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Magnetic relaxation in finite two-dimensional nanoparticle ensembles
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We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of
dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the
distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the
smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic
moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the
correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in
magnetic relaxation.
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[. INTRODUCTION tion that describes the relaxation of magnetization from the
initial state, when all nanoparticle magnetic moments are ori-
The role of the dipolar interaction in systems of ented along a certain direction of the easy axis, to the de-
nanometer-sized ferromagnetic particles, or nanoparticle emnagnetized ground state. They solved this equation numeri-
sembles for short, has been intensively studied in recertally and showed that for a limited time domain relaxation
years. Such ensembles have numerous technological applicaecurs slower than the Debye model predicts. They approxi-
tions, and it is important to understand their magnetic phemated the relaxation law(t) by a stretched-exponential de-
nomena and processk$One of the most complicated prob- pendence, which, however, does not hold for all times.
lems, where dipolar interactions must be taken into account, Recently, we studied the influence of the mean and fluc-
is thermally activated magnetic relaxation. To derive the lawtuating components of the dipolar field on the process of
of magnetic relaxation, i.e., of the dimensionless reducednagnetic relaxation in those ensemtigst Using the
magnetization, usually requires the derivation of the distribu+okker-Planck equation, we derived an equation that de-
tion function of the nanoparticle magnetic moments. In thescribes the so-called slow relaxation, i.e., relaxation for times
simplest case, that of noninteracting nanoparticles with conexceeding the time,. to establish the quasiequilibrium dis-
served total magnetic moments, the distribution functiontribution of the magnetic momentstq(plO*8 S; see Sec.
obeys the Fokker-Planck equatidrior nanoparticle en- 1IB), and we solved it in limiting cases. We showed that both
sembles with more or less realistic magnetic energy, howthe mean and fluctuating components of the dipolar field
ever, its time-dependent solutions are not known, and exa@&@nhance relaxation, and that for small and large times mag-
results were found mainly for the numerical characteristic ofnetic relaxation has a Debye character, but the corresponding
the relaxation process such as the largest relaxation®ifhe. relaxation times can be very different. This difference causes
Unfortunately, in the case of dipolar interacting nanopar-the quasilogarithmic relaxation at intermediate times that
ticles no exact results for the magnetic relaxation exist. Thisvas found numerically in Ref. 19.
fact makes it difficult to check the validity of different ap-  The role that the correlations of directions of the nanopar-
proximate methods and approaches that are extensively usédle magnetic moments play in magnetic relaxation has not
in this are2 1" The justification of approximations is a very yet been clarified. Clearly, correlation effects are very sig-
important task because the use of nonrigorous, althoughificant, and we expect that, due to the antiferromagnetic
plausible, approximations can lead to oppositecharacter of the dipolar interaction in such ensembles, they
conclusiong?!® One expects that a sufficiently rigorous can qualitatively change the relaxation law. The influence of
analysis of the relaxation law can be performed for the simthe finite size of the nanoparticle ensemble on magnetic re-
plest systems like two-dimension@D) ensembles of iden- laxation is another important problem, which also has not yet
tical, spherical nanoparticles with conserved magnetic mobeen addressed. We expect that, due to the long-range char-
ments and large uniaxial perpendicular anisotropy. Suclacter of the dipolar interaction, magnetic relaxation will sig-
ensembles represent an important class of perpendiculaificantly depend on the ensemble size, especially for small
magnetic recording medf4,and they are convenient systems times when dipolar fields near the internal and external mag-
to study experimentally and theoretically the role that thenetic moments can be quite different.
dipolar interaction plays in magnetic relaxation. The complexity of these problems forces us to seek nu-
Magnetic relaxation in such ensembles was consideretherical solutions. The known methods of numerical simula-
first by Lottis, White, and Dahlbetd within the simplified  tion of magnetic relaxation, such as directly integrating the
version of the mean-field approximation. Using the concepstochastic Landau-Lifshitz equatiéfi,* the conventional
of a demagnetizing field, the authors wrote down the equaMonte Carlo method®?® and the time-quantified Monte
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Carlo method, are not suitable for our purposes. The main
reasons are the following. To integrate the Landau-Lifshitz
equation, the integration time step must be smaller than the
inverse of the precession frequency of the nanoparticle mag-
netic moments {10 ! s). Therefore, this method usually
works only for the description of the fast magnetic relax-
ation, i.e., relaxation on time scales smaller thgp. The
conventional Monte Carlo method is not suitable, since each
Monte Carlo step has no physical time associated with it.
The time-quantified Monte Carlo method also cannot be ap-
plied to our situation; the number of Monte Carlo steps that _ ) .
are necessary to calculate the relaxation law on times com- FIG. 1. Schematic representation of the 2D nanoparticle en-
parable with the relaxation time becomes prohibitively largeSemple-
in the case of high potential barriers between the equilibrium _ -
directions of the magnetic momer(see Sec. Il B. Further, temperaturg i.e., the conditions;=AU;/kgT>1 holds for
that method is valid only in the high damping limit, i.e., if &l nanoparticles. The main goal of this section is to find the
there is no precession of the magnetic moments. relation between the reduced magnetization at timasd t

In this paper we develop a method to numerically simu-+ 7-
late thermally activated magnetic relaxation in finite 2D en-
sembles of dipolar interacting ferromagnetic nanoparticles. A. Equation for the reduced magnetization
We consider the case where the nanoparticles with uniaxial Fore>1. th : (1) fluctuate withi Il vicini-
anisotropy occupy the sites of a square lattice and their ea% org;>1, the vectorsn;(t) fluctuate within small vicini

axes of magnetization are perpendicular to the lattice plan es of the positive and negative directions of ihaxis, and

We develop an equation that relates the magnetization of th ey are reorleljt.ed only rarer.. Conse_quently, the average
ensemble at the next time step to the known state of thQumbers of positively and negatively oriented magnetic mo-

nanoparticle ensemble at the previous time step and a ndpents have V\_/ell-deflne(_j valueé, (t) and N_(1), respec-
ely, at any instant. Since the number of magnetic mo-

merical procedure that defines the ensemble state at the n Fents that at time have reoriented is much less thenthe
time step. To derive the probability densities for the reorien- . .
p b y pproximate relatioN (t)+N_(t)~N holds, and we can

tation of the nanoparticle magnetic moments, contained “%efine the reduced magnetization of the nanoparticle en
this equation, we exploit the fact that they can be represente ) )
9 b y P emble ap(t)=2N,(t)/N—1. Let us define also the state

via the mean times for magnetic moments to reorient or, i

other words, via the so-called mean first-passage times, arﬂ] lthat ensel;?blei \t/_\leea_ssukme tha_tf t‘[]he s;ate ?f the r;ar:lopar-

calculate these times using the backward Fokker-PlanckC'® ensemble at time Is ”O_VY” It the directions ot a

equation. magnetic moments are known; i.e., we describe the ensemble
State by the set of signs;(t)=0; (i=1,... N), whereg;

The paper is organized as follows. In Sec. II, we introduce™ q di hether th f
the equation mentioned above and derive rigorous expres-  ©F — depending on whether the vectok(t) fluctuates

sions for the probability densities of reorientation of the2round the positive or negative direction of thexis.
nanoparticle magnetic moments. The algorithm for the nu- Given the ensemble state, neglecting the fluctuations of

merical calculation of the relaxation law is described in SecMi(t), and taking into account that approximatety(t)

lll. In the same section we present the numerical results and iMe; for the time intervals between the reorientations, we

analyze the features of the magnetic relaxation caused HyA" Write the local dipolar fielti(t) acting on the magnetic
both the correlations of the nanoparticle magnetic momentgiomentm;(t) ash;(t) =hi(t)e,. Here
and the finiteness of the nanoparticle ensemble. We summa-
i [ 1
rize our results in Sec. IV. hi(t)=— mz o=, 2.
]#| rlj
II. ANALYTICAL RESULTS . . . .
m=|m;(t)], &, is the unit vector along the axis, andrj; is

We consider a system &f uniaxial and identical spherical the distance between the centers of corresponding nanopar-
ferromagnetic nanoparticles with a radiushVe assume that ticles. If at timet the magnetic moments do not undergo
the nanoparticle centers occupy the sites of a square lattice eforientations, then each nanoparticle is under the influence
size LdXLd [(L+1)?>=N] and lattice spacingl(=2r). of the local dipolar field(2.1). Even if some magnetic mo-
The easy axes of nanoparticles magnetization are perpements are reoriented, their number is much less thdre-
dicular to the lattice planexfy plang, and at the initial time  causes;> 1, and formula2.1) remains approximately valid.
t=0 all magnetic momentsn;(t) (the indexi labels the For sufficiently small times intervals we can consider there-
nanoparticlesare oriented along the axis (see Fig. L We  fore the ensemble of interacting nanoparticles as a system of
also assume that the smallest heightd; of the potential independent magnetic moments, each of which feels its own
barriers between the equilibrium directions of the nanoparexternal magnetic fieldh;(t). This fact significantly simpli-
ticle magnetic moments are much larger than the thermdies the numerical investigation of the magnetic relaxation in

energykgT (kg is the Boltzmann constant, is the absolute ensembles of dipolar interacting nanoparticles.
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Let us assume that the probabilities of reorientation petess is the vectan;(t), and the level set of first passages for
unit time w,, (t;j) (i.e., the probability densities of reorien- m(t) is the conical surface defined by E@.4). We describe
tation) of the vectorsm;(t) (j=1, ... N) from the positive the dynamics of the nanoparticle magnetic moment¢t)
direction of thez axis (if oj=+) and from the negative one =m; by the system of stochastic Landau-Lifshitz equations
(if oy=—) are known. We also assume that on the interval
(t,t+7) the probabilities of two and more reorientations of
m;(t) are negligibly small. Then, taking into account that
N, (t+7)—N,(t) is equal to the difference between the
number of reorientations from the negative direction ofzhe
axis and the number of reorientations from the positive di
rection of thez axis, we obtain

: Ay

wherej=1,... N, y (>0) is the gyromagnetic ratioy
(<1) is the damping parameter,

W, (t)
5 N i=- am, =Hg[cos#;(t) +Dbj(t)]e, (2.6
t+7)—p(t)=—— iw, (). 2.2 . . L . .
p(t+7)=p(1) N ;1 7] "J( ) 22 is the effective magnetic field acting om;, andn; =n;(t) is

B - . the thermal magnetic field that models the action of the ther-
The probability densitiesv, (t;j) depend on the local mostat. The thermal field is approximated by Gaussian white

field hj(t), and Eq.(2.2) can be applied if the ensemble state noise with zero mean valueg(t)=0 [the overbar denotes
at timet is known. However, Eq(2.2) is not an iterative averaging with respect to the sample pathsngft)] and
equation for the ensemble state; it only defipés+ 7) but  correlations functions

not the ensemble state at tihe 7. In order to use Eq.2.2)

as the recurrence equation for the calculation of the law of Nio(t)Na(t2) =2A 8, 8,58(t,—ty). 2.7
magnetic relaxation, we need to determine the values .

w,(t:j) and develop a procedure to find the state of theHere nio(t) (a=xy,z) are the Cartesian components of

nanoparticle ensemble at tinte- 7, if its state at timet is ni(t), A=AkgT/ymis the intensity of the thermal magnetic

known. We will describe that procedure in the next sectionf'eld’ 9ij is the Kronecker symbol, and(t) is the Dirac delta

- . . function.
Below we calculate the probability densnm@j(t,]). If we treat the local dipolar fields;(t) as external mag-

N N _ _ netic fields, then we can consider the nanoparticles to be
B. Probability densities of reorientation independent. In other words, in this case the stochastic

The probability densities of reorientation are given by'—a”d_aU'LfifShitﬁ equati?_nGZ.S) aretir_‘dgpenqgng and th? (ij-L t
Y 1 i P : namics of each magnetic moment is described separately. Le
W,,j(t,])—l/tsl(t,J), wheret /(t;]) are the mean times that 9 P Y

the magnetic momenn;(t) spends pointing in the positive ;Jat Z_J((;)l 55[01 i,\t/e)n ?ﬁai:?(tg?idgio?ti Br)Ob(?\lbcl)ltI;ytg;tnisr:ty
(whenoj=+) and the negativewheno; = —) directions of th ! f i 9 | tJ - ) t/d ’ d th .
the z axis. These times can be representedtdst;]) e case of axial symmetrly; does fot depenc on the az-
_ _ P ) muthal angle of m;.) Then, using the Stratonovich
=2t,1(t;]), wheret i(t;]) are the mean times fan;(t) to  interpretatio”® of Eq. (2.5 and applying standard
reach for the first time the state with a maximum value of themethod<® we can write forP; the forward Fokker-Planck
nanoparticle magnetic enerdy; . The factor of 2 takes into equation
account the fact that from that state the magnetic moment

m;(t) can transit to the stai@;= + or o;= — with probabil- P, a [Ny dW;(9;,t) ) zazpj
ity 1/2. In our case, the magnetic enerdy; includes the ot W{FT_AY cotd;|Pj+Ay W
anisotropy energy- (H,/2m) mjzz(t) and the Zeeman energy ) ! j
—h;(t)mj,(t), so that it has axial symmetry and (2.8

and the backward Fokker-Planck equation

(2.3 P, | Ny AW(9] 1) N , I°P
. . ) : — =, —Ay‘cotdj | — —Ay >
Here H, is the anisotropy fieldg;(t) is the polar angle of at’ m 9] 9] 9]
m;(t), andb;(t)=h;(t)/H, [assuming that two equilibrium (2.9

directions exist for each magnetic momei,(t)|<1 for all _ .
nanoparticlep Accordingly, the state corresponding to the As a rule, the study of the magnetic properties of nano-

maximum value oW, is defined by the polar angle particle ensembles is based on forward Fokker-Planck equa-
tions similar to Eq.(2.8), which allow us to express the sta-
Q;(t)=arcco$—Db;(t)]. (2.9 tistical characteristics of ensembles as functions of tinde

the same time, backward Fokker-Planck equations are very
From the mathematical point of view, the calculation of useful to describe the thermally induced reversal of the nano-
the mean times;i(t;j) is a particular case of a general prob- particle magnetic momentS.We use the backward Fokker-
lem, known in the theory of Markovian processes as thé’lanck equation(2.9) to calculate the mean first-passage
first-passage time probleffiln our case, the Markovian pro- timest;;i(t;j).
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To use Eq(2.2) as the recurrence equation for finding the where so-called absorbing and reflecting barffease placed

reduced magnetization at the discrete timest, (n
=0,1,... M, t,=0, t,,.,>t,), we need to calculate
t7(t,;j) for n=0,1,... M—1. Since to each timé, cor-
responds the angl€;(t,), it is necessary in Eq(2.9) to
replaceW;(9; ,t") by W;(9,t,). In other words, to find
ti(t,;j) we must use Eq(2.9 with an energy term
W;(8; ,t") that doesnotdepend ont’. This important re-

at the pointsd| = Q(t,) and9{ =0,m, respectively.

Solving Eq.(2.12 with these boundary conditions by the
method of variation of constarifsand using the representa-
tion (2.10, we obtain the rigorous formula
e~ alx+ojbj(t)]?

1
t7i(t ;')=atJ dx
m n J r B bj(tn) 1—X2

quirement results in a condition of homogeneity for the ran-

dom processé;(t), Pj(9;,t9],t")=P;(9;,t—t'|9;,0),
and significantly simplifies the problem.

To crcllculatet;i(tn ;]), we first introduce the mean times
Tj=TJf’i(ﬂj’ t,), the time necessary fof;(t) [6;(0)="1],
¥ € (0,Q(ty)) if oj=+ andd e (Q(t,), ) if oy=—] to
first reach the angl€);(t,). The desired times are expresse
throughT; as

(2.10

and the value§; themselves are represented in the form

" w(1-0j1)/2+ Q) (t) (1 + 0y 1)/2
0 Q)(t)(1-ay1)/2
(2.1

Taking into account the initial conditiorP;(; ,0|19j’,0)
=5(9%;—9]), the homogeneity conditioP;(9;,t|9; ,t")
=Pj(¥;,t—t'[9],0), and the expressio(2.3), we obtain
after integration of both sides of the modified equat(@ard)
overu=t—t’ and 9= 149; as in Eq.(2.1) the ordinary dif-
ferential equation foif; :

t3(ta:)) =T (1= o 1)/2:t,),

d?T,
12

i

dT;
+[cotd] —2a(bj(t,) +cosd|)sin ﬁj,]d_ﬁ]’ ——at,

(2.12

(a=H m/2kgT, t,=2/\yH,).

To find the unique solution of Eq2.12, we need to
impose two boundary conditions for the mean tirigs The
first condition follows immediately from the definition of
these times':l'j|,5,jfzﬂj(tn)=0. We can find the second by ana-

lyzing the solutions of Eq(2.12 for small vicinities of the
anglesd{ =0 andd{ =m. There Eq.(2.12 is reduced to

d?T; 1 dT,
S+— — =-at, (213
and its general solution is given by
TJ-=Cj|n|19]-’—77(1—0'j1)/2|+d]-—at,
X[ 9] —m(1-0y1)/2]%/4, (2.14

wherec; and d; are constants of integration. Sindg are
bounded quantities, the conditiep=0 must hold. This con-

1
Xf dy eyt oibjta)?, (2.15
X

which is valid for arbitrarya and |b;(t,)|<1. Using Eq.
(2.15), letus calculat@:v(,j(tn ;J) for e;>1. According to Eq.

d(2.3), the heightsAUJfTi(t) of the potential barrier between

the equilibrium directions of; can be written in the form
AU}’i(t)=%Ham[1+ oib;(t) 1%, and  since AU;
=minAUJfTi(t), the condition £>1 leads to a[l

+crjb,-(tn)]2>l. Taking into account that the asymptotic
formulas

ea[1+a-jbj(tn)]2

1
dy el +oybt)l? = —
L y 2a[1+ o;b;(ty)]

1

Jl e~ alx+ojbj(t))]? \ﬁ 1
dX————=\/T7—5—
bi(ty) 2Vajl- bjz(tn)

1-x?

hold asa[ 1+ o;b;(t,)]°—2, we find in the same limit

. 2\/5 2
Wo,(tn5)= £\ 1= (t)]

X[1+ ojb;(ty)]e LT obit)® (2,16

Note that Eq.(2.16 follows also from Brown’s resulfsfor
isolated nanoparticles in a longitudinal external field ob-
tained with the forward Fokker-Planck equation fge1.

We have presented here an alternative derivation of Eq.
(2.16) based on the backward Fokker-Planck equation, be-
cause within this approach the mean first-passage times
t;i(t;j) and the probability densities of reorientation
W(,J_(tn ;]) are calculated exactly for arbitragy .

If the conditione;>1 holds for all nanoparticles and the
ensemble state at tinte=t,, is known, then for the same time
we can find the dipolar fields acting on each nanoparticle,
using the formula2.1), and calculate the probability densi-
ties of reorientation of each magnetic moment, using the for-
mula (2.16).

C. Mean-field approximation

To illustrate the influence of the correlations of the mag-
netic moments and of the finite size of the nanoparticle en-

dition can be represented equivalently in the form of thesemple on the magnetic relaxation, we must first calculate

second boundary conditiodej/dﬂj’|ﬁjr:7r(1_gj1),2=0.

the relaxation lawp,(t) for an infinite lattice within the

Note that these boundary conditions correspond to the caseean-field approximation. To this end, we derive the equa-
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tion that this relaxation law satisfies, based on the results Note that the description of magnetic relaxation based on
obtained above. Since within the mean-field approximatiorEgs.(2.2) and(2.19 is valid if the quasiequilibrium distri-
the same mean dipolar field acts on all magnetic moments, hution of the nanoparticle magnetic moments is established,
is necessary in Eq2.16) to replaceb;(t) (we drop the index , i t=tye~at,. In other words, these equations de-
nin t,) by b(t)=b;(t). This implies that all magnetic mo- scrlbe the slow phase of magnetic relaxation. Fet., the
ments for whichs; = + and all magnetic moments for which probability of reorientation of the nanopatrticle magnetic mo-
o=— are reorlented with the same probability densities,ments from the initial state is vanishingly small. Therefore

w, (t) andw_(t), respectively, where

W (t)= tz\/é[l— b2(t)][ 1+ b(t)]e alL=pMI?

(2.1
The functionb(t) is given by°
b(t)= —9.034—— p_(1): (2.18
. Had3 pmf 1 "

therefore, the probability densities.. (t) depend ort only
via the reduced magnetizationp,(t), i.e., wi(t)
=W (pmi(t)). Finally, using the equalityZjo;=N,(t)
—N_(t) and the definition op(t), we obtain from Eq(2.2)
for 7—0 andN—o the required differential equation

—Pmi(D[W (D) +W_(t)]—w, () +w_(1)
(2.19

Pmi(t)=

we can transfer the origin of time to an arbitrary potnt
~14¢ and, since fom>1 andt~t,. the approximate equali-

ties mj,(t)~m hold, use the initial conditionp(0)=1 and
pmi(0)=1.

IIl. NUMERICAL SIMULATIONS
A. Computational algorithm

According to the results of the previous section, to com-
pute the law of magnetic relaxation in some time interval
(0,ty) it is necessary to know the states of the nanoparticle
ensemble at the discrete timést, (n=0,1,... M—1).

The state fon=0, i.e., fort=0, is known from the initial
condition o(0)=+ for all j. To find the state at any other
time we proceed as follows. First we assume that the state of
the nanoparticle ensemble at the titet,, is known. This
means that the sét (t,) of numbersj for which o;(t,)=

+ and the seA_(t,) of numberg for which o(t,) = — are

fully defined. It is evident that the seA, (t,) contains

[pPmi(0)=1], which defines the law of magnetic relaxation N, (t,) elements and the sét_(t,) containsN_(t,) ele-
in the mean-field approximation. Note that the same equatioments.

follows from the solution of the forward Fokker-Planck

equation(2.8).2°
Calling the right-hand side of Eq2.19 —F(p¢(t)), we
can reduce this equation to the integral form

f 1 dx
me(t)F(X) -
lts solution for small and large times yiefdsp,(t)=1
—t/79 and p(t) xexp(~t/z.), respectively, where

(2.20

\/; ea1-9?
o=t \| - (2.21)
"Vag1-¢)(1-9
is the initial relaxation time,
. \/; ea 29
==\ a 1T (2a-1él (222

is the final relaxation time, and=—Db(0) (0=é<1) is a

Next, assuming that the time intervat, , =t 1 —t,is
small enough, we introduce the average numbers of reorien-
tations

ety tns 1) =Atnsy 21 wao(ty;)) (3D

jeAL(ty)

that occur duringAt,,, for the sets of positivelyupper
sign and negatively(lower sign oriented magnetic mo-
ments. Strictly speaking, E@3.1) is valid if the strong in-
equality At,, ;maXw-(t,;j)}<1 holds. Its use can drasti-
cally increase the time required for the computation of the
relaxation law in some cases. Therefore, instead of the exact
representatiori3.1) we use the approximate one

v (ty vtn+l):_ E
jeAL(ty)

[U(X)=x if x<1 andU(x)=1 if x>1], which is valid if
the weaker condition . (t,,t,+1)<N holds, and from Eq.

U(Atheri(tn;j)) (32)

parameter characterizing the intensity of dipolar interaction2.2) we obtain

on an infinite lattice. According to Eq&.21) and(2.22), the
relaxation process in ensembles of dipolar interacting nano-
particles is approximately characterized by two relaxation
times 7y and 7., while in the case of noninteracting nano-
particles, i.e..£=0, it is characterized by the single relax-
ation time r,=t,\w/16a expa. Since 7,> 7y and 7,> 7., Equations(3.3), (3.2, (2.16, and(2.1) allow us to calcu-

the dipolar interaction enhances relaxation, and singe late the reduced magnetization at timet, . ;, if the nano-
<r,, the relaxation rate decreases with time. For ensemblgsarticle state at timé=t,, is known. To find the nanopatrticle
where the value of is not too small, the strong inequality state at timet=t,.;, we need to choose sites where the
T9<<T,, Usually holds, and the decrease can be very large. magnetic moments must be reoriented. To reflect the random

p(the)=p(ty) — v_(ty,the) ]

(3.3

2
N[V+(tnatn+1)_
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character of the thermal fluctuations, these sites should be Using the known state of the nanoparticle ensemble at the
chosen randomly, while at the same time preference shoulihitial time t=0 and applying the algorithm described above,
be given to those sites that have larger probabilities of reoriwe can find the states for all times=t, (n=1,... M
entation. To satisfy both requirements we proceed in the fol—1). Since our algorithm is a probabilistic one, the reduced
lowing way. First we choose the time steps, ;. ;. Since the magnetization calculated by the formuld.3) is a random
number of magnetic moments that are reoriented per uniquantity. Let us designate that random reduced magnetization
time can appreciably decrease with time, we select steps o the kth numerical experiment ast;(t,). (A numerical
varying lengthAt,, 1= 7[w, (t,) +w_(t,)] 1. The param- experiment consists of one application of the algorithm to
eter » must be chosen small enough to satisfy the conditiordetermine the ensemble states at all tirves,,.) Then we

v (ty,tq+1)<N (in our calculations;=5x10"%). Thenwe  define the numerically simulated relaxation law as

calculate the valueat, . sw . (t,;]) for je A, (t,), and us-

ing the formula(3.2) we find the average number of reorien- 1 X .
tations psim(tn) = 1 gl Psim(tn), (3.5
vi(tntns ) =T+ (b)) F AL D W (th:)) whereK is the number of numerical experiments. To avoid
) any misunderstanding, we emphasize that within the pro-

(3.9 posed algorithm the dipolar fiel@.1) is calculated exactly,

that occur during the time intervdlt, ,, in the set of posi- and itis recalculated after each time step.

tively oriented magnetic moments. Here(t,,t,.1) is the ) , )
number of lattice sites where\t, ., w,(t,;j)>1, and B. Numerical results and discussion
A’ (t,) is the set of lattice sites whett,, jw, (ty;])<1. We have used our analytical results and the numerical
Further, we introduce the number of reorientations aslgorithm described above to study the role that the finite
N, (ty,the)=[vi(ty,the )1+, where [v,(t,,ths1)] is  size of the nanoparticle ensemble and the correlations of the
the integer part of  (t,,,t,,+1), andl =0 or 1 with probabil- nanoparticle magnetic moments play in magnetic relaxation.
ity po=vi(th,the1) —[vi(th,the1)] and p1=1—py, re-  We found that the reduced magnetizatjgn(t) (t>0) de-
spectively. Using a random number generator, we obtain areases, when the parametgra measure of the ensemble
value forn_ (t,,th11). size, increases, i.ensim(t)|L,>psim(V[L, if Lo>Ly, and
~ Among then., (t,,t1) magnetic moments that must be ;. (t)|, tends to the limiting valug,,(t) asL—%. We
inverted at timet=t,.;, we immediately invert the explain such behavior ops;n(t) as follows. Increasing-
r+(tnh,the1) magnetic moments at lattice sites where thejeads to an increase, on average, of the local dipolar fields
condition At,, 1w, (t;;])>1 holds. (Recall that a one-to- acting on the nanoparticle magnetic moments. As a result,
one correspondence exists between the lattice sites and nue average of the probability densities of reorientation of the
bersj.) To find the remaining, (t,,t,,1) = (tn,th+1) 12t positively oriented magnetic moments increases, and the av-
tice sites where the magnetic moments have to be inverte@rage of the probability densities of reorientation of the nega-
we first generate a random number that lies in the interval Of|ve|y oriented magnetic moments decreases. According to
length = i)W+ (t;]). This interval containsN.(t))  Eq.(2.2), this means thaps;n(t) decreases wheb grows.
—r . (ty,t,+1) Subintervals of lengthsv, (t,;j). We store To verify this statement, we have calculateg,(t) for
the numbejj of the subintervali.e., the position of the sije  different ensembles of Co nanoparticles characterized by the
that contains the random number in memory, and then thgtarametersd,= 6400 Oe,m/V=1400 G { is the nanopar-
subinterval is removed. Next we generate a random numbdicle volumg, A=0.2, andr=4 nm. As an illustration, the
that lies in the new interval formed by the remaining sub-function pg;(t), obtained aff =300 K, d=3r, L=50, and
intervals. The numbejr of the subinterval that contains this K=100, and the approximate functigf,(t) are shown in
random number is again stored in memory, and then thi§ig. 2. We found the latter function in the same way as
subinterval is also removed. Iterating this procedurepsin(t), but to exclude boundary effects, we assume that the
N, (th,the1) =1+ (ty,thr1) times, we find alln(t,,t 1) basic nanoparticle ensemifer which we chosé.=100) is
lattice sites where positively oriented magnetic momentsurrounded by eight identical ensembles, and each nanopar-
must be inverted at time=t,, ;. ticle from the basic ensemble is considered as a central one
Introducing in the same way the average number of reoriin the square box of the same si@ee., L=100) and inter-
entationsv_(t,,t,+,) that occur in the set of negatively ori- acts only with the nanoparticles which belong to this box. In
ented magnetic moments and using the procedure describ&dy. 2, we also show the functiom,«(t) calculated via the
above, we determina_(t,,t,.,) lattice sites where these numerical solution of Eq(2.19 for an infinite ensemble of
magnetic moments must be inverted at titet,,, ;. Since  Co nanoparticles with the same parameters. Note that in this
the ensemble state at tinhe t,, is known, the ensemble state case a~29.01, £~0.31, t,~8.85% 10 s, 70~1.33
at t=t,,,, i.e., after the inversion ofn,(t,,th,;) X10°s, 7.~1.56 s, andr,~28.89 s.
+n_(t,,t,+1) magnetic moments on well-defined lattice  Since att=0 the local dipolar field for an infinite en-
sites, is known too. Taking the latter state as the initial statesemble is always larger than the highest local dipolar field
we can find in the same manner the ensemble state at tinfer a finite one, the conditiopgjm(t)>pmni(t) (t>0) must
t=t,., and so on. hold for small enough times. We expect that the same con-
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FIG. 3. Plots ofy, (t) for L=50(curve 3, L=70 (curve 2, and

FIG. 2. Plots ofpsin(t) for L=50 (curve 1, piim(t) (curve 2, | _o; (cyrve 3. Inset: the same plots for small times.

and p.,¢(t) (curve 3. Inset: the same plots and the plot mf(t)
for L=70 (curve 9 for small times.
To characterize the difference betweegn;,(t) and

dition holds also for large enough times, since correlations opm(t), we introduce the parameten (t)=[psim(t)
the nanoparticle magnetic moments lead to slower magnetie p,i(t) 1/psim(t). Its dependence om for the same en-
relaxation in the final phase than the mean-field theory presembles of Co nanoparticles is shown in Fig. 3. The nonzero
dicts. As to the relation betweepy;,(t) and p(t) at the value of y (1) is caused by both the finite size of the nano-
intermediate times, its character at a fixed temperature dexarticle ensemble and the correlations of the nanoparticle
pends on the ensemble size, i.e., on the paranheter magnetic moments. Correlations significantly change the re-

To explain this dependence, we note first that at smallaxation law, and their role grows with time, i.eg, (t)—1
times magnetic relaxation for finite nanoparticle ensembleg gt o

occurs faster than in the case where the local dipolar fields The fact that the probability densities of reorientation

are replaced by their average value, i.e., the mean-field a@\'laj(t:j), Eq. (2.16, depend exponentially on the large pa-

proximation. Indeed, in the initial phase of magnetic relax—rametera has two conseguences. The first is obvious:
ation only a small number of the nanoparticle magnetic mo- amelv. the relaxation la -q(t) stro.n v depends on tem- :
ments is subjected to reorientation. In this case, the! Y : Wsim gly dep

reoriented and most of the nonreoriented magnetic momenf%erature due to the inverse proportionality @bn T. The

are under the action of the local dipolar fields, which exceedSecond is more complicated a_md refers to the_ time depen-
the mean dipolar field. This meanspthval(t; i)<w_(t) for dence obpsin(t) andpp(t) for differentT. According to the

ieA_(1), W, (t;)>w, (t) for mostj <A, (1), and there- previous results, if at a certain temperature the paranteter
— ] +\4 + + 1

fore the actual magnetic relaxation occurs faster than th atisfies the conditioh <L, then.f.’S‘m(t)>f’.mf(t) .f.or all
mean-field approximation predicté\e emphasize that this >0. AST de(?reases, the probability denS|tw§J(t’J) de-
conclusion is valid for the initial phase of magnetic relax- crease with different rates, and the smaller the temperature
ation for finite as well as infinite nanoparticle ensembles. becomes, the more their relative values differ. This means
Furthermore, taking into account that an increase in the siz#at asT is reduced, the reorientation of the nanoparticle
of the nanoparticle ensemble leads to an increase, on avépagnetic moments predominantly occurs at sites where
age, of the local dipolar fields, we expect the following be-Wo(t;]) are the largest. As a consequence, for small times
havior for the dependence pf;(t) onL (for an illustration, the difference betweepy;(t) and the relaxation law derived
see Fig. 2 If in the nanoparticle ensemble the highest localby the mean-field approximation grows &s decreases.
dipolar field att=0 is small enough in comparison to the Therefore, if at a given temperature the conditior L,
case of an infinite ensemble, i.e., if the paraméteioes not  holds and the values df and L., do not differ too much,
exceed the critical value.,=L(T), then pgim(t)>pm(t) then the curves;m(t) and p,(t) can intersect at smaller
forall t>0 (curve 1 in Fig. 2. At L=L, the curvespg;(t) temperatures. The plots @f;(t) calculated for ensembles
andpq¢(t) have a tangency point, and foe>L, they inter-  of Co nanoparticles foc =50 andT =300 K (see Fig. 2and
sect at timest=ty;, and t=ty, (curve 4, t;;,~2.25 for L=50 andT=150 K (see Fig. 4 demonstrate this state-
X107° s, t,,~2.09x10 2 s). AsL is increased, the time ment. In the latter case calculations yied=58.02, 7,

tyin Of the first intersection decreases, and the tigyeof the ~ ~10.72's, 7,~2.24x10%s, 7,~8.11X10%s, ty,

second one increases. As a result, fors© we have ~56.12 s, and,,~6.83<x10's.
psim(D)—piim(1), t1i;,—0, andt,, tends to the limiting The relaxation laws calculated above cannot be deter-
valuet;, (curve 2,t;,~0.46 s). mined using the Monte Carlo method with time step quanti-
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1.00 T T T IV. CONCLUSIONS

r We have developed a method for the numerical simulation
of thermally activated magnetic relaxation in 2D ensembles
of uniaxial ferromagnetic nanoparticles whose easy axes of
magnetization are perpendicular to their distribution plane. It

is based on an analytical determination of the probability
densities of reorientation of the nanoparticle magnetic mo-
ments and on the numerical determination of the nanopar-
ticle ensemble states for a discrete sequence of times. Using
the backward Fokker-Planck equation, we have formulated a
rigorous approach to calculate those probability densities,
and in the case of high potential barriers between the equi-

librium directions of the nanoparticle magnetic moments we

°-°?, 00 0 ;,5 0.10 0 '15 0.20 have studied the law of magnetic relaxation by this method.
We have shown that magnetic relaxation in finite nanopar-

t't, . . .

ticle ensembles can differ strongly from that predicted by the

FIG. 4. Plots ofpgim(t) (curve 3 and p,¢(t) (curve 2 for L mean-field approximation for infinite ensembles. This differ-
=50 andT=150 K. Inset: the same plots for small times. ence is caused by the finiteness of the ensemble size as well
as correlations between the magnetic moments, which result

fication. According to Ref. 27, the time intervAk that cor-  from the dipolar interaction between nanoparticles. In a finite
responds to one Monte Carlo step is written in our notationensemble, magnetic relaxation for small and large times oc-

as curs more slowly than the mean-field theory predicts for in-

0.10

reduced magnetization

reduced magnetization

0.05

RY(1+\2)m finite ensembles, and for intermediate times the correspond-
= - (3.6)  ing relaxation curves, depending on the ensemble size and
20kgTAy temperature, can intersect twice. Increase of the ensemble

(R<1), and the numbel = u7,/At of Monte Carlo steps Size enhances relaxation, and in the limiting case of an infi-
that are necessary to calculate the relaxation law on the timeite ensemble, magnetic relaxation for small times occurs

interval (Ou,) is given by faster and for large times more slowly than for the mean-field
theory. This feature of the relaxation law is caused by the
5u \/; a 3.7 correlation effects whose role grows with time.
R%(1+\?) '
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