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Ground-state numerical study of the three-dimensional random-field Ising model
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The random field Ising model in three dimensions with Gaussian random fields is studied at zero temperature
for system sizes up to 603. For each realization of the normalized random fields, the strength of the random
field, D and a uniform external,H is adjusted to find the finite-size critical point. The finite-size critical point
is identified as the point in theH-D plane where three degenerate ground states have the largest discontinuities
in the magnetization. The discontinuities in the magnetization and bond energy between these ground states are
used to calculate the magnetization and specific heat critical exponents and both exponents are found to be near
zero.
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I. INTRODUCTION

The random field Ising model~RFIM! is among the sim-
plest statistical mechanical models with quenched disor
but is still not well understood. It is presumed to descr
equilibrium phase transitions in physical systems such as
ids adsorbed in porous media and diluted antiferromagn
However, comparisons between theoretical predictions
experiments have been inconclusive because of the diffic
of equilibrating the experimental systems. For the thr
dimensional RFIM, it is known that there is an ordered ph
for sufficiently low temperature and weak randomness1–3

The standard picture4–7 is that the phase transition is contin
ous, and is controlled by a zero-temperature fixed point w
three scaling exponents. The zero-temperature~strong disor-
der! fixed point implies that controlled renormalization
group calculations cannot be carried out, so that informa
about exponents has come from numerical simulations,
ries analysis,8,9 and real space10,11 and other approximate
renormalization-group calculations.12 There have also bee
suggestions that the transition is first order9,13–15and, in fact,
it is difficult to determine whether the magnetization va
ishes continuously or discontinuously at the transition
cause the value of the magnetic exponent,b/n is very small.

Monte Carlo simulations14,16–18of the RFIM suffer from
long equilibration times, and have been limited to small s
tems. The validity of obtaining critical exponents from sm
systems has been called into question by simulations14 show-
ing that for 243 systems even qualitative features such as
apparent order of the transition vary from realization to re
ization. The difficulties of long equilibration times and sma
system sizes for Monte Carlo simulations have prompte
number of studies of the zero-temperature RFIM.19–24

Ground states of the RFIM can be determined efficiently
mapping to the maximum flow problem and then using
polynomial time algorithm to solve the latter.25 The assump-
tion of these studies is that the zero temperature transitio
in the same universality class as the transition at nonz
temperature. In this paper we consider the zero-tempera
RFIM phase transition.

Estimates of many of the critical exponents for the thr
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dimensional RFIM are converging but there is still a proble
with the specific-heat exponenta. Monte Carlo
simulations17 and some zero-temperature studies20,26 find a
to be quite negative, for example Hartmann and Young20 find
a520.65. On the other hand, a recent zero-tempera
study by Middleton and Fisher21 concluded thata is near
zero. Some experimental measurements of the spe
heat27–29 show no divergence, and can be interpreted asa
near 21, while other measurements30,31 yield a near zero
and the experimental picture remains controversial.27,32,33

Large negative values fora are in disagreement with th
modified hyperscaling relation,a522(d2u)n, that is a
central feature of the zero-temperature fixed-point pictu
The relatively well established results thatn is in the range
1.1–1.4 and thatu is very close to 3/2 imply thata is not
much less than zero. Very negative values ofa are also in-
consistent with the Rushbrooke relationa12b1g52,
sinceg is believed to be close to 2.

In this paper we study the zero temperature phase tra
tion of the three-dimensional RFIM with Gaussian rando
fields. Our two primary goals are to provide evidence that
transition is, indeed, continuous and to measure the spec
heat exponenta. The interesting feature of our approach
that for each realization of the normalized random fields
fine tune both the strength of the random field and a unifo
external field in order to bring the system to its finite-si
‘‘critical point’’ ~we refer to this as a critical point in antici
pation of our result that the transition is continuous!. Machta,
Newman, and Chayes14 implemented a similar idea in thei
Monte Carlo simulations. We identify the finite-size critic
point as the point where three degenerate spin configurat
have the largest jumps in the magnetization. Critical ex
nents are extracted from the finite-size scaling of the disc
tinuities in the magnetization and energy at the finite-s
critical point. Our results support the view that the transiti
is continuous witha andb both near zero.

II. RANDOM-FIELD ISING MODEL AT ZERO
TEMPERATURE

The random-field Ising model considered here is defin
by the Hamiltonian
©2003 The American Physical Society13-1
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H52J(
^ i , j &

sisj2D(
i

hisi2H(
i

si , ~1!

where J is the coupling strength,D is the strength of the
random field,H is the uniform external field,hi is the nor-
malized random field at sitei, andsi is the Ising spin variable
at sitei. ^ i , j & indicates a sum over nearest-neighbor pairs
a three-dimensional cubic lattice of linear sizeL with peri-
odic boundary conditions. We takeJ51 and the random
fields to be Gaussian distributed with zero mean and
variance:

P~hi !5
1

A2p
expS 2

hi
2

2 D . ~2!

The two quantities of primary quantities that we measure
the magetizationm,

m5
1

L3 (
i

si , ~3!

and the bond energye,

e52
1

L3 (
^ i , j &

sisj . ~4!

The presumed phase diagram of the three-dimensi
RFIM is shown in Fig. 1. The solid line is the phase tran
tion between the ordered and disordered phases. The p
(Tc,0) is the critical point of the pure Ising model while th
zero-temperature phase transition is at the point (0,Dc). As-
suming the absence of special points along the phase tr
tion line ~e.g., a tricritical point! the universal properties
along the entire phase transition line, except atD50, are
expected to be the same as at the zero-temperature trans

Consider the zero-temperature transition. IfD,Dc the
system is in one of two ordered phases, so the magnetiza
as a function ofH has a jump atH50, while, for D.Dc ,

FIG. 1. Phase diagram of the random-field Ising model. T
ordered ferromagnetic phase is labeledF and the disordered para
magnetic phase is labeledP. The curve is a line of phase transition
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the magnetization is a continuous function ofH. If the tran-
sition is continuous, the spontaneous magnetizationc is ex-
pected to vanish as a power law asD approachesDc from
below,

c;~Dc2D!b, ~5!

wherec5m(H→01) andb is the magnetization exponen
Figure 2~a! illustrates the continuous transition scenario
the zero-temperatureH-D plane with a critical point at the
end of a line of first-order transitions. Another possibility
that the zero-temperature transition is first order. A poss
scenario is illustrated with Fig. 2~b!. Here (H50,D5Dc) is
a point of coexistence of two ordered phases and one di
dered phase. The magnetization of the coexisting orde
phases is nonzero, while the disordered phase has zero
netization. There will also be a nonzero ‘‘latent heat’’ at t
transition. Although the entropy is ill defined at zero tem
perature, it is reasonable to define latent heat in terms
discontinuity in the bond energye between the ordered an
disordered phases.

The foregoing applies to infinite systems. The grou
states of a typical finite system for a given realization of t
random field are shown in Fig. 3. Each point in theH-D
plane corresponds to a single ground state of the system.
set of points corresponding to a single ground state form
polygon since, for a given spin configuration, the energy
linear in bothH andD. In principle, there might be severa
degenerate ground states in a nonzero area of theH-D plane

e

FIG. 2. Possible phase diagrams for the zero temperature p
transition:~a! continuous transition, and~b! first-order transition.1
and 2 are the coexisting ordered phases, and 0 is the coexis
disordered phase in~b!.

FIG. 3. Ground states for a given realization of normalized r
dom fields,$hi%. Coexistence lines between ground states with v
different magnetizations are shown as thick lines on the plot,
finite-size critical point is shown as an open circle, and the th
coexisting states at the finite-size critical point are labeled1, 2,
and 0 as described in the text.
3-2
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but, for a continuous distribution of random fields, the pro
ability of exact degeneracy vanishes except along lines
at points. Along the edges between polygons the two gro
states corresponding to each polygon are degenerate. T
ground states are degenerate at ‘‘triple points’’ where th
edges meet.

Degenerate ground states typically differ on a small fr
tion of spins but, corresponding to the first-order line of t
infinite system, some degenerate ground states differ b
large fraction of the total number of spins. The bold lines
Fig. 3 correspond to large jumps in the magnetization.
D,Dc , there is a single jump between ground states w
large positive and negative magnetizations, and the sep
tion between these ‘‘phases’’ is the piecewise linear cu
Hcoex(D). This coexistence line is close to but not coincide
with the D axis. The spontaneous magnetization,c is the
magnetization of the positively magnetized ground sta
alongHcoex. As Dc is approached from below,c decreases
in steps at triple points. Since the net change in magnet
tion around a triple point is zero, the decrease in magnet
tion alongHcoex is exactly the jump across the third edge
‘‘lateral line’’ that defines the triple point. As the critica
point is approached, the magnetization drops more prec
tously so that the magnetization jump across the lateral
increases. We identify the finite-size ‘‘critical point’’ as th
triple point with the largest jump across the lateral line.
Fig. 3 the finite-size critical point is shown by an open circ
and the corresponding lateral line is also shown by a th
line. The three states that are degenerate at the critical p
are called the1, 2 and 0 states according to their relativ
magnetizations. If the transition were first order these sta
would be a zero-temperature analog of1 and 2 ordered
phases and the disordered phase that coexist at a the
first-order transition.

One way to measure the discontinuity in the magneti
tion at the critical point is via the quantitym* ,

m* 5
1

2
~m12m0!~m02m2!~m12m2!, ~6!

wherem1 , m0 andm2 are the magnetizations of the thre
coexisting critical ground states. Note that the same com
nation of three magnetizations is small at triple points aw
from the critical point, even along the first-order line.

Although the energyH is a continuous function ofH and
D, the bond energye has discontinuities across edges se
rating coexisting ground states. The bond energy along
coexistence line,Hcoex(D), is expected to increase mono
tonically asD increases with jumps across each lateral li
The largest discontinuity in the bond energy is expected
the finite-size critical point and the quantitye* , is a measure
of that discontinuity,

e* 5
1

2
~e11e2!~e02e1!~e02e2!, ~7!

wheree1 , e2 , ande0 are the bond energies of the1, 2,
and 0 states, respectively.
01441
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If the phase transition is continuous, bothm* ande* must
approach zero as the system size goes to infinity while if
transition is first order, these quantities will saturate at n
zero values. Furthermore, if the transition is continuous,
propose the following finite-size scaling behavior for the d
order averages of these quantities,

m̄* ;L23b/n ~8!

and

ē* ;L22(12a)/n, ~9!

whereL is the linear size of the system,a is the specific-heat
exponent,b is the magnetization exponent, andn is the cor-
relation length critical exponent. The finite-size scaling h
pothesis for the magnetization is essentially identical to
standard finite-size scaling hypothesis except that the m
surement is made at a point that is fine tuned for the gi
realization of disorder rather than at the infinite system s
critical point. The finite-size scaling for the bond energy e
ergy is more difficult to motivate. First, at zero temperatu
the free energy and energy are identical and the entropy
specific heat are not well-defined. It is reasonable to supp
that the derivatives of energy with respect toJ at zero tem-
perature have the same singularities as the derivatives o
free energy with respect to the temperature at nonzero t
perature. Thus, from Eq.~1!, the bond energy plays the rol
of entropy and its derivative with respect toJ plays the role
of specific heat. The conventional finite-size scaling hypo
esis for the specific heat is

C~T!;La/nC̃~~T2Tc!L
1/n!. ~10!

If the specific heat is integrated across the finite-size rou
ing region defined byuT2Tcu,L21/n, we obtain the finite-
size ‘‘latent heat’’l of the transition:

l;L2(12a)/n. ~11!

At zero temperature, this latent heat is replaced by the
continuity in the the bond energy. Furthermore, since
bond energy changes at a discrete set of discontinuities
propose that a finite fraction of the latent heat is concentra
at the triple point with the largest discontinuity, i.e., the po
where we have identified as the finite-size critical poi
Sincee* measures the square of the latent heat at the fin
size critical point, we obtain Eq.~9!.

III. SIMULATION METHOD

The main goal of our simulations is to find and measu
the properties of the zero-temperature, finite-size criti
point. The finite-size critical point is defined as the trip
point with the largest jump in the magnetization between
three coexisting states. To find this we carry out an iterat
search using a method similar to the one described in R
34. First, a point in the ordered phase on the first-order lin
located. For example, in Fig. 3 we locate ground statesa and
3-3
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b and a point on the coexistence line between them. Next,
first-order line is followed in the direction of increasingD
from one triple point to the next. In the example of Fig. 3 t
triple point wherea, b, and1 are degenerate is located firs
At each triple point, the continuation of the first-order lin
~in this example, between ‘‘a’’ and ‘‘1’’ ! and the lateral line
~between ‘‘b’’ and ‘‘1’’ ! are identified according to the rela
tive sizes of the discontinuities in the magnetization acr
the lines. The sequence of triple points is recorded and
triple point with the largest discontinuity in the magnetiz
tion across the lateral line is identified as the finite-size cr
cal point.

The most difficult computational problem in carrying o
this program is to find the ground state for given values ofD,
H and $hi%. Finding ground states can be reduced to
problem of finding the maximum flow on a graph22,35 for
which there exists polynomial time algorithms. We use
push-relabel network flow algorithm,36,37 implemented in
Ref. 38 as version hi_pr, to find ground states.

Let’s now describe in detail the two subroutines of t
search algorithm. Subroutine 1 finds a point on the first-or
line separating the positively and negatively ordered pha
Two ground states are found deep in the ordered phase
valuesD052.2 andH560.1. Once these ground states a
found, the algorithm calculates the value ofH where these
two states are degenerate along theD5D0 line. This point of
degeneracy is easily found by the solution of two simul
neous linear equations since onceH, e, andm are known for
a given spin configuration at some point in theH-D plane,
the value ofH for that spin configuration at any other poi
is linearly related. At this point of degeneracy the grou
state is calculated. If the result is either of the two origin
ground states then we have found a point on the first-o
line. If the ground state at the point of degeneracy is not
of the original states, then a new point of degeneracy
found between this new state and one of the original t
states. The choice of which original state to pick is made
the criterion that the jump in the magnetization between
and the new state is the biggest. This process is repeated
the first-order line is found. Since the discontinuity in t
magnetization across the first-order line forD052.2 is al-
ways greater than unity, this procedure is guaranteed to
the first-order line.

Subroutine 2 follows the first-order line found in subro
tine 1, until the first triple point is found in the direction o
increasingD. From the point found by subroutine 1 on th
first-order line a new point is picked by moving in the dire
tion of the first-order line and increasingD by 0.1. In Fig. 3
this new point is on an imagined continuation of the thi
line betweena and b in the direction of1. An increase of
0.1 in D has proved to be sufficiently large to extend to
new ground state for all system sizes studied. Subroutine
similar to subroutine 1 except that original ground states
always retained in the iteration and a sequence of n
ground states with decreasing values ofD are generated. A
each step in the iteration, the point of degeneracy is fo
between the new and old states and the ground state is
puted at that point. If the ground state is one of alrea
identified states then the triple point has been found oth
01441
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wise the iteration is repeat. Call this first triple poi
(H1 ,D1).

The triple point (H1 ,D1) defines three lines of coexist
ence; one of these lines is the previously identified first-or
line. The jumps in magnetization across the other two lin
are measured. The line with the smaller jump in magneti
tion is called the ‘‘lateral line’’ and the remaining line wit
the large jump in magnetization is continuation of the fir
order line. The jump across the lateral line is recorded a
subroutine 2 is invoked again to find the next triple po
along the first-order line. By repeating this set of steps ma
times, a sequence of triple points (Hi ,D i) is identified. The
triple point with the largest jump across the lateral line
identified as the finite-size critical point, (H* ,D* ).

We note that while the critical point is identified by th
size of the jumps in the magnetization, in every case that
examined it also has the largest discontinuity in the bo
energy. In principle, a definition of the finite-size critic
point based on the bond energy discontinuity might som
times yield a different triple point.

A typical running time for finding the ground state for
system of L510 is 631025 sec/spin on a Pentium II
750MHz machine. The total running time of the entire alg
rithm for the same system size is approximately 1 min.
simulated systems of size up toL560. The number of real-
izations of disorder range from 23 to 126 for different syste
sizes. The small number of realizations are a consequenc
the fact that many ground states must be explored for e
realization of disorder to find the finite-size critical point.

IV. RESULTS

Figure 4 shows the critical magnetization discontinu
m* as a function of system sizeL. Clearly this plot, together

FIG. 5. Log-log plot of the bond energy discontinuity at th
critical point e* vs the system sizeL. The solid line is a fit as
described in the text.

FIG. 4. The magnetization discontinuity at the critical pointm*
vs the system sizeL.
3-4
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with Eq. ~8! suggests that the magnetization discontinuity
the critical point does not decrease withL which can be
interpreted either as a first-order transition or a value ob
very near zero. The quality of the data is not sufficient
make a useful measurement ofb. Figure 5 shows the finite
size scaling of the critical bond energy discontinuitye* . A fit
of the form

e* 5a1bL2c ~12!

yields a50.00760.005, b52165, and c51.760.1. It is
clear thate* vanishes as power ofL. Assuming a50, we
obtain a fit, shown in Fig. 5, of the form

e* 5bL2c, ~13!

with b516.062.6 andc51.5960.05. From the latter resul
and Eq. ~9! we obtain (12a)/n50.8060.03 ~with x2

52.84, x2/d.o.f.50.57 and Q50.73). This result is in
agreement with Middleton and Fisher’s value,21 0.82
60.02.

The correlation length exponentn and the infinite size
critical disorder strengthDc can be obtained from the finite
size scaling ofD* . The fit in Fig. 6 is

D* 5Dc1bL21/n, ~14!

with Dc52.2960.02, b54.160.6 and n51.160.1 ~with
x252.79, x2/d.o.f.50.69 andQ50.59). This result is in
relatively good agreement with recent results in the literat
as shown on Table I. The value ofn is somewhat smalle
than the recent values in Refs. 20 and 21 which may re
from the use of a smaller maximum system size in our stu
Combining our results forn and for (12a)/n yields a
50.160.1. Using the larger values ofn from Refs. 20 and

*Electronic address: machta@physics.umass.edu
1J. Bricmont and A. Kupiainen, Phys. Rev. Lett.59, 1829~1987!.
2J. Z. Imbrie, Phys. Rev. Lett.53, 1747~1984!.
3Y. Imry and S. K. Ma, Phys. Rev. Lett.35, 1399~1975!.
4A. J. Bray and M. A. Moore, J. Phys. C18, L927 ~1985!.
5D. S. Fisher, Phys. Rev. Lett.56, 416 ~1986!.
6T. Nattermann, inSpin Glasses and Random Fields, edited by A.

P. Young~World Scientific, Singapore, 1997!.
7J. Villain, J. Phys.~Paris! 46, 1843~1985!.
8M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwart

Phys. Rev. B53, 6362~1996!.

FIG. 6. The critical strength of randomness,D* , vs the system
sizeL. The solid line is a fit as described in the text.
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21 gives slightly negative values ofa. In any case, within
the uncertainties, our results are consistent with modified
perscaling.

V. DISCUSSION

We have studied the scaling behavior of the discontin
ties in the magnetization and bond energy at the finite-s
‘‘critical point’’ of the zero temperature RFIM. Our result
for the magnetization discontinuity are not sufficiently acc
rate to distinguish a first-order transition from a continuo
transition with a small value ofb. The vanishing of the bond
energy discontinuity suggests that the transition is conti
ous. Assuming the transition is continuous, we have
tracted a value of the specific heat exponenta from the
scaling of the bond energy discontinuity. We find thata is
near zero, which is consistent with the modified hyperscal
relation and the recent simulation results by Middleton a
Fisher.21 It is not clear why a very similar measurement b
Hartmann and Young20 give a quite negative. Our value ofa
and that of Ref. 21 are based directly on the finite-size s
ing of the bond energy at the critical point whereas in Ref.
the average bond energy is numerically differentiated to
tain the specific heat and the finite-size scaling of the pea
used to obtaina.
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