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Low-temperature electronic properties of Sr2RuO4.
I. Microscopic model and normal-state properties

Ralph Werner* and V. J. Emery†
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Starting from the quasi-one-dimensional kinetic energy of thedyz and dzx bands we derive a bosonized
description of the correlated electron system in Sr2RuO4. At intermediate coupling the magnetic correlations
have a quasi-one-dimensional component along the diagonals of the basal plane of the tetragonal unit cell that
accounts for the observed neutron scattering results. Together with two-dimensional correlations the model
consistently accounts for the normal phase specific heat, cyclotron mass enhancement, static susceptibility, and
Wilson ratio and implies an anomalous high-temperature resistivity.
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I. INTRODUCTION

Sr2RuO4 is the first layered transition metal oxide th
exhibits superconductivity in the absence of copper ion1

The lattice symmetry is tetragonal and isostructural
La2CuO4 with lattice parametersa5b53.87 Å in the RuO2
plane andc512.74 Å out-of-plane. No structural instabil
ties are observed.2 The first de Haas–van Alphen~dHvA!
results3 and band structure calculations in local density a
proximation ~LDA !4 show three bands cutting the Ferm
level with quasi two-dimensional Fermi surfaces. They c
be mainly associated with the threet2g orbitals of the Ru41

ions,5,6 and are consistent with the metallic properties and
strongly anisotropic transport along thec axis.1

The enhanced specific heat and magnetic susceptib
indicate the presence of significant correlations.1 Consis-
tently, results from angle resolved photoemission spect
copy ~ARPES!7 and dHvA measurements3 suggest a strong
electronic mass renormalization. The material is Fermi liq
like in a temperature range ofTc,T,30 K.8–10

The significant correlations in Sr2RuO4, the S51 mo-
ments on Ru41 impurities in Sr2IrO4,11 and ferromagnetic
correlations in SrRuO3 led Rice and Sigrist12 to propose that
the superconducting order parameter hasp-wave symmetry
promoted by ferromagnetic correlations analogous to3He.
The absence of a change in the Knight shift in the superc
ducting phase13,14 supported that notion as well as the tem
perature independent magnetic susceptibility15 and the en-
hanced relaxation time in Muon spin resonance (mSR)16 at
T<Tc;1.5 K. A similar proposal was made by Baskar
based on a comparison with high-Tc materials and emphasiz
ing the role of Hund’s rule coupling.17

Since then tremendous experimental effort has been m
trying to verify the predictedp-wave symmetry of the super
conducting order parameter. Neither tunneling18,19 nor ther-
mal conductivity experiments20–22 or ac-susceptibility
measurements23 under different magnetic field geometrie
gave conclusive proof of the analogy to3He. No indication
for ferromagnetic correlations has been found in ARPES,24,25

LDA,26,27 or neutron scattering28,29 investigations. Further-
0163-1829/2003/67~1!/014504~12!/$20.00 67 0145
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more, the specific heat30–32 and nuclear quadrupole
resonance10 are consistent with two-dimensional gaple
fluctuations in the superconducting phase of Sr2RuO4 which
are absent in superfluid3He.

The controversy about the proper description of the el
tronic correlations in Sr2RuO4 is reflected most impressivel
by the variation of values of the on-site Coulomb repulsi
U used in the mostly perturbative approaches to match
perimental results. Examples areU'0.42 eV,33 0.2 eV,34

1.2–1.5 eV,35 0.345 eV,36,37 0.175 eV,38 2 eV,39 0.048 eV.40

Comparing these values of the interaction with the b

Fermi velocity of v̄F'0.7 eVa from band-structure
calculations27 and ARPES25 points toward an intermediat
coupling regime.

In contrast to the effects of the interactions the bare e
tronic band structure has been determined unambiguo
from dHvA,41,42 ARPES,24 and x-ray-absorption
measurements5 in consistency with LDA calculations.27,33

The overlap of the electronic wave functions of thedzx and
dyz orbitals is dominantly one dimensional.6,27,33 The inter-
action and additional hopping channels lead thedzx anddyz
electrons to hybridized into two bands. Their Fermi surfac
are referred to as thea andb sheets. The electrons in thedxy
orbital form the two-dimensionalg sheet.27,33

Correlations in effective one-dimensional systems sh
power-law behavior.43 They are always more singular tha
two-dimensional correlations which diverge at mo
logarithmically.44 Since the kinetic energy of thedzx anddyz
electrons is quasi-one-dimensional we expect their corr
tions to play a dominant role.

The quasi-one-dimensional kinetic energy of thedzx and
dyz electrons allows for the bosonized, nonperturbative
scription of the low-energy electronic excitations. This d
scription is introduced in Sec. II and its fundamental prop
ties are discussed. Section III is devoted to the expec
corrections from hybridization effects and theg sheet that
have been neglected in the initial model. The comparis
with experimental results in Sec. IV reveals the qualitat
and quantitative consistency of the model within the fram
work of its applicability. A comparitive discussion of alte
©2003 The American Physical Society04-1
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native perturbative approaches is included@Sec. IV B#.
The present paper is part I of a series of three. Par

~Ref. 45! is devoted to the superconducting phase. The
plane correlations are described via the model deri
herein. The interplane pair-correlations are enhanced
consequence of the body-centered crystal structure and
be treated mean-field like.

Part III ~Ref. 46! consistently explains the experimental
observed unconventional transitions under magnetic fie
based on the model derived here and in part II.

II. SUBSYSTEM OF Dzx AND Dyz BANDS

The band structure as determined from dHvA41

ARPES,24 and x-ray-absorption measurements5 as well as
LDA calculations33,27 together with the anticipated interme
diate interactions suggest a three band Hubbard Hamilto
as the generic model.

H5(
l,l8
n,s

t l,l8
n,n8cl,n,scl8,n,s1 (

l,n,s
n8,s8

Us,s8
n,n8 nl,n,snl,n8,s8 . ~1!

In this notation the electron creation and annihilation ope
tors arecl,n,s

† and cl,n,s for orbital n with spin s on site l,

nl,n,s is the usual electronic density operator,t l,l8
n,n8 is the

hopping matrix element between sitel and l8, andUs,s8
n,n8 is

the on-site Coulomb repulsion.
As discussed in the introduction we expect the interes

low-temperature physics to be dominated by the quasi-o
dimensionaldzx (n5x) and dyz (n5y) bands. We retain
here only the dominant hopping amplitudest05t l,l1 x̂

x,x

5t l,l1 ŷ
y,y and discuss effects from the hybridization of t

bands later in Sec. III. The continuum representation is
troduced viacl,n,s→cn,s(r) with rn,s(r)5cn,s

† (r)cn,s(r).
The bands are linearized with Fermi velocityvF'A3 t0.
Note that the ‘‘velocities’’ in the present paper define t
kinetic energy scales, i.e.,vF5 v̄F /a (\[1).

H2D5 lim
a→0
L→`

(
n,s

E
2L

L

d2r F ivFcn,s
† ~r!]ncn,s~r!

1
1

4 (
n8,s8

rn,s~r!~U0sn,n8
0 ss,s8

x
1U1sn,n8

x ss,s8
x

1U2sn,n8
x ss,s8

0
!rn8,s8~r!G . ~2!

Heresa,a8
x,y,z,0 denote the Pauli matrices withsa,a8

0
5(sa,a8

z )2

and 2L5Lx5Ly is the linear dimension of the system. W
limit the description here to the RuO2 planes and generaliz
when necessary to a three-dimensional array of planes.
01450
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intra-orbital Coulomb repulsion is larger than the interorbi

repulsion, i.e., UsÞs8
n5n8 5U0.U15UsÞs8

nÞn8 and U0.U2

5Us5s8
nÞn8 .

Hund’s rule coupling lowers the interorbital Coulomb r
pulsion for electrons in a spin-triplet configuration with r
spect to the spin singlets. The full treatment of the involv
exchange interaction terms within the framework of t
bosonization approach discussed in Sec. II A is rather
volved and only possible in approximations. A qualitati
study of the effect of Hund’s rule coupling is possible b
settingU1.U2 and neglecting the exchange terms. The e
pected corrections due to exchange and other terms are
cussed closer in Sec. II C.

The Hamiltonian Eq.~2! is SU~2! invariant both in the
spin sector and in the orbital sector yielding an effect
SU(2)^ SU(2) symmetry. The orbital degrees of freedo
are sometimes referred to as electron flavors.47,48

A. Bosonization

In Eq. ~2! the dzx fields only have a kinetic energy con
tribution along thex direction while thedyz fields only have
a kinetic energy alongy. We can thus switch to the chira
representation49

cn,s~r!5Rn,s~r!eikFr n1Ln,s~r!e2 ikFr n ~3!

for each orbital degree of freedomn at each positionr n8Þn

transverse to the propagation. The right (Rn,s) and left
(Ln,s) moving fermions of each species can now
bosonized.47,43

Rn,s~r!5 lim
a→0

hn,s
R ~r n8!

A2pa
e2 iAp[un,s(r)1fn,s(r)] , ~4!

Ln,s~r!5 lim
a→0

hn,s
L ~r n8!

A2pa
e2 iAp[un,s(r)2fn,s(r)] . ~5!

Here fn,s(r) are the Bose fields with their conjugate m
mentaPn,s(r)5]nun,s(r) which satisfy the commutation re
lation

@fn,s~r!,Pn8,s8~r8!#5 idn,n8ds,s8d~r2r8!. ~6!

The Klein factors50 hn,s(r n8) assure the proper commutatio
relation between the different fermion species,a is a short-
range cutoff associated with the in-plane lattice constant.
bosonized Hamiltonian can be written as
4-2
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H2D5 lim
a→0
L→`

(
sÞs8

(
nÞn8

E
2L

d r F 2
@Pn,s1~]nfn,s! #1

4 S @]nfn,s#@]nfn,s8#1
~2pa!2 D 1

4
@]nfn,s#

3@]n8fn8,s8#1
U1

4~2pa!2
$cos@A4p~fn,s2fn8,s8!22kF~r n2r n8!#1cos@A4p~fn,s1fn8,s8!22kF~r n1r n8!#%

1
U2

4
@]nfn,s#@]n8fn8,s#1

U2

4~2pa!2
$cos@A4p~fn,s2fn8,s!22kF~r n2r n8!#

1cos@A4p~fn,s1fn8,s!22kF~r n1r n8!#%G . ~7!
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The standard approach to separate spin and charge
grees of freedom in Eq.~7! is to introduce charge and mag
netic fields for each flavor via

wn,m~r!5@fn,↑~r!2fn,↓~r!#/A2, ~8!

wn,c~r!5@fn,↑~r!1fn,↓~r!#/A2, ~9!

respectively.Pn,m andPn,c are the corresponding conjuga
momenta. The bilinear part of the HamiltonianH2D is com-
posed of the charge and~magnetic! part

Hc (m)5
1

2 (
n
E d2r FvFPn,c (m)

2

1(
n8

~]nwn,c (m)!Vn,n8
(c (m))

~]n8wn8,c (m)!G . ~10!

The matrix elements for the charge~magnetic! part are given
by Vx,x

[c(m)]5Vy,y
[c(m)]5vF1(2)U0 and Vx,y

[c(m)]5Vy,x
[c(m)]5U1

1(2)U2. Equation ~10! is the Hamiltonian of a crosse
sliding Luttinger liquidstudied in Refs. 51 and 52. The a
thors find no significant change in the decay of the lo
energy correlations with respect to the one-dimensional c
whereVx,y

[c(m)]50. A perturbative treatment suggests that t
inclusion of the interaction term in Eq.~7! leads to two-
dimensional correlations which still decay algebraically.51 In
the absence of Hund’s rule coupling, whereU25U1, the
magnetic sector fieldswx,m andwy,m are decoupled. Simila
models are obtained for coupled Luttinger liquids.53–55

To study the qualitative properties of the model defined
Eq. ~7! with parameters relevant for Sr2RuO4 it proves useful
to use the symmetry of the orbital degrees of freedom.
introduce charge (m5r), spin (m5s), flavor (m5f), and
spin-flavor (m5sf) fields via the canonical transformation

fm~r!5
1

2 (
n,s

sn,n
a ss,s

b fn,s~r!, ~11!

Pm~r!5
1

2 (
n,s

sn,n
a ss,s

b Pn,s~r!. ~12!
01450
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The matrices are (a,b)5$(0,0);(0,z);(z,0);(z,z)% for m
5$r;s;f;sf%, respectively. The fieldsfm(r) are identical to
those of the resonant-level model used to describe the t
channel Kondo problem.47 The fields are simple linear com
binations of the charge and magnetic fields, e.g.,

fs~r!5~wx,m1wy,m!/A2, ~13!

fsf~r!5~wx,m2wy,m!/A2. ~14!

Note also that the charge and spin sector fields are symm
related via the reflectiony→2y⇒Ry,s↔Ly,s⇒f f↔fr

andfs↔fsf .
The representation can be simplified by introducing

variables x̄5(1/A2)(x1y) and ȳ5(1/A2)(x2y) with r̄
5( x̄,ȳ)†. The charge Hamiltonian in Eq.~10! becomes

Hc5
1

2E d2r̄ $vF~Pr
21P f

2!1Vc@] x̄fr1] ȳf f#
2

1V̄c@] ȳfr1] x̄f f#
2%, ~15!

while the magnetic Hamiltonian is

Hm5
1

2E d2r̄ $vF~Ps
21Psf

2 !1Vm@] x̄fs1] ȳfsf#
2

1V̄m@] ȳfs1] x̄fsf#
2%. ~16!

The energies are

Vc5vF1U01~U11U2!, ~17!

V̄c5vF1U02~U11U2!, ~18!

Vm5vF2U01~U12U2!, ~19!

V̄m5vF2U02~U12U2!. ~20!

Applying Eqs. ~11! and ~12! the interaction term in the
Hamiltonian Eq.~7! factorizes into contributions of the fou
spin, charge, flavor, and spin-flavor degrees of freedom.
4-3
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H int5
U0

~2pa!2E d2r̄ cosA4pfs~ r̄ !cosA4pfsf~ r̄ !

1
1

~2pa!2E d2r̄ cos@A4pf f~ r̄ !22A2kFȳ#

3@U1cosA4pfs~ r̄ !1U2cosA4pfsf~ r̄ !#

1
1

~2pa!2E d2r̄ cos@A4pfr~ r̄ !22A2kFx̄#

3@U2cosA4pfs~ r̄ !1U1cosA4pfsf~ r̄ !#. ~21!

The limit a→0 andL→` is understood. The total Hamil
tonian of thedzx-dyz subsystem isH2D5Hc1Hm1H int .

No spin or charge density wave instabilities are obser
in Sr2RuO4.28 The values for the on-site Coulomb repulsio
discussed in the literature33–36,39,38,40point toward an inter-
mediate coupling regime if compared to the bare Fermi
locity of vF'0.7 eV from band structure calculations.27 For
repulsive interactions the operators in Eq.~21! have been
shown to be marginally irrelevant both in one and tw
dimensions.43 The physical properties are therefore det
mined byHc andHm with quantitative corrections fromH int .
Corrections from hybridization terms not included in t
bosonized model are discussed in Sec. III.

Note that Eqs.~15! through~21! are still explicitly invari-
ant under the reflectionx↔y which is equivalent tox̄→ x̄,
ȳ→2 ȳ, f f→2f f , andfsf→2fsf . The same applies fo
y→2y wherex̄↔ ȳ, Ry,s↔Ly,s , f f↔fr andfs↔fsf .

B. Effective one-dimensional model

In the intermediate coupling regime the model defined
Eqs. ~15! through~21! exhibits a number of singular point
for Vc(m)50 or V̄c(m)50. ForU0,vF andU0.U1.U2 the
relevant limit isV̄m→0. Then the magnetic Hamiltonian Eq
~16! only has terms in] x̄fs and] ȳfsf .

Hm̄5
1

2E d2r̄ $vF~Ps
21Psf

2 !1Vm@] x̄fs1] ȳfsf#
2%.

~22!

The representation of the spin and spin-flavor fields int
duced in Sec. II A has the property that alongx5y one finds
] ȳfs5] x̄fsf50. This becomes obvious from Eqs.~13! and
~14! together with the symmetry56 implied relation
]ywy,mux5y5]xwx,mux5y . Thus, the fieldsfs andfsf indeed
depend only onȳ andx̄, respectively, as implied by Eq.~22!
andHm̄ is effectively one dimensional. Since the spin and
spin-flavor channel are symmetry related the o
dimensional correlations in Eq.~22! can be effectively de-
scribed by

Heff5
veffL

2 E dx̄@KeffPeff
2 1Keff

21~] x̄feff!
2#. ~23!
01450
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Note that the coupling term (] x̄fs)(] ȳfsf) in Eq. ~22! can be
eliminated by a mean-field decoupling and subsequent s
ing transformation.55 This approximation is less severe tha
it may appear at first sight since alongx5y the x̄ depen-
dence offsf and theȳ dependence offs can be neglected
Consequently, alongx5y, (] x̄fs) is just a y-independent
constant with respect to (] ȳfsf) and vice versa.

The Luttinger liquid parameterKeff and the velocityveff
are effective parameters of the theory57 but can be associate
with

Keff
21;AVm/vF ~24!

and

veff;AVmvF. ~25!

The model Eq.~22! is explicitly invariant under the trans
formationy→2y, wherex̄↔ ȳ andfs↔fsf . The effective
one-dimensional model Eq.~23! describes the quasi-one
dimensional magnetic correlations along both in-plane
agonals of the tetragonal unit cell.

In realistic systemsV̄m.0 and the effective model is ap
plicable only for sufficiently large temperaturesT.V̄m. A
close discussion of the values appropriate for Sr2RuO4 is
given in Sec. IV.

The total Hamiltonian of the low-energy in-planedzx-dyz
correlations is given byH2D5Hc1Heff1H int in Eqs. ~15!,
~23!, and ~21!. The interaction termH int can be neglected
when appropriately rescaling the parametersKeff→Keff* , Vc

→Vc* , andV̄c→V̄c* .
After eliminating the term;(] x̄fs)(] ȳfsf) in Eq. ~23! by

a sliding transformation the magnetic Hamiltonian can
written as a superpositionHm'Hs1Hsf'Heff , where Hs
andHsf are obtained from Eq.~23! by replacing (eff→s) and
(eff→sf, x̄→ ȳ), respectively. Note that herevs5vsf
5veff/2. In the case of SU~2! symmetry in the spin subspac
the interaction term Eq.~21! yields a rescaledKm→Km*
51. In Ref. 45 it is suggested that the spins of the electr
in the dzx–dyz subsystem are in an easy-plane configurat
which impliesKs* ,1 andKsf* <1.

C. Comment on Hund’s rule coupling

The treatment of the full SU~2! invariant Hund’s rule cou-
pling term17 JHSnSn8Þn is difficult in the bosonized model
The presence of SU~2! symmetry breaking Dzyaloshinskii–
Moriya interactions is obvious from the observed anisot
pies of the static susceptibilities8,13 and is consistent with the
expected presence of spin-orbit coupling in the Rud
orbitals.37,58,59 Additional corrections are expected from
Kaplan–Shekhtman–Entin-Wohlman–Aharony terms.60

The crucial physical implication of Hund’s rule couplin
is that it couples the magnetic degrees of freedom of
different orbitals. The model introduced in Sec. II A incorp
rates this effect qualitatively as becomes apparent from
~10!. Notably isVmÞV̄m only for U1ÞU2 and consequently
can the quasi-one-dimensional model discussed in Sec.
4-4
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only be found in the presence of Hund’s rule coupling. T
quantitative justification of the model is shown phenome
logically in Sec. IV and in Refs. 45 and 46.

Note that the estimated value for Hund’s rule coupling35

in Sr2RuO4 of JH'0.220.4 eV is larger than the estimat
for the spin-orbit coupling59 of l'0.1 eV. Consequently the
effective model for the magnetic correlations derived here
applicable even in the presence corrections from spin-o
coupling that lifts the degeneracy of thedzx anddyz orbitals
because the larger Hund’s rule coupling overcompensate
effect.

III. INTERPLANE COUPLING
AND BAND HYBRIDIZATION

The model described in Sec. II has been based on the
dzx anddyz bands that are coupled via the on-site interact
only. In this section we discuss thedxy band as well as the
dzx-dyz interchain and hybridization terms which are e
pected to qualitatively change the low-temperature phy
of the bosonized model. Here we discuss the magnitud
the terms and their expected impact. In Sec. IV we th
discuss at what temperature which properties of Sr2RuO4 are
determined by a certain subsystem.

The in-plane resistivity is two to three orders of mag
tude smaller than that along thec axis.8 Consistently the
dispersion of the Fermi energy alongc is about 1% of the
in-plane dispersion as probed by dHvA measuremen41

Band-structure calculations lead to an estimated interp
hopping of about 10% of the in-plane hopping.33

The appropriate interplane Hamiltonian with hopping a
plitude t' is

H'5t' (
n,n85x,y

(
l,l8,s

cl,n,s
† cl8,n,s , ~26!

with only nearest-neighborsRl85Rl1
1
2 (6a,6a,6c)†. The

interplane hopping of thedxy band is an order of magnitud
smaller41 as a consequence of the in-plane geometry of
dxy orbitals6 and can be neglected. Fourier transforming
Fermi operators via

cl,n,s5
1

AN
(

k
eikRlck,n,s ~27!

leads to

H'58t' (
n,s,k

cos
akx

2
cos

aky

2
cos

ckz

2
ck,n,s

† ck,n,s . ~28!

The in-plane kinetic energies of thedzx anddyz electrons are

Hn52t0(
s,k

cos~akn!ck,n,s
† ck,n,s . ~29!

The total Hamiltonian for thedzx and dyz electronsHx
1Hy1H' can readily be diagonalized and yields the disp
sion for thea andb bands as
01450
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Ek
(
a
b)

5E01t0~cosakx1cosaky!18t'g1,k

6
1

2
At0

2g0,k
2 1256t'

2 g1,k
2 . ~30!

The abbreviations g0,k5cos(akx)2cos(aky) and g1,k
5cos(akx/2)cos(aky/2)cos(ckz/2) were introduced for lucid-
ity.

Panel~a! of Fig. 1 shows the resulting tight-binding band
for kz50 as a function ofkx and ky . The parameters are
E050.22 eV,t0520.3 eV, andt'520.02 eV. The disper-
sion of thedxy or g band is given by

Ek
(g)

eV
520.3920.54~cosakx1cosaky!

20.44 cosakxcosaky . ~31!

The term;cosakxcosaky stems from in-plane next-neares
neighbor hopping. The corresponding real-space hopping
rameters aret l,l

g,g520.39 eV, t l,l1 x̂
g,g

5t l,l1 ŷ
g,g

520.27 eV, and

t l,l1 x̂1 ŷ
g,g

520.11 eV. The qualitative agreement wit
ARPES,24 LDA,33 and dHvA3,6 results is satisfactory.

In order to obtain a more precise match with the thre
dimensional Fermi surface suggested by dH

FIG. 1. Tight-binding model for the three bands that form t
Fermi surface.~a! Reduced model withdzx-dyz hybridization trough
interplane coupling Eq.~30!. ~b! Model including next-nearest-laye
hopping, interchain coupling, and interaction induce on-sitedzx-dyz

hybridization Eq.~32! for kz50.
4-5
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measurements3,41 it is necessary to extend the dispersion
thea andb sheets in Eq.~30!. The nonvanishing coefficien
k02 in Ref. 41 suggest a term 2tzcosckz from next-nearest-
layer hopping. Spin-orbit coupling in thedzx-dyz subsystem
leads to a hybridization of the orbitals.59,37 The fields in the
Hamiltonians discussed in Sec. II A are describing hybr
ized dzx and dyz orbitals as a consequence of the on-s
interaction.61 In the framework of the tight-binding mode
these effects can be modeled by introducing the on-site
bridization th . The in-plane dispersion is also enhanced a
can be modeled by extending the diagonal contributions
~29! to include an effective interchain hoppingt0cosakn

→t0cosakn1ticosakn8Þn . The resulting dispersions are

Ẽk
(
a
b)

5Ẽ01~ t01t i !~cosakx1cosaky!12tzcosckz

18t'g1,k6
1

2
At0

2g0,k
2 1256t'

2 g1,k
2 14th

2. ~32!

An appropriate choice of parameters isẼ0520.29 eV, t0
50.3 eV, t i50.03 eV, tz50.02 eV, t'50.02 eV, andth
50.06 eV. The resulting bands are shown in Fig. 1 panel~b!
for kz50.

The tight-binding analysis leads to the following concl
sions:

~i! The two- and three-dimensional corrections to t
quasi-one-dimensionaldzx anddyz bands are of the order o
10% or 0.03 eV leading to the presence of thea andb sheets
of the Fermi surface. Luttinger liquid behavior should on
be observable at sufficiently high-temperatures. ForT
.t i ,z,',h;400 K the out-of-plane transport is incoherent a
saturates while the in-plane resistivity is determined by
crossed sliding Luttinger liquid with linear temperature d
pendence. Consequently the model is consistent with the
served anomalous high-temperature resistivity.62 Also consis-
tent is that the quasi-particle peaks observed in ARP
disappear aboveT;160 K.63,64

~ii ! Since the on-site interactions are an order of mag
tude larger than the tight-binding parameters, i.e.,U0,1,2
@t i ,h,',z , dominant correlation effects are still determined
at least influenced by the Hamiltonians~23!, ~15!, and ~21!
with properly renormalized parameters. Examples are
magnetic structure factor~Sec. IV A!, the specific heat~Sec.
IV C 2! and the degenerate superconducting saddle-p
discussed in Ref. 45. An account of the temperature dep
dence of the corrections due to the hybridization ter
t i ,h,',z is given at the beginning of Sec. IV.

~iii ! As discussed in Ref. 45 the interplane hopping is
important parameter for the mean-field superconducting t
sition and is estimated to bet';20 meV. The resulting co-
efficient t'

2 /vF;6 K of the interplane pair hopping term i
consistent with the transition temperature ofTc51.5 K on
the mean-field level.

IV. APPLICATION TO Sr 2RuO4

The model derived in Sec. II readily accounts for the o
served normal phase properties in Sr2RuO4. The most strik-
ing qualitative evidence is the recently discovered scale
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variance of the magnetic structure factor29 in agreement with
the implications from the effective one-dimensional mod
Eq. ~23!. The scale invariance has been observed forT
560, 110, 160 K while it starts to break down29 at T
510 K which is in the regime of Fermi liquid behavior.8,41

Therefore the hierarchy of the applicability of the mod
derived in Sec. II can be summarized as follows. ForT
.400 K we expect crossed sliding Luttinger liqu
behavior.51,62Curvature corrections to the linearized bands
the order of 10% are conceivable atT;700 K. For 400 K
.T.25 K the system gradually crosses over to the Fe
liquid regime because the various coupling terms discus
in Sec. III become relevant at different temperatures.64 The
observed scale invariance of the magnetic excitations sug
that these relevant terms mostly impact the quasi-tw
dimensional charge channel given by Eq.~15!. The one- to
two-dimensional crossover of the magnetic subsystem gi

by Eq.~16! is determined byV̄m. Since the charge and mag
netic channels are coupled via Eq.~21! the Fermi liquid be-
havior only is fully observed in the electronic channel wh
the quasi-one-dimensional magnetic fluctuations are fro

out for T&V̄m. From the experimentally observed onset

Fermi liquid behavior8,41 we estimateV̄m'25 K. Equiva-
lently, a crossover to non-Fermi liquid behavior on ener
scalesv.2 meV is expected.

A. Incommensurate magnetism

An important probe for the interaction effects in corr
lated electron systems is the magnetic structure factor de
mined by neutron scattering. The quasi-one-dimensio
model derived in Sec. II B accounts for the dominant fe
tures of the magnetic response.

The bosonization approach correctly describes excitati
near the Fermi surface,49 i.e., for momentum transferq;0
andq;2kF . The relevant momentum transfer for antiferr
magnetic magnetic excitations65 is q;2kF since the inte-
grated intensity of the structure factor forq→0 vanishes.66 A
one-dimensional model analogous to that of Eq.~22! with
equivalent bosonized Hamiltonian and incommensurate b
scattering wave vectorqÞp/a is the antiferromagnetic
Heisenberg chain in a uniform field.67 We thus expect the
effective one-dimensional Hamiltonian Eq.~22! to describe
an excitation spectrum as determined in Ref. 68 and sketc
in Fig. 2. Since Eq.~22! is a one-dimensional model alon
the diagonal of the basal plane of the unit cell of Sr2RuO4,
since the model is manifestly invariant under the symme
transformationsx↔y and y→2y, and since wave vector
are only defined modulus a reciprocal lattice vector we fi
gapless magnetic excitations with linear dispers
at qi5(6@(2p/a)22kF#, 6@(2p/a)22kF#)†'(60.6p/a,
60.6p/a) @compare Fig. 1 and Refs. 33 and 69#.

The result from conformal field theory for any two poin
correlation function65,48 is valid for sufficiently small fre-
quenciesv and momentaq̄5(q2uqi u)a measured with re-
spect to the back scattering wave vector.
4-6
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xm~ q̄,v!5
Ax

T222x
I xS v2veffq̄

2pT
D I xS v1veffq̄

2pT
D , ~33!

where

I x~k!5
G~x/22 ik/2!

G~12x/22 ik/2!
. ~34!

The value of the scaling dimensionx and the excitation ve-
locity veff depend on the details of the system. The prefac
Ax depends on the scaling dimension. Please refer to Re
for details.

The limits of the applicability of the result from confor
mal field theory can be understood in the framework of st
ies of Heisenberg chains performed in Ref. 70. It has b
shown that the effective scaling dimensionx is temperature
dependent. At or above temperatures of the order of the
citation velocity, i.e.,T*veff we expect the scaling dimen
sion to attain the noninteracting limit, i.e.,x→1. At energy
transfers of the order of and above the excitation veloc
lattice corrections become relevant. Similar argume
hold for the momentum transfer. At finite temperatures a
finite energy transfer the effects combine and the range
validity of Eq. ~33! can roughly be estimated a
AT21v21(veff q̄)2<veff/2.

The following experimental observations can be und
stood within the framework of the outlined analogies.

~i! The imaginary part of the magnetic correlation fun
tion at small energy transfer is strongly peaked atqi and flat
elsewhere.65,66 This is in perfect qualitative agreement wi
the magnetic structure factorS(q,v); Im xm(q,v) deter-
mined via inelastic neutron scattering.28,29

~ii ! The magnetic correlation function Eq.~33! is scale
invariant. The scale invariance has been observed exp
mentally outside the Fermi liquid regime29 and suggests val
ues of 1/2<x<5/8 for Sr2RuO4. Note that these values ofx
describe aXXZ Heisenberg chain near the isotropic point71

i.e., J*Jz for in-plane ~J! and out-of-plane (Jz) magnetic
coupling,70 and are thus in quantitative agreement with t
intermediate coupling regime assumed for Sr2RuO4 within
this approach.

FIG. 2. Sketch of the spectrum of the elementary magnetic
citations of a Heisenberg chain in a magnetic field as adapted f
Ref. 68. It models the magnetic excitations of the Hamiltonian
~23! alongqx5qy . The bar marks the width of the spectrumDq for
a given energy transfer.
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~iii ! Figure 3 shows the temperature dependence
Im xm(0,6.2 meV) from Eq.~33! for x50.5 ~broken line!
and x50.65 ~full line! in comparison with experimental28

results. The fits are only valid outside the Fermi liquid r
gime, i.e., forT.25 K. Together with the limitations of the
applicability of Eq. ~33! discussed above the agreement
the fits for fixedx with the experimental data can only b
expected in a small temperature interval of 2V̄m<T!veff .
Note the relatively large energy transfer ofv56.2 meV
573 K. Consequently a discrimination betweenx50.5 and
x50.65 is not conclusive. The prefactorsA0.551.2 and
A0.6551.1 are of the correct order of magnitude. Neutr
scattering results at lower energy transfer are desirable.

~iv! The experimental results show a width of the ma
netic peaks which is only weakly temperature dependent28 as
shown by the circles in Fig. 4. In the model presented h
the finite width of the dynamic magnetic correlations follow
out of the dispersion of the lower bounds of the excitati
continuum as indicated by the bar nearq;(2p/a)22kF in
Fig. 2 with Dq;(2v/veffa).

The temperature dependence of the excitation velo
can be estimated by considering the magnetic correla
function Imxm(q̄,6.2 meV) from Eq.~33! as a function ofq̄
and determining the full width at half maximum. The resu
are shown forx50.5 andveff5350 K as the squares in Fig
4. Consistent with the expected limits of validity of Eq.~33!
and the temperature dependence of the peak intensity
cussed in paragraph~iii ! the values ofDq are in good agree-

x-
m
.

FIG. 3. Plot ofxm(0,6.2 meV) from Eq.~33! for x50.5 ~broken
line! andx50.65 ~full line! in comparison with experimental28 re-
sults. Good agreement of the fits for fixedx can only be expected in

the temperature interval 2V̄m<T!veff .

FIG. 4. Full width at half maximum as determined by neutr
scattering28 ~circles! and as obtained from Eq.~33! with v
56.2 meV,x50.5, andveff5350 K ~squares!. The theoretical val-

ues forT>75 K are less reliable sinceT and q̄ become too large.
The line is a guide to the eye.
4-7
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RALPH WERNER AND V. J. EMERY PHYSICAL REVIEW B67, 014504 ~2003!
ment with the experimental data only forT,75 K. Note that
for T.75 K also the relevant values ofq̄ become large. For
x50.65 the results only differ of the order of 10% and do n
allow for any quantitative discrimination. We conclude th
the magnetic energy scale is given byveff;102 K.72

~v! The symbols in Fig. 5 show the energy dependence
Im xm(0,v) at T510.4 K from neutron scattering measur
ments. Open and full circles are from Ref. 28 for energy a
q scans, respectively. Squares from Ref. 29 are scaled s
no absolute scale is given. The data are in qualitative ag
ment with the presence of an excitation continuum.

Since for T510.4 K the system is in the Fermi liqui
regime the applicability of Eq.~33! is not obvious. The ex-
perimental data can be fitted with the~renormalized! nonin-
teracting case, where71 x51 and Imxm(0,v)
;veff

21tanh@v/(4T)# as shown by the full line in Fig. 5. The
amplitude of the fit has been chosen asveff5120 K consis-
tent withveff;102 K. The good agreement of the fit is likel
to be accidental since for larger frequenciesv.2 meV the
system should gradually cross over from Fermi liquid to co
formal behavior. Forv;veff effects from the upper con
tinuum limit become relevant70 voiding the direct applicabil-
ity of Eq. ~33! for v*10 meV. Since the details of th
crossover are not known, a direct comparison with the res
from conformal field theory is not possible. The broken li
in Fig. 5 shows the result for the interacting case withx
50.5 andA0.551.2 as determined under~iii ! for complete-
ness.

Measurements of the low-energy dynamical structure f
tor outside the Fermi liquid regime at 30 K<T<50 K are
desirable to test the theory presented here in its rang
applicability and allow conclusive comparison wi
perturbative36 results.

~vi! The presence of quasi-one-dimensional correlati
along the system diagonals finds further experimental s
port in the nonanalytic angular dependence of the in-pl
upper critical fields.46

In conclusion the functional dependence of the domin

FIG. 5. Plot of Imxm(0,v)uT510.4 K from Eq.~33! for x51 ~full
line! and x50.65 ~broken line! in comparison with experimenta
results for frequency scans~open circles28 and open squares29! and
momentum scans~full circles28!. Since atT;10 K the system is in
the Fermi liquid regime and forv.2 meV only gradually crosse
over to the conformally invariant regime the applicability of E
~33! is not obvious~see text!.
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magnetic correlations anticipated from conformal fie
theory as given by Eq.~33! describes the experimental da
satisfactorily within the framework of the expected applic
bility of the theory. The consistency of the results sugge
that we were able to extract a reliable energy scale for
effective magnetic correlations.

B. Comparison with RPA

The magnetic correlations in Sr2RuO4 have been widely
studied theoretically26,29,35–38,42,73 using perturbative ap-
proaches such as the random-phase-approximation~RPA!.
The perturbative approaches cannot account for the l
dimensional quantum fluctuations and it is instructive to d
cuss the resulting limits of their applicability. To this end w
have performed a RPA analysis of the magnetic struct
factor. The interaction is included in the dynamical corre
tion functions via74

xRPA
n,n8~q,v!5x0

n,n8~q,v!@12Us,s8
n,n8 x0

n,n8~q,v!#21.
~35!

The bare susceptibilitiesx0
n,n8(q,v) are the Fourier trans

forms of the real time spin-spin correlation functio
2 iu^Sq

n(t)S2q
n8 (0)& and are determined with respect to th

tight-binding model discussed in Sec. III. The spin operat
Sq

n(t) act on electrons with orbital indexn,n8P$x,y,g%. In
the absence of Hund’s rule coupling the interactions

UsÞs8
n5n8 5U0 andUs,s8

nÞn85U15U2. For U1ÞU2 the correla-

tion function contributions toxs,s8
n,n8 are also anisotropic in

the spin Hilbert space.59 A very recent approach73 including
Hund’s rule coupling suggests the stabilization of a chi
magnetic state. The thermodynamic expectation values
determined via the interaction free Hamiltonian with tigh
binding bands as shown in Fig. 1 and given in Eqs.~31! and
~32!.

Figure 6 shows ImxRPA
tot (q,v)5Tr Im xRPA

n,n8(q,v) for v
56.2 meV convoluted with the resolutiondq'0.1p/a from
neutron scattering experiments28 ~a! for kz50 and ~b! for
kz5p/c. The interaction parameters here areU050.2 eV,
U150.1 eV, andUs,s8

x,g
5Us,s8

y,g
50. This neglects the hy-

bridization of thedxy band with thedzx anddyz bands which
has a quantitative effect onxRPA

g,g (q,v),36 but not so much on
the total correlation function. The features discussed in R
36 are reproduced albeit with different weight.

Panel ~a! of Fig. 6 shows the correlations in the plan
through theG point of the Brillouin zone (kz50) while the
correlations in~b! lie in the plane through the midpoint of th
line GZ̄ (kz5p/c).24 The difference of the two shows th
sensitivity of the RPA approach to small changes in the
rameters.

The total correlation function in RPA in Fig. 6 clearl
shows the structures of the bands dispersing in the pla
Many of these structures have not been obser
experimentally.29 Moreover, the parameters have to be fi
tuned in the RPA approach close to a phase transition.28 Both
effects can be understood as consequences of the unde
mation of quantum fluctuations.

Quantum fluctuations in low-dimensions suppress lo
range order even if the value of the interaction is lar
4-8
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LOW-TEMPERATURE ELECTRONIC . . . . I. . . . PHYSICAL REVIEW B67, 014504 ~2003!
enough to give a finite temperature phase transition
RPA.75 More specifically, for the one-dimensional case
which is discussed closely in the review by So´lyom76—the
relevance of back and umklapp scattering terms is overe
mated by perturbative approaches such as RPA. Instead,
relevance has to be determined nonperturbatively, nam
via renormalization group~RG! studies.

Consequently the two-dimensional RPA approach tend
underestimate the one-dimensional correlations since
renormalization of the excitation velocities can only be mo
eled indirectly by the interaction strength while the relati
size of the two-dimensional features tends to be overe
mated. Because of the large parameter space of the
approach and the sensitivity to details in the band structu
is still possible to model the low-temperature magnetic str
ture factor in Sr2RuO4 rather accurately.29 The weakness o
the RPA approach becomes apparent through the fact tha
description of different properties of the material requir
different choices of parameter sets.36,38

The present approach allows to include the RG res
from the literature43 since the back and umklapp scatteri
terms are given explicitly by Eq.~21! as discussed in Sec
II A. The quantum fluctuations and interaction effects a
included by the renormalization of parameters such asveff
and their impact becomes apparent through the small sca
dimensionx discussed in Sec. IV A.

In conclusion the incommensurate magnetic fluctuati
in Sr2RuO4 are best described via the quasi-one-dimensio
correlations from Eq.~23! with a spectrum as sketched
Fig. 2.69 The two-dimensional correlations yield an enhanc

FIG. 6. Tr ImxRPA
n,n8(q,v) convoluted with the experimentalq

resolution. Parameters arev56.2 meV,U050.2 eV, U150.1 eV,
Us,s8

x,g
5Us,s8

y,g
50 and dispersions Eqs.~31! and ~32!. Panel~a! kz

50 and~b! kz5p/c show the sensitivity of the RPA approach
small changes in the parameters.
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but relatively homogeneous background with only small a
ditional structures.29 Note that the two-dimensional magnet
correlations beyond the diagonals are given within
present approach by Eq.~16!.

C. Effective electronic masses

In the following we will discuss effective electroni
masses observed in the Fermi liquid regime of Sr2RuO4.
Clearly, a system that shows scale invariant correlati
down to 25 K must show a different renormalization of t
Fermi liquid parameters than a system that is a Fermi liq
at all temperatures. Consequently it is quite natural to e
mate that difference phenomenologically by considering t
there is a very strong reduction of the effective excitati
velocity of vF /veff;20–60 in the magnetic sector along th
diagonals of the basal plane due to interaction effects as
cussed in Sec. IV A. In the Fermi liquid regime this redu
tion cannot be calculated directly via the results from co
formal field theory ~Sec. IV A! because of the two-
dimensional couplingV̄m ~Sec. II A!. It is yet reasonable to
assume that the reduction of the excitation velocity in
magnetic channel along the diagonals remains much la
than the mere factor of 2~see below! obtained in
perturbative35 approaches. With this assumption the differe
electronic masses can be modeled.

1. Cyclotron mass

The cyclotron massmc determines the cyclotron fre
quency and has been measured in dHvA experiments41,42 to
be enhanced with respect to the bare~noninteracting! band
massm b on all three Fermi surfaces by the same amou
namely, m c

(a,b,g)/mb
(a,b,g)'2. Since the cyclotron motion

does not involve magnetic excitations the cyclotron m
enhancement due to interactions is determined in the pre
approach by the quasi-two-dimensional Hamiltonian of
charge channel Eq.~15! in the subsystem of thedzx anddyz
electrons. Perturbative approaches with an appropr
choice of parameters35 also yield an electronic mass en
hancement factor of 2 for all bands. ARPES measureme
are consistent with this result.7,24

2. Specific heat

The specific heat of an interacting system can be de
mined from the specific heat of the noninteracting system
the renormalization of the thermodynamic mass42 m* with
respect to the bare band massmb or, equivalently, by the
renormalized excitation velocities43 vF* or veff with respect to
the bare band Fermi velocityvF .

The specific heat of thedzx-dyz subsystemCz consists of
the two-dimensional contributions from the spin and cha
channels@Eqs. ~15! and ~16!# and the ‘‘one-dimensional’’
magnetic part along the diagonals@Sec. IV B#. The renormal-
ized velocity of the two-dimensional contributions is give
through the cyclotron mass enhancement asvF /vF,2D* '2.
The quasi-one-dimensional magnetic correlations with ex
tation velocityveff are only present along the diagonals of t
Brillouin zone. Consequently their contribution to the tot
4-9
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RALPH WERNER AND V. J. EMERY PHYSICAL REVIEW B67, 014504 ~2003!
specific heat must be weighed with respect to a system
one-dimensional magnetic correlations throughout the en
Brillouin zone. The normalized width of the magnetic pea
(a/2p)Dq;0.07 discussed in Sec. IV A allow for an es
mate. Depending on whether one assumes quasi-
dimensional correlations in the vicinity of the positions
the incommensurate fluctuationsqi only or along the whole
diagonals weighing factors of 0.02<w<0.2 are reasonable
The weight of the two-dimensional magnetic contributi
then is 12w.

Together the contributions yield the specific heat of
dzx-dyz subsystem as43

Cz

T
5gzg0'

vF

2 S 1

vF,2D*
1

12w

vF,2D*
1

w

veff
D g0 . ~36!

The value ofgz'(ma* /mb
(a)12mb* /mb

(b))/3'3.4 can be es-
timated from a weighed average of the thermodynam
massesma* /mb

(a)'3.1 andmb* /mb
(b)'3.5 measured via the

dHvA effect.42 Then the ‘‘one-dimensional’’ magnetic contr
bution is determined asw vF/2veff'1.41w. Using the value
of veff5350 K considered in Sec. IV A~iv! and the bare
Fermi velocity27 vF'0.7 eV then givesw50.13.

It must be pointed out that the two-dimensional coupli
;V̄m!Vm is likely to increase the effective velocityveff in
the Fermi liquid regime through the reduction of the cor
lation effects. This increase is compensated by an increas
the relevant phase space in the Brillouin zone determined
w. The phenomenological result that the strong lo
dimensional magnetic correlations withveff!v F,2D* enhance
the specific heat beyond the value obtained via perturba
approaches35 remains unaltered.

For noninteracting electrons in the two quasi-on
dimensional bands under consideration the coefficientg0
'4.3 mJ/K2mol results in a specific heat contribution
Cz /T'15 mJ/K2 mol that accounts for about 40% of th
experimentally observed value ofg tot54062 mJ/K2

mol.30–32,42

Hydrostatic pressure increases the in-plane single-par
hopping which decreases the relative interaction strength
renders thedzx-dyz subsystem more two dimensional. Co
sequently the ‘‘one-dimensional’’ magnetic contribution
Eq. ~36! is decreased yielding a natural explication for t
observed reduction of the thermodynamic masses upon
plication of hydrostatic pressure42 within the present model

The thermodynamic mass of thedxy electrons is enhance
by a factor ofmg* /mb

(g);5.5 with respect to the bare ban
mass.42 The renormalized Fermi velocity from ARPES7,24 or
perturbative approaches35 only accounts for a factor of 2
The interaction between thedxy band and thedzx-dyz system
accounts for a part of the missing enhancement through
pling to the one-dimensional correlations in the magne
channel. Another possible contribution comes from the pr
imity of the dxy band to the van Hove singularity at theM
point of the Brillouin zone.35 Nesting effects36,37 yield an
additional enhanced magnetic contribution to the spec
heat.
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3. Static susceptibility and Wilson ratio

Following the argumentation of the specific heat the co
tributions to the uniform static magnetic susceptibility of t
dzx-dyz subsystem also consist of a two- and on
dimensional part. They are given with respect to the sta
magnetic susceptibility of the noninteracting systemx0 as43

xz'x0S vF~12w!

vF,2D*
1

w vF

veff
D '4.3x0 . ~37!

All parameters have been fixed previously. Note that here
relative contribution of the ‘‘one-dimensional’’ subsystem
roughly twice that of the specific heat sinceg0 includes both
magnetic and charge degrees of freedom whilex0 only ac-
counts for the magnetic correlations.

The enhancement of the susceptibility is in reasona
agreement with the relative spin-mass enhancement of tha
and b sheets measured via the dHvA effect41,42 as
ma,susc* /mb

(a)'3.7 and mb,susc* /mb
(b)'4.3. Moreover, since

the model derived in Sec. II A predicts the quasi-on
dimensional magnetic correlations only in the basal plane
the tetragonal lattice we expect a magnetic mass enha
ment that depends on the positionkz on the Fermi surface
with maxima atkz,max(n)52pn/c as observed42 experimen-
tally.

The ratio of the uniform static magnetic susceptibility a
the specific heat coefficient has been determined experim
tally as RW5(p2x)/(3g tot)'1.4.8,13 The value of RW,z
'1.3 obtained here for thedzx-dyz subsystem is in good
agreement. The enhancement of the specific heat has in
the same origin as the enhancement of the susceptibilit
already concluded in Ref. 1 which can be identified in t
dzx-dyz subsystem as the quasi-one-dimensional magn
correlations.

An interesting experimental question that arises out of
discussion above is whether the photoelectrons carry sig
tures of the enhanced magnetic correlations along the dia
nals. To obtain an answer ARPES data for thea andb sheets
need to be analyzed in detail alongGX in comparison with
GM andMX. Using the value extracted in Sec. IV A~iv! the
expected energy scale isveff;30 meV.

V. CONCLUSIONS

The dominantly one-dimensional kinetic energy of t
electrons in thedzx anddyz orbitals allows to bosonize thei
Hamiltonian. In the presence of interaction this leads to
effective two-dimensional model. The degrees of freed
can be parametrized in terms of the four spin, charge, fla
and spin-flavor fields.

The presence of hybridization and corrections to the o
dimensional kinetic energy make the observation of prop
ties of sliding Luttinger liquids likely only at or above room
temperature. This is consistent with the observed linear t
perature dependence of the resistivity at high temperatur

In the magnetic sector described by the spin and sp
flavor fields the interaction at intermediate coupling leads
a quasi-one-dimensional model along the diagonals of
4-10
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basal plane of the Brillouin zone. The resulting spectrum
elementary excitations accounts for the enhanced dynam
magnetic susceptibility atqi5(62kF ,62kF) and the weak
temperature dependence of theq width. The one-dimensiona
spectrum leads to a conformally invariant formulation of t
magnetic structure factor consistent with the observed s
invariance. The scaling dimension is consistent with the
termediate coupling regime. The observed excitation c
tinuum and temperature dependence of the peak width
consistent with a magnetic energy scale ofveff;102 K. The
additional two-dimensional correlations are more homo
neous than predicted by RPA because of quantum fluc
tions.

The effective thermodynamic mass enhancement toge
with the value of the specific heat coefficient is a superpo
tion of two-dimensional effects as observed in ARPES a

*Present address: Institut fu¨r Theorie der Kondensierten Materie
Universität Karlsruhe, 76128 Karlsruhe, Germany.
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