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Phase diagram of Josephson junction arrays with capacitive disorder
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We study the phase diagram at finite temperature of Josephson junction arrays with capacitive @isgrder
random offset charges and/or random charging energieshe limit of large particle numbers per junction,
this is a remarkable physical realization of the disordered boson Hubbard model. By using a mean-field
approximation, we compute the average free energy and the equation for the phase boundary line between the
insulating and superconducting phases. We find that the Mott-insulating lobe structure disappears for large
variance g=e) of the offset charges probability distribution. Further, with nearest-neighbor interactions, the
insulating lobe around=e is destroyed even for small values ®f In the case of random charging energies,
until the variance of the distribution reaches some critical value the superconducting phase increases in
comparison to the situation in which all self-capacitances are equal.
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[. INTRODUCTION Gaussian, uniforngas in Ref. 6 and §-like distributions. For
T=0 our results agree with the results obtained in Refs. 6
In practical realizations of Josephson devitesie has to and 7. Also the randomness of the self-capacitances leads to
deal with capacitance disorder caused either by offset chargemarkable effects: the superconducting phase increases with
defects in the junctions or in the substrdtandom offset respect to the case where disorder is not present. We shall
charges (Ref. 2 or by imperfections in the construction of also compare the results of the functional MF approach with
the devices, which may lead to random capacitances of thé&e molecular MF discussed in Appendix B.
Josephson junctions. Random offset charges cannot be madeThe Hamiltonian commonly used to describe the Cooper
to vanish by using a gate for each superconducting islangair tunneling in superconducting quantum networks defines
since in large arrays too many electrodes would be necessaiye so-called quantum phase mod@PM). In its most gen-
(i.e., too complicated fabrication proceduret principle, eral form it is given by
an external uniform charge can be introduced and tuned in
Josephson junctions arragklA'S) by applying a gate voltage
with respect to the ground plane: in Ref. 3 this situation was H= 1 2 (Q+0)C- Qi +q)—E 2 cod @i— @)
analyzed experimentally by placing a gate underneath a Jo- 25 ) i O] P ey
sephson array and it was observed a sensible variation (1)
(~40%) of the resistance between the unfrustrated and fully
frustrated arrays. Although from a theoretical point of view ) )
charge and magnetic frustrations are dual to each other, eXtheree; is the phase of the superconducting order parameter
perimentally it is possible to tune only the magnetic frustra-at graini. Its conjugate variable; ([¢;,ni]=i &;) describes
tion in a controlled way. For this reason, it is widely believed the number of Cooper pairs in thih superconducting grain.
that a challenging task for the theory is to develop reliableThe symbol(ij) indicates a sum over nearest-neighbor
techniques to investigate the effects of random charge frugrains only. The second term in the Hamiltonigl) de-
tration on the phase structure of the arrays. scribes the hopping of Cooper pairs between neighboring
In this paper, we shall address the problem of determiningites €, is the Josephson eneigyrhe first term determines
the finite-temperature phase diagram of JJA's with capacitivéhe electrostatic coupling between the Cooper p&ss the
disorder(i.e., with random offset charges and/or random self-€xcess of charge due to Cooper pai<2en) on sitei
capacitances To derive the phase boundary between the inandC; is the capacitance matrix. An external gate volt¥ge
sulating and the superconducting phase, we shall use a meagives the contribution to the energy via the offset chayge
field (MF) theory approach in the path-integral approach for==;C;;V;. This external voltage can be either applied to the
quantum JJAs with offset charges and general capacitanggound plane or, more interestingly, it may be induced by
matrices*® We find that the charge disorder supports supercharges trapped in the substrate. In the latter situafios a
conductivity and that the relative variations of the insulatingrandom variable: the effects of this randomness on the phase
and superconducting regions depend on the mean vptife  diagram are the main object of our investigation. We shall
the charge probability distribution: whem=0, increasing also treat explicitly the case of random self-capacitadge
the disorder leads to an enlargement of the superconductinghich corresponds to a random charging energy
phase. If the charge disorder is sufficiently strorg=(€), =e?C; /2.
the lobe structure disappears: in other words, the phase As is well known! the QPM(1) is equivalent to the boson
boundary line(and the correlation functiongdoes not de- Hubbard mode(BHM) in the limit of large particle numbers
pend any longer om. In the following, we shall provide a per junction. The BHM describes soft-core bosons hopping
quantitative analysis of this phenomenon. We shall consideon a lattic& and is defined as

0163-1829/2003/61)/0145187)/$20.00 67014518-1 ©2003 The American Physical Society



F. P. MANCINI, P. SODANO, AND A. TROMBETTONI PHYSICAL REVIEW B57, 014518 (2003

1 t onal and nearest-neighbor capacitance matrices. In Sec. IV
H=3 > nUyn—u> ni— > > (blb+H.c). (2  we consider random self-capacitances. To check our results,
! ' i we study in Appendix A the infinite-range hopping limit and
provide in Appendix B an alternative and more intuitive MF
Here, bfr (b)) is the creation(annihilation operator for approach for JJAs in the presence of capacitive disorder.
bosons andy=b/b; is the number operator. By writing the Finally, Sec. V is devoted to concluding remarks.
field b; in terms of its amplitude and phase and by neglecting
the deviations of the amplitude from its average, we are lead || avERAGE OVER THE DISORDER IN MEAN-FIELD

to the QPM(1). An exact mapping between the two models THEORY
has been derived in Ref. 8. The hopping term is associated _ _
with the Josephson tunneling(r)t—E;) whereas Uj; In a functional approach which makes use of the

—>482Cij_l describes the Coulomb interactions betweenHubbard-Stratonovich transformation, the partition function

bosons. The chemical potential in the BHM plays a roleof quantum JJA's may be written s
analogous to the one of the external charge in the QRM (
—q;). Thus a QPM with random offset charge correspond . B 2 -1
to a BHM with random on-site energies. Szzf H DyiD exp{ fo dT( = ; Wi ‘/’J”

The disordered BHM has attracted much attention during
the last decad®®-%In the pioneering work of Fishest al® x e Seril¥], 3)
the phase diagram at=0 was studied. Without disorder, the
BHM exhibits two types of phases: a superfluid phase and #here=1/kgT and y;=1 if i,j are nearest neighbors and
Mott insulating phase, with the latter characterized by integefduals zero otherwisg.e., the hopping term just between
(or commensuraieboson densities, by the existence of a gaphearest neighboysif y;=1 for all pairsi,j on the lattice, we
for the particle-hole excitations, and by zero compressibilityare led to the infinite-range hopping limit which provides a
The phase structure is determined by the two competingemarkable example of exactly solvable MF thebiy. the
terms of the Hamiltonian: the charging energy leads to ollowing we shall treat explicitly also the infinite-range
charge localization in the array, while the Josephson energgase. In Eq(3), Sgy; is the effective action for the auxiliary
induces a phase coherence giving rise to the overall arrafiubbard-Stratonovich field; :

superfluidity. When disorder is present, a third, intermediate,
B
f H D(PI exr{ f dT
i 0
distributions there is no BG in the MAHowever, it has been -
transition without an intervening BG phase for weak disorder

phase occurs: the Bose gld&5). This phase has an infinite
superfluid susceptibility, but no gap and finite compressibil-  Setl ¥]1=—1In

. . . ! " 1 @i &’j . @i o
shown that introducing a not uniform triangular probability x| == Ciss 21D | gt — gel@
distribution of offset charges the BG phase appears in the 29 2e2e 9 2e

ity. It was early realized that considering uniform probability
MF phase diagram.A direct Mott insulator to superfluid
_ l//;k ei‘Pi) :| }

4

has been recently investigated in two dimensithis.Very
recently, the phase diagram of the two-dimensional disor-

dered BHM has been studied &0 by means of Monte The field s, may be regarded as the order parameter for
Carlo simulations;' evidencing the existence of a Bose glassthe insulator-superconductor phase transition because it turns
to superfluid transition in the strong-disorder regime. out to be proportional tde'¢). Since the phase transition is

In the present paper we shall consider uniform disordekecond ordef® close to the onset of superconductivity the
distributions: our MF approach distinguishes the phases witly der parameteg; is small. One may then expand the effec-

order parametefcose;) equal to zerdinsulating regionor tive action up to the second order i, getting

different from zero(superconducting regionbut it cannot

capture the BG. Therefore, the full phase diagram is much

richer than the MF one. It is obvious that fde=1 (e.g., JJ Z=f II DyDyreFI¥; (5)

chaing® the MF fails to provide reliable information. How- i

ever, the MF allows us to take a first step towards the under- . . .

standing of the properties of the disordered JJA and BHM aﬂ‘ﬂ is the szbgrg-].andau free energy, which—to the

finite temperature. Furthermore, conventional wisdom sugS€cond order inji—is given by

gests that for large dimensions the MF approach provides the 5 5

correct phase diagram of the system. _ , *
The plan of the paper is the following: in Sec. I, we F[‘/’]_J’O dTJ; dr §u: g7 (1)

outline the MF theory for the pure quantum JJA and then we

compute the free energy averaged over the disorder. In this

way we are able to get a general formula for the phase

boundary line at finite temperature. Section Il is devoted to

the study of the effects of random offset charges with diagwhere the phase correlat@; is given by

2 -1 '

=Gj(m.7") [¢h(7"), (6)
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_1 8°Seril ]
B Sin(7) Syy(7')
A straightforward, but lengthy, calculation gives

Gij(T,T’) |LM/*=O:<ei¢i(f)*iwj(f’)>o_ )

> exr{— >, 2?BC; H(ni+qi/2e) (nj+q;/2e) — X, 4e°Cy (ni+qif2e) (7— T,)}
24, [N i :
G(7;7')= 6,8 2% Cn |77’

®

» exp{—iEj 26e%C; }(n+qy2e)(ny+q/2e)

[nil

Here,n; assumes all integer values alig; is a sum over all s given by Eq.(13). The average of the free energy over all

the configurations. If one introduces the Fourier transformghe possible realization of the disorder allows for evaluation

in the imaginary time and in the space of the effect of a random charge frustratifo} or a random
diagonal charging energyii=4ezcii‘1: one has then

gi(m)= ,BLN %} () TFou) 9
1 " FlLyl= f A{X}PUXNFLY], (19
Gi(T):ﬂ_NKE Gk(u)ﬂ)e'(k~l+w#7) (10)
y7

(with w, Bose-Matsubara frequencies akdrectors of the where P({X}) is a given probability distribution and
reciprocal latticg the Ginzburg-Landau free energ®), d{X}P({X})=1I,dq;P(qg;) when one considers random off-
read$’ set charges ord{X}P({X})=II,dU;P(U;) for random
charging energies. The random variables on different sites
1 2 % are taken to be independent. The phase boundary line be-
Flyl1= ,B_N V(o) tween the insulating and the superconducting phase is deter-

Kk’ —

" mined by requiring thaF =0, which in turn leads to

| 2 yo1g,,— Sl do(w,), (11
E, Yk Ok’ N kW),
E,—
where 1:27360. (16)

1 PRI

Y l:N zk: v, ek (70, (12

In Appendix A we will discuss how Eq.16) is modified in

¢ L is the inverse of the Fourier transform of the Josephsofn€ infinite-range hopping limit. A comparison of the MF
coupling strengthy; ; since y;=1 if i,j are nearest neigh- discussed in this section with an alternative MF approach in

bors and zero otherwise. we havﬂ;l:(E eikpy=1 the presence of disorder is given in Appendix B.
L p L
wherep is a vector connecting two nearest-neighbors sites.

Expanding ink one getS'yk_1= 1/z+ - - -, wherezis the co-
ordination number. Substituting in E(L1) and keeping only Iil. RANDOM OFFSET CHARGES
the lowest-order terms i, , k and 1, the MF Ginzburg- In the following, we shall consider three different random
Landau free energy reads offset charges probability distribution with megrand width
1 o. That is, a Gaussian distributionP(q;)=const
Fly]=—— — —Ggt - |2 (13 X e~ (@~ 9%20% 3 uniform distributiorP(q;) = const between
BN iz | Ejz #

g—o andg+o, and a sum ofs-like distributions P(q;)
In Eq. (13), G is =>,pndé(gi—ne), with =,p,=1. For a diagonal capaci-
' tance matrix, Eq(16) leads to

1
Go=r Z Gi(0,=0T=T,). (14)

1
As evidenced in Ref. 5 the MF theory approximation ;=quP(q)g(q,y), (17)
amounts to neglect all higher-order terms in ELB).
For a given realization of the disorder, the Ginzburg-
Landau free energgi.e., the free energy near the transifion with a=zE;/4E., y=kgT./E;, and
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FIG. 1. Phase diagram for random offset charges with Gaussiar 0.9,

distribution (T is in units ofkg /E¢). The bold line is foro=e and

it represents the case of large variance; it is found for all values of

the meamg. To the left(right), we plotg=e (q=0); we usecs/2e
=0.1 (dotted ling and 0.25(dashed ling Thel and S indicate,
respectively, insulating and superconducting phase.

> e(f4/y)(n+q/2e)2;
n 1—4(n+q/2e)?
9(q.,y)= . (19
> e(—4hy)(m+a/2e)®

m
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FIG. 2. Phase diagram with diagonal capacitance and random
offset charges with Gaussida) and uniform(b) distributions. Top
(bottom of the figures:kgT/Ec=1(0.1). We plot the cases/2e
=0.1 (solid lineg, 0.25 (dotted liney, and 0.5(dashed lines For
largea/2e the phase boundary line is flat and it is the same for both
distributions.

g9(q,y—0)= (20)

o 1-4(q/2e)?
We observe that the lobes of JJA are invariant urgiee
—q/2e+1 and symmetric aroung/2e=n+ 1/2, wheren is

an integer: Without disorder ¢=0), Eq. (17) simply gives a=1

—4(qg/2e)?. With the Gaussian distribution, singghas a
pole in the half-integer value of the Cooper charge, the inte-
gral in Eq.(17) diverges, andv—0; i.e., the lobes disappear
for every value ofo. As evidenced in Fig. 3, for a uniform
distribution, wheno>e, then a—0; when o<e, a—0
only for e—o<g=<e+ o in agreement with Ref. 6.

We now consider the case

g(g+2ney)=g(q,y), g(n+1/2+q/2e,y)
=g(n+1/2—ql2e,y). (19

If one considers the infinite-range hopping limit, one still
gets Eq.(17) provided thate=J/4E .

The results obtained from Eql7) with a Gaussian dis-
tribution are displayed in Fig. 1. One observes that when
g/2e=0, increasingo favors the superconducting phase
while, whenq/2e=1/2, increasingr leads to the increase of
the insulating phase. For large (i.e., c=e), the phase
boundary line is the same for all the valueydin Fig. 1 the
largew behavior is represented by the bold lindhis is

expected since, whea is large, the average free energy
does not depend any longer gn

A useful representation of the phase diagram is obtained
by plotting, at fixed temperature, the phase boundary line on
the planeq-a. Without disorder one observes the well- o
known lobe structuré.In the presence of weak disorder and
at T=0, the lobes shrink, evidencing a decrease of the insu-
lating phase: for a Gaussidar unboundegdistribution the
insulating phase completely disappears even for an arbi-
trarily weak disordef.In Fig. 2 we exhibit the phase bound-
ary line on the plang-« at finite temperature for the Gauss- 0 :
ian and uniform distributions. Of course, even at finite ql2e
temperature, when the disorder increases the lobes flatten
and the same lobe structure is obtained from both distribu- F|G. 3. Phase diagram =0 for random offset charges with
tions. At T=0 we recover the result of Ref. 6. This can be uniform distribution and short-ranged inverse capacitance matrix.
easily seen if one observes that, at low temperatures, fas/2e is, respectively, 0.1solid line), 0.25 (dotted ling, and 0.40
|g|<e, one ha (dashed ling

P(qi>=§ pné(gi—ne), (21)

F—————
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o q/2e

FIG. 4. Phase diagram for random offset charges with probabil- FIG. 5. Phase diagram at=0 for random offset charges with
ity distribution given by Eq(21) and short-ranged inverse capaci- uniform distribution and short-ranged inverse capacitance matrix. In
tance matrix. In the plopg=p.=1/2. the plotz# is equal to 0.1 whiler/2e is, respectively, @solid line),

0.015(dotted ling, and 0.03(dashed ling For this value ok6, the
with =,p,=1, corresponding to a random distribution of lobe disappears at=0.045.
charges which are integer multiples@fActually, this is the
most realistic situation for a random distribution. Indeed, theodic and antiperiodic solutions of the Mathieu equation can
probability distributions employed before should be viewedbe calculated analytically, giving exactly E@2).
as fictitious continuous distributions; i.e., the properties of
the overall distribution of charge@nean value and widjh Nondiagonal capacitance matrices
can be well approximated with a continuous distribution
P(q). Inserting the probability distributiof21) in (18) we
have

With nondiagonal capacitance matrices, the phase dia-
gram without disorder becomes ricHefor concreteness, we
shall consider on-site and a weaker nearest-neigliidl)
interaction; i.e., the inverse capacitance matrix is restricted to
f qu(q)g(q,y)zf da>, p.s(q—ne)g(a,y) diagonal and NN terms. If one definésas the ratio between

n NN and diagonal terms, one should restrict onlyzts<1 in
order to insure the invertibility of the capacitance matfix.
=> pag(ney)+ >, p.g(ney), Without disorder, aff=0 an insulating lobe around=e
odd even appears: the width of this lobe &8/(1+z6). Putting W
=1+z6, Eq. (18), for |g/2e|<1/2W gives g(q,y—0)
=1[1-4W?(q/2e)?]; for 1/2W<gq/2e<1—(1/2W) it
become$

whereX 44 (2epen) IS @ sum restricted to od@ver) integer.
Recalling Eq.(19), we haveg(2ne,y)=g(0y) and g((2n
+1)e,y)=g(e,y), and we find

1 1
1 L 0)=—
— =Pog(0y) +peg(ey), (22) 9(ay=0="5 (2Wg/2e—1)(2Wq/2e—3)

1

wherepo=Z2¢,enPn (Pe=Z04dPn) IS the probability that the + .
offset chargey is an ever(odd) integer multiple ofe. In Fig. [2W(q/ze—1)+1][2W(a/2e—1)+3]
4 we plot the phase boundary lili22) for po=p.=1/2. (23

We are able to show now that applying the MF approxi-
mation described in Appendix B with the probability distri-
bution (21) it is possible to find exactly E22). The eigen- 9ves a=0 for (L2W)—-o<q=(1/2W)+o and 1
value equation for the HamiltoniaiB1), Hs,=E, i, can — (L/2W)—o<g=<1—(1/2W)+o. Thus, the lobe width de-
be recast in the standard form of the Mathieu equation wittf"€@ses aszf—2aW)/W. One sees that for=2z6/2W the
the transformationy, (@) =e (@299, (o). We find ms_ulatlng I(_)be _arounq=e disappears. This phenomenon is

evidenced in Fig. 5.

In presence of disorder, E¢1l7) for a uniform distribution

d’pn [Ny v
4 2

4 +|—— —COS@)anO, IV. RANDOM SELF-CAPACITANCES
# - In the following we limit our analysis only to JJA's with
where\,=E,/Ec andv=—zE;{cos¢)/2E.. The periodic random self-capacitancg; and uniform charge frustration
boundary condition ,(¢;)= ¥, (@;+2) gives p,(¢;) g. We shall consider, in fact, a random diagonal charging
=pn(@i+2m) for g;=2ne and p,(¢;) = —p.(¢;+27) for  energyU;, which we assume to be independently distributed
gi=2(n+1)e (n integed. For small values ob, the peri- according to the probability distribution P(U;)
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2 tions with charging energies less thaky. The increase of

the superconducting phase is thus due to a decrease of the
effective value of.. This behavior occurs unti- reaches a
critical value(depending on the charge frustration and on the
temperaturg of orderU,: at this value ofo the insulating
region starts to increase. This is due to the asymmetry of the
distribution, which has its peak id,, but only for positive
values. This phenomenon is present also if one considers
different distributions. An interesting observation is that,
whenq/2e=1/2 (maximum frustration induced by the exter-
nal offset chargesthe randomness does not modify consid-
erably the phase diagram. This should be compared with the
nonfrustrated caseq(2e=0), where randomness sensibly
affects the phase diagram.

2

FIG. 6. Phase diagram in thE.-a plane for random diagonal V. CONCLUSIONS
capacitance with Gaussian distribution and uniform offset charge
q/2e=0 (a) and 0.5(b) (T, is in units ofkg/Ug) while o/2e is 0.1 We obtained the phase diagram at finite temperature of
(solid line), 1 (dotted ling, and 5(dashed ling JJAs with capacitive disordefi.e., random offset charges
and/or random charging energidsy using a MF approxima-
oce*(Uon)Z/ZUZ, where the diagonal electrostatic contribu- tion. For a random distribution of offset charges with megan

tion to the energy; needs to be positive. By averaging the 21d variancer, one has that for=e, the phase boundary

free energy(15), the equation for the phase boundary be_line coincides for any valqe 01 and. the lobe structures on
comes the planeg-« disappear & is the ratio between the Joseph-

son and charging energje#\t T=0 the result of Ref. 6 are
1 o (V) retrieved. If one considers in the BHM also a nearest-
o fo dU—5—9(U.y), (24 neighbor interaction, the insulating lobe arour e, which
arises in absence of disorder, is destroyed even for small
where nowa=zE;/4U and the functiorg(U,y) is given by  values ofo. For arrays with random charging energies, when
the variance of the probability distribution is smaller than a

E e(74/y)U(n+q/2e)2 1 critical value,.the_supercor_wducting phase ipcreases with re-
_ 2 spect to the situation in which all self-capacitances are equal.
n 1-4(n+q/2e) ) A
g(U,y)= . (25  To check our results, we have considered also the infinite-
2 e(—4y)U(m+q/2e)? range hopping limit of the QPM.
m Within the MF approach used here, it is not possible to

capture the Bose glass phase and therefore the full physical
I;%)icture can be much richer than the one extracted from MF.
However, if in low-dimensional systenis.g., in Josephson
%nction chaing the MF is expected to faff we envisage
that our results provide qualitatively correct predictions in
large dimensional arrays.

The results of Eq(24) are summarized in Figs. 6 and 7:
when o is small, the superconducting phase increases i
comparison to the nonrandom case: this is due to the fact
1/U in Eq. (24), which makes larger the contribution of junc-
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APPENDIX A: INFINITE-RANGE HOPPING LIMIT

q/ze We consider the Hamiltoniafll) in the limit of infinite-
range hopping, i.ey;=1 if i#j andy;=0 if i=]. Amean-
FIG. 7. Phase diagram in the-a plane for random diagonal ingful thermodynamic limit N—c°) is ensured by the scal-
capacitance with Gaussian distribution and uniform offset charge dg of the Josephson terfa;=J/N. This model has been
kgT/Uy=0.1. 0/2e=0.1(solid line), 1 (dotted ling, and 5(dashed  studied in Ref. 6 for the disordered BHM &&0. Here we
line). study the finite-temperature case within the approach pro-
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vided in this paper. Frony; =(1/N)Ekykeik'(i‘j), it follows For this purpose, let us consider a JJA with a fixed charg-
that 7k=N5k,o—1- Therefore the free enerdgl) is ing energyE: and a random distribution of offset charges
P(qg;). The charging term in the QPM Hamiltonigd) is
then diagonal and the Josephson term couples different sites.

Flvl=25 BN %:4 Yic(w,) Mean-field theory consists in replacing the Josephson cou-
a pling of the phase on a given islamndo its neighbors by an
y 2Né G (w,) (w0, (A1) average couplingE ;= ;;,Cosp — ¢;) = ZE5(COS@)Zicosy; .
J(Ndgo—1) N KA In this way the Hamiltonian becomes a sum of single site

. . e HamiltoniansH=3H;, where
Averaging over the disorder, requirig=0, for N—« one

has 2 g 9
Hi= —4Ec— —8iEc o — — ZE(COS¢)COSp; .
- i_ ‘999| 2e 07
1=5Go (A2) (B1)

A comparison with Eq(16) makes evident that the results The single-site HamiltoniariB1) depends on the random
of Secs. Il and IV apply also in the infinite-range hopping charge frustratior; : thus, its eigenfunctions and eigenval-

model, provided thatE;—J. ues depend om;. Therefore, one has to impose the self-
consistency condition with a double average, the quantum
APPENDIX B: AN ALTERNATIVE MEAN-FIELD one and the average over the disorder:
APPROACH
The effect of the quantum fluctuations is generally under- L En: e PEn(yy|cose| ¢n)
estimated in MF theory: we expect that a MF theory ap- <COS(p>=J da,P(q;) , (B2

proach could provide qualitative information on the phase
diagram in three dimensions, but not in lower dimensions. In
fact, a similar situation arises in quantum spin glasses where
MF treatments are able to establish the existence of a spiwhere they, are the eigenfunctions of the single-site Hamil-
glass transitiort® Even if powerful and elegant, the mean- tonian H;. The phase boundary line is obtained from Eq.
field approximation in the functional approach should be re{B2) by requmng(cos<p> to be small and by keeping only
garded only as a first step in understanding the role played bierms proportional to itwe recall that the transition is sec-
the disorder in the mean-field average which leads to Eqond ordey.
(16). We conclude this appendix by stressing that the applica-
The aim of this appendix is to make more explicit the tion of mean-field theory in the presence of disorder corre-
relationship between the average over the disorder and thgponds to introducing an order parameter, which is averaged
quantum statistical average by resorting to a molecular fielélso over the disorder: the self-consistency condition then
theory approach. In fact, we shall present an alternative angdives the correct mean-field phase boundary line. In Sec. lIl,
more intuitive mean-field approach, which may be easily ap£Egs. (B2) and (16) are compared for thé-like probability

E efﬁEn
n

plied only to JJA's with diagonal capacitance matrices. distribution, showing that they give the same results.
1For a review see R. Fazio and H. van der Zant, Phys. BR&%. 063605(20017).
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