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I. V. SolovyeV*
Tokura Spin Superstructure Project, ERATO Japan Science and Technology Corporation,
c/o National Institute of Advanced Industrial Science and Technology,
Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
(Received 6 March 2002; revised manuscript received 3 September 2002; published 21 January 2003

The coherent potential approximatig@PA) is applied to the problem of off-diagonal disorder caused by
random spin orientations in the paramagndfiM) state of the double-exchand®E) model. The CPA
calculations are supplemented by the variational mean-field approach for the Curie tempérgjur®yr
formulation of CPA is essentially nonlocal and based on the perturbation theory expansion Tomiieix
with respect to fluctuations of interatomic hopping parameters near the “mean values” specified by matrix
elements of the self-energy for the effective medium, so that in the first order it becomes equivalent to the DE
theory by de Gennes. The second-order effects, considered in the present work, are not negligible and lead to
substantial reduction of ¢ in the one-orbital case. Even more dramatic changes are expected for the degen-
erate DE model, where each site of the cubic lattice is represented bg,teuditals, which also specify the
form of interatomic hoppings. Particularly, the existence of two Van Hove singularities in the spectrum of the
degenerate model lead to the branching of CPA solutions, when Green'’s function and the self-energy become
multivalued functions in certain regions of the complex plane. Different solutions can be classified by some
nonlocal parameter of interatomic orbital polarizatiéy, , and the multivalued behavior itself has many
similarities with the phenomenon of metamagnetism with respe@to This changes the traditional concept
of the DE physics dramatically. Particularly, we predict the transition to the two-phase(wstttedifferent
values of the order parameték, ) in the PM region below a certain temperatdrig. It is followed by two
consecutive magnetic transitions, which go separately in two different phases. Our scenario naturally explains
the phase coexistence and the appearance of several magnetic transition points, which are frequently observed
in perovskite manganites.
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[. INTRODUCTION the ey orbitals, are small in comparison with theg band-

The nature of the paramagnetieM) state in perovskite width W (W=4 eV, according to band structure calculations
manganese oxideshe manganitesis one of the fundamen- in the local-spin-density approximatipn The localized
tal questions, the answer to which is directly related to ousspins are treated classically, which seems to be a reasonable
understanding of the phenomenon of colossal magnetoresigpproximation for the 3/2,4 spins in manganite’’
tance. According to the formulation of the DE model, the spin

There is no doubt that any theoretical model for manganmagnetic moments are always saturated, and in order to de-
ites should includéat least, as one of the main ingredients scribe the PM states we need to address the problem of ori-

the double-exchangdDE) physics, which enforces the gntational spi'n disorder. Despit_e an apparent simplic_ity, this
atomic Hund’s rule and penalizes kinetic hoppings of polar-"?’1 a very lserlous p;oblekgn, W;'Ch Waﬁ’ studied only in few
ized ey electrons to the neighboring site if the latter ;belirl?::(s::ti;‘pag':gawcap)e;r'oxﬁi:tio%ns rather sefzerd presum-

has th ite directi f the localize in—3 5 :

as the opposite direction of the localizdgy spin The first one was proposed by de Gennes more than forty

The corresponding Hamiltonian is given, in the local ;
bonding ron! 'S gV I years_ag&.ln his theory, allg; are replaced by an averaged

coordinate frame specified by the directioes=(cosd, .
sing,,sing;sin @ ,cosf) of the spin magnetic moments, by valueé, so that the spin d|sorder.enters the_model only as a
renormalization ofW. The effect is not particularly strong

Hij=— &ty 1) and the fully disordered PM state correspondg to3. The
same idea was exploited recently in a number of theories

where t; are the (barg parameters of kinetic hoppings aiming to study the behavior of orbital degrees of freedom at
betweene, orbitals located at neighboring sitésand j, elevated temperatufehut based on the same kind of simpli-
and §ij=cos(&,/2)cos@/2)+sin(&,/2)sin(6}/2)e*'(*”i*‘ﬁi) de- fications for the spin disorder.
scribes the modulations caused by deviations from the ferro- Another direction, which features more recent activity, is
magnetic(FM) spin alignment in the bondj. The Hamil-  the single-site dynamical mean-field the¢d®MFT) for the
tonian (1) can be viewed as the DE limit of the FM Kondo FM KLM. %-129|f the localized spins are treated classically,
lattice model(KLM ), assuming an infinite splitting between this method is similar to the disordered local moment ap-
majority- and minority-spin states, and that all other interacproach proposed by Gyorffgt al,'* and based on the coher-
tions such as the electron-phonon coupling and the on-sitent potential approximatiofiCPA) for the electronic struc-
Coulomb repulsion, which can lift the local degeneracy ofture of the disordered PM statéA more conventional CPA-
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type formulation for the spin disorder in the FM KLM can be *

found in Refs. 7, 15, and 16. 08 04 0.0 04 -08(mm0) 0,00) (mm,0)
Now it is almost generally accepted that both approaches | ‘ — ohe

are inadequate as they fail to explain not even all, but a| 4 \

certain number of observations in manganites of a principal | > 1

character such as the absolute value and the doping depel |
dence of the Curie temperaturé),*’ the insulating behav-
ior aboveT,*® and a rich magnetic phase diagram along the
temperature axis, which typically show a number of mag- L
netic transition®’ and the phase coexisteR¢&?in certain 05 04 03 02 01 00  (Om0) () O1.0)
temperature intervals. Therefore, it is clear that the theory bos

must be revised. i . FIG. 1. Tight-binding density of states and dispersion ofepe
There are two possible ways to proceed. One is to mOdbands in the ferromagnetic state. The value of duer transfer

ernize the model itself by including additional ingredientsiniegral is used as the energy unit. Dotted line shows positions of
such as _the electron-phonon coupliig, Coulomb  the Fermi level as a function of hole concentrationl—n, where
repulsion®****and chemical disordéf:**~**Another possi- n is the integrated density of states. Note the existence of two Van
bility is to stick to the basic concept of the DE physics andHove singularities at 4,7,0) and (0r,0), responsible for the
try to formulate a more advanced approach for the spin diskinks of density of states at 1. The first singularity is located near
order, which would go beyond the simple scaling theory bythe Fermi level wherx=0.3 (shown by arrow.
de Gennesas well as the single-site approximation inherent
to DMFT.1%12 calculationd®~*2 employed a model semicirculdsC) den-
Attention to the second direction was brought recently bysity of states(DOS), and therefore could not address these
Varma?® who emphasized that the orientational spin disordeqquestions.
enters the DE Hamiltoniafl) as an off-diagonal disorder of (2) There are many anticipations that there is some hidden
interatomic hopping parameters, which presents very chalparameter, which controls the properties of perovskite man-
lenging and not well investigated problem. In the presenganites. A typical example is the picture of orbital
work we try to investigate some possibilities along this linedisorder?*# according to which the degeneracy&f orbit-
by employing a nonlocal CPA approach. als is lifted by strong on-site Coulomb repulsion. It breaks
What do we expect? the cubic symmetry of the crystal, at least locally, and pro-
(1) It was realized very recently that many aspects ofduces a nonvanishing orbital polarization at each site of the
seemingly complicated low-temperature behavior of dopegystem. The main conjecture in Ref. 24 is that this effect
manganites can be understood from the viewpoint of DEpersists in the FM state of cubic manganites without forming
physics, if the latter is combined with details of realistic the long-range ordering. In the present work we will show
electronic structure for they states and takes into account that by considering nonlocal effects in the degenerate DE
strong dependence of this electronic structure on the magnodel, one may have an alternative scenario, when there is
netic structure:>° At the present stage it is not clear to what certain degree of freedom which does control the properties
extent the same scenario can be applied to the finite temperaf cubic manganites. However, contrary to the ordinary or-
ture regime and whether it can cover the physics of the disbital polarization, this new order parameter is essentially
ordered PM state. If it can, there should be something pecuonlocal. It is attached to the bonds of the DE system and
liar in the electronic structure of the PM state, which can bedoes not conflict with the cubic symmetry of the crystal.
linked to the unique properties of perovskite manganites. The (3) There are many debates about possible phase coexist-
simplest way to address this question is to use the DE theorgnce in perovskite manganit&s>* and according to some
by de Genned,and to consider an approximate electronicscenarios this effect plays an important role arolipd be-
structure for the PM state by scaling similar electronic strucing actually the main trigger behind phenomenon of colossal
ture for the FM state. The latter is shown in Fig. 1, using themagnetoresistanc@. The problem was intensively studied
results of the Slater-Koster parametrization for #yestates  numerically, by employing the Monte Carlo simulaticis?
in the cubic lattice€! The electronic structure is indeed very If this is indeed the case, what does it mean in the language
peculiar because of two Van Hove singularities at theof analytical solutions of the DE moddhnd its refine-
(7,7,0) and (07,0) points of the Brillouin zone, which are mentg? Presumably, the only possibility to have simulta-
responsible for two kinks of density of statestat. The first  neously two(and more solutions is to admit that the self-
singularity is expected to be near the Fermi level when theenergy(and Green'’s functioncan be a multivalued function
hole concentration is close to 0.3, i.e., in the most interestingn certain region of the complex plane. Such a behavior of
regime from the viewpoint of colossal magnetoresistafice. nonlinear CPA equations was considered as one of the main
If so, what are the possible roles of these singularities in théroublemakers in the padt*®*°but may have some physical
case of the spin disorder? Although the main details of thexplanation in the light of newly proposed ideas of phase
electronic structure will be broadened, it is still reasonable t@oexistence.
expect some anomalies. Will they contribute to the properties The rest of the paper is organized as follows. In Sec. Il we
of the PM state? If yes, in which form? Note that apart frombriefly review the variational mean-field approach. In Sec. lll
the single-site approximation, most of recent DMFT we describe general ideas of nonlocal CPA to the problem of

T
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orientational spin disorder in the DE model. In Sec. IV we For the analysis the PM state aiig, it is sufficient to
consider CPA solutions for the PM phase of one-orbital DEconsider the smalk- limit

model and evaluat&.. We will argue that two seemingly
different approaches to the problem of spin disorder in the
DE model, one of which was proposed by de Gefirees
the other one is based on the DMET?have common basis
and both can be regarded as CPA-type theories, but suppl
mented with different types of approximations. In Sec. V we KaT
consider a more realistic example of DE interactions between —TS(\)= B2 (5)
two e4 orbitals and argue that the physics of degenerate 6

model is qualitatively different from the one-orbital case.and the free energy of the DE model can be fouritfas
Particularly, the CPA self-energy becomes a multivalued

function in certain regions of the complex plane. This behav- FHT,N)=Ep(T,N)—TSN\), (6)
ior is related with some hidden parameter of interatomic or- .
bital polarization and hints at intrinsic inhomogeneity of the WNere Eo(T.) is the electron free energipr the double-
PM state. In Sec. VI we summarize the main results of oufXchange energy
work, discuss possible connections with the experimental

1 o
1+ cosfN?|. (4)

Zhen, the spin entropy is given by

, 1
Pi(¢ J\)ZE

+oo _
data as well as possible extensions of our model. Ep(T,\)= —J dzfr(z—u)n(z,\N), (7)
Il. CALCULATION OF THERMAL AVERAGES calculated in terms of orientationally averaged integrated

In order to proceed with the finite temperature descriptionrPOS n(z,\), which comes from the solution of CPA equa-
of the DE model we adopt the variational mean-fieldtions for corresponding Green's functionf(z— u)
approact?*” and compute the thermébr orientational av-  ={exd(z—u)/kgT]+1} ' is the Fermi-Dirac function with
erages of all quantities in terms of the single spin orientatiorihe chemical potentigl.
distribution function, which depends only on the angle be- The best approximation for the molecular fieldis that

tween the local spin and an effective molecular fikld which minimizes the free energg). Assuming that the tran-
sition to the FM state is continuousf the second ordgr®
pi(&)xexpn-&g). (2 T can be obtained from the following equation:

For the purposes of our work, which deals with the PM and 5
FM states, the effective field can be choser\as(0,0)\). 9" F(Tc,N)
The application of this procedure to the DE Hamiltonian IN?

requires several comments, because (Epis formulated in

the local coordinate frame, whereas the form of the distribu-
tion function (2) corresponds to the global of&Then, in

order to compute the orientational average of the matrix el-
ement associated with an arbitrary chosen Gite/e specify In this section we discuss general aspects of the nonlocal
the coordinate frame in Eq2) by &, so that at each instant Cpa approach to the problem of orientational spin disorder
the local frame at the sité coincides with the glObal one. in the DE model. We attempt to describe the disordered sys-
The averaging over all possible directiagsn the molecular  tem in an average sense by introducing an effective energy-

=0. (8

IIl. NONLOCAL CPA FOR THE DOUBLE EXCHANGE
MODEL

filed N\ is performed as the second step. dependent Hamiltonian
Therefore, the distribution function at the sids given
by Eg.(2). The distribution functions at remaining sites, for- ﬁj(z)zgn(z) &—2i(2)(1- &8y, (9)

mulated in the local coordinates of the dit@nd taking into
account the motion o0&, in the molecular field\, can be ~WhereZX; is the nonlocal part of the self-energy, which is
obtained by transforming; and A to the local coordinate restricted by the nearest neighbors aiydis the local(site-
frame: 6 —& =Re and A\’ =R\, where Re,=(0,0,1); diagonal part. The nonlocal formyla{uon of CPA is essential
and averaging;(e’) over all possible directions, with the because in t_he low-temperature I'.@E _shaII be_ replaced _by
weightspo(€y): the convenuonql parar_neter§ of kinetic hoppings The di-
agonal partY; is required in order to formulate a closed
1 system of CPA equations.
Pi(e ,A)z—f dQeexp(N - € +\-gy), €] The Hamiltonian(9) is requested to preserve the cubic
v symmetry of the system and be translationally invariant. Us-
where the normalization constants given by the condition ing these symmetry constraints, all matrix elements of the
fdQ/P(e' ,\)=1. The form of Eq.(3) implies that the di- self-energy{X; ,%;} can be expressed througB oo, 2 o1} for
rections of magnetic moments are not correlatigt is in ~ one of the dimersfor example,0-1 in Fig. 2). Then, Hamil-
the spirit of the mean-field approgcand that the averaging tonian(9) can be Fourier transformed to the reciprocal space
over g, can be performed independently for all sites of thet,(z)=3;e '@ (Ri"R)H;(2), and the first equation for the
system. orientationally averaged Green function can be written as
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11 The hat symbols in Eq12) means that all the quantities are
o infinite matrices in the real space and the matrix multiplica-
tions imply also summation over the intermediate sftes.
This causes an additional problem, because the nonlocal

|

|

:

| fluctuationsAH tend to couple an infinite number of sites in
! Eq. (12). Therefore, we employ the perturbation theory ex-
|

|

pansion up to the second order with respeCAﬂfi:

T(2)=[T—H(2)]+[H~H(2)1G(2)[H~H(2)].
(14)

As we will show, the first term in this expansion corresponds

to the approximation considered by de Genhand the next

“““ @ term is the first correction to this approximation. In all sub-
5 sequent discussions, the terminology “first” or “second or-

® der expansion” with respect th{ will mean the number of
6 terms retained in Eq.14) for the T matrix.
Sincet; and; are restricted by the nearest neighbors,
and we retain only site-diagonal and nearest-neighbor ele-

ments ofG;, in order to evaluatd oo(z) and Toy(2) in the
2 approximation given by Eq(14) we need to consider the
interactions confined within the twelve-atom cluster which is
FIG. 2. Atomic sites which contribute to the matrix elements of Shown in F|g 2(0b\/i0us|y, an additiona| term in the pertur-

orientationally average@ matrix for the dimer0-1 in the second-  pation theory expansion for th& matrix would require a
order perturbation theory expansion. bigger cluster.

_ 1 _ _
Gi(z z—fd el (R-R)rz—1 (2)]171, 10
i(2) Qg2) % [ o(2)] (19 IV. ONE-ORBITAL DOUBLE EXCHANGE MODEL

where integration goes over the first Brillouin zone of the A. Solution for the paramagnetic state
simple cubic lattice with the volum@g,.*°
In order to formulate the CPA equations we consider only In the one-orbital case, the effective DE Hamiltonian

site-diagonal and nearest-neighbor elementSpf Again,  takes the following form, in the reciprocal space
using the symmetry constraints, all matrix elementsGyf
can be expressed throu@y, andGy,. In addition, there is

a simple relation connectinGy, and G, for given,,, and
201:

Ho(2) =S 00(2) = 2(CxF Cy+ )2 04(2),

whereX.oo(z) andXq,(z) areC numbersc,=cosq,, and all
Cod D[2-Ses2)]+ S, Go(2)Sy(z)=1, (11) energies throughout in this section are in units of the effec-
[ tive transfer integraty=W/12.
which follows from the definition of the Green functi¢ho) Matrix elements of the Green functidyg(2z) andGoy(2)
and the Hamiltoniar9). are obtained from Eq(10). The self-consistent CPA equa-
In order to obtain the closed system of CPA equationsfions are given by E(13). The thermal averagé§(z) and
which connects =, 49,2 o1} With {Ggg,Go4}, We construct the Tpi(z) can be calculated in the local coordinate frame asso-
T matrix3-1°41 ciated with the sit®, wheree)=(0,0,1), and using distribu-
tion functions(4) for all remaining sites of the cluster shown
-’l‘-(z):[ﬁ_ﬁ(z)]{i_é_(z)[r}f‘_ﬁ(z)]}—l, (120  inFig. 2. This is a tedious, but rather straightforward proce-
dure. Here we present only the final reqigibme details can
and require the average of scattering due to the fluctuationge found in Ref. 4B After introducing the short notations for
AF=7{—H to vanish at every site and every bond of thethe self energiesr={cq,o1}={2 00,20, =5}, and for the
system, i.e., Green functiong={go,91}={Goo,Go1t, the CPA equations
o o Too(z)=0 andTyi(z)=0 can be presented in the fortfor
Too(2)=Toi(2)=0. (13  «=0 and 1, respective)y**
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_ ' ' ' tion are also shown in Fig. 3. Despite significant difference
= ' in the self energies, the matrix elements of the Green func-

E [ Re@,) 28] tion obtained in the first and second order approach are sur-

% :;f S prisingly close, meaning that there is a good deal of cancel-

= & lations of different contributions t(j.

S % OI_Re(): 5 | However, it is not true for the Curie temperatures. While
- Dol al ” Tm(Z,,) in the first order, T is solely determined b)GOO, in the
Spime=001 . ] T[w@=00 second order it explicitly depends on b, and ¢, which

4 2 0 2 4 4 2 0 2 4 make significant difference from the canonical scaling rela-
Re(z) Re(z) tion betweerT and the DE energy of the FM state.
FIG. 3. Paramagnetic state of the one-orbital double exchange
model: behavior of matrix elements of the Green function and the B. Curie temperature

self-energy along the real axis. Dotted line shows the same matrix
elements in the double exchange theory by de Gerfties first
order expansion for th& matrix).

T is obtained from Eq(8). In order to evaluate the DE

energy, we start with the PM solutioir € 0) and include all

contributions in the first order of? as a perturbation. Em-

D () V(5 GV, (15) ploying variational properties of integrated DOS in CPA?
An(z N)= n(z N)— n(z 0) can be obtained using the Lloyd

where formula for the small changes of the self-energles,(2)
=¥ (2)\?%

2 2 1
O'O+ 60’1"!‘ 5 go_ 120'00'191,

CI)O(C—;-lé): - 1
An(z,\)= ;Im{‘lfo(Z)go(Z) —6V1(2)91(2)}\% (16)

- - 13
®1(0,9)=2000190— | 05+ 1505+ 20, + 54)91,

01(2) can be further expressed througk(z) using identity

g . (11). Then, the change of the DE energy takes the form
- - AE(T,\)=D(T)\2, whereD(T) is given b

‘1’0(0'19):1—5(0'091_0190)_4—5901 o(T:) (M W (T) Is giv y

1 [+
and D(T)z—;lmj dsz(z—,u){(‘lfo(z)
2 4 22 7 - -
These equations should be solved self-consistently in combi- 17

nation with the definition10) for the Green function.
Results of these calculations for the PM state=(Q) are

shown in Fig. 3. In the one-orbital case there is only one CPA Jaking into account the entropy term, &), we obtain

solution in each po_lnt of t_he compIEx energy plane. The in- KeTe=—6D(Te). (18

tegrated DOS lies in the interval<On(u)=<1 and takes all

intermediate values as the function of chemical potential

meaning that our system is well defined for all physical val- >
ues of the electronic density. known relation betweeilc and the DE energy of fully po-

The nonlocal CPA formulation in the one-orbital case islarized FM stateEp(FM): >
formally equivalent to the local one, which can be obtained
after scaling transformation of the Green functi¢@/3
+01(2)}Gjj(2)=Gj(z), where Gi'j(z)z[z—a(’)(z)th]ij_l
and o((2)=z—[z—0o(2)]/[2/3+01(2)]. Therefore, the
quasiparticle electronic structure in this case is controlled by The second order corrections significantly rediige[up
only one parametes((z). Sinceo,(z)<2/3 and Imoo(z)  to 20% atn=0.5(Fig. 4)], which is also lower in comparison
<0, Imoy(z)<0 and the obtained solution is causal in thewith results of(local) DMFT calculations, suggesting impor-
upper half plané>*The electronic structure is metallic. The tance of the off-diagonal disord&rVery similar conclusion
spin disorder alone is insufficient to cause the Anderson lowas obtained recently by Alonset al,*” who used (the
calization at realistic values of the electronic density, eitfer. same variational mean-field approach supplemented by the

The first order expansion with respect &4 (the DE =~ moments-method for the averaged DOS in the one-orbital
theory by de Gennesthereafter all parameters in this limit DE model.
will be denoted by tildg yields ®y=®,=¥,=0 and ¥, Using the valueW~4eV, Tc can be estimated a$c
=2/45. Corresponding matrix elements of the Green func=<800 K. The upper bound, corresponding rnie=0.5, ex-

In the first order with respect tA{ we recover the well

~ 4
kBTC: - EED(FM)
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0.30 T T T T T 4
b (2)=00(2)8.L .
0'25 L "’ ————— ‘\\ ] . . . o . - -
el ANY Throughout in this section, all quantities will be in units of
020 [ 7 . ] the transfer integradido=W/6~0.7 eV3!
," N All matrix elements associated with the bodd (see Fig.
015 | S N 1 2) should obey the tetragon@l,, symmetry. Since 2—r?
=< 7 \ andx?—y? orbitals belong to different representations of the
010 F /) - ==~ Istorder N C,, group @; and bq, respectively, one can write very
/ 2nd order \ genera”y
0.05 | 1
0.00 L ! L L ! L L ! ! Ell(z) 0 (Z) + E 0
“00 01 02 03 04 05 06 07 08 09 10 S 0(2)= 0(1) 522 _ 71 3
= ol 2)= z) |~ '
n 01(2) 0 o(2)

FIG. 4. Curie temperature of the one-orbital double exchange
model, obtained using the first and second order expansion fdr the
matrix, as the function of averaged electronic density.

(19

i.e., 201(2) is a diagonal matrix, but not necessarily degen-
ceeds the experimental values by factor tWe.can be fur- ~ €rate one. Corresponding matrix of baigo- hoppings in the
ther reduced by the antiferromagneti=M) superexchange 2 direction has the forrit

(SB interactions between the localized spifs*®*°or tak-
ing into account the spatial spin correlatiofls. 1 0
ta={0 o0]- (20)
V. DOUBLE EXCHANGE BETWEEN DEGENERATE ¢,

ORBITALS
The hoppings are allowed only betweem?3 r? orbitals,
that reflects a hidden symmetry of the ordered FM state. The
Let us consider more reallstlc example of the DE InteraC-same property does not necessar”y app|y to the self- -energy
tions between tWCEg Orbltals which have the foIIowmg in the case of Spm disorder. Therefore, we shall r%(fz)
order:|1)=[3z°~r?%) and|2)=|x*~y?). Then, all quanti- which is required in order to formulate a closed system of
ties such as the transfer integrd|s, the averaged Green CPA equations. In some sense,(z) can be viewed as an
function G;j(z), and the self-energ};;(z) are the 2<2 ma-  effectivedds hopping®! induced by the spin disorder.
trices in the basis of these two orbitals. Matrix elements ot;;, andE,J(z) in the xy plane can be
Since the cubic symmetry is not destroyed by the splmbtalned using the 22 rotation matrices for thee,
disorder, the local part of the self energy is both diagonal andrbitals®® This yields the following Hamiltonian, in the re-
degenerate with respect to the orbital inditeandL’: ciprocal space:

A. General remarks

_ 1 Bt Egd(etey)+455e,  V3(Eg-35D(c,—cy
Ha=200~ 35 V33538 (cy—cy) (35433 (c,t+cy) +43 5k,

Then the orientationally averaged Green function is giverstate? Here we would like to discuss the physical side of this

by Eq (10). Matrix elements of the Green functi@ég' and ]E)roblem and emphasize rather unique combination of two
ctors

—
Gb; obey the same symmetry propertles as the self-energy. (1) The nonlocal part of the self-energy acquires an addi-
Three CPA equation H2)=0, (z) 0, and?fﬁ(z) tional degree of freedoror,(z) which may directly control

=0 can be written in the compact form5) for =0, 1, details of quasiparticle electronic structuiiacluding posi-

. . . . tions of the Van Hove singularitiesThis is qualitatively dif-
and 2, respectively, after introducing the notations ferent from the one-orbital case, where the electronic struc-

=

={00,01,02} and g={do,91.92}={Gg5.G1,G5}- SOMe  yyre is determined by only one local parametg(z). The

details of these derivations and explicit expressions fohew element of the self-energy can be formally linked to
a(g',g) and\Ifa(g-,g) can be found in Ref. 43. some nonlocal order paramet@n “interatomic orbital po-
What is so special about the degenerate DE model, an@ization”):

why it can lead to qualitatively new behavior for the PM 1 o .

Ow=——im| "dztz- ) (GH2) - GE2), (21
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0.3 Suppose that our first choice for the self-energyr(g)
=oM(2)+ 80" (Z) and, for a giverg, Re(z) is located on
the left slope of DOS, i.e., Re(<Re(zyy), where
Re(zyy) =Re{oo(2) — 01(2) + 30,(2) — 3} is the position of
the Van Hove singularity on the real axis. This solution will
be stable if the maximum of DOS will be further shifted

from the considered poirt by 550“‘1.(2), that is equivalent

to the requirement R&¢(:") > Re(5z,%).

One can also try to find another solution by starting with
o(2)=@(z) + §a™(z), which places Re() on the right

. . . . t
slope of DOS. This solution will be stable if Rﬁf,ﬁz)
Re(z) iny

<Re(dz,7)-

FIG. 5. Behavior of density of states in the complex plane, s it possible thaboth solutions are stable? The quantita-
expected for the paramagnetic state in the double-exchange theofiye answer is rather cumbersome. However, qualitatively
by de Gennes. Note two peaks, which are related with the existenGe js clear that such situation is rather likely because the ma-

of two Van Hove singularities on the real axigig. 1). Far away . T . .
from the real axis the peaks are smeared. trix elemen_ts of&g_/a(r will change sign near the p0|_nt of
Van Hove singularity, and according to E§2), the matrices

which is attached to the bonds of the DE system and does ngig/ac|;_ ;) and dg/da|;_ ;2 will lead to two different
destroy the local degeneracy of tleg orbitals. Note that
On =0 if tgq is proportional to the unity matrixa purely
fictitious case of independery orbital§ and Oy #0 in the
case of anisotropic hopping parameters given by(EQ). for
the FM state. Our conjecture is th&,_ is further modified
by the spin disorder. Note also that in all three cases, th
local parameter of orbital polarization, defined by E2j1)

with Gg, replaced byGg,, vanishes due to the cubic sym-
metry of the system.

(2) Because of the Van Hove singularities, the matrix el-
ements of the Green function are nonmonotonous functions
of bothz and the matrix elements of the self-enet§jg. 5). A typical example of the numerical solution of CPA equa-

Sinceé enters the self-consistent CPA equatidfs), they tions is shown in Flg._ 6. In these_calculatlons we fix #n( _
will be highly nonlinear and one can naturally expect severafind solve CPA equations by moving parallel to the real axis
CPA solutions corresponding to different starting conditionsand in each point beginning the iterations with the self-
for o5(z). The mechanism has many similarities with the consistent self-energy obtained for the previous value of
occurrence of metamagnetism in itinerant electron systéms.Re(2). As expected, when Inzj is large we obtain only one
The only difference is that now,, plays the same role as CPA solution for eactz. This is the typical behavior for
the spin magnetization for the conventional metamagnetismm(z)=0.75. However, when we approach the real axis, the
and{31!-322 s a nonlocal analog of the magnetic field. situation changes dramatically and for iZp¢ 0.7 we obtain
Indeed, let us start with a trial Green functigncorre- ~ two different solutions near the points of Van Hove singu-

sponding to the self-energ}. For simplicity we assume that Iarltle_s, de_pendmg on whether we move n _the_posmve or
negative direction of the real axis and resulting in the char-

our choice is close to the first order CPA solution for the PM istic "h i< loop” sh in Eia. 6
state. Our goal is to investigate the behavior of CPA equa‘:JlCterIStIC .ystereS|s 0op” shown in =g. 6. .
A better idea about topology of CPA solutions in the com-

tions near the point ReJ=—3, corresponding to the posi- : )
tion of the first Van Hove singularity on the real axis and plex lpllanez can be obtamed.from Fig. 7, Where. we plot
leading to the peak of DOGFig. 5). Let us consider a small Re(X.5;—25;) calculated by using two different starting con-
trial change of the seIf-energ&&‘" neara. which leads to ditions in eachz point. Depend_lng on the location in the
oL complex plane, the CPA equations are converged to either
the change of the Green functiofy=dg/do 50 in EQ.  the same or two different solutions. The latter situation oc-
(10). Then, we would like to calculate the new chaniye®™, curs within the shaded area. Note that this area is the result
which satisfies the CPA equatiofik5). It is given by of numerical calculations. In principle, we do not exclude the
possibility that our result may be incomplete and that with a
better choice of the starting conditions this area can be en-
larged.
R Our analysis is limited by Imd)~0.5. When we further
where we have introduced the short notatio® approach the real axis the topology of CPA solutions be-
={Dy,D,,D,}. comes increasingly complicated. At the present stage we do

Density of States

estimates forso°U
Far away from the real axis, the Van Hove singularities
are smeared, and we should regain to the standard behavior
when there is only one CPA solution for eazh Such a
ituation is expected when Im)(=0.8 (Fig. 5. The qualita-
ive analysis is supported by results of numerical CPA calcu-
lations, which will be discussed in the next section.

B. CPA solution for the paramagnetic phase

N ad\ tod ag -
Sou= 1] —=—=sh (22
o g do
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i S = FIG. 7. Topology of the nonlocal part of the self-energy in the
:\'?; S 8 complex plane. The branch point is denotedByThe projection
W . . shows an approximate position of the multivalued area of CPA so-
3 § lutions.

how many Matsubara energies fall into the multivalued area
for the given temperatur€ and the chemical potentia. If

FIG. 6. Behavior of matrix elements of the self-energy in thethey do, the PM state will be represented by two phases
paramagnetic state of degenerate double exchange. Far) Im(existing at the sam& andu«, and the position of the branch
=0.75 there is only one CPA solution, while for Im&0.75 one  point itself can be related with the temperature, below which
can obtain two self-consistent solutions in certain interval ofZRe( the PM state becomes intrinsically inhomogeneous. The situ-
by starting the iterations with the self-energy obtained for the preation has many things in common with the phenomenon of
vious value of Ref) and moving either in the positive or negative inhomogeneous phase separation, which was intensively dis-
direction of the real axi$éshown as a hysteregis cussed for manganité$>*The new aspect in our case is that

both phases can be paramagnetic. They are characterized by
not have a clear strategy of how to deal with this problemdifferent densities and expected to have very different inter-
and how to interpret the behavior of our model near the reaatomic properties related with the ability of electrons to
axis. Nevertheless, as it was already pointed out in the preransfer between different sites. For example, taking into ac-
vious section, the multivalued behavior itself is quite physi-count very large difference of interatomic matrix elements of
cal as it is related with peculiarities of DOS of the degeneratéhe self-energy for two CPA solution§igs. 6 and 7, it is
DE model. Note that InH) ~0.5 corresponds to the position natural to expect that two phases will have different conduc-
of the first Matsubara pole fof~0.16kg~ 1200 K, which tivity and the optical propertie’s:>
can be regarded as the lowest estimate for the temperature
for which our analysis is strictly justified.

Below we discuss possible consequences of the existence
of two different CPA solutions in the PM state. Mathemati- ) ) ]
cally, our analysis is based on the following observations. !N this section we discuss some aspects of the energy

(1) The existence of the branch poir {n Fig. 7), which integration in the complex plane, relatgd with the emstgnce
forms two physical branches of CPA solutions in certain are tWo physical branches of CPA solutions. Let us consider
of the complex plane. The requirement implies that there is &€ integral
continuous path around the branch-point, which connects the .

oints located on two different branches. ”
P (2) On both branches, Green's function and the self- X(M)_f - dzh(z=pw)X(2), (23
energy are analytic functiongerhaps except the branch-
point itself and the branch edge¥he requirement allows us whereX(u) is a physical quantity, which can be the density
to use standard theorems of contour integration in the comef e, electrons, the double exchange energy or the change of
plex plane. either of them, an(z) has the same topology in the com-

Then, the physical interpretation of the multi-valued be-plex plane as the self-energy shown in Fig. 7. Then, the
havior becomes rather straightforward and two CPA solubehavior of integral23) will depend on the position of the
tions can be linked to different PM phases. The crucial factocchemical potentia with respect to the multivalued area.
which connects the topology of CPA solutions in the com-Generally, we should consider three possibilitisse Fig. 8
plex plane with the temperature behavior of the PM state isor notations.

Re(z) Re(z)

C. Energy integration and occurrence
of two paramagnetic phases
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FIG. 8. Energy integration for the degenerate double-exchange FIG. 9. A d el ic densityY and th f
model. (a) The integral along the real axis plus the discontinuity . - 9. Averaged electronic densitn) and the parameter o

given by the contour integral, around the branch poir&. (b) An mterat_orlnflc OLb'tal polarlzatlpn @n) a:‘sda function ;f %Tem'cil
equivalent expression in terms of the contour inte@@alpassing potential for the paramagnetic state of degenerate double exchange

round the multivalued area of the complex plane and residues carmdel' ForT=0.23, there are two different phases which are dis-

culated at Matsubara poles. The latter contributions are different fofinguished byn and Oy .
two different branches, that is equivalent to the discontinuity term

in the schemea). Eq. (24). In this region, all Matsubara poles fall on the single
branch andX(w) is the single-valued function.

(1) ©<Y;. In this region there is only one CPA solution  As an illustration, we show in Fig. 9 the behavior of av-
andX(u) can be calculated using standard methods of eneraged electronic density as the function @f For kgT
ergy integration in the complex plarisee, e.g., Ref. 54, and =0.24, corresponding to Imag)=0.754, which is slightly
references therejn above the branch point, the first Matsubara pole falls beyond

(2) Yy=u=<Y,. ThenX(x) can take two values for each no mivalued area and(w) shows a "normal” behavior
value of the chemical potentiad: X;(u), if the integrand is . —
solely confined within one physical branch ant(u) when for eachu there Is only .one value of(y). For
=X,(u)+AX(w), if it is extended to the second branch. smalle_rkBT, n(ux) can ta_ke two different yalues for the same
The discontinuityA X() is given by the contour integr&, . Which means the existence of two different phases. Both
around the branch point. Sin¢gz) is an analytic function, Phases are paramagnetic and can be distinguished by the pa-
the integral does not depend on the form@yf. We would rameter of inter-atomic orbital polarization, given by Eq.
like to emphasize that we do not impose any restrictions o2l The temperaturdp~0.23kg~1800 K below which
X(w) and do not try to define it in as a single-valued fashionthe first Matsubara pole falls into the multlvalg_ed area of the
by introducing the branch cuts, which is largely arbitrarycomp|ex plane can be regarded as the transition temperature
proceduré® Instead, we treat both branches on an equal® the two-phase state. _
footing, that inevitably leads to the multivalued behavior of  Finally, we would like to note that althougt(w) for each
X(w), and we argue that this behavior can be interpreted onf the phases exhibits a discontinuity at the boundary of the
quite a physical basis. Integré23) can be replaced by the two-phase state, the total density, which is the superposition
contour integralC, passing round the multi-valued area and of the two solutions, is well defined in the whole integral O
residues calculated at a limited number of Matsubara enersﬁ(,u)sl,
giesz,=u+imkgT(2n+1)

D. Two-phase state

X(p)= jcdefT(Z_“)X(z)_zkaTzzn X(zn), (24) In this section we briefly consider the problem of phase
coexistence using a semiquantitative theory of noninteractive
so that in order to findK; and X,, the residues should be pseudoalloy. Namely, we assume that the free energy of the
calculated on the first and second branches, respectively. mixed PM state is given by
(3) ©u>Y5. In this case the integration along the real axis
shall be combined with the discontinuityX term given by
the contour integraC,. The integration can be replaced by Foid¥) = (1= Y)ES+yES ~TSni(y),

014412-9
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whereEY) andE{?) are the energies of two phases existing ~ 0-35 — —— '
at the samd& and u (with lower and higher density, respec-
tively), y is the “alloy concentration,” andS,,(y) is the 030 | 1
configurational mixing entropy

~TSuy) =kgTLy Iny+(1-y)In(1-y)]. I A T ‘
Then, the equilibrium concentration, which minimizes < 020 L )5 /" i
Fmix(y) is given by

y:(eAED/kBT+ 1)—1. 0.15 + ///'Tiéz) i

The energy differencEp=E®—E{) can be calculated oo B ,
using the definition(7). According to Eq.(24) we need to "5 <14 -13 412 <Ll -10 -09 08 07 -0.6
evauate the discontinuity of the integrated DOS u

o o FIG. 10. Main transition temperatures for the degenerate double
AEp=2mikgTY, [n®(z,)—n1(z,)] exchange moddiin units of theddo integra). Tp is the transition
Zn temperature to the two-phase paramagnetic state. The shaded area

at a limited number of Matsubara energies, which fall intoShows an approximate range of the chemical potentjajswhen
the multivalued area of the complex plane. Some details of'® pafamagnetic state becomes intrinsically inhomogeneigis.
these calculations can be found in the Appendix. It appear&1dTc” are the Curie temperatures for two different phaséer-
that just below the transition temperature to the two-phas@Cte'ized by lower and higher densities of theelectrons, respec-
statekgTp~0.23, AE, is small (typically varies from 0 to tively).
—0.06, in units of theddo transfer integraland the main @) (1) ) o )
contribution to,,,(y) comes from the entropy term. There- T¢’— Tc¢’ depends onu, and is expected to lie in the inter-
fore, y is close to 0.5 and two PM phases coexist in almostal 0<T&'—TE)<650 K, where the upper border was esti-

equal percentage. mated using the valugdo~0.7 eV. Finally, belowT{ the
FM order is established in both phases. Both transitions to
E. Curie temperature the FM states are continuous.

. . Formally, the opposite scenario when the transition to the
The Curie temperature can be obtained from B), o phase state occurs beldfy. is also possible, and ac-

where in the case of orbital degenera@{T) is given by® cording to Fig. 10 may take place where — 1 (correspond-
ing to the densities rang@)=0.5). This would mean that

1 +oo
D(T)z——lmj dzfr(z—u){2V¥y(2)go(2) the FM state at elevated temperatures could also become
m o intrinsically inhomogeneous. We do not rule out such a pos-
—6[W1(2)9,(2)+ ¥ »(2)g(2) T} (25) sibility. However, the quantitative description of this situa-

tion is beyond the smal- limit, considered in the present

Results of these calculations are shown in Fig. 10. FoWork.
m<—1, the magnetic transition temperature appears to be

lower than Tp. Corresponding densityn)=(1-y)n™ VI. SUMMARY

+yn®, averaged over the spin orientations and the alloy
concentrations can be estimated from Fig. 9. Using the valu[ee

of equilibrium alloy concentrationy~0.5, the regime S . :

a hi y d hy densiti g model, which is based on the perturbation theory expansion
m<—1 roughly corresponds to the densities ran@® o the T matrix with respect to fluctuations of kinetic hop-
<0.5. In this region;T¢ should be calculated independently pings near the mean values specified by matrix elements of

for two different phases. Not surprisingly that different y,o"gerenergy for the effective medium. In the first order it
phases are characterized by differ&ats. Therefore, we ex- o equivalent to the DE theory by de Genre®ur main

pecttwo magnetic transition pointsand the behavior for. 505 was on the corrections to this theory caused by the
< —1 can be summarized as followsee Fig. 1D second-order effects.

With the cooling down of the sample, the first transition |, the one-orbital case, they led to substantial reduction of
(Tp) occurs within the PM state, which tumns into the two- 1 \which was nevertheless largely overestimated in com-
phase state. Both phases are paramagnetic and can be disWrison with results of Monte Carlo calculaticfisdue to
guished byn and a hidden parameter of interatomic orbital limitations inherent to the mean-field approach. Therefore, a
polarization Oy, . Further decreases df gives rise to the sensible description of spatial spin correlations, beyond the
FM transition in one of the phases, characterized by lowemean-field approximation, presents a very important direc-
density(the hole-rich phaseIn the intervalT<T<T&)  tion for the improvement of our method.
the FM phase continues to coexist with the PM one, persist- It appeared, however, that even on the mean-field level
ing in the hole-deficient part of the sampleThe difference the situation is far from being fully understood, if

We have considered a nonlocal CPA approach to the prob-
m of orientational spin disorder in the double exchange
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considered in the combination with the effects of orbital de-pounds depend on many factors, such as the MjH3(2p)
generacy in they band. Particularly, we have argued that thehybridization, the cation and structural disorder, the purity of
degenerate model should be characterized an additional orde@ample. All of them may significantly modify conclusions of
parameter of interatomic orbital polarizatid@?,, , which is  our work.

essentially nonlocal and attached to the bonds of the DE

system. Another important factor is the very peculiar form of ACKNOWLEDGMENTS

density of thee, states, which has two anomalies corre-

sponding tc_> the positions of the Van_ Hove singu_larities OM%ion in the complex plane in the case of two branches of
the real axis. The “strange” electronic structure is respon-y,sica| solutions and Y. Tomioka for discussions of the ex-
sible for an analog of the metamagnetism and leads t0 tW@erimental situation in manganites. The present work was
different CPA solutions in certain regions of the compleXgiarted in the Joint Research Center of Atom Technology
plane. They correspond to different values of the order pa¢yrRCAT) where it was partly supported by NEDO.
rameter Oy and the electronic density. Interestingly that

both solutions can be paramagnetic in terms of Conventionqd\ppEme: DISCONTINUITY OF INTEGRATED DENSITY

spin degrees of freedom. This changes the traditional concept OF STATES

of the DE physics dramatically. Particularly, we predict that ] ) ) )

the PM state becomes intrinsically inhomogeneous below [N this appendix we discuss practical aspects of calcula-

certain temperatur@p, and then undergoes the FM transi- tions of the discontinuity terrn‘®(z) —n{*)(z) caused by

tions separately in two PM phases, which have differentransitions between two different branches of CPA solutions

Tc's. in the PM state. According to Ducasteffen(z) is given by
Unfortunately, there is no direct experimental evidencethe following expression:

supporting the idea of mixed PM state beldw, and it is 1

not clear how this effect can be distinguished from those —_._ - N (A T ATl

caused by extrinsic factors such as chemical and structural n2)= WNImTr nG(2)~In(A-[H-H(2)]G(2)],

inhomogeneities and the grain boundaffe©n the other (AL)

hand, the phase coexistence befbwis ratherzcommo_”; and \\here Tr is the trace over site and orbital indichsis the

was observed in a numb_er of experimefS? In addition, number of atomic sites, and the hat symbols stand for the

our result naturally explains appearance of several magnetig,yices in the subspace of orbital and atomic coordinates.

tran_smon points in pe.rovsk|te.mangan|.tes. . Let us start with the first term. In the second order of
Finally, we would like to discuss briefly possible exten-

| thank F. Aryasetiawan for discussions of energy integra-

sions of our model. G®(2)-GM(2) we have

(1) The present approach is based on the second order of - a a -
perturbation theory expansion for tAHematrix. The overall Tr{InG?(2)~InGW(2)}=2 TH[G?(2) -GN (2)]
picture obtained for the degenerate model is qualitatively - -
different from the DE theory by de Gennes. Since the effect x[G®(2)+GM(2)]~ 1},

iS. so dramatic, it n.aturally raises the question "?‘bOUt th‘?/vhich can be further transformed using the definitidg)
higher-order corrections. It seems to be a very important,. o Green function as

problem for the future analysis.

(2) The values off ¢ obtained in the degenerate DE model 22) 1 (L) o 272) o A1)
are strongly overestimated. Presumably, the same is true err{In GCH(2)=InGH(2)}=2 THIH™(2) ~H(2)]
Tp, which is beyond the realistic range for known perovskite — W2y =) (7)] 1
manganites. Therefore, the model should be corrected by in- X[2z=HH (@)= H2(2)] 7}
cluding at least the AFM superexchange interactions betweenhe inverse matriX-- -}~ can be calculated in the same
the localized spinsJ®).*° This would also allow to consider way as the Green functiofL0). Then, if Ry(2) is the site-
the AFM structures, the appearance of which is expected fodiagonal element of---}~1, andR,(z) andR,(z) are the
the densitie$n)=<0.5, even in the simple DE mod&#°The  site-off-diagonal ones corresponding to the3r? and x?

main obstacle for such calculations is that the effeci®ls ~ —Y? orbitals for the bond-1, we can write
not limited by the shift ofT¢ (i.e., Tc—Tc—2[J9 in the L

molecular field approximation It will also affect the mesh = a2 (1)

of Matsubara poles in the right-hand side of Et8) and will NTr{In T (@-InG(2)}

require a careful analysis of the topology of CPA solutions
near the real axis. At the present stage we do not know how =4A00(2)Ro(2) ~12{A01(2)Ry(2)
to deal with this problem. - +Ao,(2)Ry(2)},

(3) The topology of CPA solutions in the complex plane
crucially depends on the details of electronic structure for thevhereA o ,(z) = cr(az)(Z) — crEll)(Z).
ey States. Particularly, the exact position of these singulari- ) i
ties, which are responsible for the anomalies of density of S€cond term in EqAL) (the so-called vortex correction

states, or even the fact of their existence in realistic comshould be expanded up to the second ordéftf 77(2)], in
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order to be consistent with the similar approximatidm)
used for theT-matrix. Then, we have

In{1-[H—H(2)]1G(2)}=—{ [H—H(2)]+ %[7‘1

~H(2)1G(2)[H~H(2)]}G(2).

In order to calculate the thermal average, we note that

[~ H(2)1G(2)[H~H(2)]=~[H~H(2)],

which follows from the CPA equationd3) under the condi-
tion (14). Thus,

PHYSICAL REVIEW B 67, 014412 (2003

PN — 1. =
In{1-[H-H(2)]G(2)}=— 5[H-H(2)]C(2),

and corresponding contribution to the integrated DOS is
given by

ST (- (7~ 712 16(2)}

=00(2)90(2) —3{01(2)91(2) + 72(2)92(2)}.
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