
offset charges with Gaussian~a! and uniform~b! distributions. Top
~bottom! of the figures:kBT/EC51(0.1). We plot the casess/2e
50.1 ~solid lines!, 0.25 ~dotted lines!, and 0.5~dashed lines!. For
larges/2e the phase boundary line is flat and it is the same for b
distributions.

FIG. 3. Phase diagram atT50 for random offset charges with
uniform distribution and short-ranged inverse capacitance ma
s/2e is, respectively, 0.1~solid line!, 0.25 ~dotted line!, and 0.40
~dashed line!.
8-4
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with (npn51, corresponding to a random distribution
charges which are integer multiples ofe. Actually, this is the
most realistic situation for a random distribution. Indeed,
probability distributions employed before should be view
as fictitious continuous distributions; i.e., the properties
the overall distribution of charges~mean value and width!
can be well approximated with a continuous distributi
P(q). Inserting the probability distribution~21! in ~18! we
have

E dqP~q!g~q,y!5E dq(
n

pnd~q2ne!g~q,y!

5(
odd

png~ne,y!1 (
even

png~ne,y!,

where(odd ((even) is a sum restricted to odd~even! integer.
Recalling Eq.~19!, we haveg(2ne,y)5g(0,y) and g((2n
11)e,y)5g(e,y), and we find

1

a
5p0g~0,y!1peg~e,y!, ~22!

wherep05(evenpn (pe5(oddpn) is the probability that the
offset chargeq is an even~odd! integer multiple ofe. In Fig.
4 we plot the phase boundary line~22! for p05pe51/2.

We are able to show now that applying the MF appro
mation described in Appendix B with the probability distr
bution ~21! it is possible to find exactly Eq.~22!. The eigen-
value equation for the Hamiltonian~B1!, H icn5Encn , can
be recast in the standard form of the Mathieu equation w
the transformationcn(w i)5e2 i (qi/2e)w irn(w i). We find

d2rn

dw i
2

1S ln

4
2

v
2

cosw D rn50,

whereln5En /EC and v52zEJ^cosw&/2EC . The periodic
boundary condition cn(w i)5cn(w i12p) gives rn(w i)
5rn(w i12p) for qi52ne and rn(w i)52rn(w i12p) for
qi52(n11)e (n integer!. For small values ofv, the peri-

FIG. 4. Phase diagram for random offset charges with proba
ity distribution given by Eq.~21! and short-ranged inverse capac
tance matrix. In the plotp05pe51/2.
01451
e
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odic and antiperiodic solutions of the Mathieu equation c
be calculated analytically, giving exactly Eq.~22!.

Nondiagonal capacitance matrices

With nondiagonal capacitance matrices, the phase
gram without disorder becomes richer.1 For concreteness, we
shall consider on-site and a weaker nearest-neighbor~NN!
interaction; i.e., the inverse capacitance matrix is restricte
diagonal and NN terms. If one definesu as the ratio between
NN and diagonal terms, one should restrict only tozu,1 in
order to insure the invertibility of the capacitance matrix18

Without disorder, atT50 an insulating lobe aroundq5e
appears: the width of this lobe iszu/(11zu). Putting W
511zu, Eq. ~18!, for uq/2eu,1/2W gives g(q,y→0)
51/@124W2(q/2e)2#; for 1/2W,q/2e,12(1/2W) it
becomes7

g~q,y→0!52
1

2 F 1

~2Wq/2e21!~2Wq/2e23!

1
1

@2W~q/2e21!11#@2W~q/2e21!13#G .
~23!

In presence of disorder, Eq.~17! for a uniform distribution
gives a50 for (1/2W)2s<q<(1/2W)1s and 1
2(1/2W)2s<q<12(1/2W)1s. Thus, the lobe width de-
creases as (zu22sW)/W. One sees that fors5zu/2W the
insulating lobe aroundq5e disappears. This phenomenon
evidenced in Fig. 5.

IV. RANDOM SELF-CAPACITANCES

In the following we limit our analysis only to JJA’s with
random self-capacitanceCii and uniform charge frustration
q. We shall consider, in fact, a random diagonal charg
energyU ii , which we assume to be independently distribut
according to the probability distribution P(U ii)

il- FIG. 5. Phase diagram atT50 for random offset charges with
uniform distribution and short-ranged inverse capacitance matrix
the plotzu is equal to 0.1 whiles/2e is, respectively, 0~solid line!,
0.015~dotted line!, and 0.03~dashed line!. For this value ofzu, the
lobe disappears ats50.045.
8-5
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}e2(U ii2U0)2/2s2
, where the diagonal electrostatic contrib

tion to the energyU ii needs to be positive. By averaging th
free energy~15!, the equation for the phase boundary b
comes

1

a
5E

0

`

dU
P~U !

U
g~U,y!, ~24!

where nowa5zEJ/4U0 and the functiong(U,y) is given by

g~U,y!5

(
n

e(24/y)U(n1q/2e)2 1

124~n1q/2e!2

(
m

e(24/y)U(m1q/2e)2
. ~25!

The results of Eq.~24! are summarized in Figs. 6 and 7
when s is small, the superconducting phase increases
comparison to the nonrandom case: this is due to the fa
1/U in Eq. ~24!, which makes larger the contribution of junc

FIG. 6. Phase diagram in theTc-a plane for random diagona
capacitance with Gaussian distribution and uniform offset cha
q/2e50 ~a! and 0.5~b! (Tc is in units ofkB /U0) while s/2e is 0.1
~solid line!, 1 ~dotted line!, and 5~dashed line!.

FIG. 7. Phase diagram in theq-a plane for random diagona
capacitance with Gaussian distribution and uniform offset charg
kBT/U050.1. s/2e50.1 ~solid line!, 1 ~dotted line!, and 5~dashed
line!.
01451
-

in
or

tions with charging energies less thanU0. The increase of
the superconducting phase is thus due to a decrease o
effective value ofEc . This behavior occurs untils reaches a
critical value~depending on the charge frustration and on
temperature!, of orderU0: at this value ofs the insulating
region starts to increase. This is due to the asymmetry of
distribution, which has its peak inU0, but only for positive
values. This phenomenon is present also if one consid
different distributions. An interesting observation is th
whenq/2e51/2 ~maximum frustration induced by the exte
nal offset charges!, the randomness does not modify cons
erably the phase diagram. This should be compared with
nonfrustrated case (q/2e50), where randomness sensib
affects the phase diagram.

V. CONCLUSIONS

We obtained the phase diagram at finite temperature
JJA’s with capacitive disorder~i.e., random offset charge
and/or random charging energies! by using a MF approxima-
tion. For a random distribution of offset charges with meanq
and variances, one has that fors*e, the phase boundary
line coincides for any value ofq and the lobe structures o
the planeq-a disappear (a is the ratio between the Josep
son and charging energies!. At T50 the result of Ref. 6 are
retrieved. If one considers in the BHM also a neare
neighbor interaction, the insulating lobe aroundq5e, which
arises in absence of disorder, is destroyed even for sm
values ofs. For arrays with random charging energies, wh
the variance of the probability distribution is smaller than
critical value, the superconducting phase increases with
spect to the situation in which all self-capacitances are eq
To check our results, we have considered also the infin
range hopping limit of the QPM.

Within the MF approach used here, it is not possible
capture the Bose glass phase and therefore the full phy
picture can be much richer than the one extracted from M
However, if in low-dimensional systems~e.g., in Josephson
junction chains! the MF is expected to fail,15 we envisage
that our results provide qualitatively correct predictions
large dimensional arrays.
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APPENDIX A: INFINITE-RANGE HOPPING LIMIT

We consider the Hamiltonian~1! in the limit of infinite-
range hopping, i.e.,g ij 51 if iÞ j andg ij 50 if i5 j . A mean-
ingful thermodynamic limit (N→`) is ensured by the scal
ing of the Josephson termEJ[J/N. This model has been
studied in Ref. 6 for the disordered BHM atT50. Here we
study the finite-temperature case within the approach p
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vided in this paper. Fromg ij 5(1/N)(kgke
ik•( i2 j ), it follows

that gk5Ndk,021. Therefore the free energy~11! is

F@c#5
1

bN (
mkk8

ck* ~vm!

3F 2Ndkk8
J~Ndk,021!

2
Gk2k8~vm!

N Gck8~vm!. ~A1!

Averaging over the disorder, requiringF̄50, for N→` one
has

15
J

2
Ḡ0. ~A2!

A comparison with Eq.~16! makes evident that the resul
of Secs. III and IV apply also in the infinite-range hoppin
model, provided thatzEJ→J.

APPENDIX B: AN ALTERNATIVE MEAN-FIELD
APPROACH

The effect of the quantum fluctuations is generally und
estimated in MF theory: we expect that a MF theory a
proach could provide qualitative information on the pha
diagram in three dimensions, but not in lower dimensions
fact, a similar situation arises in quantum spin glasses wh
MF treatments are able to establish the existence of a
glass transition.19 Even if powerful and elegant, the mea
field approximation in the functional approach should be
garded only as a first step in understanding the role playe
the disorder in the mean-field average which leads to
~16!.

The aim of this appendix is to make more explicit t
relationship between the average over the disorder and
quantum statistical average by resorting to a molecular fi
theory approach. In fact, we shall present an alternative
more intuitive mean-field approach, which may be easily
plied only to JJA’s with diagonal capacitance matrices.
J

N

ys

e

01451
r-
-
e
n
re
in

-
by
q.

he
ld
d
-

For this purpose, let us consider a JJA with a fixed cha
ing energyEC and a random distribution of offset charge
P(qi). The charging term in the QPM Hamiltonian~1! is
then diagonal and the Josephson term couples different s
Mean-field theory consists in replacing the Josephson c
pling of the phase on a given islandi to its neighbors by an
average coupling:EJ(^ ij &cos(wi2w j)5zEJ^cosw&(icoswi .
In this way the Hamiltonian becomes a sum of single s
Hamiltonians,H5( iH i , where

H i524EC

]2

]w i
2

28iEC

qi

2e

]

]w i
2zEJ^cosw&cosw i .

~B1!

The single-site Hamiltonian~B1! depends on the random
charge frustrationqi : thus, its eigenfunctions and eigenva
ues depend onqi . Therefore, one has to impose the se
consistency condition with a double average, the quan
one and the average over the disorder:

^cosw&5E dqiP~qi!

(
n

e2bEn^cnucoswucn&

(
n

e2bEn

, ~B2!

where thecn are the eigenfunctions of the single-site Ham
tonian Hi . The phase boundary line is obtained from E
~B2! by requiring ^cosw& to be small and by keeping onl
terms proportional to it~we recall that the transition is sec
ond order!.

We conclude this appendix by stressing that the appl
tion of mean-field theory in the presence of disorder cor
sponds to introducing an order parameter, which is avera
also over the disorder: the self-consistency condition th
gives the correct mean-field phase boundary line. In Sec.
Eqs. ~B2! and ~16! are compared for thed-like probability
distribution, showing that they give the same results.
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4T.K. Kopećand J.V. Jose´, Phys. Rev. Lett.84, 749 ~2000!.
5G. Grignani, A. Mattoni, P. Sodano, and A. Trombettoni, Ph

Rev. B61, 11 676~2000!.
6M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fish

Phys. Rev. B40, 546 ~1989!.
7A. van Otterlo, K.-H. Wagenblast, R. Fazio, and G. Scho¨n, Phys.

Rev. B48, 3316~1993!.
8J.R. Anglin, P. Drummond, and A. Smerzi, Phys. Rev. A64,
.

et-

.

r,

063605~2001!.
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