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Exchange interaction in the YbCrBrg®~ mixed dimer:
The origin of a strong Yb®*-Cr3* exchange anisotropy
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The superexchange interaction betweer?Yland CF* ions in the mixed YbCrBf~ bioctahedral face-
sharing dimer is quantitatively analyzed using a modified kinetic exchange theory, which is adapted to a
realistic description of the electronic structure of lanthanide ions in solids. The general procedure of the
calculation of the 4-3d anisotropic exchange spin Hamiltonian is presented and applied to the Y$CrBr
dimer. The spin-Hamiltonian of the ¥b-Cr*" exchange interaction is found to be extremely anisotropic,
H=J,5,S5+J, (ShSE+ SpSE), with the antiferromagnetid, and ferromagnetid, parameters, where
St andSE, (w=x,y,z) are the components of the effective SS‘Q:% of the YB** ion (corresponding to the
groundI’g Kramers doublgtand the true SpilSch of the CP* ion, respectively. The calculated exchange
parameters are quite consistent with the experimental dgta{5.16 cni* andJ, =+4.19 cm ) at rea-
sonable values of the ¥bCr and Yb—Cr charge transfer energies. The contributions to thend J,
exchange parameters from the individual states of thé-3d* and 4f'“3d? charge transfer configurations
are analyzed in detail and general regularities are established. Our results indicate that a veryfs8dng 4
exchange anisotropy can appear even in the absence of the crystal-field anisotropy on the lanthanide ion.
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. INTRODUCTION tal structure was scarcely analyzed in the literatré®
In contrast to transition metal ions, exchange interactions

There has been an increasingly intensive research effort inetween two individual paramagnetic centdrandB, one or
the last decades toward understanding the magnetic propdroth of which are lanthanide ions, cannot be described in
ties of lanthanide compounds. The interest to these comferms of the conventional isotropic Heisenberg Hamiltonian
pounds, and especially to mixed-8d metal oxides, is re- —JSaSg, even to a first approxmgﬂon. The fundamental
ceiving renewed attention in connection with the discovery'®ason is that the total spiiof the 4f™ shell of a lanthanide
of high-T, superconductivity and, more recently, of the co- 10N IS not a goqd q_uantum number. This is relate_d to the fact
lossal magnetoresistantét present, a large variety of in- that in lanthanide ions the ratio between the spin-orbit cou-
sulating lanthanide compounds with different element compl'ngh (lanergyg gn?l th(iAcrylstaI—ﬂeId sphtngg er;lerg_& IS
positions and various crystal structures are known. Amon e arger(_typlca y, {/A>1) as compared to that in tran-
them the most studied are numerous rare-edstfithanidé ition metal_ lons (/A=Q.01—0.1 in 3 ions). The total spin
cuprates(of which LnBaCus0, and NGCuO, have at- S of a transition metal ion is normally a good quantum num-

tracted a special interast® LnMO; perovskites, such as ber, because in most cases the orbital momentunis
3 ' uenched due to a strong crystal-field effect. Therefore, ex-
NdCrO;,* ToMnO;,® NdFeQ,,® etc., LM Oy, garnets, g cry

_ : change interactions between transition metal ions, with well-
and many other mixed or pure lanthanide compmﬁ_’?ds. _ separated spin-only ground states, are basically described by
Itis commonly recognized that a strong magnetic anisotyye isotropic Heisenberg model with small anisotropic ex-

ropy is a general property of theblock element compounds  change terms appearing due to the spin-orbit coupling
(except those containingf4 ions, such as Gd', EW*, or

Tb**). l_30th sil_"ngle-ion magnetic ch_aracteristic_s and ex- H=—JSxSg+SaD- Sg+A[ Sy X Ss], (1)
change interactions between magnetic centers in lanthanide

or actinide compounds are known to be stronglywhere the second term corresponds to the symmetric aniso-
anisotropic:°~*° Despite extensive and interesting collection tropic interaction(D is a traceless second rank tensand

of experimental data on magnetic properties of nonmetalli¢the last term is the Dzyaloshinskii-Moriya antisymmetric
lanthanide compounds, very little is known about specificexchangeé® The relative magnitude of these anisotropic
mechanisms of #3d or 4f-4f exchange interactions. In terms is estimated afD|/J~({/A)? and |A|/J~¢IA, re-
many theoretical approaches, model anisotropic spin Hamilspectively. For transition metal ions with more than one un-
tonians, such as the Ising otY Hamiltonian, are used to paired electrons $>3) some higher powers in spins can
describe magnetic properties of lanthanide compoundsalso appear.

However, the microscopic origin of the exchange parameters In lanthanide compounds the situation is quite different.
and their relation to the nature of the magnetic centers, th®ue to a strong spin-orbit coupling ranges from 600 to
electronic structure of lanthanide ions, and the specific crys3000 cm?) combined with a very small crystal-fiel(CF)
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splitting A (few hundreds wave numbgrghe total orbital  Yb,Brg®~ dimer is isotropic and antiferromagnetic with
momentumL in lanthanide ions is not quenched since it is = —2.87 cm 1.2° The exchange interaction in the Bry>~
coupled to the total spif to form the total angular momen-  dimer is antiferromagneticl= —8 cm™*; it was a subject of
tum J. The latter is split into CF levels by the ligand sur- extensive experimental and theoretical studfe$:>*Such a
rounding. As a result, neithdr nor S are no longer good different behavior of the magnetic anisotropy in structurally
guantum numbers, and the anisotropic terms in the exchanggmilar YbCrBr®~ and YbBrg®~ dimers is therefore very
Hamiltonian are no longer small as compared to the isotropigntriguing.

term —JS,-Sg.- _ - _ In this paper, the mechanism of the exchange interaction
The magnetic behavior of transition metal and lanthanideyetween YB* and CF* ions in the YbCrBs®~ dimer is
compounds with extended magnetic lattices is often verynalyzed using a modified kinetic exchange theory, which is
complicated due to cooperative effects making difficult theadapted to a realistic description of a complicated electronic
unambiguous determination of the exchange parameters @fructure of lanthanide ions in solids; the formalism of this
the anisotropic spin Hamiltoniail) from experimental data. approach allows for direct calculations of the parameters of
Dimers of paramagnetic ions are free of these difficulties anghe anisotropic #-3d exchange Hamiltoniar®. Our pri-
thus are much more favorable for both experimental and themary purpose is, however, to elucidate the origin of a strong
oretical study of exchange interactiofisThere was a great Yb3"-Cr" exchange anisotropy. Although it is commonly
deal of work on magnetic and optical properties of dimers inpelieved that the exchange anisotropy is related to the anisot-
solids, mostly on transition metal dimefSAlthough lan-  ropy of theg tensor of the metal ions, we will show that this
thanide dimers are less StUd|Ed, some Ianthanlde-contalnlng genera”y not true and a strong exchange anisotropy can
exchange pairs were magnet|ca_lly characterized from Opt'c%lppear even if thg tensor of the 4 magnetic ions in the
spectra, electron paraéglgggnetlc resonance, and neutrogxchange pair is isotropic, as is the case for the octahedral
scattering experimenis:**~2° . . ligand surrounding of the Y& and CP' ions in the
Exchange interactions in insulating lanthanide COM-YpCrBry3~ dimer.
pounds, such as those in respective transition metal com- The paper is arranged as follows. In Sec. Il we outline the
pound??o, can be described in terms of the superexchangfaneral theory of the kinetic exchange interaction between
model:™ The underlying mechanism of the magnetic cou-4¢ and 3 metal ions. In Sec. Ill we describe the calculation
pling between paramagnetic centers in metal dimers and ©%f the exchange parameters of the spin Hamiltor{Brfor
tended magnetic systems is the kinetic exchange mechanisjie YbCrBg3~ dimer. In Sec. IV the results of numerical
related to metal-to-metal electron-transfer processes mediy|cylations of parameters of the exchange spin Hamiltonian
ated by bridging diamagnetic ligands. Although general prin{or the YI3+-Cr3* pair are discussed and the contributions
ciples of the kinetic exchange mechanism are the same Qo individual charge-transfer states to the exchange pa-
both 3d and 4 metal ions, specific details of exchange in- ;ameters are analyzed in detail. Some general regularities of
teractions may be however quite different. the 4f-3d superexchange mechanism are established, which

This paper deals with the microscopic origin of the ex-prove to be very helpful in understanding the microscopic
change interaction between lanthanide and transition met@rigin of a strong exchange anisotropy.

ions in mixed 4-3d dimers. Specifically, we study the
mechanism of the kinetic exchange interaction between
Yb®* and CP* ions in the YbCrBg®~ dimer. This choice Il. THEORY

has the advantage that there are three structurally related \we describe in this part the theoretical background used
dimers CgBry®", YbCrBro®~, and YbBrs®~, whose mag-  for the quantitative description of thef 43d exchange inter-
netic properties have been well characterized. The chromiumgctions in magnetic insulators following the general concept
and ytterbium dimers are contained as individual isoIaterevemped in previous papers®® Our approach is based on
building blocks in compounds @8r,Brg (Ref. 3) and  the Anderson’s superexchange theory, which is adapted for
Cs;Yb,Bre,*” respectively, while the YbCrg?~ dimer is  an adequate description of the electronic structure of lan-
obtained by doping Gf ions in CsYb,Brg crystals?® These  thanide ions. There are several features of the electronic
dimers consist of two face-sharing C§BF or YbBrs®~ oc-  structure of lanthanide ions, which make the superexchange
tahedra with an approximat®s, or Cs, symmetry. Ex-  theory for 4f electrons essentially different from that fod 3
change parameters for the3CeCr* 2 Yb3"-Yb3",®® and  electrons.

Yb**-Cr** (Ref. 26 pairs were obtained from inelastic neu- (i) In contrast to transition metal ions, in which the mag-
tron scattering experiments. A high local symmetry arounchetic momentum is determined by the total spin only, the
the metal ions and their simple electronic configurationsmagnetic momentum of lanthanide ions is related to the de-
(4f*3for Yb** ion and 34° for Cr** ion) facilitates consid-  generate or quasidegenerate ground state originating from
erably the theoretical analysis. The ¥bCr®" exchange in- the crystal field splitting of the lowest multiplet. Typically,
teraction in the YbCrBy*~ dimer was found to be extremely the ground state of a lanthanide ion is a Kramers doublet
anisotropic, H=—J,S%,S¢,— J, (S\,Se+ SpSE)  (Where  corresponding to the effective splB=3 with very aniso-
Svp=3 andSg,=3) with J,=—0.64 meV(—5.16 cm ) and  tropic magnetic components. As a result, exchange-split lev-
J,=+0.52 meV(+4.19 cm?}) (i.e., the exchange param- els of a 4-3d dimer cannot be classified according to the
etersJ, andJ, have opposite signslt is also surprising that total spin as is the case in transition metal dimers.

the exchange interaction between 3Yb ions in the (i) The energy spectrum of charge-trandf€f) states of
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a 4fN-3dM dimer is too complicated to be described in termsoperatorsG for the groupsG, and R,, respectively. This
of a conventional scheme, according to which the CT stateBlamiltonian describes théS" 1L ; multiplet structure of the
are regarded as degenerate and lying at a large enérgy free lanthanide ion, which was analyzed in great details
above the ground state of the dinir. elsewheré®—38 Note thatH,(4f) describes the multiplet
(iii) Because of strong electron correlation effects andstructure in the true intermediate coupling scheme, not in the
strong spin-orbit coupling, wave functions of the opeit'4 simplified Russell-Saunders approach. Under the influence of
shell are composed of many Slater determinants, both for théhe CF potential created by the ligand surroundifig, L ;
ground state and excited CT states. Therefore, electron transultiplets are split into individual crystal field levels. In
fers between metal ions cannot be regarded as transfers b@&any works on the theoretical and optical study of the en-
tween individual 4 and 3 orbitals of different ions, but ergy spectra of lanthanide compounds, this splitting is de-
they should be regarded as transitions between manyscribed in terms of the parametric CF Hamiltonidpg
electron states of the system.
In this paper, we concentrate on the microscopic mecha- H :2 BKCK (5)
nisms of exchange interactions for an isolated lanthanide- PG TaTe
transition metal pair (#-3d dimen rather than for an ex- K i . ) )
tended magnetic crystal. We develop the exchange theory iffnereBg are crystal flflg6parameters associated with spheri-
the spirit of the original Anderson approach, but with onecal tensor operator€,.™ The Hce Hamiltonian lifts the
important difference. The kinetic exchange theory is devel2J+1 degeneracy of théS*'L; multiplets with the half-
oped here in terms of many-electron wave functions coninteger total momenturd into doubly degenerated CF states
structed from many-electron wave functions of isolatefd 4 (i-e., Kramers doublets o
and 3 metal centers. This approach incorporates a realistic Because in the frame of the kinetic exchange theory the
description of the electronic structure of lanthanide ions tak4f and 3 metal centers in the dimer can interchange one
ing advantage of the well-elaborated parametric approacflectron, we assume in the following thdf, describes the
widely used for the description of the energy level patterns oflectronic structure not only for the basi¢"configuration,
lanthanide ions in solid-38 but for the charge-transfer configurations4® and 4fN*1
Consider a 4-3d exchange-coupled pa#B composed of ~as well
a lanthanide ionA with the 4fN configuration, a transition
metalB with the 3d™ configuration, and diamagnetic ligands
around each metal center. Some of these ligands bridgé the
and B metal centers and mediate exchange interactions be-
tween them. N—1y _ N—1 N—1
We start from the total electronic Hamiltoniath of the HA (4175 = Bp(4TT )W (4175), G
4f-3d pair where W (4f"), and ¥ (4fN*1) and W ,(4fN"1) are wave
functions of the individual CF states of the respective con-
H=Ha+Hg+V, (2)  figurations andE,(4fV), E,(4fN*1), andE,(4fN"1) are the
corresponding CF energies. Although theé superexchange
theory developed in this paper can be applied to various

thanide and transition metal centers having tf& and 3™ ; fthe d ‘ dod ; d CF stat
basic configurations, respectively, akdincorporates inter- ypes ot the degenerate or pseudodegenerate groun ,Sa €
f thef ion (see Sec. Y, in this paper we treat with Kramers

actions between these centers. Below we specify the struf,)- L i
ture of these terms in more detail. anthanide ions only, i.e., we suppose the numieto be

odd, for which the?S* 1L ; multiplets with a half-integer mo-
mentJ are split by the crystal field into Kramers doublets. In
particular, the ground state of the lanthanide ion is the

HaW i (41%) = E(4f") Wy (41Y), (6a)

HaW (4Nt =E (4fNT Y)W (4FNF1)) (6b)

whereH, and Hg are electronic Hamiltonians of the lan-

A. The Hamiltonian of the 4fN center

The HamiltonianH 4 has the structure W, (4fN:+ 1) Kramers doublet with two components}
and — 3 formally corresponding to an effective spB+ 3.
Ha=Ho(4f)+Hcg, (©)) There are two features of the spectrum df'Zonfigura-

: . A tions, which should be taken into account for an adequate
whereHo(4f) is the free-ion Hamiltonian of the 4 con- treatment of the superexchange interactions involving lan-

Eguzlaftlor_l anfSHCF I'ft the_ C{K‘Q‘tal'f'lfldl(%':) I:a:jmntonlan.t . thanide ions. First, the total number of states involved can be
o(4f) és often written in the well-elaborated parametric very large, 91 (42,4f12) 364 (4f3,4f1Y), 1001 (4 4f10),

36-3
form 2002 (45,4%), 3003 (4°4f%), and 3432 (47). Second,
the total energy extensiohE(4f") of the spectrum of &\
Ho(4f)= > f.Fk+> Zulisi+al(L+1) configurations is usually large ranging from 6 eVf¢4 to
k=246 ‘ about 20 eV (47-4f10) (see Table)l Typically, the energy
. +l . .
+BG(G,)+yG(Ry), (4) distance between th& "L ; multiplets is of the order of few

thousands cmt, the CF splitting is of order of several hun-
which includes the electron repulsion energy, spin-orbit coudreds cm?, and the energy gap between the ground and first
pling, and thew, B, and y two-body correction parameters excited CF state varies from few crhto several hundreds
associated to the angular momentiimand to the Casimir cm %, depending on the nature of the lanthanide ion and the
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TABLE |. The total energy range off4' configurations of lan- HB¢S(3dM—1;S/ M')= ES(3dM_1)¢)S(3dM_1;S’M M.
thanide ions[AE(4fN)] and 3™ configurations of octahedrally (9b)

coordinated transition metal iofia E(3d™)]. ) )
For the crystal field of the cubic symmetry, the energy level

4fN configuration @M configuration scheme of @M configurations is described by the Tanabe-
Sugano diagram®:*° In the general case, when the system

af" AE(4fY), ev®  3d" AE(3dY), eV’ has a low symmetry or no symmetry at all, the energy spec-
4f1 0.3 3! 1.9 trum should be obtained from the exact diagonalization of
452 5.8 32 6.9 H_B. Note_ that in the following no symmetry in thef43d
453 8.4 33 8.2 dimer AB is supposed.
4f4 15.7 Kol 11.2 o
4F5 16.1 5 10.1 C. The unperturbed Hamiltonian arlund tTAe (':harge-transfer
46 221 6 115 energy spectrum of a 4™-3d" dimer
4f7 225 A’ 7.5 In the absence of interactions betweenahd 3 ions, the
418 24.0 KN 7.5 wave functions of the #3d dimer are described by the
4f° 18.3 Kol 1.9 one-center HamiltoniansH,+Hg. Their eigenvectors
410 20.0 E(AB;SM,) are written as direct antisymmetrized prod-
4f11 12.1 ucts of the corresponding wave functions of centeendB.
4§12 9.8 For the basic #N-3dM configuration of the dimer we have
4f13 1.2

E(AB;SM) =V, (4fMYo® (3d™;SMy),  (10)

(Nhere® stands for the antisymmetrized product. In particu-
lar, the ground level of the unperturbed dimer is
2S(S+1)-fold degenerate and is represented by the set of
the|=1/2M,) wave functions

&Calculated for lanthanide ions with the free-ion parameters o
Ln®" ion (Ref. 4.

bCalculated with th®=700,C = 3000 cni ! Racah parameters and
10Dg=15000 cm*.

type of ligands sur_roundinﬁ. It is also important to stress |=12MQ) =T o(4fN; £ 1/2) @ Do(3dV;SM.).  (11)
that the wave function® ,(4fN; = 3) of the ground Kramers

doublet of the lanthanide ion are represented by a sum ofhe eigenenergies ofis+Hg are sums of separate one-
many determinants, and they cannot be reduced to a singkenter contributions,(4f") + E;(3d"). Ha+Hg describes
Slater determinantsee below. This makes inadequate the also the CT configurations. The eigenfunctio,q(A
widely used approach based on one-configuration approxi=>B;S'M’) and=,s(A<B;S'M’) corresponding to the CT
mation for the wave functions of the ground magnetic statestates, 4"~ *-3d"** and 4fN**-3d~*, are defined by

= .o/ Y — N—-1 M+1.cr ’
B. The Hamiltonian of the 3d™ center “Pq(AHB’S M") \PP(M )®¢q(3d STMY),

(123
Similar relations are valid for the transition metal ceri@er
of the dimer. The Hamiltonian of an isolated Zenter is E,(A—=B;SM") =" (4fN"Hed(3d" 1 S'M").
represented by (12b
Hg=Ho(3d)+Hor @) The corresponding eigenenergies are sums of the single-ion

energies of the, respective™"1 and M= configuration
whereHy(3d) describes Coulomb interactions betweeah 3 plus the CT energy gap (A— B) or Uy(A—B), which is
electrons andH - corresponds to the CF potential. The wavethe difference between the energy of the ground states of the
functions ®;(3d™;SM,) and CF energie€;(3d™) of the basic 4N-3dM and the CT configuration f4'~1-3dM*?*

basic 3N configuration are defined by (4fN*1.3dM~1y CT configuration

Hg®;(3dM;SM,) =E;(3dM)d;(3d™;SM;). (8) qu(AHB)=UO(AHB)+Ep(4fN_1)+Eq(3dM+1)i3
Since we do not take into account the spin-orbit interaction (133
on the trqnsition metal iqn,_ each CF stﬁte(3qM;S,Ms) _is E,((A—B)=Uy(A—B)+E, (4fN* 1)+ E(3dY1).
characterized by the definite total s and its projection (13b)

Mg, which are good quantum numbers. Note that the iridex ) ) ] .

refers to the orbital part of the wave function and the totalFor the 4-3d dimer with noninteracting centers and B,

spin S is therefore a function of. We suppose that the these energies are defined by intracenter interactions only;
®,(3d™;SM,) ground state is orbitally nondegenerate andthey also incorporate the energy difference betweermrd

has a nonzero spi§ Again, the HamiltonianHg is also 3d orbitals and the electron repulsion energy betwetm#

defined for the 8™** and ™! CT configurations 3d electrons on the respective metal centers. For a hetero-
metallic AB dimer, theU,(A—B) or Ug(A<—B) CT energy
Hg®q(3dM* 48" M) =Eq(3dY " Hd(3dM*1S'M ), gaps can be different. In many treatments of superexchange,

(99 Epq(A—B) andEs(A«B) quantities are often reduced to
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FIG. 1. The energy band structure of the CT configurations of
4fN-3dM exchange dimer. Thel(4fN;+1/2)@ ®(3d™;SM,)
ground state of the #'-3d" basic configuration is separated from
the ground state of thef¥~1-3dM** and 4N*1-3dM~* CT con-
figurations by the energy gapg,(A—B) and U,(A<—B), respec-
tively. The total energy extension of the CT configurations is given
by the sum AE@fN"H+AE@BIMTY)  or AE(4fNTY
+AE(3dM~1) and may reach a value of 35 eV being far beyond
the typical CT energy gap of 5-10 eV.

the single Hubbard energy. In fact, for 4f-3d dimers this
simple superexchange model is far from being realistic. In
deed, since the total energy range of tHé'4! and 3M=1
configurationd AE(4fN*1) and AE(3dM=1)] is very large
[up to 24 eV forAE(4fN*1) and 11 eV forAE(3dM*1), see
Table [}, the total width of the CT band of af43d dimer is
normally well above 10 eV and can reach a value of 35 e
which is much larger than the typical metal-to-metal CT en-
ergy U ranging within 5-10 eW’ This is illustrated by Fig.
1. Therefore, the energies of individual CT states of th
4f-3d dimer should be taken into account explicitly. As
shown in Sec. IV, this is very important in order to obtain a

correct balance between contributions of these states to tﬂg

exchange parameters.

Now we take into account the interactidhbetween the
4f and 3 centers and define the unperturbed Hamiltonian o
the dimerAB. The interactior'V can be written as

Vy

e
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where Vg incorporates those interactions between ahd
3d metal centers, which do not mix the states of the
4fN-3dM basic configuration with the states of
4fN-1.3dM*1 or 4fN*1.3dM~1 CT configurationsH 55 de-
scribes electron transfers betwe@nand B metal centers.
Vg is mainly contributed by the intercenter Coulomb inter-
actions between # and 3 electrons,V¢q,(AB). Indeed,
(E(AB;SMy)|Veou(AB)|E pg(A—B;S'M’)) matrix ele-
ments are negligibly small because of a very small overlap of
4f and 3 orbitals centered on different metal ions. In addi-
tion, Vcou(AB) acts diagonally in the space of wave func-
tions of the 4N-3d™ basic configuration and causes some
splitting of spin levels due to the dire¢potentia) 4f-3d
exchange interactiodsq. As in transition metal exchange
dimers, the latter is assumed to be snfatitually, the direct
exchange interaction inf43d dimers seems to be even less
important than in 8-3d dimers because of a strongly local-
ized character of # state$. Hereafter we concentrate on the
kinetic exchange contributions only.

The unperturbed Hamiltonian of thef43d dimer is for-
mally defined as

Ho=Ha+Hg+Vag. (15

The HamiltonianH, is defined in the extended basis set,
which involves the wave functiord0) of the 4fN-3d™ con-
figuration and the wave functior(¢2) of the 4fN~1-3gM+1
and 4N*1-3dM 1 configurations. It incorporates all intrac-
enter and intercenter interactions, which do not mix A
states with theA—B and A« B CT states(12). In our ap-

aproach,Ho is not expressed explicitly via specific one-and

two-electron operators, but it is defined by the full set of its
eigenvectors and eigenenergies. Consider first the eigenvec-
tors of Hy. Generally, they should not differ much from the
eigenvectorg10) and(12) of the H,+ Hg Hamiltonian, de-
scribing the dimer with the noninteracting centérand B.
Indeed, the wave functions offd4or 3d metal ions are
formed mainly by the intraionic interactions and by the in-
teractions with the nearest ligands; interactions with more
distant atoms, including the neighboring paramagnetic metal
atoms, have a considerably smaller influence on the single-

ion wave functiongwe do not consider here the formation of
metal-metal bonds In other words, the wave functions of
the localized 4N or 3dM shell of the given metal ion defined
by Egs.(6), (8), and(9) are essentially the same irrespective
of the presence or absence of other paramagnetic metal ions
outside the nearest coordination sphere. In particular, this is
reflected in the fact that the energy positions of lines in op-
tical spectra of lanthanide and transition metal ions diluted in
insulating solids do not vary much with increasing the con-
centration. This is also evidenced from numerous data on
agnetic and optical properties of individual binuclear metal
complexes, which show that the line enerdiest not optical
intensities in their optical spectra are very close to those of

tthe corresponding isolated metal ions in the similar ligand

coordinatior??*"*°Therefore, it is a good approximation to
assume that the eigenvectors of the Hamiltortigrcoincide

with those of theH,+Hg, which are given by the direct

V=Vpgt+Hag, (14

products of the one-center wave functiqd$) and (12).
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The eigenenergies of, differ from those oH,+Hg due  (E,(AB;SM)|Hag|E,s(A<—B;S'M’)) connecting theAB
to the intercenter interactioi,g. However, since the inter- gtates with theA—B or A« B CT states. These matrix ele-
center interactions are considerably weaker than the intragnents can be directly expressed via tgéf;-3d;) transfer

enter interactions, the energy spectruntgfshould be close  ntegrals. Details of these calculations are given in the Ap-
to the spectrum of théi,+Hg Hamiltonian (13). For the  pendix A.

basic configuration #¥-3d™ the intercenter Coulomb inter-
action is manifested as electric multipolar interaction be-
tween 4 and 3 electrons, which is considerably smaller
than the intraionic Coulomb and CF interactions and thus can
be omitted. For the #'~1-3dM** configuration the inter- Now we derive the effective exchange Hamiltonielgy
center Coulomb interaction is more pronounced since now if the 4f"-3d" dimer. By definition H acts in the space of
describes the direct interaction between the hole in théhe 2(25+1)-fold degenerate ground level of the unper-
4fN~1 shell and the extra electron in thel'$*! shell (or  turbed HamiltonianH,, which is spanned by the set of
vice versa for the #N*1-3dM~1 CT configuratio. This en-  [MMg=Wo(4fN;m)@do(3d";SM;) wave functions,
ergy is of the order of 1-2 eV, which is still small as com- Wherem=+ 3, —3 stands for the components of the ground
pared to theA—B CT energyU,(A—B)=5-10eV. It is Kramers doublet of the lanthanide ion ami=S,S-1,...,
important that this interaction is mainly reduced to the point-— S is the projection of the total spiiof the ground level of
charge Coulomb interaction, which shifts the energy posithe transition metal centeéB. Hqy is defined by the set of
tions of CT states by the same value and thus does not influnatrix elements

ence much their order. This implies that tligg interaction -

for CT states can be absorbed by the CT energy g (M. Mg[Hegm’,Mg). (18)

—B) or Up(A—B). o Since the degeneracy of the ground manifold is of a spin
~Thus, the unperturbed HamiltoniaH, of the 4f-3d  patyre, matrix elements dfi.; can be directly associated
dimer is as an operator }Nlth e_|genyect©19) and(12) and  ith the matrix elements of a conventional exchange spin
the corresponding energi€s3), in which theUo(A—B) and  Hamiltonian written in terms of products of operatcss,
Uo(A<B) CT energy gaps incorporate the energy of thegy andsS;, of the effective spir} of the lanthanide ior and
direct intercenter #-3d interactions. This definition of the the S, Sg, and S, operators of the true spifi of the

u_nperturbed Hamilt_onian is. convenign't fora quel descrip‘[ransition metal ionB. These operators obey the following
tion of exchange dimers, since explicit expression of effec-

E. The effective exchange HamiltoniarH ¢ of the 4fN-3dV
metal dimer

o ) . - equations:
tive interactions via specific one-and two-electron operators
may be uncertain. 20 o(4FN;m)=mWo(4FN:m), (193
D. The perturbation Hamiltonian N 1 N
X . —— L
The perturbation HamiltoniaH 55 describes 4—3d and A o(415m) =5 Wo(4fT —m), (195
4f«—3d electrons transfers mixing the ground and CT con-
figurations. It represents the sum of one-electron operators SV o(4fN;m)=imW o (4fN; —m), (199
h(i)
2D o(3dM; SMg) =MD o(3dM; SMy), (199
Has=2> h(i). (16) N y
i S Do(3dM;SM) = VS(S+1)— M(Mg+1)D,
Each operatoh(i) is defined by a X5 matrix with the x (3dM:SM+1) (190
elements(4f;-3d;)=(4f;|h|3d;)) (hereafter abbreviated as s
tj;) connecting sevenf4 orbitals centered on the lanthanide S-d(3dM-SM) = T -—MAM—1)P
ion A with five 3d; orbitals centered on the transition-metal p Do(3d";SMy) = VS(S+1) ~M(Ms—1)®g
ion B; these quantities are called transfleopping integrals. X (3dM:SM—1). (29f)
They describe the indirect coupling between the lanthanide
4f and 3 metal atomic orbitals via the intermedia@andp The effective HamiltoniarH o is obtained by the projec-
ligands orbitaldsee Sec. I\ tion of the total HamiltoniartH =H,+Hg+V g+ Hap into
In the second-quantized technigHieg is written in the  the space of statdm, M) from the ground manifold. To this
usual form end we define the projection operatd?s and P; for the
ground(AB) and excited CT A—B and A< B) manifolds
Has=2 tja’bj+H.c., (17
ij

Po=2 [no)(nol,  Pi=|n)ni, (20
wherea;” and b; are second quantization operators corre- o
sponding to the # and 3; orbitals. In our approactisgis ~ where n, runs over the |m,Mg)=Wq(4fN;m)
represented by the full set of the matrix elements® ®y(3dN;SM,) states of the 2(8+1)-fold degenerate
Ek|(AB;SMS)|HAB|qu(A—>B;S’M’)) and ground level, andn; runs over spin-degenerate CT states
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Ep(A—B;SM) =¥ (4t Hed(3dV1;S'M’)  and PoH agP:HasPo
=, (A—B;S'M")=W, (4N Yo d(3dM1:S'M’)  with He=2 —F —F—— (22)
the composite indicepg andrs, respectively. In the second ' o=
order afterH ,g we obtain forH The matrix elements dfl are given by
|
. (M, M Hag|= 5 A—B;S'M"))(Z 5(A—B;S'M[Haglm’ ML)
<m,Ms|Heff|m ,Ms>__pq§;':4/|, UO(A_>B)+EP(4]¢N71)+Eq(3dM+l)
s MM S ABIS M) E(ABIS M) Hag M, M3) (22
o Ug(A—B)+E,(4fN*1)+E4(3dM 1) '

Note that theS] (7=x,y,z) operators refer to the effective (E(AB;SMg)|HaglEs(A—B;S'M’))  between  the
spin S, of the lanthanide ion, not to the operators of theground state and excited CT states are calculated. At the last
magnetic momentun, . They are related to each other via Step, the matrix elementsn,M¢[H¢m’, M) of the effective

the g-tensor of the ground Kramers doublet of the lanthanideexchange Hamiltonian are calculated using ), which

ions, which might be very anisotropic. In the general case¢an be then directly used to find the exchange parameters of
the relationship betweeB, and u, is rather complicated, the anisotropic #-3d spin Hamiltonian. The program is de-

and should be analyzed separately for a specific3d signed for the general case: it can be used for dimers with
dimer. Below we deal with a model YbCrg dimer in each combination of the Kramers lanthanide ion and the

paramagnetic transition metal ion; no symmetry is supposed.
Below this program is applied to the spin Hamiltonian cal-
culations for the YbCrB#~ dimer.

which the YbBE3~ coordination polyhedron is assumed to
be a regular octahedron. In this case the¢ensor of the
ground Kramers’ doublet of the ¥b ion is isotropic and
thus the effective spin operat&, is simply proportional to

the magnetic momentum operafoy . This will be analyzed ll. SUPEREXCHANGE INTERACTION IN THE
in more detail in Sec. Il YbCrBr o3~ DIMER: THE PARAMETERS OF THE THEORY

Bgcause analytic_al calculatio_ns using E212)_are hardly The described computational approach to tHe34l su-
possible even for simplef43d dimers, a special computer perexchange is now applied to the analysis of the exchange
program for numerical calculations of the spin Hamiltonian;nieraction between Y& and CB* ions in the YbCrBg®~
exchange parameters was designed. Here we give a brigfmer (a 4f13-3d3 pain. Our main goal is to elucidate the
outline of this program. origin of the strong exchange anisotropy and, particularly,

There are three groups of input parameters in the prothe origin of opposite sign of thé, andJ, exchange param-
gram. The first group involves parameters for the lanthanideters for the YbCrB£~ dimer. To this end, we use an ide-
centerA, the free-ion parameters of the lanthanide {t'e  alized structural model of the YbCr§ dimer and we ap-
electron repulsion parametefs’, F*, and F®, spin-orbit ply a number of approximations. In this section, the
coupling constant,; for 4f electrons, and the Trees two- necessary parameters of the kinetic exchange theory are de-
body correction parameters 3, andy, Eq.(4), and the full - termined and the(4f;-3d;) transfer integrals between mag-

set of theBy parameterga total of 27 CF parameterin-  netic orbitals in the YbCrBf~ dimer are calculated.
volved in the model CF Hamiltonian, E@5). The second

group involves parameters for the transition metal center, the
B andC Racah parameters and the set of CF parameters for
3d electrons, which are defined as &5 real matrix com-
posed of(3d;|Hce|3d;) matrix elements fod orbitals of the
cubic basis set. The third group contains parameters describ- The  YbCrBg®~ dimers are formed in the
ing the interaction betweenfd4and 3 centers, theUy(A  CsYby gCroBrg crystals, which is obtained by doping
—B), andUy(A—B) CT energy gaps and the full set of Cs;Yb,Brs host compound with 10% of € ions2® The
t(4f;-3d;) transfer integralgthe latter are input as a>75 crystal structure of the host compound contains,Bflg®~
complex matrix. dimers as building blocks consisting of two face-sharing
The program works as follows. First, the single-centerYbBrg®>~ octahedra. Mixed YbCrBf~ dimers(Fig. 2) are
HamiltoniansH, and Hg are diagonalized and the wave formed due to the statistical substitution of*Crions for
functions and energies of thef¥ 4fN*! and M,  Yb®' ions. In the parent YiBry3~ dimer the YbBE3™ oc-
3dM=1 configurations are obtained. Then the two-centetahedra are somewhat distorted, the terminal Yb-Br bonds
wave functions are formed and the matrix being shorter by about 0.2 A than the bridging boffdshe
elements (2, (AB;SMy)|Hap|Ep(A—B;S'M’)) and  approximate symmetry of YiBry>~ is close toDgq4 point

A. The model structure of the YbCrBro3~ dimer
and the parameters of the unperturbed Hamiltonian
of the Yb®*-Cr3* pair
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The CF splitting of & levels in CF* ion in the octahedral

C3 ligand field is described by the conventionalDld) param-
eter, which is set to 13000 cm (this value is observed in
many compounds containing the CgBF complex aniof).
The corresponding cubic CF potential is defined for the
trigonal quantization axisz. We use B=700 and C
=3000 cm ! Racah parameters which are typical of many
six-coordinated pseudo-octahedral trivalent chromium
compound4’®

The situation with the CT energies is more uncertain. In
symmetric dimers with equivalent metal centers, the CT en-
ergy gap for the directA—B) and back A< B) electrons
transfers are equal and can be set to the conventional metal-
to-metal energyUo(A—B)=Uy(A—B)=U, which typi-
cally ranges from 5 to 10 ¥ In heterometallic pairs, and
particularly in 4f-3d, the Uy(A—B) and Uyo(A—B) CT
energies are expected to be different due to the differences in

y / the orbital energies and electron repulsion parametersffor 4
P\ and 3 electrons. Due to these uncertainties, beldy(A
Cr —B) andUy(A<—B) are assumed to be variable parameters
\ each ranging independently from 5 to 12 eV. However, a
rough estimate of CT energies can be obtained from electro-
y” \ _ chemical arguments for ¥ and CP* ions. Since CT en-
F— — ergies are related to the loss or gain of an electron by metal
ions in a condensed medium, they can be correlated with the
difference of the corresponding standard redox potentials of
FIG. 2. The structure of the YbCrg¥ mixed dimer. Nine bro- Yb3o+ a?fj Cg: '0”5 n +aqueirous solutiond) o(A—B)
mine atoms are shown as light gray balls. The YpBnd CrBg “EO(Yb 4 /Yb+ )_% (C'; /Cr;) and Uo(A—B)
polyhedra are assumed to be regular octahedra with the same met;?ﬂfl)E (Cﬁ /Ci )= E° (YD /YD™T). . Except . for
ligands distances. The dimer has g, symmetry with theC, EO(Yb2 /Yb3 ), these data areb available from the literature,
rotation axis passing through the Yb and Cr atoms. E%(Yb**/Yb®")=—1.05V, ECr*/Cr")=-0.424V,
Eo(crt/cr)=+2.10V*®  Since E9(Nd*"/Nd*")

_ , =+4.9 ande®(Dy**/Dy®*")=+5.7 V are knowrf? the re-
group, the trt;e s'ymmet'ry i€3. The b|octahedrallfgce— dox potentialE®(Yb**/Yb3*) is expected to be very high:
sharing CBro”  dimers in CsCryBro have a very similar o5 roximately, it can set to that of the neighboring*Dyon
structure but with shorter metal-ligand distanées. EO(Yb**/Yb3*)=+5.7 V. Thus we obtain

Below we use an idealized structural model for the-—o,\.4+/,vn3+ 0 + + 0 ¥ n 0
YbCrBrg>~ mixed dimer, in which both YbBF~ and [Eb(zf?\(béfg’] ~)2 I‘?’h(ecr(r:foiecﬁ )I/IE (_Cr“ /crr) ~E

30 . . ~2. Uo(A—B) is expected to be

CrBrg®~ units are assumed to be regular octahedra with th early twice as larger as (A—B). Setting the larger CT
same Yb-Br and Cr-Br distances. The use of this approximaénergy to 10 eV, the upper value of the Hubbard endtgye
tion makes sense not only for simplicity, but allows to sepa-ggtimateU o(A—B)=10 andUy(A—B)=5 eV; these val-
rate the 4-3d exchange anisotropy itself from the single-ion yes can be used as a reference in calculations for the
anisotropy, which vanishes in the octahedral symmetry of the/hCrBr,3~ dimer. Below we will show that the exchange
ligand surrounding. However, in calculating4f;-3d;)  parameters calculated at these CT energies do really corre-
transfer integrals we will use the actual metal-bromine disspond to the best agreement with the experimental data.
tances proper to the parent J8ry°~ and YikBrg®~
dimers3t32 B. t(4f;-3d,) transfer integrals

Since the ground #° configuration of YB* corresponds  The transfer integrals;; =t(4f;-3d;) describing the ef-
to a single hole, only the spin-orbit coupling constant is in-fective one-electron transfers between ytterbiuf) and
volved among the free-ion parameters,(=2900 cnY). chromium 31; orbitals in the YbCrBs*~ dimer, are key pa-
However, for the 4'2 CT configuration all free-ion param- rameters of the theory. To calculate the full set of 35 transfer
eters of theHy(4f) Hamiltonian, Eq.(4), should be in- integrals in the model YbCrB?~ dimer, we use the conven-
volved. We use here the parameters of the isoelectronigonal second-order perturbation expression corresponding to
Tm®" ion [F?=103886, F*=77024, F®=57448, {4 the case of weak metal-igand covalence on both the metal
=2629, a=14.677, B=—631.79cm?, and y=0 (Ref. sites of the dimer
41)]. The set oquk cubic CF parameters corresponds to a

trigonal quantization axi€; and is chosen to match the CF 4 ;¢ 34, _ 3 (41 hxi(Ln)) L) [ 3d;)
splitting energy of the groundF,,, multiplet of Yb** ion in Fe YT E[ x«(Lp)—fd] :
Cs;Yb,Brgy (about 450 crmt).*? (23
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where the first sum runs over the tree bridging bromide TABLE Il. The A;; and B;; quantities in the idealized model
ligandsL, and the second sum runs over the dnd 4p YbCrBry~ dimer. Details of calculations o%; andB;; are given in

orbitals y,(L,) of these ligands. Matrix elements of the Fock the Appendix B.

operatorh are resonance integrals connectinfy dr 3d; or-

bitals of the metal ions ang,(L,) orbitals of the bridging 8 6

ligand L,. The energy denominator is a weighted ligand-" ~ g mApotfp)+ 5= w(dp)7(fp)

metal charge-transfer energy, which is given by

1 1 1
E[xe(Lo—fd)] 2| E(4f)—E[(xu(Ln)]
1
T EGd) Byl

(24

whereE(y,), E(4f), andE(3d) are the corresponding or-
bital energies. In our calculations, thé4f;-3d;) transfer

Ap=A_1 J6 V2
1g o(dp)a(fp)— 5 m(dp)a(fp)

—o(dp)7(fp)

15
A=A 5 > \/—

245
—1—80(dp)a(fp)— Tw(dp)o(fp)

V30
—Tw(dmw(fp)

integrals are defined in the basis set ¢f and 3d; orbitals

with the definite projection of the orbital momentum on thea,=-A_,,

C3 quantization axiz (Fig. 2). The indices andj stand for

the projection of the orbital momentum of &and 3 elec- /30 J10

trons, respectively. Arm1=—A_y ———o(dp)o(fp)+ — m(dp)a(fp)
In the idealized YbCrBy®~ dimer, the resonance integrals 18 o

entering Eq.(23) can be expressed analytically via four pa- J15

rameterso(fp), «(fp), o(dp), andw(dp), corresponding + 5 mdp)7(fp)

to the resonance integrals defined with respect to the Yb-Br

J10 15
zirwwmaum—%;wmmwum

or  Cr-Br bond o(fp)=(4fyh|4py), w(fp) _ V3 2
—(af_hl4p.y).  o(dp)=(3dgh4po), and m(dp) T 2 TageldPelmgmdpaie)
=(3d.4|h|4p-4), where 4, 3d, are metal and gy are >

bromine orbitals with the projection of the orbital momen- + —o(dp)m(fp)

tum on the metal-ligand axik&0,+1). For each of three 2

Yb-Br-Cr bridges, the producté4f;|h|4p)(4p,/h[3d;) in g, 0

the nominator of Eq(23) can be written as linear combina-

tions of binary products of the-(fp), =(fp), o(dp), and 5 _g 1

m(dp) parameters. The coefficients in these combinations =~ = * ﬁ‘r(ds)”(fs)

correspond to the expansion of atomic orbitals defined in the

local coordinate frame of a given metal-ligand pair over org, -B , , Ea(ds)a(fs)

bitals defined with respect to a common coordination frame 6

and are written via the Wigndd functions(see Fig. 6 in the Bz ,=B_5, 0

Appendix B. Assuming in Eq(24) the sameE(4p) orbital

energy for three g, (Br) orbitals, we can define quantities B, ;=—-B_,; @U(ds)a(fs)

Aij:n=§1;2,3 k=§0,:t1 <4fi|h|4pk(|-n)><4pk(|—n)|h|3dj>a B;_,=—B_;; %ja(ds)(r(fs)

(25)

which, being divided by the common energy denominator
E(4p—fd) (24), determine the contribution tg; from the ]
4p(L,) orbitals of the bridging bromine atoms. Here @ndo(ds)=(3do|h|4s), corresponding to the overlap be-
4py(L,) is the 4p orbital of thenth bridging bromine atom tween meta_l orb|t<_31Is _andsQBr) orbitals for_a given Yp-Br
with a definite projection of the orbital momentukron the ~ ©F Cr-Br pair. Again, in Eq(23) we can define quantities
commonCj axis.
For theC5, point symmetry of the idealized structure of
YbCrBre®~ (Fig. 2), there are only six independent nonvan- Bij= > (4fi|h|4s(L,))(4s(Ly)|h[3d;),  (26)
ishing A;; quantities (and, therefore, six independety =123
transfer integralsconnecting 4; and 3d; orbitals withi=j
andi=j=*=3 only, which can be expressed via th€fp), determining contributions from s{Br) orbitals, B;; /E(4s
7(fp), o(dp), andw(dp) parametergTable ). —fd)—t;;. They are expressed vig(fs), ando(dp) reso-
Similarly, contributions from the g(Br) orbitals can be nance integrals in Table Il. Details of the calculationsAgf
expressed via two resonance integralgfs) =(4f,|h|4s) andBj; are given in Appendix B.
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The o(fp), #(fp), o(dp), 7(dp), o(fs), and a(dp) the interplay between various contributions from numerous
resonance integrals can be calculated using the approximaitedividual states of the #2-3d* and 4'*3d? CT configu-

Wolfsberg-Helmholtz formuféd rations to the parameters of the highly anisotropic 34
exchange spin-Hamiltonian of the YbCgBr dimer and the
o(fp)=(4fo|h[4po) = K[ E(4f )+E(4p)]SU(4f,4p()2,7a) symmetry relationships between the matrix elements.
fp)=(4f. |h|4p.)=K[E(4f )+ E(4p)]S.(4f,4p), A. The ground electronic states of the Yb and Cr centers
m(fp)=(4f.1|h|4p.)=K[E(4f ) +E(4p)]S4( F2)7b) in the YbGIBr o dimer

The ground electronic state of the ¥'bion in the regular
a(dp) = (3do|h|4po)=K[E(3d) +E(4p)]S,(3d,4p), YbBrg®~ octahedron is thd's Kramers doublet resulting
(279 from the CF splitting of the lowestF,,, multiplet (Fig. 3.
_ _ Since there are nbg states among CF levels of the excited
m(dp)=(4f.1fhl4p..) =K[E(4T) + E(4p)]Sﬂ(3d,4(1p2))7,d) 2F;, multiplet, theI's ground state is of puréF-,, charac-
ter. This implies that the wave functions of thg ground
o(fs)=(4fo|h|4s)=K[E(4f )+ E(4s)]S,(4f,4s), doublet in the regular YbBF~ octahedron are determined
(279 by the symmetry only and are insensitive to the strength of
the CF splitting. As a result, the exchange parameters in the
o(ds)=(3dg|h|4s)=K[E(3d)+E(4s)]S,(3d,4s), YbCrBry®~ dimer are also insensitive to this CF splitting.
(271) With the quantization axi€; (Fig. 2), the wave functions
whereK is a numerical coefficienfwhich is normally taken ]?f th?rﬁ d(';li?:et can tzferrlttenltl_n ltetrms of theM,) wave
asK=0.875 or 1 and S,(4f,4p), S,(4f,4p), S,(3d,4p),  'unctions ot the groundry,; mulliple
S.(3d,4p), S,(4f,4s), andS,(3d,4s) are o and 7 overlap 1
integrals between the respective metal and ligand orbitals. In |1, —1y= —_[—/355)— /14— })}+ 5| - 1)],
further calculations, a valuK=1 is used. Although in the ITe=2) J54 o) 4-2 =2)
model YbCrBg®~ dimer the YbBg and CrBg polyhedra are (283
assumed to be regular octahedra with the equal Cr-Br and
Yb-Br distances, in the calculations of overlap integrals we s 1 7
use the actual distances between the metal ions and bridging [—35-3)+143)+5]3)].
bromide ligands in the YBry®~ and CgBry°~ dimers, 2.86 (28b)
and 2.65 A, respectivef}:*> The overlap integrals were cal- _ _
culated with four-exponent radial functions fof érbital¢®  They can also be expressed via thg 4rbitals (= -3,

1

/54

ITe+3)=

and double-zeta radial functions fod@r) orbitals® the ~ —2.--3) and the spin wave functioag+3) and B(—3)
radial functions for the 4(Br) and 4p(Br) orbitals were 1
taken from Ref. 47. We obtaine®,(4f,4p)=—0.0187, ITG,—%>=—{—\/g[f,ga]Jr\/S—qf,zB]Jr\/g[foa]

S.(4f,4p)=0.0091, S,(3d,4p)=0.122, S_(3d,4p) J54

=—0.054,S,(4f,4s)=0.0102, andS,(3d,4s)=0.077. The

orbital energiesE(3d)=—11, E(4p)=—14, and E(4s) —6[ 18]+ 5[ f3al}, (293
=—22 eV were taken with a minor rounding-off from the

standard parametrization used in Extended Huckel L 1

calculations’®*” and the typical orbital energyE(4f) [T +3)= E{— V5[ 381+ V30 foa]— V8 foB]
=—10eV was used fof electrons®®=*° Using these data,

the resonance integrals;; andB;; quantities, and the energy + \/E[fila] + \/E[f _3B1%, (29b)

denominators(24) were calculated. Then the contributions . ]
from the 4s(Br) and 4p(Br) orbitals to the transfer integrals Where[f o] denotltgs the orbital and spin quantum numbers
were determined and thg4f;-3d;) transfer integrals were of a hole in _the 4 conflguratl-on; in t_he eIectrqn represen-
calculated, which are given in Table II. In accordance withtation,[f;o] is a Slater determinant with allf4orbitals dou-
the C,, symmetry of the YbCrBf2~ dimer, there are eleven Ply occupied except for thef4 orbital with the spin projec-
nonvanishing transfer integrals, which conneéf and 3 tion o= alor B. The S|<I:1ns of the effective spin projection of
orbitals withi —j=0 or +3; of these, only six;; are inde- the|I's —2) and|T's+3) components of th&'s doublet are
pendent due to the relationgy=—t_s9, t, 1= —t_,, chlosen to match the transformational properties of $he
t;_,=—t;_,, andt;=t_;_, (Table Il). =7 wave functionsy and 8 with respect to rotations around
the C; axis by angleso=*+27/3: |[Tg—3)—e ¥Ty
—3) and g +3)—€“ITg+3). This brings into accor-
dance the transformation properties of wave functions of the
In this section we analyze in detail the mechanism of theeffective spinSy,= 3 and those of the true spBy,= 3. Note
Yb3*-Cr** superexchange interactions in the YbGyBr  that the sign of the projection of the magnetic momentum of
dimer and discuss the results of numerical calculations of théhe YB** ion is opposite to the sign of the spin projection
4f-3d exchange spin Hamiltonian. In particular, we focus onu,(—3) = +4/3ug, m,(+3)=—4/3ug. This implies that

IV. RESULTS AND DISCUSSION
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TABLE Ill. t(4f;—3d;) transfer integrals in the YbCr&T dimer.

t(4f;—3d;) transfer integrals, cm

Contributions from the g(Br) states

4 _, 0 0 ~1154 0 0
4f_, 620 0 0 -1038 0
4f_, 0 —2236 0 0 ~1105
4f, 0 0 —1459 0 0
4f, 1105 0 0 —2236 0
4f, 0 1038 0 0 620
4f, 0 0 1154 0 0

Contributions from the 4(Br) states

3d_, 3d_; 3dy 3d; 3d,
4f 4 0 0 0 0 0
4f _, 377 0 0 —534 0
4f 4 0 239 0 0 —169
af, 0 0 0 0 0
4f, 169 0 0 239 0
4f, 0 534 0 0 377
4f, 0 0 0 0 0

Total

3d_, 3d_; 3dg 3d; 3d,
4f 4 0 0 —1154 0 0
4f _, 997 0 0 —1572 0
af 4 0 —1997 0 0 —1274
4f, 0 0 —1459 0 0
4f, 1274 0 0 —1997 0
4f, 0 1572 0 0 997
4f, 0 0 1154 0 0

in the regular YbBg®~ octahedron assumed here, theen- 2
sor of the ground’s doublet is negative and isotropigy - Det(dya,dya,doar) — Det(doer,d 1 v, d )}
=0y=0,= — 8). Since in the parent ¥Bry>~ dimer YbBr

octahedra are somewhat distorted, théensor of YB™ is 2 1

expected to be anisotropic. Note that the phases of the wave + 3 Detld;a,doar,dza) + 7 Det(dya, dor,d 1 @),
functions |I's—3) and |’ +3) in Egs. (28) and (29) are

consistent with the time-reversal symmetiys +3)—|T¢ (30)

—3) and|lg—3)——|Ts+3). As can be seen from Eq.

(29), 4f states with different and o are strongly mixed to ) , ) .
each other thus implying that the spin of bis not a good ~Where 3l orbitals are given in the orbital momentum repre-
quantum number. It is important, that thig ground state is ~ Sentation. It is important to note that the wave function of the
separated from the first excited state by an energy gap bein?zg ground state of Cr" is insensitive even to rather strong
much largef114 cm ! in the CsYb,Brg (Ref. 42] than the istortions of the octahedral ligand environment. This means
Yb3*-Cr* exchange parametefabout 5 cm® (Ref. 2],  that deviations from the strict octahedral symmetry of the
so that these states cannot admix. chromium center in the real YbCrg¥ dimer would not
The wave function of thé‘Azg ground state of the octa- influence much the orbital composition of the wave function
hedrally coordinated &t ion in the widely used tetragonal (30). Again, since the ground state of the®Crion in the
guantization is represented by a single Slater determinar@rBrg octahedron is well isolated from the excited stdtes
Det(dyy,d,xa,dy,«) incorporating thred,, electrons with  about 14 000 cmb), exchange interactions represent there-
parallel spingfor the maximum spin projectiokls=3.) For  fore only a small perturbation to the CF splitting energy and

the trigonal quantization, théAzg state is represented by a thus the mixing with other CF states can be neglected.
sum of several determinants

014424-11
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4 the chromium center involves 210 states and spans over the

E, cm-! range of 11 eV. The total energy width of thé-43d CT
band of the YbCrBs®~ dimer is therefore about 20 eV,
11200 - which is considerably larger than the typical CT energy

(5—10 eV). The electronic structure of thef4-3d CT band

is less complicated, since the ytterbium center has a closed
I; 4114 configuration. However, even in this case the total width

of the CT bandwhich is equal to that of thed configura-

tion) is comparable with th&o(A<B) CT gap(Fig. 4). In

11000 these calculations, the CF splittings of multiplets of tHé%4
2F5,2 CT configuration of ytterbium are not taken into account
—— since they are negligibly small as compared to the CT ener-
gies.
\ re Calculations performed at variol$,(A—B) and Uy(A
10800 1 — —B) CT energies show that there are highly symmetric re-

lations between the matrix elements. This is exemplified by
Table IV, which presents the matrix elements
(M,Mg|Heglm’,M{) and the separate contributions from the
4f12.3d* and 4f14-3d? CT states calculated af,(A— B)
10600 =10eV andUy(A<—B)=5eV. Most of these matrix ele-
ments are zero except for diagonal ones witeem’ and
Ms=M/ and the only nondiagonal matrix elements with
Im—m’|=1 andm+M¢=m’+M/. In addition, the diago-
nal matrix elements have the form

))
«

600 -
(M,M¢|HeglM,Mg)=X+YmM, (31
I while the nondiagonal matrix elements obey the relations
7
00 (MMyHeglm—1M¢+1)=Z+3/4—m(m—1)
400 4

X S(S+1)—M(Mg+1),
2 (324
F7/2

200 - e \ e (M,M¢/Hegm+1Mg—1)=2Z3/4—m(m+1)
XVS(S+1)~My(M—1),
(32b

Is whereX, Y, Zare some constants, which do not depenaon
0- = or My, (but different for 4 — 3d and 4f < 3d electron trans-
fer contribution$. The microscopic origin of these regulari-
ties is discussed below.

From these results we can determine the spin Hamiltonian
Har.3g Of the YB*'-CrP' exchange interaction in the
YbCrBry®>~ dimer. Indeed, matrix elements of the spin

With the use of the parameters determined in the previouslamiltonian
section, the full set of m,Mg|H¢q/m’,Ms') matrix elements
of the effective exchange Hamiltonian was numerically cal- Hat.30= Ao+ IS5 Ser+ 1 (SipSer+ XS, (33)
culated using the program outlined above. In these calcula-
tions, all CT states resulting from thef 4-3d and 4f —3d coincide with the matrix elements of the effective exchange
electron transfers were taken into account, which involveHamiltonian calculated above provided thig=X, J,=Y,
19110 and 45 individual CT states for thé'43d* and andJ, =2Z. For a Y&*-Cr** pair, these exchange param-
4f14-3d2 CT configurations, respectively. These are drawneters can be directly expressed via {m,Mg|/Hq¢m’,M¢)
in Fig. 4 in the actual energy scale. We can see that even fapatrix elements
a rather simple #+3-3d? pair the energy structure of the CT
band is very complicated. The spectrum of tHé%configu- _2 13 13 13 13
ration involves 91 states with the total energy extension of JZ_§[<+5’5 Herl +2.2) = (= 2.3 [Herl = 2.2)].
about 9 eV. The energy spectrum of thé*Zonfiguration of (344

FIG. 3. The structure of crystal-field energy levels offYkon
in the octahedral ligand surrounding.

B. Matrix elements of the effective exchange Hamiltonian

014424-12
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4f14
A<-B CT

| Uy(A—B)

M ON
5E;
U,(A—B)
Is 4Azg
4713 3
Yb**(A) Cr3+(B)

A1

1Eg

1T2g 3A29 1']'19
3T1a(2)* 1A1a

=T, "B, T

Tg(1)*
3d?
states

FIG. 4. The energy structure of thef#-3d* and 4f4-3d? CT configurations of the YbCrBf~ dimer. The energies of CT states are
given in the real energy scale. The contributﬁﬁg, 3Eg, and 3T19 levels of the &* and 312 configurations of chromium are enumerated

and marked by star.

Ji=(=3.3[Herl+2.—3),

AOZ%[<+%,g|Heﬁ|+%yg>+<_%yg|Heff|_%,%>]-

(34b

spin coupling, and the negative sign to an antiferromagnetic

coupling. In this convention, the sign at the exchange param-

(340

However,

eter in the spin Hamiltonian is therefore chosen to be nega-
tive, such as—JS,- Sg in the case for the isotropic Heisen-
berg Hamiltonian.

in our case one should

Note that, according to the usual convention, the positiveemember that thg tensor of thel's Kramers doublet is
sign of exchange parameters corresponds to a ferromagnetiegative = —£), i.e., the effective spi$ of the YbB** ion

014424-13
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TABLE IV. {(m,Mg/Hgsm',M{) matrix elementgother({m,M¢H¢m’,M{) matrix elements are zerand exchange parameters of the
effective exchange Hamiltonit;.gq= Ao+ J,5%,S&+ I, (SiSert+ Sty in the YbCrBE ™ dimmer calculated &t o(A—B) =10 eV and
Uo(A—B)=5 eV. Contributions from the #%3d* and 4/14-3d? CT states are indicated separately.

Diagonal(m, M ¢|Hgm’,M%) matrix elementsth=m’,M =M), cm?

m Ms m’ M, 4f12-3d* 4£14.3¢2 Total
-1/2 -3/2 -1/2 -3/2 —258.8772 —7.4549 —266.3321
-1/2 -1/2 -1/2 -1/2 —258.7276 —5.1306 —263.8582
-1/2 1/2 -1/2 1/2 —258.5781 —2.8063 —261.3844
-1/2 312 -1/2 312 —258.4285 —0.4820 —258.9105
+1/2 -3/2 +1/2 -3/2 —258.4285 —0.4820 —258.9105
+1/2 -1/2 +1/2 -1/2 —258.5781 —2.8063 —261.3844
+1/2 112 +1/2 112 —258.7276 —5.1306 —263.8582
+1/2 312 +1/2 312 —258.8772 —7.4549 —266.3321

Nondiagonak'm, M ¢|Hm’,M.) matrix elements, cmt

-1/2 3/2 +1/2 1/2 +3.7936 —0.2783 +3.5153
—1/2 1/2 +1/2 -1/2 +4.3805 —0.3214 +4.0591
-1/2 -1/2 +1/2 -3/2 +3.7936 —0.2783 +3.5153
+1/2 —3/2 -1/2 -1/2 +3.7936 —0.2783 +3.5153
+1/2 -1/2 -1/2 1/2 +4.3805 —0.3214 +4.0591
+1/2 1/2 -1/2 3/2 +3.7936 —0.2783 +3.5153
Exchange parameters, ch? Ag=—258.6528 Ao=—3.9685 Ao=—262.6203
J,=—0.2991 J,=—4.6486 J,=—4.9477
J, =+4.3805 J,=-0.3214 J,=+4.0591

#The sign of], andJ, corresponds to the true sign of the exchange paramgter8 (antiferromagneticandJ, >0 (ferromagnetiy, see the
text for details.

is antiparallel to its magnetic momentym Therefore, since «B CT states. The dependence of the contributionk, tand
actual ferromagnetic and antiferromagnetic interactions refed, from the 4f'%3d* and 4f14-3d? configurations on the CT
to the parallel and antiparallel orientations of the magnetienergies is shown in Fig. 5. The contributionsJtoand J,
moments on YB" and CP* ions, the formal sign of the from the 4/'23d* configuration are not proportional to
exchange parameteds andJ, corresponding to the orien- y (A—B) !, especially for theJ, parameters, which
tation of the effective spin of Y& and the true spin of & changes the sign from ferro- to antiferromagnetic around 8
should be reversed. Alternatively, the negative sign at the,, [Fig. 5a)]
exchange parameterg,(andJ,) in the spin Hamiltonian These contributions show quite different behavior: the
should be changed to the positive sign; we have done so igyninytion from the 41%3d* configuration corresponds to
the spin Hamiltonian(33) in order to follow the usual sing an almost purely ferromagneti€Y spin Hamiltonian[J
convention. Thus, the positive exchange parameter corre- 0 andJ, >|J,|, Fig. 5], while the contribution from tLhe
sponds now to the antiparallel orientation of the spins 04f14_3dzi f.Z’ t" o ¢ Imost tifer-
Yb3* and CF* and to the parallel orientation of their mag- contiguration gives rise fo an aimost pure antrier
netic moments(and vice versa for the negative exchange'©Magnetic Ising-like interactiop),<0 and|J,[>J. |, Fig.
parameter 5(b)]. In particular, at the_ CT energiddo(A—B)=10 el/
Note that, in accordance with tH@,, symmetry of the @nd Uo(A<B)=5eV estimated above for a Yb-Cr’
YbCrBr,3~ model dimer, the spin Hamiltonia ¢ (33) has ~ Pair, the exchange parameters aky=—262.62, J,
the axial symmetry. In particular, the Dzyaloshinskii-Moriya = —4.95, andJ, = +4.06 cm * (with the separate contribu-
antisymmetric termA[Sy,X Sg,] is vanishing in the spin tions Ag=—258.65,J,=—0.30,J, = +4.38 cn1 * from the
Hamiltonian (33), being consistent with the symmetry con- 4f12.3d* configuration andA,=—3.97, J,=—4.65, J,

dition A=0 for theCy, group?® The parameteA, includes =—0.32 cm ! from the 4f'*-3d? configuration, Table IV.
spin-independent contributions to the total energy of the systhese are well consistent with the experimental exchange
tem from 4 —3d and 4« 3d electron transfers, whild,  parameters of YbCrB¢~, J,=-5.16 and J,

and J, describe spin-dependent contributions. Using Eq.=-+4.19 cm !, obtained from inelastic neutron scattering
(34) and the sets of thém,M¢|H¢m’,M{) matrix elements experiment£® Quantitatively, this coincidence should not be
obtained at various CT energieddo(A—B) and Ug(A  overemphasized, since a very idealized structural model was
—B), we calculated they, J,, andJ, exchange param- assumed for the YbCrB¥~ dimer and a number of approxi-
eters and the separate contributions from he B and A mations were used in the spin-Hamiltonian calculations.

014424-14
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FIG. 5. The variation of the contributions to tlle andJ, ex-
change parameters from thé*4-3d* and 4f'4-3d? configurations

PHYSICAL REVIEW B 67, 014424 (2003

C. Contributions to the exchange parameters
from individual CT states

In this section we will show that the regularities observed
from numerical calculations are not accidental and, more-
over, not specific to the matrix elements of the effective ex-
change Hamiltonian for the YbCrB¥~ dimer. In particular,
the same regularities show up InM"* (Ln®"=Cé*",
Yb3"; M"*=Cr*, Mn?", and NF*) corner-sharing bioc-
tahedral dimers of th€,, symmetry®® Actually, the rela-
tions (31) and(32) originate from general dependence of the
(M,Mg|Hag|Epo(A—B;S'"M")) matrix elements on the
spin projectionM at the 31 ion and from selection rules for
matrix elements related to the symmetry of tHe3d dimer.
Here we outline the underlying reason for their origin.

Since the®,(3d™;SM,) ground state of the basic con-
figurations of the transition metal cent@r( 4Azg state in the
case of the G ion) is connected to thd,(3d""1;S'M")

CT states via the ##—3d transfer of one electron, non-zero
matrix elements(m,Mg/Hap|Z,q(A—B;S'"M")) can only
appear ifS'=S+3 and M'=M * 3. One more selection
rule is related to the transformational properties of the wave
functions|m,My) andE ,4(A—B;S'M") with respect to ro-
tations by the angles= +27/3 around theC; axis of the
YbCrBry®~ dimer. Consider the transformation properties of
the spin and orbital components of these wave functions. As
noted above, thél's—3) and |T's+3) wave functions of
Yb3* transform similar to the components of the true spin
S=3, ITe—2)—e '#Ils—3) and [Tg+3)—€*?lg
+3). The orbitally nondegenerate wave function
®o(3dM;SMy)) of Cr" transforms similar to the
ISMg)  spin  wave  function, ®y(3d™;SM,))
—eMsed(3dM;SM,)). Therefore|m,M,) is multiplied by
e'(M*M9¢ ypon the rotation. In theC,, group, the orbital
part of the= ,4(A—B;S'M") CT wave function can trans-
form either as the angular momentum=0 [if E,4(A
—B;S'M’) belongs to théA; or A, irreducible representa-
tion] or L=1 with the projectiondM = =1 (for the E rep-
resentatioly below these cases are denoted Agq(A
—B;S'M’)eM_ =0 and =1, respectively. Since the spin
part of 4(A—B;S'M’) transforms ag& ,(A—B;S'M’)
—eM = (A—-B;S'M'), the E,(A—B;S'M’) wave
functions multiplies bye'(=m*M")¢ ypon the rotation. For the
matrix element(m,M¢Hag|E ,((A—B;S'M’)) to be in-
variant, the phase factors of its two wave functions should
coincide, i.e.,m+M =M +M’. Therefore, the selection

of conditions

with increasing theJ(A—B) andUy(A—B) CT energies.

However, these results clearly indicate that the kinetic ex-
change mechanism is adequate to the description of the spin
coupling between lanthanide and transition metal ions in in-
sulators and the model developed above can provide a con-
sistent quantitative analysis of thé-8d superexchange in-
teractions in really existing lanthanide compounds. Below
we analyze this mechanism in more detail.

014424-15
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according to which different cases are possible. ConsideThe situation is different, wherg,(A—B;S'M')eM_

first the case o8’ =S—3.
At fixed orbital indexesp and q of the E,4(A

==*1 (i.e., when the orbital part belongs to tkerepresen-
tation); again, thequ(A—>B;S’ —M") wave function corre-

—>B,S’ M /) CT states, there are four Situations, in which theSpondS to a CT state with the same energy but has the oppo-

dependence of nonzero matrix elementshbgis given by
(a) S'=S—3,M'=M.+3, and Epg(A—=B;S'M")eM
:O,

<+%,Ms|HAB|qu(A—>B:S'M’))=A(|0,Q)VS—M5,( ,
36

(b) S'=S—%,M'=M¢—%, and E,((A—B;S'M")eM_

:0,
(—3.M{HaglEpq(A—B;S'M"))=B(p,q) VS+ M,
(37
(c) S'=S—3,M'=Ms+3, and E,((A—B;S'M')eM,
=+1;
<_%’MS|HAB|qu(A_’B;SIM,)>:C(prQ)VS_Msv
(38
(d) §'=S—3,M'=Ms—3, and E,((A—B;S'M")eM_
:—1;
<+%1MS|MAB|qu(A_’B;S,M’)>:D(p1q)\/S+Msi )
39

Note that the factor&\(p,q), B(p,q), C(p,q), andD(p,q)

site sign of the projection of the quasimomentuvh .
Therefore, the wave functiol o (A—B;S'M')=E] (A
—B;S'M’) (whose orbital indexes are denoted pYy and

q’) and the original wave functio ,(A—B;S'M’) de-
scribes two individual states of the same doubly degenerate
CT level of theE representation. Thus we obtain

C(p,q)==D(p’.q"). (42)

From EQgs.(36)—(42) we can determine the contributions to
the Ay, J,, andJ, exchange parameters from individual CT
states. For instance, according to E26), in the casda) the
contribution from theE,4(A—B;S'M’) CT state to the
(+3,MHegl+1/2 M) diagonal matrix element is given by

A(p,q)®
—W(S—Ms)- (43)
According to Eqs(37) and(41), the same CT state contrib-
utes also to the —3,M¢Hqs—3,My) diagonal matrix ele-
ments

2
-~ Apar (S+My).

Epq(A—B) (44)

Therefore, the contribution from th& ,(A—B;S'M") CT
state withM | =0 (A; or A, representation of th€s, group
to the (m,M¢|Hq4mMs) diagonal matrix elements can be

are independent oMy or M'. These regularities can be written as

obtained from direct calculations of ten,M|Hag| Z (A

—B;S'M’)) matrix elements taking into account the usual
functions

relationships  between the spin wave
D o(3d;SM) andd,(3dM*1;S'"M") of the 3d center with

different spin projection g andM'. In addition, the factors
A(p,q), B(p,q), C(p,q) and D(p,q) are related to each

other by the time-reversal symmetry
<+%1MS|HAB|qu(A—>B;S’M ,)>

=*(—3,—MyHagl Eo(A—B;S' =M ")),

E g (40

wherequ(A—> B;S'—M/') is a wave function resulted from

the action of the time-reversal operatdy E;q(A—>B;S’

—M")=TE,((A—B;S'M’); the plus or minus sign in Eq.

x(p,q) +y(p,q)mMs, (49
wherex(p,q) andy(p,q) are given by
A(p,9)°
A= 57 S, 46
(PO="g g (462
2 2
A(p.q) (46b

Y(pr):er,

where E,((A—B) is the energy of the CT state. The term
x(p,q) corresponds to the contribution to the spin-
independent partA,; it is always negative. The term

(40) is chosen according to the orbital part of the wave funcY(P,Q)MMs corresponds to the,S(,S¢, operator in the
tion = ,4(A—B;S'M’). Due to the time-reversal symmetry, Has-3a Spin Hamiltonian of the #3d pair [Eq. (33] and
the 2T (A—B;S'—M’') wave function is an eigenvector of thusy(p.q) represents the contribution to tfj@ exchange
the Hamiltonian of the dimer, that corresponds to a CT stat@@rameter; note that for the,(A—B;S'"M’) CT states

with the same energ¥,,(A—B) as that of the original
Epq(A—B;S'M’) state. In the case, wherE (A
—B;S'M’)eM_ =0, the wave functionZ] (A—B;S
—M’) coincides with= ,(A—B;S’'—M") within the phase

factor and thus describes the same CT state. Then we havi

B(p.q)=*A(p.q). (41)

with M =0; it is always positive(i.e., antiferromagnetic

with respect to the spin orientation, and ferromagnetic with

respect to the magnetic momentum orientation, see ablive

is important that these CT states contribute to the nondiago-
al  matrix elements (+3,MgHg—3Ms+1) and
—3,M/Hei|+3.Ms—1) as well. Taking into account Egs.

(36), (37), and(41), we have
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A(p,q)? ) )
£ J(S—My)(S+ Mg+ 1)=(+ 2, Mg[Hey| — 3, Mg+ 1), (4739
qu(A—>B)
A(p,q)?
im V(S+M(S—Mg+1)=(—3,M¢[Hee| + 3, Ms—1). (47b)
These contributions can be rewritten as
2(p,q)[3/4—m(m—1)][S(S+1) —Mg(Ms+ 1) J=(m,M|Meglm—1Mg+1), (483
z(p,q)\/[3/4—m(m+1)][S(S+1)—MS(MS— 1) ]=(MM¢Hegm+1Ms—1), (48b)
I
where (b') S'=S+3,M'=Ms—3, and E,(A—B;S'M’)
A(p,q)? eM_=0;
z(p,Q)=F———. 49

. . (= 3.M{HaglEpq(A—B;S'M'))=B1(p,q) VS—Ms+1,
As pointed out above, Eq$32) and(33), these nondiagonal (54
matrix elements just correspond to the spin operator

(c') S'=S+3,M'=Mg+3, and E,4(A—B;S'M’)

J N
o (SiySort SiSe) =D, (SyySit St (50 M =+1;

Therefore, the quantity Zp,q) represents the contribution {—2,Ms/Hag|Epg(A—B;S'M'))=Cy(p,q)VS+M+1,
from the E ,o(A—B;S'M’) CT states wittM, =0 to theJ, (55
exchange parameter. el e 1 onar 1 — iy
Consider now the contributions from the (A (d) §'=5+32,M"=Ms—3, and Z,(A—B;S'M")
—B;S'M’) CT states withM| = *=1, the cases$c) and (d). eM =-1;
Combining two contributiong38) and (39) from the M
=1 and M =—-1 CT states and taking into account Eq. <+%,M5|HAB|qu(A—>B;S'M'))ZDl(P,Q)\/m-
(42), we obtain the contribution to the diagonal matrix ele- (56)

ment As in cases(a)—(d), Egs. (36)—(39), the factorsA;(p,q),
B1(p.a), Ci(p,q), and Dy(p.q) are related byA(p,q)
X1(p,q)+ ,q)mMg, 51 1 1 1 1
1P+ Ya(p.a)mMMs 6y +B,(p,q) andC(p’,q')==D,(p,q). The contributions
where to J, andJ, are very similar to those in the previous case of
5 S'=S—1 except that the signs of the contributions ip
%4 (o) = — C(p,a) s (529 Tom CT states wittM_ =0 andM =+ 1 are now opposite.
1p.q Epq(A—B) In other words, in cases (rand (B) the contribution taJ,
is antiferromagnetic
2C(p,q)*
= +
VPO = = E A gy (52b) X2(P, &) +Y2(p,A)MMs=(m,MHeglm,Mg), (573
2
This means that, in contrast to CT states with =0, the Xo(D, Q) = — A1(p.q) (S+1), (57b
contributions toJ, from E,4(A—B;S'M’) CT states with Epq(A—B)
M_==1 are always negativeantiferromagnetic It is also )
important, that these CT states give no contribution to the _ 2A4(p,9) (570
nondiagonal matrix elements and thus to the exchange y2(p,d)= Epq(A—B)’ ¢
parameter. o . :
Now we turn to the case ' =S+ L. Again, there are while in the cases (¢ and (d) it is ferromagnetic
four types of contributions Xs(P, Q) +Y3(P,A)MMs=(m,My[Heglm, M), (583
’ r_ 1 r_— 1 = _RY ’
(@) §'=S+3M'=Ms+3, and E,((A—B;S'M’) (b — C4(p,q)? se1) -
eM_=0; APV=TE (A—B) '
2
(+3.MHag|Zpq(A—B;S' M) =As(p,q) VS+ M+ 1, _, 2Cpa)”
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The contribution toJ, in the cases (3 and (B) is quite  energies larger than 123000 cha value about 1.5 times
similar to that in the caseg) and (b) for the spinS'=S larger than the CT energy gaj,(A—B)=80650 cm* (10

— 1 and is given by eV). We can therefore conclude, that the total balance of
contributions toJ, andJ, is very sensitive to the CT ener-
2C,(p,q)? gies. This implies, in particular, that the widely used approxi-
+ (590  mation, according to which all CT states are assumed to have

= .
Epa(A—B) the constant energy, can lead to considerable errors for

_ 4f-3d exchange systems. Indeed, calculations with constant
Depending on the angular part &,4(A—B;S'M") CT  CT energies Epq(A—B)=10eV and E,;(A—B)=5eV
wave functions withM =0, these contributions can be both yjeld J,= —2.36,J, =—0.16 cm * for the 4f'%3d* con-
ferro- and antiferromagnetic. figuration and J,=-4.71, J,=-0.33cm ! for the

Contributions from the CT states of thef™™!-3d""* 414342 configuration. The total result,=—7.07, J,

configuration are treated similarly. These results show why_ _ 5 49 cni? differs greatly from the above result obtained
the spin Hamiltonian describing the ¥b-Cr** superex- v actual CT energies,), = —4.95, J, = +4.06 cnt !
2 .95, .

change in the YbCr%E dimer is strictly b|||near' with re- (Table 1V). Although the strong exchange anisotropy retains,
spe(_:t 105y, and S, spin operators, and why no higher pow- the ratio betweerd, andJ, parameters becomes quite dif-
ers InSr appear. ferent: the parametel, reduces dramatically and reverses
the sign in going from the actual to constant CT energies.
D. Analysis of contributions from CT st?’ates. to the exchange Interestingly that, although the two contributions g,
parameters of the YbCrBro™™ dimer andJ, from the group of degenerate CT states with the same
It is of interest to analyze quantitatively the balance ofenergy correlate to each other, they are far from being simply
contributions from individual states of thef%-3d* and  proportional, Table V. This is consistent with the conclusions
4f14.3d? configurations to the exchange parametesJ,, of the previous paragraph. A very large negative value of the
andJ, . This cannot be done analytically due to a very largespin-independent paramet&y (Table 1V) can also be ratio-
number of CT states and a complicated orbital compositiomalized in terms of Eqg36)—(58). Indeed, according to Egs.
of their many-electron wave functions. Contributions from (46), (52), and(57), each individual CF state contributing to
the 4f12'3d4. configuration to the exchange paramet8ys the J, parameter gives a comparable contributio\tg the
andJ, obtained from numerical calculations &(A—B)  |atter is always negative while the contributionstphave

=10eV are given in Table V in the order of increasing en-gjfterent signs and thus they almost cancel each other, as can
ergy of CT states. Since the total number of individual con-, seen from Table V.

tributions is too larggseveral thousangisthe contributions 2S+11. 4 ; ;

from the 4f2-3d* CT configuration are summed over mul- 3EOf the I'i states of the &" configuration, only°E,
tiply degenerate levels of theE,,(A—B;S'M’)

=V, (4f)@d,(3d*S'M’) states originating from various
combinations the 2+ 1-fold degeneratéS™1L; multiplets
of the 4f12 configuration of ytterbium and those of the

g» and 3Tlg states are contributive to the exchange pa-
rameters; in Fig. 4 they are enumerated and marked by star.
By contrast, all>S*1L; states of the #'2 configuration of
ytterbium are contributive. The distribution of the contribu-
2S+11. CF levels of the 8* configuration of chromiunrep- tions to theJ, andJ, exchange parameters over the energy
resentled by?S*1A,, and 25*1A,. orbital singlets,?S*E levels of the 412 and &* configurations are presented in
19 29 gets, 9 bles VI and VII. Th I ch f the distributi
doublets, and25+1Tlg and zs+1ng triplets). Tables VI an . The general character of the distribution

A complicated interplay between numerous contributiondS guite different for 4 and 3 states: while even high-lying
can be seen from Table V. These contributions differ considmMultiplets of the 42 configuration(such as thé’P, multip-
erably in magnitude and have opposite signs. It is importaniet at 38 000 crii') may give considerable contributionsdp
to note that the absolute value of some individual contribu-and J, , the main fraction of the total contribution to the
tions is comparable to or even larger than the net exchangexchange parameters originate from the low-lyifigy 'T;
parameters), and J, ; this is especially true for the small states of the 8* configuration. This observation can serve as
parameter],. These data show that in the general case th& good illustration of the well-known fact that the correlation
sign of exchange parameters cannot be rationalized in effects in the open #shell are generally more pronounced
simple way, since it is a result of a complicated competitionthan those in the @ shell due to a small radial extension of
between numerous ferromagnetic and antiferromagnetic corihe 4f states and their large orbital momentum.
tributions coming from various CT states, whose energies With the 4f“3d? CT configuration we are in a much
can differ considerably from each other. It is interesting thatmore comfortable situation because the ytterbium center has
the main contribution td, or J, does not originate from one the closed 4 shell. This means that the energy structure of
or few low-lying CT states, but many CT states contribute tothis CT configuration coincides with that of the®3configu-
the net exchange parameters. Even high-lying CT states givation of the chromium center. This fact can be used to illus-
large contributions, such as tH¢6®3Tlg(1) state lying at trate the microscopic origin of the exchange anisotropy in
120000 cm* [i.e., about 5 eV above the CT energy gap of more detail. Table VIII shows that the contributionsltcand
Uo(A—B)=10 eV]. Table V show, that the sum of contri- J, come only from the two triplet states of the3configu-
butions approaches to the net exchange parameter only foation 3Tlg(l) and 3Tlg(Z).
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TABLE V. Contributions to the], andJ, exchange parameters from t&&,,(A—B;S'M') =W (4f'?) @ ®(3d*;S'M’) individual
states of the #%3d* CT configuration in the YbCrgf dimer. All energies are given in cm.

V(4 @D, (3d*) CT stated

Yb 412 Cr 4d* b Contributions to thel, andJ, parameters
Epq(A—B)

2s+1|_J Ep(25+lLJ) 2s+11~i Eq(28+lri) sz E 3, Jld 2 3 e

*He 0 °E, 0 80650 —0.491 —0.491 -2.451 —2.451
3He 0 3T14(1) 4772 85422 +11.021 +10.530 +24.233 +21.782
5k, 5610 °Eq 0 86260 +0.775 +11.304 +0.072 +21.854
SH, 8188 °Eq 0 88838 +0.091 +11.395 +0.705 +22.559
5k, 5610 3T14(1) 4772 91031 —-8.134 +3.261 —-1.851 +20.708
*H, 12518 °E, 0 93168 —0.598 +2.663 —0.645 +20.063
SH, 8188 3T14(1) 4772 93609 -3.977 -1.314 —7.943 +12.120
3F, 14308 °E,q 0 94958 +0.975 -0.338 +0.229 +12.350
Sk, 14914 °Eq 0 95564 —0.544 —0.883 +0.742 +13.092
3He 0 3E4(1) 15476 96126 +0.258 —-0.624 +1.290 +14.382
3H, 12518 3T14(1) 4772 97940 +4.416 +3.829 +4.263 +18.730
3k, 14308 3T14(1) 4772 99729 —2.336 +1.493 +3.330 +22.060
SF, 14914 3T14(1) 4772 100336 +1.044 +2.538 —8.908 +13.152
°F, 5610 3E4(1) 15476 101735 -0.412 +2.126 —0.038 +13.114
SHe 0 3E4(2) 21118 101768 +0.144 +2.270 +0.721 +13.834
G, 21172 °E,q 0 101822 +0.072 +2.342 —-0.038 +13.796
3H, 8188 Eq4(1) 15476 104313 —0.049 +2.265 -0.377 +13.412
SHg 0 3T14(3) 25907 106557 +0.075 +2.326 +0.165 +13.550
G, 21172 3T14(1) 4772 106594 —0.501 +1.825 +0.258 +13.809
°F, 5610 *Eq(2) 21118 107378 -0.231 +1.594 —-0.021 +13.787
D, 27830 °Eq 0 108480 —0.899 +0.696 +0.298 +14.085
H, 12518 Eq4(1) 15476 108644 +0.322 +1.017 +0.347 +14.432
SH, 8188 3E4(2) 21118 109956 —0.027 +1.006 -0.211 +14.236
3F, 14308 3E4(1) 15476 110433 —0.526 +0.480 —-0.124 +14.112
°F, 14914 Eq(1) 15476 111040 +0.294 +0.774 —0.401 +13.711
D, 27830 3T14(1) 4772 113251 +6.288 +7.001 —2.309 +11.370
H, 12518 Eq4(2) 21118 114286 +0.181 +7.182 +0.195 +11.568
Y 34684 °Eq 0 115334 +0.983 +8.138 +0.865 +12.378
3F, 14308 3E4(2) 21118 116076 —0.296 +7.842 —0.069 +12.309
°F, 14914 3Eq4(2) 21118 116682 +0.165 +8.043 -0.225 +12.083
3P, 36096 °E,q 0 116746 +0.170 +8.213 +0.104 +12.187
P, 37991 °E, 0 118641 —0.367 +7.810 -0.373 +11.847
e 34684 3T14(1) 4772 120106 —9.006 —1.166 -8.132 +3.745
3P, 35435 3T14(1) 4772 120857 —-0.242 —1.408 -0.017 +3.728
3P, 36096 3T14(1) 4772 121517 —1.258 —2.675 —0.748 +2.941
3p, 37991 3T14(1) 4772 123413 +2.479 -0.221 +2.253 +5.204
D, 27830 3E4(1) 15476 123955 +0.493 +0.272 —0.164 +5.040
He 0 3T14(6) 46050 126700 +0.151 +0.443 +0.331 +5.361
D, 27830 3E4(2) 21118 129598 +0.279 +0.718 —0.093 +5.268
Ye 34684 3Eq4(1) 15476 130810 —0.544 +0.177 —0.478 +4.792
3k, 5610 3T14(6) 46050 132309 -0.113 -0.083 —-0.026 +4.677
SHg 0 3T14(7) 52264 132914 +0.061 —0.023 +0.133 +4.810
°p, 37991 3E4(1) 15476 134117 +0.204 +0.175 +0.207 +5.014
3H, 8188 3T 14(6) 46050 134887 —0.056 +0.165 -0.112 +4.886
e 34684 Eq4(2) 21118 136452 —-0.308 -0.134 -0.271 +4.623
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TABLE V. (Continued).

V(4@ d4(3d*) CT stated

Yb 412 Cr 4d* b Contributions to thel, andJ, parameters
Ep(A—B)
ZS+1LJ Ep(25+1LJ) ZSJrll'*i Eq(25+lri) sz E Jze ‘]Ld z JL e
°p, 37991 Eq4(2) 21118 139759 +0.116 —0.066 +0.117 +4.758
5k, 14914 3T14(6) 46050 141614 +0.015 -0.171 -0.128 +4.573
p, 27830 3T 14(6) 46050 154530 +0.093 —0.066 —0.034 +4.541
e 34684 5T14(6) 46050 161384 -0.136 —-0.148 -0.122 +4.406
is, 79390 3T14(1) 4772 164812 -0.100 -0.233 -0.007 +4.421
Total: J,=—0.299 J,=+4.381

&Contributions to theJ, and J, exchange parameters are summed over multiply degeneggig A—B;S'M ’)=\pr(4f12)
®®d4(3d*;S'"M’) CT states originating from various combinations thket2L-fold degeneraté>* 'L ; multiplets of the 42 configuration
of Yb and #5*'T'; crystal-field levels {E, °E,, or ®Tyg) of the 3d* configuration of Cr.

PE o(A—B)=Ugy(A—B)+E,(>5"1L;) + E4(*5"'T;), whereUo(A—B)=80650 cni* (10 eV).

“The sign ofJ, andJ, corresponds to the true sign of the exchange parameteesthe text for detail

dContributions, in which botd, andJ, are less than 0.1 cif are not shown.

®The sum of contributions td, andJ, parameters from the CT states with the energy less than or eqég|,td— B).

The main contribution originates from the ground V2
’T14(1) state, and a considerably smaller contribution 5 {Del(dza,dia,doar)—Det(doa,d-sa,d_pa)}
comes from the excitedT 1¢(2) state(marked by star in Fig.
4) lying at 21 049 cm*® above the ground state. Note that the 2 1
contributions tal, andJ, originate from different individual + §Det(d2avd0“’d—2“) + 3 Det(d;a,doa,d_;a),
states of the ground triply degenerai’félg level, which are
also shown in Table VIII. It is interesting to compare the
wave function(30) of the ground®A,, state of C#*(3d)  and the wave functions of the triply degenerdigq(1,M,)
ion ground state of G (3d?) ion (whereM | =0,=1 is the pro-

TABLE VI. The distribution of contributions to thé, andJ, exchange parameters over the 1L ; multiplets of the 42 configuration
of Yb (the contributions for the giveRS" L ; multiplet of the 42 configuration of ytterbium are summed ov&tr™T; states of the 8*
configuration of chromiur All energies are given in cit.

2S5+ 1L E(2$+1L ) J 2 Jza J E *]L a
J J z L
SHg 0 +11.263 +11.263 +24.520 +24.520
5F, 5610 —-8.251 +3.012 —1.895 +22.625
Hs 8188 —4.084 -1.072 —8.070 +14.555
3H, 12518 +4.458 +3.386 +4.293 +18.848
°F,q 14308 —2.257 +1.129 +3.470 +22.318
°F, 14914 +0.993 +2.122 -9.071 +13.247
G, 21172 —0.507 +1.615 +0.261 +13.508
D, 27830 +6.365 +7.980 —2.341 +11.167
e 34684 —9.169 —1.189 —-8.282 +2.885
%P, 35435 —0.245 —1.434 -0.017 +2.868
5P, 36096 -1.277 -2.711 —0.758 +2.110
p, 37991 +2.513 —-0.198 +2.278 +4.388
s, 79390 —-0.101 —0.299 —-0.007 +4.381
Total: J,=—0.299 J, =+4.381

@The sum of contributions td, andJ, parameters from théS*L; multiplets with the energy less than or equalB¢S*1L ;).
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TABLE VII. The distribution of contributions to thd, andJ, exchange parameters over the 'I'; states of the 8* configuration of
chromium(the contributions for the givef®"T"; energy level of the 8* configuration of chromium are summed over 8% 1L ; multiplets
of the 4f*? configuration of ytterbium All energies are given in cnt.

b b
25+1Fi E(25+11-i) ‘JZ 2 ‘JZ ‘]J_ 2 ‘JL
SE, 0 +0.2172 +0.2172 —0.4903 —0.4903
T14(1) 4772 —0.3053 -0.0881 +4.4241 +3.9339
E4(1) 15476 -0.1208 —0.2089 +0.2251 +4.1589
T14(2) 16286 -0.0016 -0.2105 +0.0138 +4.1727
E4(2) 21118 —0.0686 -0.2791 +0.1201 +4.2928
3T 14(3) 25907 —0.0040 —-0.2832 +0.0252 +4.3181
3T14(4) 28901 —0.00002 —~0.2832 +0.00005 +4.3181
3E4(3) 32706 —0.0003 —0.2835 +0.0005 +4.3186
T14(5) 36521 —0.0003 —0.2838 +0.0015 +4.3201
3T14(6) 46050 -0.0107 —0.2945 +0.0436 +4.3637
3T14(7) 52264 —0.0046 —0.2991 +0.0169 +4.3806

Total® J,=—0.2991 J, =+4.3806

@The sum of contributions td, andJ, parameters from thé5"1I"; energy levels with the energy less than or equaE (6" 'T';).
®The sign ofJ, andJ, corresponds to the true sign of the exchange parameteesthe text for detail

jection of the quasimomentunh=1) in the octahedral The ground3Tl (1) level of C#*(3d?) is predominantly
ligand surrounding (96%) represented by thetjg)2 configuration, which differs

by onet,q electron from the puretg, )3 configuration of the
3 —0)= _ 9
T1g(1M=0)=0.51(Det(d,,d; ) — Det(dya,d )} 4A2 ground level of Ct* (3d3). Since the orbital part of the

+0.517Detd,a,d_,a) Tlg(l M) state transforms as the momentuins-1 with
the projectionM | upon rotations around th&; axis by the
+0.462Detd ¢, d_ 1), (608  angles*2/3, in accordance to the rules established above,

Egs.(46), (50), and(52), only the 3Tlg(l,M L =0) state con-

3 — —
T1g(1M =—1)=0.144Detd,a,d_a) tribute to theJ, exchange parameter while contributions to

+0.448Detdoar,d_;a) ‘;Z come from both the T1 (1M =0) state and
T1g(1LM =*1) stategTable VIII)
+0.882Detd,a,dga), (60b) This comparison between the orbital composition of the
3 |Tsm) wave functions(29) and that of the wave functions
T1g(LM=+1)=-0.144Detdza,d 1) (30) and (60) is helpful in elucidating the origin of thd,
—0.448Detd, «,dga) exchange parameter and its sign. According to Table VIII,

the 3T14(1M_ =—1) and *T,((1M_ = +1) states give the
+0.882Detdg,d_,). (600  largest contribution td,. In the C5, group they refer to the
TABLE VIIl. Contributions to thel, andJ, exchange parameters from tHg (A—B) =V (4f% ® & (3d?) states of the #4-3d? CT

configuration in the YbCr@r’ dimer[since the ytterbium center has thé'4closed-shell configuration represented by the only state, the
indexr at 2,{(A—B) ="V, (4f*) @ d(3d?) can be omittell All energies are given in ciit.

¥, (4% @ d(3d?) CT states

Cr 4d? a Contributions to the), andJ, parametef’s
E,s(A—B)
2S+ lFi ES(ZS+ 1Fi) ‘]Z 2 ‘]Z ¢ ‘]L E ‘]LC
3Tlg(l,ML:O) 0 40325 +0.3125 +0.3125 —0.3125 -0.3125
3Tlg(l,ML= +1) 0 40325 —4.8323 —4.5198 0 -0.3125
3Tlg(Z,M L=0) 21049 61384 +0.0088 -4.5110 —0.0088 -0.3213
3Tlg(2,ML: +1) 21049 61384 —0.1376 —4.6486 0 -0.3213
Total: J,= —4.6486 J, =-0.3213

3 (A—B)=Uq(A—B)+E4?S"T";), whereUy(A—B)=40325cm*’ (5 eV).
®The sign ofJ, andJ, corresponds to the true sign of the exchange parameteesthe text for detail
“The sum of contributions td, andJ, parameters from the CT states with the energy less than or eqi&a(Ae—B).
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E representation, cas¢s) and(d) [Egs.(36) and(37)]. The  (+3,3|Hag|(4f) @[3 T14(1 M = +1);M’ =1]) matrix el-
3T14(LM=—1) and3T,4(1,M_= +1) states with the spin ement is the largest one, and thus the statg 3) with the
projection M contribute, respectively, to the—3,M H.;  parallel orientation of the effective spid=3 of Yb3" and
|—3,My) [case(c)] and(+ 3,MHqil+3,My) [case(d)] diag-  true spinS=2 of Cr** (and, respectively, with the antipar-
onal matrix elements. Consider the contribution to the allel orientation of their magnetic momeptsave the lowest
(+3,3|Hes+3.,3) diagonal matrix element coming from the energy among+3;M,) states.

3Tlg(1,ML: +1) state(60¢), which is predominantly pre- Similar analysis show that for théTlg(l,ML=0) state
sented by the Detlyer,d_,a) determinant. This contribution the (+3,MdHag|(4f)&[3T14(1M =0);M’=M¢+1])
refers to the caséc), S'=S—3, M'=Mg—3, andE (A  and (—3,M¢[Hag|(4f*)®[3T15(1M_ =0);M'=M—3])
—B;S'M’)e M =+1[Eqg. (38)]. As can be seen from the matrix elements are nonzero. As can be seen from the orbital
comparison between the composition %Tlg(l,MLerl) composition of the wave functior?Tlg(l,M L.=0), Eq.

and that of the wave functio(80) of the ground"’Azg state (603, an electron can move from thdya orbital only and

of Cr*(3d®, the (+3 3|Hagl(4f")®[3T1o(LM  thus it can arrive at thé,e orbital or f. 3 orbital, which
=+1);S'=1M’'=1]) matrix element originates mainly are represented in the wave functigfig m) (29) with rather

due to the 4+ 3d transfer, in which an electron moves from small weights (/8/54 and\/5/54, respectively As a result,
thed,a or d_,;«a orbital; the transfer from thdya orbital is  these matrix elements are considerably smaller

less important since the coefficient at the RiY,d_;«)

determinant in °T;4(1LM, =+1) [EqQ. (600] is much (+3,5|Hagl(4f*)®[*T1(1M =0);M'=1])

smaller. Thed,« or d_;« orbitals are connected to thé A 11 o

orbital of ytterbium[which is presented with a maximum =(—2, 7 2[Hagl (4T @ [*Ty(1M =0);M "= ~1])

weight of 30/54 in the|1“6,+%> wave function(29)] via the =79.37 cm}, (623
nonzero transfer integrals, andt_,, (Table Ill); in other

wor+ds, an electron moves from tPhla or d,a orbital on (+%,—%lHAB|(4f14)®[3Tlg(1,ML=0):|V|'20]>

Cr* to fill the [4f,a] hole on YB™ and to make the closed - 3

41 shell. Other 4;a«3d;a electron transfers with =(—32,2|Hagl (41 ®[*T14(1M_ =0);M'=0])

i —j=0 or =3 are of minor importance due to much smaller
coefficients at the determinants, which are connected
by these transfers. Numerical values of the
(+3,Mg[Hagl (4 @[3T4(IM = +1);M'=M¢—1])

=112.25 cm?, (62b)

(+3,— 3|Hag|(4f@[3T14(1LM_ =0);M'=—1])

matrix elements are —(—13 HAB|(4fl4)®[3Tlg(laML:O); M’=1])
(+3,5Hasl (4R [PTyg(LM = +1);M'=1]) =137.48 cnil. (620
=—540.65 cm*, (618  Correspondingly, the contributions taJ, from the
3Tlg(l,M L=0) state are considerably smaller than those
(+3.,3|Hagl (4 @[T 14(1LM = +1);M"=0]) from the 3T;4(1M_=—1) and3T;4(1,M = +1) states. In

contrast to the previous case, this contribution is ferromag-
netic being consistent with the cas@s and (b), Egs. (36)
, and(37). Indeed, an electron moves from ttiga orbital of
(+7, = 3[Hasl (4T @[Ty 4(IM = +1);M' = —1]) the *A,4(Ms=3) wave function to thefye or f . za orbital
=-311.97 cm?, (619  Which is contained in thél's — 3) wave function, but is not
contained in the|l'c+3) wave function. Therefore, the
which are proportional ta/S+ Mg (with S=3), as predicted |—3, 3) state with the antiparallel orientations of spi@d
by the Eq.(38), case(c); the matrix element for thé+3, with the parallel orientation of the magnetic momenis
—3| state is zero because tP[[é”Tlg(l,MLzl);M’z—ZD stabilized due to the contribution described by E46),
state does not exist. Similarly for the-3,M¢Hag|(4f%)  while the|+3, 3) state is not stabilized. Note that, in contrast
®[3T14(1 M =—1);M"]) matrix elements, which obey the to the *T;4(1 M =—1) and *T;((1M =+1) states, the
relationships (=3, —Mg|Hag|(4f*)®[3T1o(1M =—1);  3T;4(1M_ =0) state contributes td, . Indeed, since the
—M'1)=(+3,M{[Hag|(4F @[ 3T1o(1LM = +1);M"]). |m,Mg) and|m—1M¢+1) states are connected to the same
From a similar consideration one can also realize thaPTlg(l,ML=0) CT state with the spin projectiokl ' =Mg
the (—3.5|Hapl(4f¥®[*To(ILM =+1);M’']) and +m via the nonzero matrix elements, E¢36) and(37), the
(+3.3Hasl (AT Q[T (LM =—1);M']) matrix ele- (m,M¢Hegm—1M¢+1) nondiagonal matrix elements are
ments are strictly zero. Therefore, according to E§% and  nonzero, which are directly related to the parameter, Egs.
(52), the contribution from the 3Tlg(1,ML= —1) and (47)—(50).
3Tlg(1,M,_= +1) states to the exchange spin Hamiltonian is The analysis of contributions from the excitéﬁl‘lg(Z)
given by Xx:(p,q)+Vyi(p,g9mMg, where vy,(p,q) level at 21049 cm! is quite similar to that for the ground
=—4.8323 cm ! is the contribution ta), determined by Eq. 3Tlg(l) level. However, since this state is predominantly
(52b) (Table VIII). The antiferromagnetic sign o, is  represented by the {;e4) configuration, its contribution al-
clearly seen from Eq.(61), which shows that the most vanishes due to the orthogonalitytgf ande,3d or-

=—441.43 cm?, (61b)
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bitals centered on the & ion; some nonzero contributions Which is specially adapted for an adequate description of a
arise because of a sma#ibout 4% admixture of the (,5)>  complicated electronic structure of lanthanide ions in solids
configuration(Table VIII). and for a direct calculation of thef43d exchange param-
Our results indicate that thef43d superexchange inter- eters. The spin Hamiltonian of the Yb-Cr" superex-

action may be strongly anisotropic even if the CF anisotropychange interaction obtained from numerical parametric cal-
of the exchange-coupled magnetic ions is completely vanisheulations is found to be extremely anisotropitl;.sq
ing. Indeed, the exchange spin Hamiltontgy 34 [EQ.(33)]  =J,82, S2 +J, (X, S5+ X, SL), in which the exchange
of the YbCrBg®~ dimer is extremely anisotropign which parameters have opposite signk<0 andJ, >0) in the
theJZI andJ, exchange parameters even have oppc.)site.)signgvhme range of CT energie&ig. 5. The exchange param-
despite the fact thﬁ\t thEg ground_state of the \rad_lon iN " etersd,=—4.95 andJ, = +4.06 cm ! calculated at the CT
the regular YbBg® . octahedron |ssm§gnet|cally isotropic. energiesUy(A—B)=10 andUy(A—B)=5 eV (estimated
The same is _especgal_ly true for the®Crion, Whose_ground- from the redox potentials for Y and CP* ions) are very
??:ﬁot?gﬁl;pdr?i%’:fz |sﬂa ?Ootd quantum n_l#_mlzﬁlr:f;? the f close to the experimental exchange parameteks

P pling for & electrons or zero-Neld SPAting o _ _ 5 16 cmrt and J, =+4.19 cn1.?® This indicates that

the 4A29 ground state were not taken into account in OUlhe kinetic exchange theory is an adequate approach to the
approach We can therefore conclude that, although it is 9 y q pp

commonly believed in the literature that the exchange anisot(-jescr.'.ptIon of ex_change Interactions between Ianthamde and
transition metal ions in nonmetallic compounds, which can

ropy in lanthanide compounds is closely related to the single=

ion magnetic anisotropy of lanthanide ions, strong exchang@ccount for both the absolute value of the exchange param-
anisotropy is an immanent property of thé-3d superex- eters an_d th_e degree of thé-8d exchange anisotropy.
change interaction, which is not necessarily related to the CF Contributions to the exchange parameters from numerous
anisotropy. Similar results were previously obtained for otheindividual state of the #%3d* and 4f'%-3d* CT configura-
lanthanide exchange-coupled pairs, such as"M"*L,, tions have been analyzed in detail and important regularities
bioctadedral corner-sharing model dimefahere Lri* have been established. In particulaf,—43d and 4f«<3d
=Ce* or YP**, M"=Cr*, Mn?*, or Ni#*)*® or biocta- ~ €lectron transfers give rise to a quite different types of the
dedral corner-and edge-sharifity f* dimers® However, in  €xchange anisotropy: the contribution from the43d* CT
4f-3d dimers with a lower symmetry of the ligand surround- configuration corresponds to an almost pure ferromagnetic
ing around the lanthanide ion, both the exchange anisotrop¥Y spin Hamiltonian, while the contribution from the

and CF anisotropy should be taken in account. 4£14.3d2 CT configuration results in an almost pure Ising-
Although the 4(Br) states give smaller contributions to like antiferromagnetic Hamiltonian. _ _
the transfer integrals than thep@Br) states da(Table 11), Our analysis shows that there is a complicated interplay

their taking into account is important for a correct analysis of€tween numerous contributions to the exchange parameters
4f-3d exchange interactions. Calculations performed withfom individual CT states, which cannot be rationalized in a
various combinations of transfer integrals show thatipe Simple way. The sign of these contributions is different, and
and J, exchange parameters are not additive neither witihe absolute value of separate contributions can be even
respect to the g(Br) and 4s(Br) contributions to the trans- larger than the net exchange parameters. Not only low-lying
fer integrals, nor with respect to and 7 4f-3d superex- ~CT states, but many CT states lying well above the CT en-
change pathways. ergy gap contribute to the exc_hangg parameters. This is es-
In our study we tried to establish general principles of thepec'a”l)g true for the CT states involving high-lying levels of
superexchange interaction between lanthanide and transitidh® 4f* configuration of the ytterbium ion. As a result, the
metal ions and to understand the microscopic origin of dotal balance of contributions is very sensitive to the actual
strong 4-3d superexchange anisotropy. For this reason wé-T €nergies; this implies that the use of a constant average
used a simplified model that includes only the most impor-nergyu for all CT state is a poor approximation foff 4d
tant interactions. In particular, we did not take into account€Xchange pairs. . .
electron transfers from half-fileddgCr) orbitals to empty ~ Symmetry-related selection rules for nonzero contribu-
5d(Yb) orbitals whose influence on the exchange parameter4ons frogn_mghwdual CT states have be_en established for the
may also be importarlf. Further development of thef43d ~ YPCrBre™ dimer of C5, symmetry, which are very helpful
superexchange theory requires more accurate determinirlg rationalizing the sign and the symmetry of separate con-
the key parameters, especially the transfer integrals and cifibutions. In  particular, they account for why the

3 . . . . . .y
energy gaps in exchange systems involving lanthanide ionsf P> -Cr*” exchange spin Hamiltonian is strictly bilinear
with respect to the spiG=3 of CrP*.

There is a special situation occur in mixedf-3dd
exchange-coupled pairs due to the fact that the total spin of

The main purpose of this paper has been to analyze quathe lanthanide ion is not a good quantum number. A special
titatively the microscopic mechanism of the exchange intercare should be taken to bring into correspondence the signs
action between Yb" and CP" ions in the YbCrBg>~ bio-  of projection of the effective spin on thef 4on and that of
ctahedral face-sharing dimer and, especially, to establish th#e true spin on the®ion. When the quantization axis has a
origin of an extremely strong exchange anisotropy. To thigotational symmetry, the sign of the components of the effec-
end, a new form of the superexchange theory has been uséide spinS=3 should be chosen according to their transfor-

V. SUMMARY AND CONCLUSIONS
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mational properties, not according to the sign of the projec-
tion of the magnetic momentum. This implies that the 4fM(ﬁ)
magnetic momentum of the lanthanide ion may be antiparal- \{\
lel to its effective spin. In this case, the Kramers doublet has e /Qj} N
a negativeg-factor and the sign of the exchange parameters (
at spin operators should be reversed. This takes place for the '
YbCrBry®~ dimer, in which theg tensor of ground’s dou-
blet of the YB'* ion is negative.
An important result of this study is that the exchange 4pM (ﬂ)/
anisotropy is not necessarily related to the crystal-field an- - and (b)
isotropy of the lanthanide ion. Indeed, a very strorfg3d . 4f,~
exchange anisotropy is found in the YbCgBr dimer de-
spite the fact that there is no crystal-field anisotropy on yt- &
terbium ion in the regular YbBF~ octahedron. ‘
The superexchange theory developed in this paper is not e \)
limited to Kramers ions only, since it can easily be extended ’ i /
(directly or with some minor changeto otherf ions. There B ;
are some important cases of other ground CF states, such as 4P,,( Y
the case of the close proximity of a first excited doublet or \ % C
the case of thd'g quartet occurring for some ions with the Br 3
odd number of electrons in cubic crystals. These situations [ )
are described by an effective sg* 2 on the lanthanide or N
actinide ion(for two close doublets some zero-field splitting ‘ B=0. AR
should be added For the even numbers dfelectrons the '
ground I';5 triplet can also occur an a cubic crystal field,

| /
corresponding to an effective sp8F 1. In these cases, the { (a) @Cr
[/ £\

|
>

C
X

superexchange mechanism can be treated quite similarly: the
effective exchange Hamiltoniad o is described by the set = !
of the(m,M¢|H¢¢m’,M.) matrix elements whena now rep- "\_\\A4PM(ﬂ) \

resents the projection of the effective s@itarger thats, i.e., e
S=2 (two close Kramers doublets or tH& quarte} or S I

=1 (the I's triplet). Again, these matrix elements are ob-

tained by the projection of the CT states onto the space of N

wave functiongm,M,) of the ground level of thé-d dimer \\(,-x\ng(ﬁ)

(f-f dimers can also be analyzed in the frame of this ap- \
proach, as described by E@22). The only difference is that (¢)

for the case o8>} the spin Hamiltonian corresponding to

the Hg operator is not necessarily bilinear with respect to

the effective spirs of thef ion. For instance, some quadratic

(S=1) or cubic = 3) spin operators can appear in the spin  FIG. 6. On the calculation of tha;; quantities. The #, np,
Hamiltonian. However, the correspondence between the sehd 3; orbitals defined in the common quantization agls are

of the (m,M¢|Hqm’,MZ) matrix elements and the exchange expressed as linear combinations ¢f43), 3dy(B), and 4(B)

spin Hamiltonian can easily be established. In this way, therbital defined in the local quantization axes Yb-Br and Cr-Br, Eq.
pseudodoublet ground stafiee., two close singlet statesr ~ (B3). These orbitals are obtained by rotations of ttig,/1p,, and
non-Kramers doublets can also be analyzed. Of course, sp@d; orbitals by the anglg= * 6., which is positive for the Cr-Br
cific details of the mechanism of ttel or f-f superexchange local quantization axis and negative for the Yb-Br axis.
interactions for non-Kramers ions can differ from the those

for the well-isolated ground Kramers doublet given in Sec.general calculation procedure remains the same as for the
IIl, but the general idea of the approach remains unalteredpresent case of the Yb-Cr?* pair.

Our analysis demonstrates the actual degree of the com-
plexity of the superexchange problem for lanthanide ions.
The 4f-3d superexchange is complicated even for a rela-
tively simple YB*-Cr®* pair. For lanthanide ions from the
middle of the 4 series (Dy*,Sn?*) the number of CT Financial support by the Belgian National Science Foun-
states increases dramatically. However, despite a larger siziation and Belgian Government under the concerted action
of the task, our approach can directly be applied to any comscheme, the Russian Foundation for Basic Rese@scant
bination of the lanthanide ion with the with well-isolated No. 01-03-3221pand the INTAS Grant 00-00565 are grate-
ground Kramers doublet and transition metal ion because thiellly acknowledged.
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APPENDIX A

In this section the matrix elements
Ek(AB;SMy)|Hap|E pg(A—B;S'M")) are expressed via
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qA:{(4fm1-0'ml)1(4fm2a0'm2)v B '(4me—1'UmN—1)}

the t(4f;-3d;) transfer integrals. For this we expand the

single-center wave functionsW,(4f"), W, (4fN"1),

®,(3d™;SMy), and ®,(3d™*1;S'M’) of the lanthanide
and transition metal ions over Slater determinants Dgt(
Det(qs), Det(pg), and Det(ig) correspondingly:

wk(4fN>=pEA Fr(Pa)DEt(pa), (Ala)
wp(4fN-1>=qEA Fo(da)Det(da), (Alb)
<1>.(3dM;SMS>=pEB D/ (pg;SMo)Det(pg),  (Alc)

<I>q(3dM+1;M'S’>=UEB Dy(Ug;S'M')Det(ug),
(A1d)

where F(pa), F(ga), D(pg;SM,), andD(ug;S'M’') are
expansion coefficients, in which the vector indiges ga,
pg, andug are sets of quantum numbers df dr 3d orbitals
involved in the corresponding Slater determinant

Pa={(4fi, 00 ), (41,0, (4o )} — 4N,
(A2a)

—4fN"L (A2b)
pe={(3d; ,01,).(3d|,09,),.. -(3d|M,U|M)}—>3dM,

(A2c)

ug={(3dn,,0n),(3dn,,00),--.(3dy o, )}—3dMY,

(A2d)

in which o=+ 1 stands for the spin projection of the corre-
sponding 4 and 3 orbital. Then the two-center wave func-
tions E;(AB;SM,) and = ,4(A—B;S'M’) are written as

EkmAB:SMs):pE pZ Fi(Pa)Di(ps; SM)

X Det(pa+pg), (A33)

Ep(A—B;S'M ’)=q2 UZ Fp(ga)Dg(Ug;S'M")
A B

X Det(ga+ Ug), (A3Db)

where the Slater determinants for the joirit#43d electronic
system are the products of the corresponding single-center
determinants Def(y+ pg) = Det(ps) ® Det(pg) and Detf
+ug) =Det(gs) ® Det(ug). Consequently, the matrix ele-
ments of the perturbation operatid g are given by

(E(AB;SMY)|Hagl Epg(A—B;SM" )= > > > Fr(pa)D}f (Ps;SMFy(da)Dy(Us;S'M')

PA PB

X (Det(pa+ pg)|Hag/Det(ga+ug)).

da Us

(Ad)

This multiple sum is calculated due to the applying the Slatesponding weight factors involved in E¢A4), and similarly

rules, according to which the nonzero(Det(pa

+ pg) |Hag|Det(ga+ Ug) ) matrix elements is simply equal to
a transfer integral

(Det(patpg)|Hag/Det(ga+up))

(=Pt if (pat+pe) and (ga+ug) differ from
each other by only two orbitals f4 and 3d;with
the same spin projections;= o;

0 otherwise,

(A5)

for the matrix
—B;S'M")).

elements (E(AB;SM)|Hag|E (A

APPENDIX B

In this appendix, we provide details of the calculation of
the A;; andB;; quantities defined by Eq$30) and(31). The
key point of these calculations is to express
(4filh|xk(Ly)) and (x«(L,)|h|3d;) matrix elementgreso-
nance integrajsbetween the metal orbitals {43d;) and the
ligand orbitals (4,4p,) defined in the common coordinate
frame with the C; quantization axis[Fig. 6(@)] via the
o(fp), 7w(fp), o(dp), andw(dp) parameters. The j, and

the

whereP is the parity of the transposition that brings the extrak indices are projections of the orbital momentum of the

3d; orbital into the place of the missed dorbital in going
from (gatug) to (patpg). Each matrix element
(Ek(AB;SMg)|Hpp|E pg(A—B;S'M")) is therefore writ-
ten as a sum df; transfer integrals multiplied by the corre-

respective orbitals to the comm@y quantization axis of the
YbCrBry®~ dimer. As indicated in the text, these parameters
correspond to the resonance integrals of éhand = types
between the metal and ligand orbitals in the local Yb-Br and
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TABLE IX. The expression of thg4f;|h|4p,) and(3d;|h|4p,) matrix elements via the:(fp), =(fp),

o(dp), andw(dp) parameters.

4p, 4p, 4p_,
V2 2.6 ) 6 V2 6
3d; 5 oldp+ [w(dp) go—(dp)—gw(dp) —go(dp)+%—w(dp)
1 V3 1 2V3
3d; z0(dp)+ 5 7(dp) —a(dp)+ w(dp) —zo(dp)+ —-m(dp)
1 2 1
3d, —3m(dp) 37(dp) 3 7dp)
1 V3 V3
3d_; —-U(dp)+ 1T(dIO) —§U(dp)—§77(dp) U(dp)+ 7T(Olp)
V2 6 ) 6 V2 2
3d_, go(dp)—%—w(dp) go(dp)—gﬂdp) 5 oldp)— J— m(dp)
V10 V15 V10 V15 V10 J1_5
ME ﬁﬂ(fp)+—ﬂ'(fp) *—(T(prﬁﬂ'(fp) *EU(TDHEWUP)
\/30 V5 V30 V30 V5
af, *EU(fp)*Fﬂ'(fp) Eﬁ(fp) ﬁﬁ(fp)*FW(fp)
J6 1 J6 1 J6 1
afy TSU(fD)*gW(fp) *1—80(fp)*§77(fp) *1—80(fp)+§77(fp)
2 6 2 2.6 2 6
4fo 5otP+ 15 (fp) —§a<fp>+1i8—w<fp> ~goltp+ fw(fp)
J6 1 J6 1 J6 1
4f_4 —1—80'(fp)+§'rr(fp) 1—80(fp)+§77(fp) 1—80(fp)—677(f|0)
V30 5 V30 V30 5
af_, —1—80'(fp)+?7r(fp) 1—80(fp) 1—80(fp)+FW(fp)
10 15 10 15 10 15
413 —1—Ca<fp>+l—Cw<fp> £a(fp) £w(ﬂo) 1—@<fp>+§w<fp>

Cr-Br axes,o(fp)=(4fo|h|4pg), w(fp)=(4f.|h[4p.,),
o(dp)=(3do|h[4po), m(dp)=(3d.4|h[4p.1), o(fp)
=(4folh|4pg), ando(fp)=(4fo|h|4py). Consider theA;;
guantities, Eq(25)

2

Aij = 4 P
n=1,23k=0,x1

(41| h[4py(Ln))(4pk(Ly)[h[3d;)).

For theCs, symmetry of the YbCrBy*~ dimer, the nonzero
Aj; quantities obey the selection ruile-j andi=j*3. In-
deed, since the ;3 bridging bromine ligands transfer to
each other upon rotations by the angte®x/3, the products
(4fi|h[4pk(Ln))(4pk(Ln)|h[3d;) for different ligandsL,
are related to each other by the phase faefdf?™3Am

(411 h|4py(L2))(4pi(Lo|h|3d)))
= e 12mRAM At In|4py(L1)){4py(L1)|h[3d;),
(B1a)

(4f|h|4py(L3))(4pk(L3)|h|3d;)
=€/ @AM At Ih|4p,(L1))(4pk(L4)|h[3d;),
(B1lb)

where Am=i—j. Therefore, the sum over the ligands (
=1,2,3) in Eq.(25) is proportional to the factor

1+el(@3AM Y o—i(27/3)Am_ 1 4 o Co< 2?77 Am) , (B2

which is equal to 3 ifAm=0 or =3 and is zero otherwise.
We express thg4fi|h|4p(L,)) and (4py(L,)|h|3d;)
matrix elements for a given Br bridging ligarid, via the
o(fp), w(fp), o(dp), andw(dp) parametersfor concrete-
ness, we consider the ligaihgl with n=1). The geometry of
the Yb-Br-Cr bridging group in the YbCrBt~ idealized
dimer is shown in Fig. @. The Cr-Br and Yb-Br bonds
make the angleB= = ., with the C5; quantization axis,
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where 6, is so called cubic angle, c@s,,=1NV3 (O (3d=1(B)|h|4p=1(B))=m(dp), (B4d)
=54.7°).

The 4f;, 3d;, and 4, orbitals defined for the common co- W€ have

ordination frame can be expanded over thé,@s),

-1
3du(B), and 4, (B) orbital defined in the local quantiza- _ _
tion axes Yb-Br and Cr-BtFig. 6 (4filhldpg= X o (B)di(B)(4Tw(B)In|4pu(B)),
(B5a)
4f= Z dwi(B)Afu(B), (B3a) -1
(3dj|hl4p)= 2 dy;(B)dui(B)(3du(B)Ih4pu(B)
3d,= 2 d2;(B)3du(B), (B3 (B5H
or
-1
api= 2 i B)4pu (), B39  (Afilhl4py=dg ﬂ>d0k<ﬁ>o<fp>+[d3 1(B)dL (B
3 5 d3(B)d1(B) 17 (Tp), (B6a)
whered),,, (8) =D}, (0,8,0) is the WigneiD function for
the momentund (hereJ=3, 2, 1 andM' =i, |, k for the 4f, <3dj|h|4pk>=dgj(ﬁ)dék(18)g'(d p)+[d?;(B)d 1 (B)
3d, and 4 orbitals, respectively’® The 4f ,(B), 3du(3),
and 4py,(B) orbitals are obtained from the rotations df. 4 d3;(B)d1,(B)1m(dp). (B6b)

3d;, and 4, orbitals by the anglgs, which is negative g -
— g for the Yb-Br axis[Fig. 6b)] and positive f The coefficients at ther(fp), =(fp), o(dp), and =(dp)

g . . i in Table IX. Then, according to Eq.
= fp for the Cr-Br axigFig. 6(c)]. Since in the local quan- parameters are given in ' :
tiza?[rg)n axes theS[ gngn;]ero matrix elqements(zs)’ multiplying the (4f;[h|4py) and (3d;|h|4p,) matrix

. elements and summing the products oker0, =1 and three
gﬁ)’;"ﬁﬂ’gﬂmdfpi“"é(’g» and (3dw(B)[hl4pw-(8)) occur if ligandsn=1-3 [the sum over ligands is simply reduced to

the multiplication by the factor defined in E(B2)], we ob-

(4fo(B)|h|4po(B))=0c(fp), (B4g  tain theA; quantities presented in Table II.
Calculations of theB;; quantities for 4(Br) orbitals are
(4F.1(B)|h|4p1(B))=m(Tp), (B4b)  performed similarly. Note that in this case onlyoverlap
between metal orbitals andséromine orbitals occuréTable
(3do(B)[h|4pe(B)) = (dp), (B4g) ).
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