
PHYSICAL REVIEW B 67, 014412 ~2003!
Nonlocal coherent potential approximation for the paramagnetic state
of the degenerate double-exchange model
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The coherent potential approximation~CPA! is applied to the problem of off-diagonal disorder caused by
random spin orientations in the paramagnetic~PM! state of the double-exchange~DE! model. The CPA
calculations are supplemented by the variational mean-field approach for the Curie temperature (TC). Our
formulation of CPA is essentially nonlocal and based on the perturbation theory expansion for theT matrix
with respect to fluctuations of interatomic hopping parameters near the ‘‘mean values’’ specified by matrix
elements of the self-energy for the effective medium, so that in the first order it becomes equivalent to the DE
theory by de Gennes. The second-order effects, considered in the present work, are not negligible and lead to
substantial reduction ofTC in the one-orbital case. Even more dramatic changes are expected for the degen-
erate DE model, where each site of the cubic lattice is represented by twoeg orbitals, which also specify the
form of interatomic hoppings. Particularly, the existence of two Van Hove singularities in the spectrum of the
degenerate model lead to the branching of CPA solutions, when Green’s function and the self-energy become
multivalued functions in certain regions of the complex plane. Different solutions can be classified by some
nonlocal parameter of interatomic orbital polarizationONL , and the multivalued behavior itself has many
similarities with the phenomenon of metamagnetism with respect toONL . This changes the traditional concept
of the DE physics dramatically. Particularly, we predict the transition to the two-phase state~with different
values of the order parameterONL) in the PM region below a certain temperatureTP . It is followed by two
consecutive magnetic transitions, which go separately in two different phases. Our scenario naturally explains
the phase coexistence and the appearance of several magnetic transition points, which are frequently observed
in perovskite manganites.

DOI: 10.1103/PhysRevB.67.014412 PACS number~s!: 75.10.Lp, 75.20.2g, 74.81.2g, 75.47.Gk
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I. INTRODUCTION
The nature of the paramagnetic~PM! state in perovskite

manganese oxides~the manganites! is one of the fundamen
tal questions, the answer to which is directly related to
understanding of the phenomenon of colossal magnetor
tance.

There is no doubt that any theoretical model for mang
ites should include~at least, as one of the main ingredien!
the double-exchange~DE! physics, which enforces th
atomic Hund’s rule and penalizes kinetic hoppings of pol
ized eg electrons to the neighboring site if the latt
has the opposite direction of the localizedt2g spin.1–3

The corresponding Hamiltonian is given, in the loc
coordinate frame specified by the directionsei5(cosfi
sinui ,sinfisinui ,cosui) of the spin magnetic moments, by4

Hij 52j ij t ij , ~1!

where t ij are the ~bare! parameters of kinetic hopping
betweeneg orbitals located at neighboring sitesi and j ,
and j ij 5cos(ui/2)cos(uj/2)1sin(ui/2)sin(uj/2)e2 i (f i2f j) de-
scribes the modulations caused by deviations from the fe
magnetic~FM! spin alignment in the bondi-j . The Hamil-
tonian ~1! can be viewed as the DE limit of the FM Kond
lattice model~KLM !, assuming an infinite splitting betwee
majority- and minority-spin states, and that all other inter
tions such as the electron-phonon coupling and the on
Coulomb repulsion, which can lift the local degeneracy
0163-1829/2003/67~1!/014412~13!/$20.00 67 0144
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the eg orbitals, are small in comparison with theeg band-
width W (W'4 eV, according to band structure calculatio
in the local-spin-density approximation!.5 The localized
spins are treated classically, which seems to be a reason
approximation for the 3/2t2g spins in manganites.6,7

According to the formulation of the DE model, the sp
magnetic moments are always saturated, and in order to
scribe the PM states we need to address the problem of
entational spin disorder. Despite an apparent simplicity,
is a very serious problem, which was studied only in fe
theoretical approaches, based on rather severe~and presum-
ably unsatisfactory! approximations.

The first one was proposed by de Gennes more than f
years ago.3 In his theory, allj ij are replaced by an average
value j̄, so that the spin disorder enters the model only a
renormalization ofW. The effect is not particularly strong
and the fully disordered PM state corresponds toj̄5 2

3 . The
same idea was exploited recently in a number of theo
aiming to study the behavior of orbital degrees of freedom
elevated temperature,8 but based on the same kind of simp
fications for the spin disorder.

Another direction, which features more recent activity,
the single-site dynamical mean-field theory~DMFT! for the
FM KLM. 9–12,60If the localized spins are treated classical
this method is similar to the disordered local moment a
proach proposed by Gyorffyet al.,13 and based on the cohe
ent potential approximation~CPA! for the electronic struc-
ture of the disordered PM state.14 A more conventional CPA-
©2003 The American Physical Society12-1
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I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
type formulation for the spin disorder in the FM KLM can b
found in Refs. 7, 15, and 16.

Now it is almost generally accepted that both approac
are inadequate as they fail to explain not even all, bu
certain number of observations in manganites of a princ
character such as the absolute value and the doping de
dence of the Curie temperature (TC),17 the insulating behav-
ior aboveTC ,18 and a rich magnetic phase diagram along
temperature axis, which typically show a number of ma
netic transitions19 and the phase coexistence20–22 in certain
temperature intervals. Therefore, it is clear that the the
must be revised.

There are two possible ways to proceed. One is to m
ernize the model itself by including additional ingredien
such as the electron-phonon coupling,23 Coulomb
repulsion,8,24,25and chemical disorder.16,26–28Another possi-
bility is to stick to the basic concept of the DE physics a
try to formulate a more advanced approach for the spin
order, which would go beyond the simple scaling theory
de Gennes3 as well as the single-site approximation inhere
to DMFT.11,12

Attention to the second direction was brought recently
Varma,29 who emphasized that the orientational spin disor
enters the DE Hamiltonian~1! as an off-diagonal disorder o
interatomic hopping parameters, which presents very c
lenging and not well investigated problem. In the pres
work we try to investigate some possibilities along this li
by employing a nonlocal CPA approach.

What do we expect?
~1! It was realized very recently that many aspects

seemingly complicated low-temperature behavior of dop
manganites can be understood from the viewpoint of
physics, if the latter is combined with details of realis
electronic structure for theeg states and takes into accou
strong dependence of this electronic structure on the m
netic structure.5,30At the present stage it is not clear to wh
extent the same scenario can be applied to the finite temp
ture regime and whether it can cover the physics of the
ordered PM state. If it can, there should be something pe
liar in the electronic structure of the PM state, which can
linked to the unique properties of perovskite manganites.
simplest way to address this question is to use the DE the
by de Gennes,3 and to consider an approximate electron
structure for the PM state by scaling similar electronic str
ture for the FM state. The latter is shown in Fig. 1, using
results of the Slater-Koster parametrization for theeg states
in the cubic lattice.31 The electronic structure is indeed ve
peculiar because of two Van Hove singularities at
(p,p,0) and (0,p,0) points of the Brillouin zone, which ar
responsible for two kinks of density of states at61. The first
singularity is expected to be near the Fermi level when
hole concentration is close to 0.3, i.e., in the most interes
regime from the viewpoint of colossal magnetoresistanc32

If so, what are the possible roles of these singularities in
case of the spin disorder? Although the main details of
electronic structure will be broadened, it is still reasonable
expect some anomalies. Will they contribute to the proper
of the PM state? If yes, in which form? Note that apart fro
the single-site approximation, most of recent DMF
01441
s
a
al
en-

e
-

y

d-

s-
y
t

y
r

l-
t

f
d
E

g-

ra-
s-
u-
e
e
ry

-
e

e

e
g

e
e
o
s

calculations10–12 employed a model semicircular~SC! den-
sity of states~DOS!, and therefore could not address the
questions.

~2! There are many anticipations that there is some hid
parameter, which controls the properties of perovskite m
ganites. A typical example is the picture of orbit
disorder,24,25 according to which the degeneracy ofeg orbit-
als is lifted by strong on-site Coulomb repulsion. It brea
the cubic symmetry of the crystal, at least locally, and p
duces a nonvanishing orbital polarization at each site of
system. The main conjecture in Ref. 24 is that this eff
persists in the FM state of cubic manganites without form
the long-range ordering. In the present work we will sho
that by considering nonlocal effects in the degenerate
model, one may have an alternative scenario, when ther
certain degree of freedom which does control the proper
of cubic manganites. However, contrary to the ordinary
bital polarization, this new order parameter is essentia
nonlocal. It is attached to the bonds of the DE system a
does not conflict with the cubic symmetry of the crystal.

~3! There are many debates about possible phase coe
ence in perovskite manganites,33,34 and according to some
scenarios this effect plays an important role aroundTC , be-
ing actually the main trigger behind phenomenon of colos
magnetoresistance.27 The problem was intensively studie
numerically, by employing the Monte Carlo simulations.27,34

If this is indeed the case, what does it mean in the langu
of analytical solutions of the DE model~and its refine-
ments!? Presumably, the only possibility to have simult
neously two~and more! solutions is to admit that the self
energy~and Green’s function! can be a multivalued function
in certain region of the complex plane. Such a behavior
nonlinear CPA equations was considered as one of the m
troublemakers in the past,35,36,59but may have some physica
explanation in the light of newly proposed ideas of pha
coexistence.

The rest of the paper is organized as follows. In Sec. II
briefly review the variational mean-field approach. In Sec.
we describe general ideas of nonlocal CPA to the problem

FIG. 1. Tight-binding density of states and dispersion of theeg

bands in the ferromagnetic state. The value of thedds transfer
integral is used as the energy unit. Dotted line shows position
the Fermi level as a function of hole concentrationx512n, where
n is the integrated density of states. Note the existence of two
Hove singularities at (p,p,0) and (0,p,0), responsible for the
kinks of density of states at61. The first singularity is located nea
the Fermi level whenx.0.3 ~shown by arrow!.
2-2
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NONLOCAL COHERENT POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B67, 014412 ~2003!
orientational spin disorder in the DE model. In Sec. IV w
consider CPA solutions for the PM phase of one-orbital
model and evaluateTC . We will argue that two seemingly
different approaches to the problem of spin disorder in
DE model, one of which was proposed by de Gennes3 and
the other one is based on the DMFT,10–12have common basis
and both can be regarded as CPA-type theories, but sup
mented with different types of approximations. In Sec. V
consider a more realistic example of DE interactions betw
two eg orbitals and argue that the physics of degener
model is qualitatively different from the one-orbital cas
Particularly, the CPA self-energy becomes a multivalu
function in certain regions of the complex plane. This beh
ior is related with some hidden parameter of interatomic
bital polarization and hints at intrinsic inhomogeneity of t
PM state. In Sec. VI we summarize the main results of
work, discuss possible connections with the experime
data as well as possible extensions of our model.

II. CALCULATION OF THERMAL AVERAGES

In order to proceed with the finite temperature descript
of the DE model we adopt the variational mean-fie
approach,3,37 and compute the thermal~or orientational! av-
erages of all quantities in terms of the single spin orientat
distribution function, which depends only on the angle b
tween the local spin and an effective molecular fieldl:

pi~ei!}exp~l•ei !. ~2!

For the purposes of our work, which deals with the PM a
FM states, the effective field can be chosen asl5(0,0,l).

The application of this procedure to the DE Hamiltoni
requires several comments, because Eq.~1! is formulated in
the local coordinate frame, whereas the form of the distri
tion function ~2! corresponds to the global one.38 Then, in
order to compute the orientational average of the matrix
ement associated with an arbitrary chosen site0, we specify
the coordinate frame in Eq.~2! by e0, so that at each instan
the local frame at the site0 coincides with the global one
The averaging over all possible directionse0 in the molecular
filed l is performed as the second step.

Therefore, the distribution function at the site0 is given
by Eq. ~2!. The distribution functions at remaining sites, fo
mulated in the local coordinates of the site0 and taking into
account the motion ofe0 in the molecular fieldl, can be
obtained by transformingei and l to the local coordinate
frame: ei→ei85R̂ei and l→l85R̂l, where R̂e05(0,0,1);
and averagingpi(ei8) over all possible directionse0 with the
weightsp0(e0):

Pi~ei8 ,l!5
1

nE dV0exp~l8•ei81l•e0!, ~3!

where the normalization constantn is given by the condition
*dVi8Pi(ei8 ,l)51. The form of Eq.~3! implies that the di-
rections of magnetic moments are not correlated~that is in
the spirit of the mean-field approach! and that the averaging
over e0 can be performed independently for all sites of t
system.
01441
e

le-

n
te
.
d
-

r-

r
al

n

n
-

d

-

l-

For the analysis the PM state andTC , it is sufficient to
consider the small-l limit

Pi~ei8 ,l!.
1

4p S 11
1

3
cosu i8l

2D . ~4!

Then, the spin entropy is given by3

2TS~l!.
kBT

6
l2 ~5!

and the free energy of the DE model can be found as3,37

F~T,l!5ED~T,l!2TS~l!, ~6!

whereED(T,l) is the electron free energy~or the double-
exchange energy!

ED~T,l!52E
2`

1`

dz fT~z2m!n̄~z,l!, ~7!

calculated in terms of orientationally averaged integra
DOS n̄(z,l), which comes from the solution of CPA equa
tions for corresponding Green’s function.f T(z2m)
5$exp@(z2m)/kBT#11%21 is the Fermi-Dirac function with
the chemical potentialm.

The best approximation for the molecular fieldl is that
which minimizes the free energy~6!. Assuming that the tran-
sition to the FM state is continuous~of the second order!,39

TC can be obtained from the following equation:

]2F~TC ,l!

]l2 U
l50

50. ~8!

III. NONLOCAL CPA FOR THE DOUBLE EXCHANGE
MODEL

In this section we discuss general aspects of the nonl
CPA approach to the problem of orientational spin disor
in the DE model. We attempt to describe the disordered s
tem in an average sense by introducing an effective ene
dependent Hamiltonian

H̄ij ~z!5S ii~z!d ij 2S ij ~z!~12d ij !, ~9!

where S ij is the nonlocal part of the self-energy, which
restricted by the nearest neighbors andS ii is the local~site-
diagonal! part. The nonlocal formulation of CPA is essenti
because in the low-temperature limitS ij shall be replaced by
the conventional parameters of kinetic hoppingst ij . The di-
agonal partS ii is required in order to formulate a close
system of CPA equations.

The Hamiltonian~9! is requested to preserve the cub
symmetry of the system and be translationally invariant. U
ing these symmetry constraints, all matrix elements of
self-energy$S ii ,S ij % can be expressed through$S00,S01% for
one of the dimers~for example,0-1 in Fig. 2!. Then, Hamil-
tonian~9! can be Fourier transformed to the reciprocal spa
H̄q(z)5( je

2 iq•(Ri2Rj)H̄ij (z), and the first equation for the
orientationally averaged Green function can be written a
2-3
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I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
Ḡij ~z!5
1

VBZ
E dqeiq•(Ri2Rj)@z2H̄q~z!#21, ~10!

where integration goes over the first Brillouin zone of t
simple cubic lattice with the volumeVBZ .40

In order to formulate the CPA equations we consider o
site-diagonal and nearest-neighbor elements ofḠij . Again,
using the symmetry constraints, all matrix elements ofḠij

can be expressed throughḠ00 andḠ01. In addition, there is
a simple relation connectingḠ00 andḠ01 for given S00 and
S01:

Ḡ00~z!@z2S00~z!#1(
i

Ḡ0i~z!S i0~z!51, ~11!

which follows from the definition of the Green function~10!
and the Hamiltonian~9!.

In order to obtain the closed system of CPA equatio
which connects$S00,S01% with $Ḡ00,Ḡ01%, we construct the
T matrix13–15,41

T̂~z!5@Ĥ2Ĥ̄~z!#$1̂2 Ĝ̄~z!@Ĥ2Ĥ̄~z!#%21, ~12!

and require the average of scattering due to the fluctuat

DĤ5Ĥ2Ĥ̄ to vanish at every site and every bond of t
system, i.e.,

T̄00~z!5T̄01~z!50. ~13!

FIG. 2. Atomic sites which contribute to the matrix elements
orientationally averagedT matrix for the dimer0-1 in the second-
order perturbation theory expansion.
01441
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The hat symbols in Eq.~12! means that all the quantities ar
infinite matrices in the real space and the matrix multiplic
tions imply also summation over the intermediate sites42

This causes an additional problem, because the nonl

fluctuationsDĤ tend to couple an infinite number of sites
Eq. ~12!. Therefore, we employ the perturbation theory e

pansion up to the second order with respect toDĤ:

T̂~z!.@Ĥ2Ĥ̄~z!#1@Ĥ2Ĥ̄~z!#Ĝ̄~z!@Ĥ2Ĥ̄~z!#.
~14!

As we will show, the first term in this expansion correspon
to the approximation considered by de Gennes,3 and the next
term is the first correction to this approximation. In all su
sequent discussions, the terminology ‘‘first’’ or ‘‘second o

der expansion’’ with respect toDĤ will mean the number of
terms retained in Eq.~14! for the T matrix.

Since t ij and S ij are restricted by the nearest neighbo
and we retain only site-diagonal and nearest-neighbor

ments ofḠij , in order to evaluateT̄00(z) and T̄01(z) in the
approximation given by Eq.~14! we need to consider the
interactions confined within the twelve-atom cluster which
shown in Fig. 2~obviously, an additional term in the pertu
bation theory expansion for theT matrix would require a
bigger cluster!.

IV. ONE-ORBITAL DOUBLE EXCHANGE MODEL

A. Solution for the paramagnetic state

In the one-orbital case, the effective DE Hamiltonia
takes the following form, in the reciprocal space

H̄q~z!5S00~z!22~cx1cy1cz!S01~z!,

whereS00(z) andS01(z) areC numbers,cg5cosqg , and all
energies throughout in this section are in units of the eff
tive transfer integralt05W/12.

Matrix elements of the Green functionḠ00(z) andḠ01(z)
are obtained from Eq.~10!. The self-consistent CPA equa

tions are given by Eq.~13!. The thermal averagesT̄00(z) and
T̄01(z) can be calculated in the local coordinate frame as
ciated with the site0, wheree085(0,0,1), and using distribu-
tion functions~4! for all remaining sites of the cluster show
in Fig. 2. This is a tedious, but rather straightforward proc
dure. Here we present only the final result~some details can
be found in Ref. 43!. After introducing the short notations fo
the self energiessW 5$s0 ,s1%[$S00,S012

2
3 %, and for the

Green functiongW 5$g0 ,g1%[$Ḡ00,Ḡ01%, the CPA equations
T̄00(z)50 andT̄01(z)50 can be presented in the form~for
a50 and 1, respectively!:44

f

2-4
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NONLOCAL COHERENT POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B67, 014412 ~2003!
sa5Fa~sW ,gW !1Ca~sW ,gW !l2, ~15!

where

F0~sW ,gW !5S s0
216s1

21
1

3Dg0212s0s1g1 ,

F1~sW ,gW !52s0s1g02S s0
2115s1

212s11
13

54Dg1 ,

C0~sW ,gW !5
8

15
~s0g12s1g0!2

1

45
g0 ,

and

C1~sW ,gW !5
2

45
2

4

45
s0g01S 22

15
s12

7

48Dg1 .

These equations should be solved self-consistently in com
nation with the definition~10! for the Green function.

Results of these calculations for the PM state (l50) are
shown in Fig. 3. In the one-orbital case there is only one C
solution in each point of the complex energy plane. The
tegrated DOS lies in the interval 0<n̄(m)<1 and takes all
intermediate values as the function of chemical potentialm,
meaning that our system is well defined for all physical v
ues of the electronic density.

The nonlocal CPA formulation in the one-orbital case
formally equivalent to the local one, which can be obtain
after scaling transformation of the Green function$2/3
1s1(z)%Ḡij (z)5Ḡij8(z), where Ḡij8(z)5@z2s08(z)1 t̂ # ij

21

and s08(z)5z2@z2s0(z)#/@2/31s1(z)#. Therefore, the
quasiparticle electronic structure in this case is controlled
only one parameters08(z). Sinces1(z)!2/3 and Ims0(z)
<0, Ims08(z)<0 and the obtained solution is causal in t
upper half plane.35,36The electronic structure is metallic. Th
spin disorder alone is insufficient to cause the Anderson
calization at realistic values of the electronic density, eithe26

The first order expansion with respect toDH ~the DE
theory by de Gennes,3 thereafter all parameters in this lim
will be denoted by tilde! yields F̃05F̃15C̃050 and C̃1
52/45. Corresponding matrix elements of the Green fu

FIG. 3. Paramagnetic state of the one-orbital double excha
model: behavior of matrix elements of the Green function and
self-energy along the real axis. Dotted line shows the same m
elements in the double exchange theory by de Gennes~the first
order expansion for theT matrix!.
01441
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tion are also shown in Fig. 3. Despite significant differen
in the self energies, the matrix elements of the Green fu
tion obtained in the first and second order approach are
prisingly close, meaning that there is a good deal of can
lations of different contributions togW .

However, it is not true for the Curie temperatures. Wh
in the first order,TC is solely determined byḠ00, in the
second order it explicitly depends on bothḠ00 andsW , which
make significant difference from the canonical scaling re
tion betweenTC and the DE energy of the FM state.3

B. Curie temperature

TC is obtained from Eq.~8!. In order to evaluate the DE
energy, we start with the PM solution (l50) and include all
contributions in the first order ofl2 as a perturbation. Em
ploying variational properties of integrated DOS in CPA,41,45

Dn̄(z,l)5n̄(z,l)2n̄(z,0) can be obtained using the Lloy
formula for the small changes of the self-energiesDsa(z)
5Ca(z)l2:

Dn̄~z,l!.
1

p
Im$C0~z!g0~z!26C1~z!g1~z!%l2. ~16!

g1(z) can be further expressed throughg0(z) using identity
~11!. Then, the change of the DE energy takes the fo
DED(T,l).D(T)l2, whereD(T) is given by

D~T!52
1

p
ImE

2`

1`

dz fT~z2m!H S C0~z!

1
C1~z!@z2s0~z!#

s1~z!12/3 Dg0~z!2
C1~z!

s1~z!12/3J .

~17!

Taking into account the entropy term, Eq.~5!, we obtain

kBTC526D~TC!. ~18!

In the first order with respect toDĤ we recover the well
known relation betweenTC and the DE energy of fully po-
larized FM stateED(FM):3,46

kBT̃C52
4

15
ED~FM!.

The second order corrections significantly reduceTC @up
to 20% atn̄50.5 ~Fig. 4!#, which is also lower in comparison
with results of~local! DMFT calculations, suggesting impor
tance of the off-diagonal disorder.47 Very similar conclusion
was obtained recently by Alonsoet al.,37 who used ~the
same! variational mean-field approach supplemented by
moments-method for the averaged DOS in the one-orb
DE model.

Using the valueW'4eV, TC can be estimated asTC

<800 K. The upper bound, corresponding ton̄50.5, ex-

ge
e
ix
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I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
ceeds the experimental values by factor two.TC can be fur-
ther reduced by the antiferromagnetic~AFM! superexchange
~SE! interactions between the localized spins3,37,48,49or tak-
ing into account the spatial spin correlations.50

V. DOUBLE EXCHANGE BETWEEN DEGENERATE eg

ORBITALS

A. General remarks

Let us consider more realistic example of the DE inter
tions between twoeg orbitals,30 which have the following
order: u1&[u3z22r 2& and u2&[ux22y2&. Then, all quanti-
ties such as the transfer integralst ij , the averaged Gree
function Ḡij (z), and the self-energyS ij (z) are the 232 ma-
trices in the basis of these two orbitals.

Since the cubic symmetry is not destroyed by the s
disorder, the local part of the self energy is both diagonal
degenerate with respect to the orbital indicesL andL8:

FIG. 4. Curie temperature of the one-orbital double excha
model, obtained using the first and second order expansion for tT
matrix, as the function of averaged electronic density.
e

rg

fo

a
M
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S00
LL8~z!5s0~z!dLL8 .

Throughout in this section, all quantities will be in units
the transfer integraldds5W/6'0.7 eV.31

All matrix elements associated with the bond0-1 ~see Fig.
2! should obey the tetragonalC4v symmetry. Since 3z22r 2

andx22y2 orbitals belong to different representations of t
C4v group (a1 and b1, respectively!, one can write very
generally

S01~z!5S S01
11~z! 0

0 S01
22~z!D [S s1~z!1

2

3
0

0 s2~z!
D ,

~19!

i.e., S01(z) is a diagonal matrix, but not necessarily dege
erate one. Corresponding matrix of baredds hoppings in the
z direction has the form31

t015S 1 0

0 0D . ~20!

The hoppings are allowed only between 3z22r 2 orbitals,
that reflects a hidden symmetry of the ordered FM state.
same property does not necessarily apply to the self-en
in the case of spin disorder. Therefore, we shall retains2(z),
which is required in order to formulate a closed system
CPA equations. In some sense,s2(z) can be viewed as an
effectiveddd hopping,31 induced by the spin disorder.

Matrix elements oft ij , andS ij (z) in the xy plane can be
obtained using the 232 rotation matrices for theeg
orbitals.51 This yields the following Hamiltonian, in the re
ciprocal space:

e

H̄q5S002
1

2 S ~3S01
111S01

22!~cx1cy!14S01
22cz A3~S01

112S01
22!~cy2cx!

A3~S01
112S01

22!~cy2cx! ~S01
1113S01

22!~cx1cy!14S01
11czD .
this
two

di-

uc-

to
Then the orientationally averaged Green function is giv

by Eq.~10!. Matrix elements of the Green functionḠ00
LL8 and

Ḡ01
LL8 obey the same symmetry properties as the self-ene

Three CPA equationT̄00
11(z)50, T̄01

11(z)50, and T̄01
22(z)

50 can be written in the compact form~15! for a50, 1,

and 2, respectively, after introducing the notationssW

5$s0 ,s1 ,s2% and gW 5$g0 ,g1 ,g2%[$Ḡ00
11,Ḡ01

11,Ḡ01
22%. Some

details of these derivations and explicit expressions

Fa(sW ,gW ) andCa(sW ,gW ) can be found in Ref. 43.
What is so special about the degenerate DE model,

why it can lead to qualitatively new behavior for the P
n

y.

r

nd

state? Here we would like to discuss the physical side of
problem and emphasize rather unique combination of
factors.

~1! The nonlocal part of the self-energy acquires an ad
tional degree of freedoms2(z) which may directly control
details of quasiparticle electronic structure~including posi-
tions of the Van Hove singularities!. This is qualitatively dif-
ferent from the one-orbital case, where the electronic str
ture is determined by only one local parameters08(z). The
new element of the self-energy can be formally linked
some nonlocal order parameter~an ‘‘interatomic orbital po-
larization’’!:

1 1`
ONL52
p

ImE
2`

dz fT~z2m!$Ḡ01
11~z!2Ḡ01

22~z!%, ~21!
2-6
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NONLOCAL COHERENT POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B67, 014412 ~2003!
which is attached to the bonds of the DE system and does
destroy the local degeneracy of theeg orbitals. Note that
ONL50 if t01 is proportional to the unity matrix~a purely
fictitious case of independenteg orbitals! andONLÞ0 in the
case of anisotropic hopping parameters given by Eq.~20! for
the FM state. Our conjecture is thatONL is further modified
by the spin disorder. Note also that in all three cases,
local parameter of orbital polarization, defined by Eq.~21!

with Ḡ01 replaced byḠ00, vanishes due to the cubic sym
metry of the system.

~2! Because of the Van Hove singularities, the matrix
ements of the Green function are nonmonotonous funct
of bothz and the matrix elements of the self-energy~Fig. 5!.
SincegW enters the self-consistent CPA equations~15!, they
will be highly nonlinear and one can naturally expect seve
CPA solutions corresponding to different starting conditio
for s2(z). The mechanism has many similarities with t
occurrence of metamagnetism in itinerant electron system52

The only difference is that nowONL plays the same role a
the spin magnetization for the conventional metamagneti
and$S01

112S01
22% is a nonlocal analog of the magnetic field

Indeed, let us start with a trial Green functiongW corre-
sponding to the self-energysW . For simplicity we assume tha
our choice is close to the first order CPA solution for the P
state. Our goal is to investigate the behavior of CPA eq
tions near the point Re(z)52 2

3 , corresponding to the posi
tion of the first Van Hove singularity on the real axis a
leading to the peak of DOS~Fig. 5!. Let us consider a smal
trial change of the self-energydsW in nearsW , which leads to
the change of the Green functiondgW 5]gW /]sW dsW in in Eq.
~10!. Then, we would like to calculate the new changedsW out,
which satisfies the CPA equations~15!. It is given by

dsW out5S 12
]FW

]sW
D 21

]FW

]gW

]gW

]sW
dsW in, ~22!

where we have introduced the short notationFW
5$F0 ,F1 ,F2%.

FIG. 5. Behavior of density of states in the complex plan
expected for the paramagnetic state in the double-exchange th
by de Gennes. Note two peaks, which are related with the exist
of two Van Hove singularities on the real axis~Fig. 1!. Far away
from the real axis the peaks are smeared.
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Suppose that our first choice for the self-energy issW (z)

5sW (1)(z)1dsW in1(z) and, for a givenz, Re(z) is located on
the left slope of DOS, i.e., Re(z),Re(zVH), where
Re(zVH)5Re$s0(z)2s1(z)13s2(z)2 2

3 % is the position of
the Van Hove singularity on the real axis. This solution w
be stable if the maximum of DOS will be further shifte

from the considered pointz by dsW out1(z), that is equivalent
to the requirement Re(dzVH

out1).Re(dzVH
in1 ).

One can also try to find another solution by starting w

sW (z)5sW (2)(z)1dsW in2(z), which places Re(z) on the right
slope of DOS. This solution will be stable if Re(dzVH

out2)

,Re(dzVH
in2 ).

Is it possible thatboth solutions are stable? The quantit
tive answer is rather cumbersome. However, qualitativ
it is clear that such situation is rather likely because the m

trix elements of]gW /]sW will change sign near the point o
Van Hove singularity, and according to Eq.~22!, the matrices

]gW /]sW usW 5sW (1) and ]gW /]sW usW 5sW (2) will lead to two different

estimates fordsW out.
Far away from the real axis, the Van Hove singulariti

are smeared, and we should regain to the standard beh
when there is only one CPA solution for eachz. Such a
situation is expected when Im(z)>0.8 ~Fig. 5!. The qualita-
tive analysis is supported by results of numerical CPA cal
lations, which will be discussed in the next section.

B. CPA solution for the paramagnetic phase

A typical example of the numerical solution of CPA equ
tions is shown in Fig. 6. In these calculations we fix Im(z)
and solve CPA equations by moving parallel to the real a
and in each point beginning the iterations with the se
consistent self-energy obtained for the previous value
Re(z). As expected, when Im(z) is large we obtain only one
CPA solution for eachz. This is the typical behavior for
Im(z)>0.75. However, when we approach the real axis,
situation changes dramatically and for Im(z)50.7 we obtain
two different solutions near the points of Van Hove sing
larities, depending on whether we move in the positive
negative direction of the real axis and resulting in the ch
acteristic ’’hysteresis loop’’ shown in Fig. 6.

A better idea about topology of CPA solutions in the co
plex plane can be obtained from Fig. 7, where we p
Re(S01

112S01
22) calculated by using two different starting con

ditions in eachz point. Depending on the location in th
complex plane, the CPA equations are converged to ei
the same or two different solutions. The latter situation o
curs within the shaded area. Note that this area is the re
of numerical calculations. In principle, we do not exclude t
possibility that our result may be incomplete and that with
better choice of the starting conditions this area can be
larged.

Our analysis is limited by Im(z)'0.5. When we further
approach the real axis the topology of CPA solutions
comes increasingly complicated. At the present stage we

,
ory
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I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
not have a clear strategy of how to deal with this probl
and how to interpret the behavior of our model near the r
axis. Nevertheless, as it was already pointed out in the
vious section, the multivalued behavior itself is quite phy
cal as it is related with peculiarities of DOS of the degener
DE model. Note that Im(z)'0.5 corresponds to the positio
of the first Matsubara pole forT'0.16/kB'1200 K, which
can be regarded as the lowest estimate for the tempera
for which our analysis is strictly justified.

Below we discuss possible consequences of the exist
of two different CPA solutions in the PM state. Mathema
cally, our analysis is based on the following observations

~1! The existence of the branch point (B in Fig. 7!, which
forms two physical branches of CPA solutions in certain a
of the complex plane. The requirement implies that there
continuous path around the branch-point, which connects
points located on two different branches.

~2! On both branches, Green’s function and the se
energy are analytic functions~perhaps except the branch
point itself and the branch edges!. The requirement allows u
to use standard theorems of contour integration in the c
plex plane.

Then, the physical interpretation of the multi-valued b
havior becomes rather straightforward and two CPA so
tions can be linked to different PM phases. The crucial fac
which connects the topology of CPA solutions in the co
plex plane with the temperature behavior of the PM stat

FIG. 6. Behavior of matrix elements of the self-energy in t
paramagnetic state of degenerate double exchange. For Iz)
>0.75 there is only one CPA solution, while for Im(z),0.75 one
can obtain two self-consistent solutions in certain interval of Rez)
by starting the iterations with the self-energy obtained for the p
vious value of Re(z) and moving either in the positive or negativ
direction of the real axis~shown as a hysteresis!.
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how many Matsubara energies fall into the multivalued a
for the given temperatureT and the chemical potentialm. If
they do, the PM state will be represented by two pha
existing at the sameT andm, and the position of the branc
point itself can be related with the temperature, below wh
the PM state becomes intrinsically inhomogeneous. The s
ation has many things in common with the phenomenon
inhomogeneous phase separation, which was intensively
cussed for manganites.33,34The new aspect in our case is th
both phases can be paramagnetic. They are characterize
different densities and expected to have very different in
atomic properties related with the ability of electrons
transfer between different sites. For example, taking into
count very large difference of interatomic matrix elements
the self-energy for two CPA solutions~Figs. 6 and 7!, it is
natural to expect that two phases will have different cond
tivity and the optical properties.15,53

C. Energy integration and occurrence
of two paramagnetic phases

In this section we discuss some aspects of the ene
integration in the complex plane, related with the existen
of two physical branches of CPA solutions. Let us consid
the integral

X~m!5E
2`

1`

dz fT~z2m!X~z!, ~23!

whereX(m) is a physical quantity, which can be the dens
of eg electrons, the double exchange energy or the chang
either of them, andX(z) has the same topology in the com
plex plane as the self-energy shown in Fig. 7. Then,
behavior of integral~23! will depend on the position of the
chemical potentialm with respect to the multivalued area
Generally, we should consider three possibilities~see Fig. 8
for notations!.

FIG. 7. Topology of the nonlocal part of the self-energy in t
complex plane. The branch point is denoted byB. The projection
shows an approximate position of the multivalued area of CPA
lutions.

-
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NONLOCAL COHERENT POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B67, 014412 ~2003!
~1! m,Y1. In this region there is only one CPA solutio
and X(m) can be calculated using standard methods of
ergy integration in the complex plane~see, e.g., Ref. 54, an
references therein!.

~2! Y1<m<Y2. Then,X(m) can take two values for eac
value of the chemical potentialm: X1(m), if the integrand is
solely confined within one physical branch andX2(m)
5X1(m)1DX(m), if it is extended to the second branc
The discontinuityDX(m) is given by the contour integralC1
around the branch point. SinceX(z) is an analytic function,
the integral does not depend on the form ofC1. We would
like to emphasize that we do not impose any restrictions
X(m) and do not try to define it in as a single-valued fash
by introducing the branch cuts, which is largely arbitra
procedure.35 Instead, we treat both branches on an eq
footing, that inevitably leads to the multivalued behavior
X(m), and we argue that this behavior can be interpreted
quite a physical basis. Integral~23! can be replaced by th
contour integralC2 passing round the multi-valued area a
residues calculated at a limited number of Matsubara e
gieszn5m1 ipkBT(2n11)

X~m!5E
C2

dz fT~z2m!X~z!22p ikBT(
zn

X~zn!, ~24!

so that in order to findX1 and X2, the residues should b
calculated on the first and second branches, respectively55

~3! m.Y2. In this case the integration along the real a
shall be combined with the discontinuityDX term given by
the contour integralC1. The integration can be replaced b

FIG. 8. Energy integration for the degenerate double-excha
model. ~a! The integral along the real axis plus the discontinu
given by the contour integralC1 around the branch pointB. ~b! An
equivalent expression in terms of the contour integralC2 passing
round the multivalued area of the complex plane and residues
culated at Matsubara poles. The latter contributions are differen
two different branches, that is equivalent to the discontinuity te
in the scheme~a!.
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Eq. ~24!. In this region, all Matsubara poles fall on the sing
branch andX(m) is the single-valued function.

As an illustration, we show in Fig. 9 the behavior of a
eraged electronic density as the function ofm. For kBT
50.24, corresponding to Im(z0).0.754, which is slightly
above the branch point, the first Matsubara pole falls bey
the multivalued area andn̄(m) shows a ’’normal’’ behavior
when for eachm there is only one value ofn̄(m). For
smallerkBT, n̄(m) can take two different values for the sam
m, which means the existence of two different phases. B
phases are paramagnetic and can be distinguished by th
rameter of inter-atomic orbital polarization, given by E
~21!. The temperatureTP'0.23/kB'1800 K below which
the first Matsubara pole falls into the multivalued area of
complex plane can be regarded as the transition tempera
to the two-phase state.

Finally, we would like to note that althoughn̄(m) for each
of the phases exhibits a discontinuity at the boundary of
two-phase state, the total density, which is the superposi
of the two solutions, is well defined in the whole integral
<n̄(m)<1.

D. Two-phase state

In this section we briefly consider the problem of pha
coexistence using a semiquantitative theory of noninterac
pseudoalloy. Namely, we assume that the free energy of
mixed PM state is given by

Fmix~y!5~12y!ED
(1)1yED

(2)2TSmix~y!,

e

al-
or

FIG. 9. Averaged electronic density (n̄) and the parameter o
interatomic orbital polarization (ONL) as a function of chemica
potential for the paramagnetic state of degenerate double exch
model. ForT<0.23, there are two different phases which are d

tinguished byn̄ andONL .
2-9
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I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
whereED
(1) andED

(2) are the energies of two phases existi
at the sameT andm ~with lower and higher density, respec
tively!, y is the ‘‘alloy concentration,’’ andSmix(y) is the
configurational mixing entropy

2TSmix~y!5kBT@y ln y1~12y!ln~12y!#.

Then, the equilibrium concentration, which minimiz
Fmix(y) is given by

y5~eDED /kBT11!21.

The energy differenceDED5ED
(2)2ED

(1) can be calculated
using the definition~7!. According to Eq.~24! we need to
evauate the discontinuity of the integrated DOS

DED52p ikBT(
zn

@ n̄(2)~zn!2n̄(1)~zn!#

at a limited number of Matsubara energies, which fall in
the multivalued area of the complex plane. Some details
these calculations can be found in the Appendix. It appe
that just below the transition temperature to the two-ph
statekBTP'0.23, DED is small ~typically varies from 0 to
20.06, in units of thedds transfer integral! and the main
contribution toFmix(y) comes from the entropy term. There
fore, y is close to 0.5 and two PM phases coexist in alm
equal percentage.

E. Curie temperature

The Curie temperature can be obtained from Eq.~18!,
where in the case of orbital degeneracyD(T) is given by56

D~T!52
1

p
ImE

2`

1`

dz fT~z2m!$2C0~z!g0~z!

26@C1~z!g1~z!1C2~z!g2~z!#%. ~25!

Results of these calculations are shown in Fig. 10.
m,21, the magnetic transition temperature appears to
lower than TP . Corresponding densitŷ n̄&5(12y)n̄(1)

1yn̄(2), averaged over the spin orientations and the al
concentrations can be estimated from Fig. 9. Using the va
of equilibrium alloy concentrationy'0.5, the regime
m,21 roughly corresponds to the densities range^n̄&
,0.5. In this region,TC should be calculated independent
for two different phases. Not surprisingly that differe
phases are characterized by differentTC’s. Therefore, we ex-
pect two magnetic transition points, and the behavior form
,21 can be summarized as follows~see Fig. 10!.

With the cooling down of the sample, the first transitio
(TP) occurs within the PM state, which turns into the tw
phase state. Both phases are paramagnetic and can be d
guished byn̄ and a hidden parameter of interatomic orbi
polarizationONL . Further decreases ofT gives rise to the
FM transition in one of the phases, characterized by low
density~the hole-rich phase!. In the intervalTC

(1),T,TC
(2) ,

the FM phase continues to coexist with the PM one, pers
ing in the hole-deficient part of the sample.57 The difference
01441
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TC
(2)2TC

(1) depends onm, and is expected to lie in the inter
val 0,TC

(2)2TC
(1),650 K, where the upper border was es

mated using the valuedds'0.7 eV. Finally, belowTC
(1) the

FM order is established in both phases. Both transitions
the FM states are continuous.

Formally, the opposite scenario when the transition to
two-phase state occurs belowTC is also possible, and ac
cording to Fig. 10 may take place whenm>21 ~correspond-
ing to the densities rangên̄&>0.5). This would mean tha
the FM state at elevated temperatures could also bec
intrinsically inhomogeneous. We do not rule out such a p
sibility. However, the quantitative description of this situ
tion is beyond the small-l limit, considered in the presen
work.

VI. SUMMARY

We have considered a nonlocal CPA approach to the p
lem of orientational spin disorder in the double exchan
model, which is based on the perturbation theory expans
for the T matrix with respect to fluctuations of kinetic hop
pings near the mean values specified by matrix element
the self-energy for the effective medium. In the first orde
is equivalent to the DE theory by de Gennes.3 Our main
focus was on the corrections to this theory caused by
second-order effects.

In the one-orbital case, they led to substantial reduction
TC , which was nevertheless largely overestimated in co
parison with results of Monte Carlo calculations,28 due to
limitations inherent to the mean-field approach. Therefore
sensible description of spatial spin correlations, beyond
mean-field approximation, presents a very important dir
tion for the improvement of our method.

It appeared, however, that even on the mean-field le
the situation is far from being fully understood,

FIG. 10. Main transition temperatures for the degenerate dou
exchange model~in units of thedds integral!. TP is the transition
temperature to the two-phase paramagnetic state. The shaded
shows an approximate range of the chemical potentials (m) when
the paramagnetic state becomes intrinsically inhomogeneous.TC

(1)

andTC
(2) are the Curie temperatures for two different phases~char-

acterized by lower and higher densities of theeg electrons, respec-
tively!.
2-10
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NONLOCAL COHERENT POTENTIAL APPROXIMATION . . . PHYSICAL REVIEW B67, 014412 ~2003!
considered in the combination with the effects of orbital d
generacy in theeg band. Particularly, we have argued that t
degenerate model should be characterized an additional o
parameter of interatomic orbital polarizationONL , which is
essentially nonlocal and attached to the bonds of the
system. Another important factor is the very peculiar form
density of theeg states, which has two anomalies corr
sponding to the positions of the Van Hove singularities
the real axis. The ‘‘strange’’ electronic structure is respo
sible for an analog of the metamagnetism and leads to
different CPA solutions in certain regions of the compl
plane. They correspond to different values of the order
rameterONL and the electronic density. Interestingly th
both solutions can be paramagnetic in terms of conventio
spin degrees of freedom. This changes the traditional con
of the DE physics dramatically. Particularly, we predict th
the PM state becomes intrinsically inhomogeneous be
certain temperatureTP , and then undergoes the FM trans
tions separately in two PM phases, which have differ
TC’s.

Unfortunately, there is no direct experimental eviden
supporting the idea of mixed PM state belowTP , and it is
not clear how this effect can be distinguished from tho
caused by extrinsic factors such as chemical and struc
inhomogeneities and the grain boundaries.58 On the other
hand, the phase coexistence belowTC is rather common, and
was observed in a number of experiments.20–22 In addition,
our result naturally explains appearance of several magn
transition points in perovskite manganites.

Finally, we would like to discuss briefly possible exte
sions of our model.

~1! The present approach is based on the second ord
perturbation theory expansion for theT matrix. The overall
picture obtained for the degenerate model is qualitativ
different from the DE theory by de Gennes. Since the eff
is so dramatic, it naturally raises the question about
higher-order corrections. It seems to be a very import
problem for the future analysis.

~2! The values ofTC obtained in the degenerate DE mod
are strongly overestimated. Presumably, the same is true
TP , which is beyond the realistic range for known perovsk
manganites. Therefore, the model should be corrected by
cluding at least the AFM superexchange interactions betw
the localized spins (JS).49 This would also allow to conside
the AFM structures, the appearance of which is expected
the densitieŝ n̄&<0.5, even in the simple DE model.5,30 The
main obstacle for such calculations is that the effect ofJS is
not limited by the shift ofTC ~i.e., TC→TC22uJSu in the
molecular field approximation!. It will also affect the mesh
of Matsubara poles in the right-hand side of Eq.~18! and will
require a careful analysis of the topology of CPA solutio
near the real axis. At the present stage we do not know h
to deal with this problem.

~3! The topology of CPA solutions in the complex plan
crucially depends on the details of electronic structure for
eg states. Particularly, the exact position of these singul
ties, which are responsible for the anomalies of density
states, or even the fact of their existence in realistic co
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pounds depend on many factors, such as the Mn(3d)-O(2p)
hybridization, the cation and structural disorder, the purity
sample. All of them may significantly modify conclusions
our work.
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APPENDIX: DISCONTINUITY OF INTEGRATED DENSITY
OF STATES

In this appendix we discuss practical aspects of calcu
tions of the discontinuity termn̄(2)(z)2n̄(1)(z) caused by
transitions between two different branches of CPA solutio
in the PM state. According to Ducastelle,41 n̄(z) is given by
the following expression:

n̄~z!5
1

pN
Im TrH ln Ĝ̄~z!2 ln„1̂2@Ĥ2Ĥ̄~z!#Ĝ̄~z!… J ,

~A1!

where Tr is the trace over site and orbital indices,N is the
number of atomic sites, and the hat symbols stand for
matrices in the subspace of orbital and atomic coordinat

Let us start with the first term. In the second order

Ĝ̄(2)(z)2 Ĝ̄(1)(z) we have

Tr$ ln Ĝ̄(2)~z!2 ln Ĝ̄(1)~z!%.2 Tr$@ Ĝ̄(2)~z!2 Ĝ̄(1)~z!#

3@ Ĝ̄(2)~z!1 Ĝ̄(1)~z!#21%,

which can be further transformed using the definition~10!
for the Green function as

Tr$ ln Ĝ̄(2)~z!2 ln Ĝ̄(1)~z!%.2 Tr$@ Ĥ̄(2)~z!2Ĥ̄(1)~z!#

3@2z2Ĥ̄(1)~z!2Ĥ̄(2)~z!#21%.

The inverse matrix$•••%21 can be calculated in the sam
way as the Green function~10!. Then, if R0(z) is the site-
diagonal element of$•••%21, andR1(z) and R2(z) are the
site-off-diagonal ones corresponding to the 3z22r 2 and x2

2y2 orbitals for the bond0-1, we can write

1

N
Tr$ ln Ĝ̄(2)~z!2 ln Ĝ̄(1)~z!%

.4Ds0~z!R0~z!212$Ds1~z!R1~z!

1Ds2~z!R2~z!%,

whereDsa(z)5sa
(2)(z)2sa

(1)(z).

Second term in Eq.~A1! ~the so-called vortex correction!

should be expanded up to the second order of@Ĥ2Ĥ̄(z)#, in
2-11



is

ns
,

ev

.

H.

y

n
a

pi
re

-

ist

d

s

rs,

J.

o,

G.

tt.

B

s.

-

p-

s.

.

f-

I. V. SOLOVYEV PHYSICAL REVIEW B 67, 014412 ~2003!
order to be consistent with the similar approximation~14!
used for theT-matrix. Then, we have

ln$1̂2@Ĥ2Ĥ̄~z!#Ĝ̄~z!%.2H @Ĥ2Ĥ̄~z!#1
1

2
@Ĥ

2Ĥ̄~z!#Ĝ̄~z!@Ĥ2Ĥ̄~z!#J Ĝ̄~z!.

In order to calculate the thermal average, we note that

@Ĥ2Ĥ̄~z!#Ĝ̄~z!@Ĥ2Ĥ̄~z!#52@Ĥ2Ĥ̄~z!#,

which follows from the CPA equations~13! under the condi-
tion ~14!. Thus,

*Electronic address: igor.solovyev@aist.go.jp
1C. Zener, Phys. Rev.82, 403 ~1951!.
2P. W. Anderson and H. Hasegawa, Phys. Rev.100, 675 ~1955!.
3P.-G. de Gennes, Phys. Rev.118, 141 ~1960!.
4E. Müller-Hartmann and E. Dagotto, Phys. Rev. B54, R6819

~1996!.
5I. V. Solovyev and K. Terakura, inElectronic Structure and Mag-

netism of Complex Materials, edited by D. J. Singh~Springer-
Verlag, Berlin, 2002!.

6K. Kubo and N. Ohata, J. Phys. Soc. Jpn.33, 21 ~1972!.
7D. M. Edwards, A. C. M. Green, and K. Kubo, J. Phys.: Conde

Matter 11, 2791 ~1999!; A. C. M. Green and D. M. Edwards
ibid. 11, 10 511~1999!.

8R. Kilian and G. Khaliullin, Phys. Rev. B60, 13 458~1999!; S.
Okamoto, S. Ishihara, and S. Maekawa,ibid. 61, 451~2000!; M.
S. Laad, L. Craco, and E. Mu¨ller-Hartmann,ibid. 63, 214419
~2001!.

9A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, R
Mod. Phys.68, 13 ~1996!.

10N. Furukawa, J. Phys. Soc. Jpn.64, 2754~1995!.
11N. Furukawa, inPhysics of Manganites, edited by T. A. Kaplan

and S. D. Mahanti~Kluwer/Plenum, New York, 1999!.
12A. Chattopadhyay, A. J. Millis, and S. Das Sarma, Phys. Rev

61, 10 738~2000!.
13B. L. Gyorffy, A. J. Pindor, J. B. Staunton, G. M. Stocks, and

Winter, J. Phys. F: Met. Phys.15, 1337~1985!.
14T. Oguchi, K. Terakura, and N. Hamada, J. Phys. F: Met. Ph

13, 145 ~1983!.
15P. E. de Brito and H. Shiba, Phys. Rev. B57, 1539~1998!.
16M. Auslander and E. Kogan, Phys. Rev. B65, 012408~2001!.
17Perhaps the absolute value ofTC is not a serious problem as it ca

be easily adjusted by adding a phenomenological antiferrom
netic superexchange interaction between the localized s
~Refs. 37,48!. The situation with the doping dependence is mo
serious. The experimentalTC has a maximum aroundx'0.3 ~in
La12xSrxMnO3) ~Ref. 18!. The maximum does exist in the one
orbital DE model~at x50.5) ~Ref. 11!. However, it is only an
artifact of the one-orbital approach, whereas in a more real
degenerate caseTC decreases as the function ofx ~Ref. 48!.

18A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, an
Y. Tokura, Phys. Rev. B51, 14 103~1995!.

19Y. Tomioka and Y. Tokura, inColossal Magnetoresistive Oxide,
01441
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ẼD(PM) is the energy of the PM state in the theory of
Gennes, which is related to the energy of fully polarized F

state asẼD(PM)5 2
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