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Ground-state numerical study of the three-dimensional random-field Ising model
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The random field Ising model in three dimensions with Gaussian random fields is studied at zero temperature
for system sizes up to 80For each realization of the normalized random fields, the strength of the random
field, A and a uniform externakll is adjusted to find the finite-size critical point. The finite-size critical point
is identified as the point in thid-A plane where three degenerate ground states have the largest discontinuities
in the magnetization. The discontinuities in the magnetization and bond energy between these ground states are
used to calculate the magnetization and specific heat critical exponents and both exponents are found to be near
zero.
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[. INTRODUCTION dimensional RFIM are converging but there is still a problem

The random field Ising mod€RFIM) is among the sim- with the specific-heat exponenta. Monte Carlo
plest statistical mechanical models with quenched disordesimulations’ and some zero-temperature studé$ find «
but is still not well understood. It is presumed to describet0 be quite negative, for example Hartmann and Ydtifigd
equilibrium phase transitions in physical systems such as fly¥= —0.65. On the other hand, a recent zero-temperature
ids adsorbed in porous media and diluted antiferromagnet$tUdy by Middleton and Fishe concluded that is near
However, comparisons between theoretical predictions an erc%}_;sgome exper!mental measurements. of the specific
experiments have been inconclusive because of the difficult ea 1 Sh(m’ no r(]jlvergence, andﬁ?cgaln 'bled interpretedras
of equilibrating the experimental systems. For the three-a ﬁgrae,g;/(ple?in?farﬁglmpi?fuurreer?:mainzlioniyror:/i??éiggg
dimensional RFIM, it is known that there is an ordered phaS(?_ar e negative values fom are in disagreement with.the
for sufficiently low temperature and weak randomnéss. g 9 g

ST o - modified hyperscaling relationg=2—(d— 0) v, that is a
The standard pictufe”is that the phase transition is continu- ceniral feature of the zero-temperature fixed-point picture.

ous, and is controlled by a zero-temperature fixed point withrg y|atively well established results thais in the range
three scaling exponents. The zero-temperatstieng disor- 1 1_1 4 and tha# is very close to 3/2 imply that is not
den fixed p0|_nt implies that co_ntrolled renorm_allzatlon_- much less than zero. Very negative valueswoire also in-
group calculations cannot be carried out, so that informatioRgnsistent with the Rushbrooke relatiom+ 2B8+y=2,
about exponents has come from numerical simulations, S&ince y is believed to be close to 2.
ries analysis;” and real spacé™ and other approximate  |n this paper we study the zero temperature phase transi-
renormalization-group calculation$ There have also been tion of the three-dimensional RFIM with Gaussian random
suggestions that the transition is first oftfér *>and, in fact, ~ fields. Our two primary goals are to provide evidence that the
it is difficult to determine whether the magnetization van-transition is, indeed, continuous and to measure the specific-
ishes continuously or discontinuously at the transition beheat exponent.. The interesting feature of our approach is
cause the value of the magnetic expongiii, is very small.  that for each realization of the normalized random fields we
Monte Carlo simulation4*6-18of the RFIM suffer from  fine tune both the strength of the random field and a uniform
long equilibration times, and have been limited to small sysexternal field in order to bring the system to its finite-size
tems. The validity of obtaining critical exponents from small “critical point” (we refer to this as a critical point in antici-
systems has been called into question by simulatfesteow-  pation of our result that the transition is continupuidachta,

ing that for 24 systems even qualitative features such as théléwman, and Chayesimplemented a similar idea in their
apparent order of the transition vary from realization to realMonte Carlo simulations. We identify the finite-size critical
ization. The difficulties of long equilibration times and small Point as the point where three degenerate spin configurations

system sizes for Monte Carlo simulations have prompted gnave the largest jumps in the_ ’T‘agf‘e“za“‘?”- Critical EXpo-
number of studies of the zero-temperature REMF* nents are extracted from the finite-size scaling of the discon-

Ground states of the RFIM can be determined efficiently b)}ingities in the magnetization and energy at the finitejs'ize
mapping to the maximum flow problem and then using a\crltlcal point. Ou_r results support the view that the transition
polynomial time algorithm to solve the latf&The assump- 'S continuous withe and 8 both near zero.

tion of these studies is that the zero temperature transition is
in the same universality class as the transition at nonzero
temperature. In this paper we consider the zero-temperature
RFIM phase transition. The random-field Ising model considered here is defined

Estimates of many of the critical exponents for the threey the Hamiltonian

II. RANDOM-FIELD ISING MODEL AT ZERO
TEMPERATURE

0163-1829/2003/61)/0144136)/$20.00 67014413-1 ©2003 The American Physical Society



I. DUKOVSKI AND J. MACHTA PHYSICAL REVIEW B 67, 014413 (2003

—
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FIG. 2. Possible phase diagrams for the zero temperature phase
F transition:(a) continuous transition, an@) first-order transition#+
and — are the coexisting ordered phases, and 0 is the coexisting
disordered phase itb).

the magnetization is a continuous functiontbf If the tran-
| sition is continuous, the spontaneous magnetizafida ex-
pected to vanish as a power law Asapproaches\. from
below,

FIG. 1. Phase diagram of the random-field Ising model. The y~(A —A)ﬁ (5)
ordered ferromagnetic phase is labefe@nd the disordered para- € ’
magnetic phase is label& The curve is a line of phase transitions. wherey/=m(H—0") and g is the magnetization exponent.
Figure 2a) illustrates the continuous transition scenario in
the zero-temperaturel-A plane with a critical point at the
H= _J“E si—A2 hs—HX s, (1) end of a line of first-order transitions. Another possibility is
J) i i L .
that the zero-temperature transition is first order. A possible
where J is the coupling strength) is the strength of the scenario is illustrated with Fig.(B). Here H=0A=A) is
random field,H is the uniform external fieldp; is the nor-  a point of coexistence of two ordered phases and one disor-
malized random field at siig ands; is the Ising spin variable dered phase. The magnetization of the coexisting ordered
at sitei. (i,j) indicates a sum over nearest-neighbor pairs orphases is nonzero, while the disordered phase has zero mag-
a three-dimensional cubic lattice of linear sizewith peri-  netization. There will also be a nonzero “latent heat” at the
odic boundary conditions. We také=1 and the random transition. Although the entropy is ill defined at zero tem-
fields to be Gaussian distributed with zero mean and uniperature, it is reasonable to define latent heat in terms of a
variance: discontinuity in the bond energy between the ordered and
5 disordered phases.
1 h; The foregoing applies to infinite systems. The ground
Eex 2 @ states ofa typical finite system for a given realization of the
random field are shown in Fig. 3. Each point in tHeA
The two quantities of primary quantities that we measure argjane corresponds to a single ground state of the system. The

T, T

P(h)=

the magetizatiom, set of points corresponding to a single ground state form a
polygon since, for a given spin configuration, the energy is
m= i 2 s 3) linear in bothH andA. In principle, there might be several
349 degenerate ground states in a nonzero area dfitheplane
and the bond energg, A
1
e=—— SiS; . 4
5 <Z]> S) @) 0
B +
The presumed phase diagram of the three-dimensional H

RFIM is shown in Fig. 1. The solid line is the phase transi-

tion between the ordered and disordered phases. The point

(T.,0) is the critical point of the pure Ising model while the b
zero-temperature phase transition is at the poin (0, As-

suming the absence of special points along the phase transi-

tion line (e.g., a tricritical point the universal properties i, 3. Ground states for a given realization of normalized ran-

along the entire phase transition line, exceptAatO, are  dom fields{h;}. Coexistence lines between ground states with very

expected to be the same as at the zero-temperature transitigfiferent magnetizations are shown as thick lines on the plot, the
Consider the zero-temperature transition.Ali<A. the finite-size critical point is shown as an open circle, and the three

system is in one of two ordered phases, so the magnetizatiavexisting states at the finite-size critical point are labeted—,

as a function oH has a jump aH=0, while, forA>A, and 0 as described in the text.
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but, for a continuous distribution of random fields, the prob- If the phase transition is continuous, botfi ande* must

ability of exact degeneracy vanishes except along lines andpproach zero as the system size goes to infinity while if the
at points. Along the edges between polygons the two grounttansition is first order, these quantities will saturate at non-
states corresponding to each polygon are degenerate. Threero values. Furthermore, if the transition is continuous, we
ground states are degenerate at “triple points” where thre@ropose the following finite-size scaling behavior for the dis-

edges meet. order averages of these quantities,
Degenerate ground states typically differ on a small frac-
tion of spins but, corresponding to the first-order line of the m* ~L ~38/v (8)

infinite system, some degenerate ground states differ by a
large fraction of the total number of spins. The bold lines inand
Fig. 3 correspond to large jumps in the magnetization. For
A<A., there is a single jump between ground states with e~ 20— a)lv (9)
large positive and negative magnetizations, and the separa-
tion between these “phases” is the piecewise linear curvevherel is the linear size of the system,is the specific-heat
Hcoex(A). This coexistence line is close to but not coincidentexponent,3 is the magnetization exponent, ands the cor-
with the A axis. The spontaneous magnetizatighjs the  relation length critical exponent. The finite-size scaling hy-
magnetization of the positively magnetized ground stategothesis for the magnetization is essentially identical to the
alongHeex- As A is approached from below; decreases standard finite-size scaling hypothesis except that the mea-
in steps at triple points. Since the net change in magnetizasurement is made at a point that is fine tuned for the given
tion around a triple point is zero, the decrease in magnetizarealization of disorder rather than at the infinite system size
tion alongH e, is exactly the jump across the third edge or critical point. The finite-size scaling for the bond energy en-
“lateral line” that defines the triple point. As the critical ergy is more difficult to motivate. First, at zero temperature
point is approached, the magnetization drops more precipihe free energy and energy are identical and the entropy and
tously so that the magnetization jump across the lateral lingpecific heat are not well-defined. It is reasonable to suppose
increases. We identify the finite-size “critical point” as the that the derivatives of energy with respectltat zero tem-
triple point with the largest jump across the lateral line. Inperature have the same singularities as the derivatives of the
Fig. 3 the finite-size critical point is shown by an open circlefree energy with respect to the temperature at nonzero tem-
and the corresponding lateral line is also shown by a thickperature. Thus, from Ed1), the bond energy plays the role
line. The three states that are degenerate at the critical poigf entropy and its derivative with respectdplays the role
are called thet, — and O states according to their relative of specific heat. The conventional finite-size scaling hypoth-
magnetizations. If the transition were first order these statessis for the specific heat is
would be a zero-temperature analog -6f and — ordered
phases and the disordered phase that coexist at a thermal C(T)~L"C((T=T L), (10)
first-order transition.

One way to measure the discontinuity in the magnetizaif the specific heat is integrated across the finite-size round-
tion at the critical point is via the quantity™, ing region defined byT—T.|<L ™", we obtain the finite-

size “latent heat’l of the transition:

1
m* =2 (m; —mp)(Me—m_)(m, —m.), (6) |~L- @l (1)

wherem, , my andm_ are the magnetizations of the three Al Zero temperature, this latent heat is replaced by. the dis-

coexisting critical ground states. Note that the same combi(—:ongnu'ty n tr;]e the botnd ;nergty. Futrtr}e(;more,t_smtc_:e the

nation of three magnetizations is small at triple points awa ond energy changes at a discrete set of discontinuities, we
propose that a finite fraction of the latent heat is concentrated

from the critical point, even along the first-order line. i ) ; . LT .
Although the energy is a continuous function dfl and at the triple point with the largest discontinuity, i.e., the point
where we have identified as the finite-size critical point.

e e s a0 et SePe incee" measures he square of e e heat L e e
coexistence lineHq,.(A), is expected to increase mono- size critical point, we obtain Eq9).

tonically asA increases with jumps across each lateral line.

The largest discontinuity in the bond energy is expected at 1. SIMULATION METHOD

the finite-size critical point and the quanti#yj, is a measure

of that discontinuity, The main goal of our simulations is to find and measure

the properties of the zero-temperature, finite-size critical
point. The finite-size critical point is defined as the triple

w1 oint with the largest jump in the magnetization between all

e'=5(este)(&—e,)(&-e), Y 'I[Dhree coexisting gtatejs. Tg find this V\?e carry out an iterative

search using a method similar to the one described in Ref.

wheree, , e_, andegy are the bond energies of the, —, 34. First, a point in the ordered phase on the first-order line is
and O states, respectively. located. For example, in Fig. 3 we locate ground statard
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b and a point on the coexistence line between them. Next, the 1

first-order line is followed in the direction of increasirg 08

from one triple point to the next. In the example of Fig. 3 the 06

triple point wherea, b, and+ are degenerate is located first. o

At each triple point, the continuation of the first-order line 0.4 e 5

(in this example, between “a” and+") and the lateral line 0.2 t
(between “b” and “+") are identified according to the rela-

tive sizes of the discontinuities in the magnetization across 10 20 30 40 50 60 70

the lines. The sequence of triple points is recorded and the L

triple point with the largest discontinuity in the magnetiza-  F|G. 4. The magnetization discontinuity at the critical pairit
tion across the lateral line is identified as the finite-size criti-ys the system size.
cal point.

The most difficult computational problem in carrying out wise the iteration is repeat. Call this first triple point
this program is to find the ground state for given valuedof  (H,,A,).
H and {h;}. Finding ground states can be reduced to the The triple point H;,A;) defines three lines of coexist-
problem of finding the maximum flow on a graBf® for  ence; one of these lines is the previously identified first-order
which there exists polynomial time algorithms. We use theline. The jumps in magnetization across the other two lines
push-relabel network flow algorithdi;*” implemented in  are measured. The line with the smaller jump in magnetiza-
Ref. 38 as version hi_pr, to find ground states. tion is called the “lateral line” and the remaining line with

Let's now describe in detail the two subroutines of thethe large jump in magnetization is continuation of the first-
search algorithm. Subroutine 1 finds a point on the first-ordedrder line. The jump across the lateral line is recorded and
line separating the positively and negatively ordered phasesubroutine 2 is invoked again to find the next triple point
Two ground states are found deep in the ordered phases along the first-order line. By repeating this set of steps many
valuesA,=2.2 andH = +0.1. Once these ground states aretimes, a sequence of triple pointsl(,A;) is identified. The
found, the algorithm calculates the value léfwhere these triple point with the largest jump across the lateral line is
two states are degenerate alongaheA, line. This point of  identified as the finite-size critical pointHf,A*).
degeneracy is easily found by the solution of two simulta- We note that while the critical point is identified by the
neous linear equations since origee, andmare known for  size of the jumps in the magnetization, in every case that we
a given spin configuration at some point in tHeA plane, examined it also has the largest discontinuity in the bond
the value ofH for that spin configuration at any other point energy. In principle, a definition of the finite-size critical
is linearly related. At this point of degeneracy the groundpoint based on the bond energy discontinuity might some-
state is calculated. If the result is either of the two originaltimes yield a different triple point.
ground states then we have found a point on the first-order A typical running time for finding the ground state for a
line. If the ground state at the point of degeneracy is not ongystem of L=10 is 6x10 ° sec/spin on a Pentium IlI
of the original states, then a new point of degeneracy i¥50MHz machine. The total running time of the entire algo-
found between this new state and one of the original twaithm for the same system size is approximately 1 min. We
states. The choice of which original state to pick is made byimulated systems of size up te=60. The number of real-
the criterion that the jump in the magnetization between itizations of disorder range from 23 to 126 for different system
and the new state is the biggest. This process is repeated urdizes. The small number of realizations are a consequence of
the first-order line is found. Since the discontinuity in thethe fact that many ground states must be explored for each
magnetization across the first-order line #y=2.2 is al-  realization of disorder to find the finite-size critical point.
ways greater than unity, this procedure is guaranteed to find
the first-order line. IV. RESULTS

Subroutine 2 follows the first-order line found in subrou-
tine 1, until the first triple point is found in the direction of ~ Figure 4 shows the critical magnetization discontinuity
increasingA. From the point found by subroutine 1 on the m* as a function of system size Clearly this plot, together
first-order line a new point is picked by moving in the direc-

tion of the first-order line and increasidg by 0.1. In Fig. 3 1

this new point is on an imagined continuation of the thick 0

line betweena andb in the direction of+. An increase of 1

0.1 in A has proved to be sufficiently large to extend to a Ine

new ground state for all system sizes studied. Subroutine 2 is -2

similar to subroutine 1 except that original ground states are -3

always retained in the iteration and a sequence of new

ground states with decreasing valuesdofire generated. At 15 2 25 3 35 4 45 5

each step in the iteration, the point of degeneracy is found InL

between the new and old states and the ground state is com- FIG. 5. Log-log plot of the bond energy discontinuity at the
puted at that point. If the ground state is one of alreadyeritical point e* vs the system sizé. The solid line is a fit as
identified states then the triple point has been found otherdescribed in the text.
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TABLE I. A summary of recent zero-temperature estimates of
3.2 A¢, v, (1—a)lv, anda. For @ and (1- a)/v the value without
3 error estimated is derived from the other, directly measured, value
A28 and the same authors’ value of
ii Ref. A v 1-a)lv a
This work 2.292) 1.1(1) 0.803) 0.12
1020 30 40 50 60 70 20 2.281)  1.361) 1.20 —0.63(7)
21 2.27Q4) 1.379) 0.822) -0.12
FIG. 6. The critical strength of randomness;, vs the system 39 2.281) 1.226)
sizeL. The solid line is a fit as described in the text. 19 2.294) 1.198)
26 2.375) 1.01) 1.55 —0.55(20)

with Eq. (8) suggests that the magnetization discontinuity at
the critical point does not decrease withwhich can be _ ) ) o
interpreted either as a first-order transition or a valuggof 21 gives slightly negative values af. In any case, within
very near zero. The quality of the data is not sufficient tothe uncertainties, our results are consistent with modified hy-
make a useful measurement@f Figure 5 shows the finite- perscaling.

size scaling of the critical bond energy discontinugty. A fit

of the form

V. DISCUSSION

e*=a+bL" ¢ (12 We have studied the scaling behavior of the discontinui-
. B B _ . ties in the magnetization and bond energy at the finite-size
y:elds ﬁ_O;OOEQ'r?OS’ b—21i5,d?n:c—l.7i 0'16 i uiritical point” of the zero temperature RFIM. Our results
clear t at_e vanisnes as power di. ASSUMING &vu, We ¢, ihe magnetization discontinuity are not sufficiently accu-
obtain a fit, shown in Fig. 5, of the form rate to distinguish a first-order transition from a continuous
e*=pL—¢ (13) transition with a small value g8. The vanishing of the bond
' energy discontinuity suggests that the transition is continu-
with b=16.0+2.6 andc=1.59+0.05. From the latter result ous. Assuming the transition is continuous, we have ex-
and Eq.(9) we obtain (1- a)/v=0.80+0.03 (with xy?> tracted a value of the specific heat exponenfrom the
=2.84, x?/d.0.f=0.57 and Q=0.73). This result is in scaling of the bond energy discontinuity. We find thais
agreement with Middleton and Fisher’s valftte,0.82  near zero, which is consistent with the modified hyperscaling
+0.02. relation and the recent simulation results by Middleton and
The correlation length exponent and the infinite size Fisher?! It is not clear why a very similar measurement by
critical disorder strengtih . can be obtained from the finite- Hartmann and Yourf§ give a quite negative. Our value of

size scaling ofA*. The fit in Fig. 6 is and that of Ref. 21 are based directly on the finite-size scal-
ing of the bond energy at the critical point whereas in Ref. 20
A*=A.+bL™ (14)  the average bond energy is numerically differentiated to ob-

tain the specific heat and the finite-size scaling of the peak is

x2=2.79, x?/d.0.f=0.69 andQ=0.59). This result is in
relatively good agreement with recent results in the literature
as shown on Table I. The value ofis somewhat smaller
than the recent values in Refs. 20 and 21 which may result
from the use of a smaller maximum system size in our study. This work was supported by NSF Grants No. DMR-
Combining our results forr and for (1-a)/v yields « 9978233. We thank Alan Middleton, Po-zen Wong, and
=0.1+0.1. Using the larger values of from Refs. 20 and David Belanger for useful comments.
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