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Magnetic relaxation in finite two-dimensional nanoparticle ensembles
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We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of
dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the
distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the
smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic
moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the
correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in
magnetic relaxation.
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I. INTRODUCTION

The role of the dipolar interaction in systems
nanometer-sized ferromagnetic particles, or nanoparticle
sembles for short, has been intensively studied in rec
years. Such ensembles have numerous technological app
tions, and it is important to understand their magnetic p
nomena and processes.1,2 One of the most complicated prob
lems, where dipolar interactions must be taken into acco
is thermally activated magnetic relaxation. To derive the l
of magnetic relaxation, i.e., of the dimensionless redu
magnetization, usually requires the derivation of the distri
tion function of the nanoparticle magnetic moments. In
simplest case, that of noninteracting nanoparticles with c
served total magnetic moments, the distribution funct
obeys the Fokker-Planck equation.3 For nanoparticle en-
sembles with more or less realistic magnetic energy, h
ever, its time-dependent solutions are not known, and e
results were found mainly for the numerical characteristic
the relaxation process such as the largest relaxation time3–8

Unfortunately, in the case of dipolar interacting nanop
ticles no exact results for the magnetic relaxation exist. T
fact makes it difficult to check the validity of different ap
proximate methods and approaches that are extensively
in this area.9–17 The justification of approximations is a ver
important task because the use of nonrigorous, altho
plausible, approximations can lead to oppos
conclusions.12,13 One expects that a sufficiently rigorou
analysis of the relaxation law can be performed for the s
plest systems like two-dimensional~2D! ensembles of iden
tical, spherical nanoparticles with conserved magnetic m
ments and large uniaxial perpendicular anisotropy. S
ensembles represent an important class of perpendic
magnetic recording media,18 and they are convenient system
to study experimentally and theoretically the role that
dipolar interaction plays in magnetic relaxation.

Magnetic relaxation in such ensembles was conside
first by Lottis, White, and Dahlberg19 within the simplified
version of the mean-field approximation. Using the conc
of a demagnetizing field, the authors wrote down the eq
0163-1829/2003/67~1!/014411~9!/$20.00 67 0144
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tion that describes the relaxation of magnetization from
initial state, when all nanoparticle magnetic moments are
ented along a certain direction of the easy axis, to the
magnetized ground state. They solved this equation num
cally and showed that for a limited time domain relaxati
occurs slower than the Debye model predicts. They appr
mated the relaxation lawr(t) by a stretched-exponential de
pendence, which, however, does not hold for all times.

Recently, we studied the influence of the mean and fl
tuating components of the dipolar field on the process
magnetic relaxation in those ensembles.20,21 Using the
Fokker-Planck equation, we derived an equation that
scribes the so-called slow relaxation, i.e., relaxation for tim
exceeding the timetqe to establish the quasiequilibrium dis
tribution of the magnetic moments (tqe;1028 s; see Sec.
II B !, and we solved it in limiting cases. We showed that bo
the mean and fluctuating components of the dipolar fi
enhance relaxation, and that for small and large times m
netic relaxation has a Debye character, but the correspon
relaxation times can be very different. This difference cau
the quasilogarithmic relaxation at intermediate times t
was found numerically in Ref. 19.

The role that the correlations of directions of the nanop
ticle magnetic moments play in magnetic relaxation has
yet been clarified. Clearly, correlation effects are very s
nificant, and we expect that, due to the antiferromagn
character of the dipolar interaction in such ensembles, t
can qualitatively change the relaxation law. The influence
the finite size of the nanoparticle ensemble on magnetic
laxation is another important problem, which also has not
been addressed. We expect that, due to the long-range
acter of the dipolar interaction, magnetic relaxation will si
nificantly depend on the ensemble size, especially for sm
times when dipolar fields near the internal and external m
netic moments can be quite different.

The complexity of these problems forces us to seek
merical solutions. The known methods of numerical simu
tion of magnetic relaxation, such as directly integrating t
stochastic Landau-Lifshitz equation,22–24 the conventional
Monte Carlo method,25,26 and the time-quantified Monte
©2003 The American Physical Society11-1
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Carlo method,27 are not suitable for our purposes. The ma
reasons are the following. To integrate the Landau-Lifsh
equation, the integration time step must be smaller than
inverse of the precession frequency of the nanoparticle m
netic moments (;10211 s!. Therefore, this method usuall
works only for the description of the fast magnetic rela
ation, i.e., relaxation on time scales smaller thantqe . The
conventional Monte Carlo method is not suitable, since e
Monte Carlo step has no physical time associated with
The time-quantified Monte Carlo method also cannot be
plied to our situation; the number of Monte Carlo steps t
are necessary to calculate the relaxation law on times c
parable with the relaxation time becomes prohibitively lar
in the case of high potential barriers between the equilibri
directions of the magnetic moments~see Sec. III B!. Further,
that method is valid only in the high damping limit, i.e.,
there is no precession of the magnetic moments.

In this paper we develop a method to numerically sim
late thermally activated magnetic relaxation in finite 2D e
sembles of dipolar interacting ferromagnetic nanopartic
We consider the case where the nanoparticles with unia
anisotropy occupy the sites of a square lattice and their e
axes of magnetization are perpendicular to the lattice pla
We develop an equation that relates the magnetization o
ensemble at the next time step to the known state of
nanoparticle ensemble at the previous time step and a
merical procedure that defines the ensemble state at the
time step. To derive the probability densities for the reorie
tation of the nanoparticle magnetic moments, contained
this equation, we exploit the fact that they can be represe
via the mean times for magnetic moments to reorient or
other words, via the so-called mean first-passage times,
calculate these times using the backward Fokker-Pla
equation.

The paper is organized as follows. In Sec. II, we introdu
the equation mentioned above and derive rigorous exp
sions for the probability densities of reorientation of t
nanoparticle magnetic moments. The algorithm for the
merical calculation of the relaxation law is described in S
III. In the same section we present the numerical results
analyze the features of the magnetic relaxation caused
both the correlations of the nanoparticle magnetic mome
and the finiteness of the nanoparticle ensemble. We sum
rize our results in Sec. IV.

II. ANALYTICAL RESULTS

We consider a system ofN uniaxial and identical spherica
ferromagnetic nanoparticles with a radiusr. We assume tha
the nanoparticle centers occupy the sites of a square lattic
size Ld3Ld @(L11)25N# and lattice spacingd(>2r ).
The easy axes of nanoparticles magnetization are per
dicular to the lattice plane (xy plane!, and at the initial time
t50 all magnetic momentsmi(t) ~the index i labels the
nanoparticles! are oriented along thez axis ~see Fig. 1!. We
also assume that the smallest heightsDUi of the potential
barriers between the equilibrium directions of the nanop
ticle magnetic moments are much larger than the ther
energykBT (kB is the Boltzmann constant,T is the absolute
01441
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temperature!; i.e., the condition« i5DUi /kBT@1 holds for
all nanoparticles. The main goal of this section is to find t
relation between the reduced magnetization at timest and t
1t.

A. Equation for the reduced magnetization

For « i@1, the vectorsmi(t) fluctuate within small vicini-
ties of the positive and negative directions of thez axis, and
they are reoriented only rarely. Consequently, the aver
numbers of positively and negatively oriented magnetic m
ments have well-defined valuesN1(t) and N2(t), respec-
tively, at any instantt. Since the number of magnetic mo
ments that at timet have reoriented is much less thanN, the
approximate relationN1(t)1N2(t)'N holds, and we can
define the reduced magnetization of the nanoparticle
semble asr(t)52N1(t)/N21. Let us define also the stat
of that ensemble. We assume that the state of the nano
ticle ensemble at timet is known if the directions of all
magnetic moments are known; i.e., we describe the ensem
state by the set of signss i(t)[s i ( i 51, . . . ,N), wheres i
51 or 2 depending on whether the vectormi(t) fluctuates
around the positive or negative direction of thez axis.

Given the ensemble state, neglecting the fluctuations
mi(t), and taking into account that approximatelymi(t)
5s imez for the time intervals between the reorientations,
can write the local dipolar fieldhi(t) acting on the magnetic
momentmi(t) ashi(t)5hi(t)ez . Here

hi~ t !52m(
j Þ i

s j

1

r i j
3

, ~2.1!

m5umi(t)u, ez is the unit vector along thez axis, andr i j is
the distance between the centers of corresponding nano
ticles. If at time t the magnetic moments do not underg
reorientations, then each nanoparticle is under the influe
of the local dipolar field~2.1!. Even if some magnetic mo
ments are reoriented, their number is much less thanN be-
cause« i@1, and formula~2.1! remains approximately valid
For sufficiently small times intervals we can consider the
fore the ensemble of interacting nanoparticles as a syste
independent magnetic moments, each of which feels its o
external magnetic fieldhi(t). This fact significantly simpli-
fies the numerical investigation of the magnetic relaxation
ensembles of dipolar interacting nanoparticles.

FIG. 1. Schematic representation of the 2D nanoparticle
semble.
1-2
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Let us assume that the probabilities of reorientation
unit time ws j

(t; j ) ~i.e., the probability densities of reorien

tation! of the vectorsmj (t) ( j 51, . . . ,N) from the positive
direction of thez axis ~if s j51) and from the negative on
~if s j52) are known. We also assume that on the inter
(t,t1t) the probabilities of two and more reorientations
mj (t) are negligibly small. Then, taking into account th
N1(t1t)2N1(t) is equal to the difference between th
number of reorientations from the negative direction of thz
axis and the number of reorientations from the positive
rection of thez axis, we obtain

r~ t1t!2r~ t !52
2t

N (
j 51

N

s jws j
~ t; j !. ~2.2!

The probability densitiesws j
(t; j ) depend on the loca

field hj (t), and Eq.~2.2! can be applied if the ensemble sta
at time t is known. However, Eq.~2.2! is not an iterative
equation for the ensemble state; it only definesr(t1t) but
not the ensemble state at timet1t. In order to use Eq.~2.2!
as the recurrence equation for the calculation of the law
magnetic relaxation, we need to determine the val
ws j

(t; j ) and develop a procedure to find the state of

nanoparticle ensemble at timet1t, if its state at timet is
known. We will describe that procedure in the next secti
Below we calculate the probability densitiesws j

(t; j ).

B. Probability densities of reorientation

The probability densities of reorientation are given
ws j

(t; j )51/ts
s j(t; j ), wherets

s j(t; j ) are the mean times tha

the magnetic momentmj (t) spends pointing in the positiv
~whens j51) and the negative~whens j52) directions of
the z axis. These times can be represented asts

s j(t; j )

52tm
s j(t; j ), wheretm

s j(t; j ) are the mean times formj (t) to
reach for the first time the state with a maximum value of
nanoparticle magnetic energyWj . The factor of 2 takes into
account the fact that from that state the magnetic mom
mj (t) can transit to the states j51 or s j52 with probabil-
ity 1/2. In our case, the magnetic energyWj includes the
anisotropy energy2(Ha/2m)mjz

2 (t) and the Zeeman energ
2hj (t)mjz(t), so that it has axial symmetry and

Wj[Wj~u j~ t !,t !52 1
2 Ham@cos2u j~ t !12bj~ t !cosu j~ t !#.

~2.3!

Here Ha is the anisotropy field,u j (t) is the polar angle of
mj (t), andbj (t)5hj (t)/Ha @assuming that two equilibrium
directions exist for each magnetic moment,ubj (t)u,1 for all
nanoparticles#. Accordingly, the state corresponding to th
maximum value ofWj is defined by the polar angle

V j~ t !5arccos@2bj~ t !#. ~2.4!

From the mathematical point of view, the calculation
the mean timestm

s j(t; j ) is a particular case of a general pro
lem, known in the theory of Markovian processes as
first-passage time problem.28 In our case, the Markovian pro
01441
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cess is the vectormj (t), and the level set of first passages f
mj (t) is the conical surface defined by Eq.~2.4!. We describe
the dynamics of the nanoparticle magnetic momentsmj (t)
[mj by the system of stochastic Landau-Lifshitz equatio

ṁj52gmj3~H j1nj !2
lg

m
mj3~mj3H j !, ~2.5!

where j 51, . . . ,N, g (.0) is the gyromagnetic ratio,l
(!1) is the damping parameter,

H j[2
]Wj~ t !

]mj
5Ha@cosu j~ t !1bj~ t !#ez ~2.6!

is the effective magnetic field acting onmj , andnj5nj (t) is
the thermal magnetic field that models the action of the th
mostat. The thermal field is approximated by Gaussian w
noise with zero mean valuesnj (t )̄50 @the overbar denotes
averaging with respect to the sample paths ofnj (t)] and
correlations functions

nia~ t1!nj b~ t2!52Dd i j dabd~ t22t1!. ~2.7!

Here nia(t) (a5x,y,z) are the Cartesian components
ni(t), D5lkBT/gm is the intensity of the thermal magnet
field, d i j is the Kronecker symbol, andd(t) is the Dirac delta
function.

If we treat the local dipolar fieldshj (t) as external mag-
netic fields, then we can consider the nanoparticles to
independent. In other words, in this case the stocha
Landau-Lifshitz equations~2.5! are independent, and the dy
namics of each magnetic moment is described separately
Pj5Pj (q j ,tuq j8 ,t8) be the conditional probability densit
that u j (t)5q j given thatu j (t8)5q j8 (t>t8). ~Note that in
the case of axial symmetryPj does not depend on the az
muthal angle of mj .) Then, using the Stratonovic
interpretation29 of Eq. ~2.5! and applying standard
methods,28 we can write forPj the forward Fokker-Planck
equation

]Pj

]t
5

]

]q j
Flg

m

]Wj~q j ,t !

]q j
2Dg2cotq j GPj1Dg2

]2Pj

]q j
2

~2.8!

and the backward Fokker-Planck equation

]Pj

]t8
5Flg

m

]Wj~q j8 ,t8!

]q j8
2Dg2cotq j8G ]Pj

]q j8
2Dg2

]2Pj

]q j8
2

.

~2.9!

As a rule, the study of the magnetic properties of nan
particle ensembles is based on forward Fokker-Planck eq
tions similar to Eq.~2.8!, which allow us to express the sta
tistical characteristics of ensembles as functions of timet. At
the same time, backward Fokker-Planck equations are v
useful to describe the thermally induced reversal of the na
particle magnetic moments.30 We use the backward Fokker
Planck equation~2.9! to calculate the mean first-passa
times tm

s j(t; j ).
1-3
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To use Eq.~2.2! as the recurrence equation for finding t
reduced magnetization at the discrete timest5tn (n
50,1, . . . ,M , t050, tn11.tn), we need to calculate
tm
s j(tn ; j ) for n50,1, . . . ,M21. Since to each timetn cor-

responds the angleV j (tn), it is necessary in Eq.~2.9! to
replaceWj (q j8 ,t8) by Wj (q j8 ,tn). In other words, to find
tm
s j(tn ; j ) we must use Eq.~2.9! with an energy term

Wj (q j8 ,t8) that doesnotdepend ont8. This important re-
quirement results in a condition of homogeneity for the ra
dom processu j (t), Pj (q j ,tuq j8 ,t8)5Pj (q j ,t2t8uq j8,0),
and significantly simplifies the problem.

To calculatetm
s j(tn ; j ), we first introduce the mean time

Tj5Tj
s j(q j8 ;tn), the time necessary foru j (t) @u j (0)5q j8 ,

q j8P„0,V j (tn)… if s j51 andq j8P„V j (tn),p… if s j52] to
first reach the angleV j (tn). The desired times are express
throughTj as

tm
s j~ tn ; j !5Tj

s j
„p~12s j1!/2;tn…, ~2.10!

and the valuesTj themselves are represented in the form

Tj5E
0

`

duE
V j (tn)(12s j1)/2

p(12s j1)/21V j (tn)(11s j1)/2

dqPj~q,uuq j8,0!.

~2.11!

Taking into account the initial conditionPj (q j ,0uq j8,0)
5d(q j2q j8), the homogeneity conditionPj (q j ,tuq j8 ,t8)
5Pj (q j ,t2t8uq j8,0), and the expression~2.3!, we obtain
after integration of both sides of the modified equation~2.9!
over u5t2t8 and q5q j as in Eq.~2.11! the ordinary dif-
ferential equation forTj :

d2Tj

dq j8
2

1@cotq j822a~bj~ tn!1cosq j8!sinq j8#
dTj

dq j8
52atr

~2.12!

(a5Ham/2kBT, t r52/lgHa).
To find the unique solution of Eq.~2.12!, we need to

impose two boundary conditions for the mean timesTj . The
first condition follows immediately from the definition o
these times:Tj uq

j85V j (tn)50. We can find the second by an

lyzing the solutions of Eq.~2.12! for small vicinities of the
anglesq j850 andq j85p. There Eq.~2.12! is reduced to

d2Tj

dq j8
2

1
1

q j82p~12s j1!/2

dTj

dq j8
52atr , ~2.13!

and its general solution is given by

Tj5cj lnuq j82p~12s j1!/2u1dj2atr

3@q j82p~12s j1!/2#2/4, ~2.14!

where cj and dj are constants of integration. SinceTj are
bounded quantities, the conditioncj50 must hold. This con-
dition can be represented equivalently in the form of
second boundary condition:dTj /dq j8uq j85p(12s j1)/250.

Note that these boundary conditions correspond to the
01441
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where so-called absorbing and reflecting barriers28 are placed
at the pointsq j85V j (tn) andq j850,p, respectively.

Solving Eq.~2.12! with these boundary conditions by th
method of variation of constants31 and using the representa
tion ~2.10!, we obtain the rigorous formula

tm
s j~ tn ; j !5atrE

2s j bj (tn)

1

dx
e2a[x1s j bj (tn)] 2

12x2

3E
x

1

dy ea[ y1s j bj (tn)] 2
, ~2.15!

which is valid for arbitrarya and ubj (tn)u,1. Using Eq.
~2.15!, let us calculatews j

(tn ; j ) for « j@1. According to Eq.

~2.3!, the heightsDU j
s j(t) of the potential barrier betwee

the equilibrium directions ofmj can be written in the form
DU j

s j(t)5 1
2 Ham@11s jbj (t)#2, and since DU j

5minDUj
sj(t), the condition « j@1 leads to a@1

1s jbj (tn)#2@1. Taking into account that the asymptot
formulas

E
x

1

dy ea[ y1s j bj (tn)] 2
5

ea[11s j bj (tn)] 2

2a@11s jbj~ tn!#
,

E
2s j bj (tn)

1

dx
e2a[x1s j bj (tn)] 2

12x2
5

1

2
Ap

a

1

12bj
2~ tn!

hold asa@11s jbj (tn)#2→`, we find in the same limit

ws j
~ tn ; j !5

2

t r
Aa

p
@12bj

2~ tn!#

3@11s jbj~ tn!#e2a[11s j bj (tn)] 2
. ~2.16!

Note that Eq.~2.16! follows also from Brown’s results3 for
isolated nanoparticles in a longitudinal external field o
tained with the forward Fokker-Planck equation for« j@1.
We have presented here an alternative derivation of
~2.16! based on the backward Fokker-Planck equation,
cause within this approach the mean first-passage ti
tm
s j(t; j ) and the probability densities of reorientatio

ws j
(tn ; j ) are calculated exactly for arbitrary« j .

If the condition« j@1 holds for all nanoparticles and th
ensemble state at timet5tn is known, then for the same tim
we can find the dipolar fields acting on each nanopartic
using the formula~2.1!, and calculate the probability dens
ties of reorientation of each magnetic moment, using the
mula ~2.16!.

C. Mean-field approximation

To illustrate the influence of the correlations of the ma
netic moments and of the finite size of the nanoparticle
semble on the magnetic relaxation, we must first calcu
the relaxation lawrm f(t) for an infinite lattice within the
mean-field approximation. To this end, we derive the eq
1-4
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tion that this relaxation law satisfies, based on the res
obtained above. Since within the mean-field approximat
the same mean dipolar field acts on all magnetic moment
is necessary in Eq.~2.16! to replacebj (t) ~we drop the index
n in tn) by b(t)5bj (t )̄ . This implies that all magnetic mo
ments for whichs j51 and all magnetic moments for whic
s j52 are reoriented with the same probability densiti
w1(t) andw2(t), respectively, where

w6~ t !5
2

t r
Aa

p
@12b2~ t !#@16b~ t !#e2a[16b(t)] 2

.

~2.17!

The functionb(t) is given by20

b~ t !529.034
m

Had3
rm f~ t !; ~2.18!

therefore, the probability densitiesw6(t) depend ont only
via the reduced magnetizationrm f(t), i.e., w6(t)
5w6„rm f(t)…. Finally, using the equality( js j5N1(t)
2N2(t) and the definition ofr(t), we obtain from Eq.~2.2!
for t→0 andN→` the required differential equation

ṙm f~ t !52rm f~ t !@w1~ t !1w2~ t !#2w1~ t !1w2~ t !
~2.19!

@rm f(0)51#, which defines the law of magnetic relaxatio
in the mean-field approximation. Note that the same equa
follows from the solution of the forward Fokker-Planc
equation~2.8!.20

Calling the right-hand side of Eq.~2.19! 2F„rm f(t)…, we
can reduce this equation to the integral form

E
rm f(t)

1 dx

F~x!
5t. ~2.20!

Its solution for small and large times yields20 rm f(t)51
2t/t0 andrm f(t)}exp(2t/t`), respectively, where

t05t rAp

a

ea(12j)2

4~12j2!~12j!
~2.21!

is the initial relaxation time,

t`5t rAp

a

ea

4@11~2a21!j#
~2.22!

is the final relaxation time, andj52b(0) (0<j,1) is a
parameter characterizing the intensity of dipolar interact
on an infinite lattice. According to Eqs.~2.21! and~2.22!, the
relaxation process in ensembles of dipolar interacting na
particles is approximately characterized by two relaxat
times t0 and t` , while in the case of noninteracting nan
particles, i.e.,j50, it is characterized by the single rela
ation time tn5t rAp/16a expa. Since tn.t0 and tn.t` ,
the dipolar interaction enhances relaxation, and sincet0
,t` , the relaxation rate decreases with time. For ensem
where the value ofj is not too small, the strong inequalit
t0!t` usually holds, and the decrease can be very larg
01441
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Note that the description of magnetic relaxation based
Eqs. ~2.2! and ~2.19! is valid if the quasiequilibrium distri-
bution of the nanoparticle magnetic moments is establish
i.e., if20 t*tqe;atr . In other words, these equations d
scribe the slow phase of magnetic relaxation. Fort;tqe , the
probability of reorientation of the nanoparticle magnetic m
ments from the initial state is vanishingly small. Therefo
we can transfer the origin of time to an arbitrary pointt
;tqe and, since fora@1 andt;tqe the approximate equali
ties mjz(t )̄'m hold, use the initial conditionsr(0)51 and
rm f(0)51.

III. NUMERICAL SIMULATIONS

A. Computational algorithm

According to the results of the previous section, to co
pute the law of magnetic relaxation in some time interv
(0,tM) it is necessary to know the states of the nanopart
ensemble at the discrete timest5tn (n50,1, . . . ,M21).
The state forn50, i.e., for t50, is known from the initial
condition s j (0)51 for all j. To find the state at any othe
time we proceed as follows. First we assume that the stat
the nanoparticle ensemble at the timet5tn is known. This
means that the setA1(tn) of numbersj for which s j (tn)5
1 and the setA2(tn) of numbersj for which s j (tn)52 are
fully defined. It is evident that the setA1(tn) contains
N1(tn) elements and the setA2(tn) containsN2(tn) ele-
ments.

Next, assuming that the time intervalDtn115tn112tn is
small enough, we introduce the average numbers of reor
tations

n6~ tn ,tn11!5Dtn11 (
j PA6(tn)

w6~ tn ; j ! ~3.1!

that occur duringDtn11 for the sets of positively~upper
sign! and negatively~lower sign! oriented magnetic mo-
ments. Strictly speaking, Eq.~3.1! is valid if the strong in-
equality Dtn11max$w6(tn ;j)%!1 holds. Its use can drasti
cally increase the time required for the computation of
relaxation law in some cases. Therefore, instead of the e
representation~3.1! we use the approximate one

n6~ tn ,tn11!5 (
j PA6(tn)

U„Dtn11w6~ tn ; j !… ~3.2!

@U(x)5x if x<1 andU(x)51 if x.1], which is valid if
the weaker conditionn6(tn ,tn11)!N holds, and from Eq.
~2.2! we obtain

r~ tn11!5r~ tn!2
2

N
@n1~ tn ,tn11!2n2~ tn ,tn11!#.

~3.3!

Equations~3.3!, ~3.2!, ~2.16!, and~2.1! allow us to calcu-
late the reduced magnetization at timet5tn11, if the nano-
particle state at timet5tn is known. To find the nanoparticle
state at timet5tn11, we need to choose sites where t
magnetic moments must be reoriented. To reflect the rand
1-5
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character of the thermal fluctuations, these sites should
chosen randomly, while at the same time preference sh
be given to those sites that have larger probabilities of re
entation. To satisfy both requirements we proceed in the
lowing way. First we choose the time stepsDtn11. Since the
number of magnetic moments that are reoriented per
time can appreciably decrease with time, we select step
varying length,Dtn115h@w1(tn)1w2(tn)#21. The param-
eterh must be chosen small enough to satisfy the condit
n6(tn ,tn11)!N ~in our calculationsh5531023). Then we
calculate the valuesDtn11w1(tn ; j ) for j PA1(tn), and us-
ing the formula~3.2! we find the average number of reorie
tations

n1~ tn ,tn11!5r 1~ tn ,tn11!1Dtn11 (
j PA18 (tn)

w1~ tn ; j !

~3.4!

that occur during the time intervalDtn11 in the set of posi-
tively oriented magnetic moments. Herer 1(tn ,tn11) is the
number of lattice sites whereDtn11w1(tn ; j ).1, and
A18 (tn) is the set of lattice sites whereDtn11w1(tn ; j )<1.
Further, we introduce the number of reorientations
n1(tn ,tn11)5@n1(tn ,tn11)#1I , where @n1(tn ,tn11)# is
the integer part ofn1(tn ,tn11), andI 50 or 1 with probabil-
ity p05n1(tn ,tn11)2@n1(tn ,tn11)# and p1512p0, re-
spectively. Using a random number generator, we obta
value forn1(tn ,tn11).

Among then1(tn ,tn11) magnetic moments that must b
inverted at time t5tn11, we immediately invert the
r 1(tn ,tn11) magnetic moments at lattice sites where t
condition Dtn11w1(tn ; j ).1 holds. ~Recall that a one-to-
one correspondence exists between the lattice sites and
bersj.! To find the remainingn1(tn ,tn11)2r 1(tn ,tn11) lat-
tice sites where the magnetic moments have to be inver
we first generate a random number that lies in the interva
length ( j PA

18 (tn)w1(tn ; j ). This interval containsN1(tn)

2r 1(tn ,tn11) subintervals of lengthsw1(tn ; j ). We store
the numberj of the subinterval~i.e., the position of the site!
that contains the random number in memory, and then
subinterval is removed. Next we generate a random num
that lies in the new interval formed by the remaining su
intervals. The numberj of the subinterval that contains th
random number is again stored in memory, and then
subinterval is also removed. Iterating this procedu
n1(tn ,tn11)2r 1(tn ,tn11) times, we find alln1(tn ,tn11)
lattice sites where positively oriented magnetic mome
must be inverted at timet5tn11.

Introducing in the same way the average number of re
entationsn2(tn ,tn11) that occur in the set of negatively or
ented magnetic moments and using the procedure desc
above, we determinen2(tn ,tn11) lattice sites where thes
magnetic moments must be inverted at timet5tn11. Since
the ensemble state at timet5tn is known, the ensemble stat
at t5tn11, i.e., after the inversion ofn1(tn ,tn11)
1n2(tn ,tn11) magnetic moments on well-defined lattic
sites, is known too. Taking the latter state as the initial st
we can find in the same manner the ensemble state at
t5tn12 and so on.
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Using the known state of the nanoparticle ensemble at
initial time t50 and applying the algorithm described abov
we can find the states for all timest5tn (n51, . . . ,M
21). Since our algorithm is a probabilistic one, the reduc
magnetization calculated by the formula~3.3! is a random
quantity. Let us designate that random reduced magnetiza
in the kth numerical experiment asrsim

k (tn). ~A numerical
experiment consists of one application of the algorithm
determine the ensemble states at all timest5tn .) Then we
define the numerically simulated relaxation law as

rsim~ tn!5
1

K (
k51

K

rsim
k ~ tn!, ~3.5!

whereK is the number of numerical experiments. To avo
any misunderstanding, we emphasize that within the p
posed algorithm the dipolar field~2.1! is calculated exactly,
and it is recalculated after each time step.

B. Numerical results and discussion

We have used our analytical results and the numer
algorithm described above to study the role that the fin
size of the nanoparticle ensemble and the correlations of
nanoparticle magnetic moments play in magnetic relaxat
We found that the reduced magnetizationrsim(t) (t.0) de-
creases, when the parameterL, a measure of the ensemb
size, increases, i.e.,rsim(t)uL1

.rsim(t)uL2
if L2.L1, and

rsim(t)uL tends to the limiting valuer l im(t) as L→`. We
explain such behavior ofrsim(t) as follows. IncreasingL
leads to an increase, on average, of the local dipolar fie
acting on the nanoparticle magnetic moments. As a res
the average of the probability densities of reorientation of
positively oriented magnetic moments increases, and the
erage of the probability densities of reorientation of the ne
tively oriented magnetic moments decreases. According
Eq. ~2.2!, this means thatrsim(t) decreases whenL grows.

To verify this statement, we have calculatedrsim(t) for
different ensembles of Co nanoparticles characterized by
parametersHa56400 Oe,m/V51400 G (V is the nanopar-
ticle volume!, l50.2, andr 54 nm. As an illustration, the
function rsim(t), obtained atT5300 K, d53r , L550, and
K5100, and the approximate functionr l im(t) are shown in
Fig. 2. We found the latter function in the same way
rsim(t), but to exclude boundary effects, we assume that
basic nanoparticle ensemble~for which we choseL5100) is
surrounded by eight identical ensembles, and each nano
ticle from the basic ensemble is considered as a central
in the square box of the same size~i.e., L5100) and inter-
acts only with the nanoparticles which belong to this box.
Fig. 2, we also show the functionrm f(t) calculated via the
numerical solution of Eq.~2.19! for an infinite ensemble of
Co nanoparticles with the same parameters. Note that in
case a'29.01, j'0.31, t r'8.85310211 s, t0'1.33
31025 s, t`'1.56 s, andtn'28.89 s.

Since att50 the local dipolar field for an infinite en
semble is always larger than the highest local dipolar fi
for a finite one, the conditionrsim(t).rm f(t) (t.0) must
hold for small enough times. We expect that the same c
1-6
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dition holds also for large enough times, since correlation
the nanoparticle magnetic moments lead to slower magn
relaxation in the final phase than the mean-field theory p
dicts. As to the relation betweenrsim(t) and rm f(t) at the
intermediate times, its character at a fixed temperature
pends on the ensemble size, i.e., on the parameterL.

To explain this dependence, we note first that at sm
times magnetic relaxation for finite nanoparticle ensemb
occurs faster than in the case where the local dipolar fie
are replaced by their average value, i.e., the mean-field
proximation. Indeed, in the initial phase of magnetic rela
ation only a small number of the nanoparticle magnetic m
ments is subjected to reorientation. In this case,
reoriented and most of the nonreoriented magnetic mom
are under the action of the local dipolar fields, which exce
the mean dipolar field. This means thatw2(t; j ),w2(t) for
j PA2(t), w1(t; j ).w1(t) for most j PA1(t), and there-
fore the actual magnetic relaxation occurs faster than
mean-field approximation predicts.~We emphasize that thi
conclusion is valid for the initial phase of magnetic rela
ation for finite as well as infinite nanoparticle ensemble!
Furthermore, taking into account that an increase in the
of the nanoparticle ensemble leads to an increase, on a
age, of the local dipolar fields, we expect the following b
havior for the dependence ofrsim(t) on L ~for an illustration,
see Fig. 2!. If in the nanoparticle ensemble the highest loc
dipolar field att50 is small enough in comparison to th
case of an infinite ensemble, i.e., if the parameterL does not
exceed the critical valueLcr5Lcr(T), thenrsim(t).rm f(t)
for all t.0 ~curve 1 in Fig. 2!. At L5Lcr the curvesrsim(t)
andrm f(t) have a tangency point, and forL.Lcr they inter-
sect at times t5t1in and t5t2in ~curve 4, t1in'2.25
31025 s, t2in'2.0931022 s). As L is increased, the time
t1in of the first intersection decreases, and the timet2in of the
second one increases. As a result, forL→` we have
rsim(t)→r l im(t), t1in→0, and t2in tends to the limiting
value t in ~curve 2,t in'0.46 s).

FIG. 2. Plots ofrsim(t) for L550 ~curve 1!, r l im(t) ~curve 2!,
andrm f(t) ~curve 3!. Inset: the same plots and the plot ofrsim(t)
for L570 ~curve 4! for small times.
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To characterize the difference betweenrsim(t) and
rm f(t), we introduce the parameterxL(t)5@rsim(t)
2rm f(t)#/rsim(t). Its dependence ont for the same en-
sembles of Co nanoparticles is shown in Fig. 3. The nonz
value ofxL(t) is caused by both the finite size of the nan
particle ensemble and the correlations of the nanopart
magnetic moments. Correlations significantly change the
laxation law, and their role grows with time, i.e.,xL(t)→1
as t→`.

The fact that the probability densities of reorientati
ws j

(t; j ), Eq. ~2.16!, depend exponentially on the large p
rameter a has two consequences. The first is obviou
namely, the relaxation lawrsim(t) strongly depends on tem
perature due to the inverse proportionality ofa on T. The
second is more complicated and refers to the time dep
dence ofrsim(t) andrm f(t) for differentT. According to the
previous results, if at a certain temperature the parametL
satisfies the conditionL,Lcr , thenrsim(t).rm f(t) for all
t.0. As T decreases, the probability densitiesws j

(t; j ) de-
crease with different rates, and the smaller the tempera
becomes, the more their relative values differ. This me
that asT is reduced, the reorientation of the nanopartic
magnetic moments predominantly occurs at sites wh
ws j

(t; j ) are the largest. As a consequence, for small tim

the difference betweenrsim(t) and the relaxation law derived
by the mean-field approximation grows asT decreases.
Therefore, if at a given temperature the conditionL,Lcr
holds and the values ofL and Lcr do not differ too much,
then the curvesrsim(t) and rm f(t) can intersect at smalle
temperatures. The plots ofrsim(t) calculated for ensemble
of Co nanoparticles forL550 andT5300 K ~see Fig. 2! and
for L550 andT5150 K ~see Fig. 4! demonstrate this state
ment. In the latter case calculations yielda'58.02, t0
'10.72 s, t`'2.2431012 s, tn'8.1131013 s, t1in
'56.12 s, andt2in'6.8331011 s.

The relaxation laws calculated above cannot be de
mined using the Monte Carlo method with time step quan

FIG. 3. Plots ofxL(t) for L550 ~curve 1!, L570 ~curve 2!, and
L5` ~curve 3!. Inset: the same plots for small times.
1-7
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fication. According to Ref. 27, the time intervalDt that cor-
responds to one Monte Carlo step is written in our notat
as

Dt5
R2~11l2!m

20kBTlg
~3.6!

(R,1), and the numberM5mtn /Dt of Monte Carlo steps
that are necessary to calculate the relaxation law on the
interval (0,mtn) is given by

M5
5m

R2~11l2!
Ap

a3
ea. ~3.7!

For the nanoparticle ensembles considered here, Eq.~3.7! for
R51 andm50.2 yieldsM'4.3331010 for T5300 K and
M'6.0831022 for T5150 K. Such values ofM render, of
course, the use of that method impractical. For comparis
in our approach the numberM of time stepsDtn11, defined
by the condition(m51

M Dtm5mtn , equals 157 and 169, re
spectively.

*Electronic address: denisov@ssu.sumy.ua
†Electronic address: trohidou@ims.demokritos.gr
1J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys.98,

283 ~1997!.
2Nanophase Materials: Synthesis-Properties-Applications, edited

by G. C. Hadjipanayis and R. W. Siegel~Kluwer, Dordrecht,
1994!.

3W. F. Brown, Jr., Phys. Rev.130, 1677~1963!.
4I. Klik and L. Gunther, J. Stat. Phys.60, 473 ~1990!.
5H. B. Braun, Phys. Rev. Lett.71, 3557~1993!.
6D. A. Garanin, Phys. Rev. E54, 3250~1996!.
7W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmyko

E. C. Kennedy, and W. Wernsdorfer, Phys. Rev. Lett.80, 5655
~1998!.

8Yu. P. Kalmykov, Phys. Rev. B61, 6205~2000!.

FIG. 4. Plots ofrsim(t) ~curve 1! and rm f(t) ~curve 2! for L
550 andT5150 K. Inset: the same plots for small times.
01441
n

e

n,

IV. CONCLUSIONS

We have developed a method for the numerical simulat
of thermally activated magnetic relaxation in 2D ensemb
of uniaxial ferromagnetic nanoparticles whose easy axe
magnetization are perpendicular to their distribution plane
is based on an analytical determination of the probabi
densities of reorientation of the nanoparticle magnetic m
ments and on the numerical determination of the nanop
ticle ensemble states for a discrete sequence of times. U
the backward Fokker-Planck equation, we have formulate
rigorous approach to calculate those probability densit
and in the case of high potential barriers between the e
librium directions of the nanoparticle magnetic moments
have studied the law of magnetic relaxation by this meth

We have shown that magnetic relaxation in finite nanop
ticle ensembles can differ strongly from that predicted by
mean-field approximation for infinite ensembles. This diffe
ence is caused by the finiteness of the ensemble size as
as correlations between the magnetic moments, which re
from the dipolar interaction between nanoparticles. In a fin
ensemble, magnetic relaxation for small and large times
curs more slowly than the mean-field theory predicts for
finite ensembles, and for intermediate times the correspo
ing relaxation curves, depending on the ensemble size
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theory. This feature of the relaxation law is caused by
correlation effects whose role grows with time.
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