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General formula for the thermoelectric transport phenomena based on Fermi liquid theory:
Thermoelectric power, Nernst coefficient, and thermal conductivity
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On the basis of linear response transport theory, the general expressions for the thermoelectric transport
coefficients, such as thermoelectric powe&),( Nernst coefficient ), and thermal conductivity ), are
derived by using Fermi liquid theory. The obtained expression is exact for the most singular term in terms of
1yf (yx being the quasiparticle damping ratéVe utilize Ward identities for the heat velocity which is
derived by the local energy conservation law. The derived expressions enable us to calculate various thermo-
electric transport coefficients in a systematic way, within the framework of the conserving approximation of
Baym and Kadanoff. Thus the present expressions are very useful for studying strongly correlated electrons
such as highF; superconductors, organic metals, and heavy fermion systems, where the current vertex cor-
rection (VC) is expected to play important roles. By using the derived expression, we calculate the thermal
conductivity k in a free-dispersion model up to second order with respect to the on-site Coulomb pdtential
We find that it is slightly enhanced due to the VC for the heat current, although the VC for electron current
makes the conductivitydf) of this system diverge, reflecting the absence of the umklapp process.
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I. INTRODUCTION (Ref. 9 in Fermi liquid systems were derived. By using
these formulas, in principle, we can perform the conserving
In general, transport phenomena in metals are very imporapproximation for these coefficients with including appropri-
tant physical objects because they offer much information ote VC's for currents?
the many-body electronic properties of the system. Espe- In general, the VC’s for currents are expected to be im-
cially in strongly correlated electron systems like high- Portant especially in strongly correlated systems. For ex-
cuprates or heavy fermion systems, various transport coeffd@mple, in highT. cuprates, the so-called 1K0h|ef’5 rule
cients show striking non-Fermi-liquid-type behaviors. Hi:~“,-(|RH|°‘l_’O andAp/p=p~?) is strongly violated:* Moreover,
torically, theoretical studies of transport phenomena gav&+<0 in electron-doped compounds, although the shape of
considerable progress in various fields of condensed matt&t® Fermi surface is everywhere holelike. These behaviors,

physics, such as the Kondo problem and Highsupercon- which cannot be explained within RTA, had been an open
ductivit); problem in highT. cuprates. Based on the conserving ap-

According to the linear response thebrjor the Kubo proximation, we found that these anomalies are well repro-

formula; transport coefficients are given by correspondin duced by the VC's for electron currerifs."“ The effect of
t, tp lation functi gTh ty wud tp gme VC'’s, which are dropped in the RTA, becomes much
current-current correiation functions. 1hus, 1o study transpor portant in a Fermi liquid with strong antiferromagnetic or

phenomena, we need to calculate the two-body Green f“”%’uperconducting fluctuations.

tion with appropriate vertex correction®/C's). Unfortu- poyever, as for the thermoelectric transport coefficients
nately, in many cases this is a difficult analytical or numeri-g,ch as the thermoelectric POW@EP, S), the Nernst coef-
cal work. Therefore, at the present stage, transpOfficient (v), and the thermal conductivity<), we do not
coefficients are Usua”y studied within the relaxation t|meknow useful expressions for ana'ysis in the Strong|y corre-

approximation(RTA), by dropping all the VC's. The effect |ated systems so far. Here the definitionSt, andv under
of the VC can be included by the standard variational methoghe magnetic filed parallel to thez axis are given by
by Ziman based on the Boltzmann transport théordow-

ever, it is not so powerful for anisotropic correlated systems S=—E,/4,T,
because there is no systematic way of choosing the trial func-
tion. Thus it is desirable to establish the microscopic trans- Kk=—Qy /T, («h)
port theory based on the linear response formula.
Based on the Kubo formula, Eliashberg derived a general v=—E,/Bd,T,

expression for the dc-conductivityr§ in the Fermi liquid by R

taking VC's into account, by performing an analytic continu- where Q is the heat current. Unfortunately, the conserving
ation of the current-current correlation functichBased on  approximation for these coefficients is not practicable be-
the expression, Yamada and Yosida proved rigorouslydhat cause we do not know how to calculate the VC'’s for them.
diverges even at finite temperatures if the umklapp scatteringhus, at the present stage, the RTA is widely used uncriti-
process is abseftBy generalizing Eliashberg’s theory in- cally, although it will be insufficient for a reliable analysis of
cluding the outer magnetic field, exact formulas for the Hallthe strongly correlated systems because VC's should be in-
coefficient Ry) (Ref. 8 and the magnetoresistanc&d/p) cluded.
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There is a long history of the microscopic study on ther-fluctuations are taken into account. This work strongly sug-
moelectric transport phenomena. To this problem, we cannagests that the origin of the pseudogap phenomena in high-
apply the Kubo formula to the electronic conductivity na- cuprates is the strondrwave superconducting fluctuations.
ively because there is no Hamiltonian which describes a tem- In the case of heavy fermion systems, the TEP takes an
perature gradient, T. In 1964 Luttinger gave a microscopic enhanced value around the coherent temperature, and its sign
proof that thermoelectric transport coefficients are given bychanges in some compounds at lower temperatures. Such an
the corresponding current-current correlation function. interesting non-Fermi-liquid-like behavior is mainly attrib-
Later, Mahanet al. much simplified the Luttinger's expres- uted to a huge energy dependence of the relaxation time,
sion in the case of electron-phonon and electron-impurityr(e) [=1/2y(€)], due to the Kondo resonance. This phe-
interactions’ However, the analysis of the VC for the heat nomenon was studied by using the dynamical mean field
current for electron-electron interacting systems is still artheory?>?Also, the TEP in the Kondo insulator was studied
open problem, which is necessary to go beyond the RTAIn Ref. 24 in detail.

This analysis will be more complicated and profound than The contents of this paper are as follows: In Sec. Il, we
that for the electric conductivity performed by Eliashbrg. develop the linear response theory for thermoelectric trans-
In the present paper, we derive the thermoelectric transport coefficients. By performing the analytic continuation,

port coefficients by performing the analytic continuations ofwe derive the general formula &and « in the presence of
the current-current correlation functions, on the basis of théhe on-site Coulomb potentid). In Sec. Ill, we derive the
linear response theory developed by Luttinger or Mahan. Ouward identity for the heat current which is valid for general
expressions are valid for general two-body interactions. Théwo-body interactions, by using the local energy conserva-
VC for the heat current is given without ambiguity by the tion law. The Ward identity assures that the expression§for
Ward identity with respect to the local energy conservatiorand « derived in the previous section are valid even if the
law. The derived expressions are “exact” as for the mostinteraction is long range, as for the most divergent terms
divergent term with respect tg, 1, wherey, is the quasi- With respect toy™*. In Sec. IV, the general formula for is
particle damping rate. The present work enables us to pegerived. It is rather a complicated task because the gauge
form the “conserving approximation” fo§, v, andx, which  invariance should be maintained. In Sec. V, we calculaite

is highly demanded to avoid unphysical results. Actually, thea spherical correlated electron system in the absence of Um-
VC's would totally modify the behavior of these quantities in klapp process, and obtain its exact expression by including
strongly correlated electron systems, as it does for the Hathe VC's within the second order perturbation. The physical
effect and the magnetoresistance. In this respect, the RTA i®eaning of the VC is discussed. Finally, the summary of the
unsatisfactory because all the current VC’s are neglectefiresent work is shortly expressed in Sec. VI.

there.

Wg note thqt Langer studied the Ward ideptity for the heat Il LINEAR RESPONSE THEORY EOR S AND x
velocity, and discussed the thermal conductiVitydowever,
the derived Ward identity was not correct because of a mis- First, we shortly summarize the linear response theory for
take, although it did not influence the thermal conductivity atthermoelectric transport coefficients, initiated by Luttinger.
lower temperatures fortunately. In the present work, we deHere we consider the situation that both the electron current

rive the correct Ward identity in Sec. Ill, and give expres-jlzj and the heat CurrerizzQ-) are caused by the external

sions forx, S andv. forces X!=E/T and X?=V (1/T), whereE is the electric
In thermodynamics, the TEP of metals becomes zero at. |4 |n the linear response

absolute zero temperature, which is the consequence of “the

third law of the thermodynamics.(As is well known, the

third law also tells that the heat capacity vanishe3a0.) J=> ['mB)xm, 2)
Similarly, both v and « also become zero ak=0 if the m=12

guasiparticle relaxation time (= 1/2y) is finite atT=0 due

to impurity scatterings. Unfortunately, these indisputablewherel,m=1,2. Because the relatiamSe/dt=E|j'~)Z' (Se
facts are nontrivial in a naive perturbation study once thebeing the entropyis satisfied in the present definition, the
electron-electron correlations are set in. In the present workensor ['™(B) satisfy the Onsager relationi'™(B)
we derive the general expression ®mhich automatically ILT;IL(—B)a wherep, v=x,y,2.2 .

satisfy S(T=0)=0 owing to the Ward identity for the heat  according to the quantum mechanics, the electron current

velocity. - = .
In high-T. cuprates, the Nernst coefficiemt increases operatorj and the heat current orje are given by

drastically below the pseudogap temperature, which is never R

possible to explain within the RTAS According to recent j(rp=i[H,ep(ryri], ()
theoretical works, superconducting fluctuation is one of the

promising origins of the pseudogap phenom&ha’ Based . . -

on the opinion, we studied for high-T. cuprates using the iRr)=jEry)—=j(ry), (4)
general expression derived in the present pap&hen, we €

could reproduce the rapid increase:obnly when the VC's R

due to the strong antiferromagnetic and superconducting JE(r)=i[H,h(rpri], (5)
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GENERAL FORMULA FOR THE THERMOELECTRT . ..

wheree(<0) is the charge of an electroh, is the Hamil-
tonian without external fieldX', p(ri)=EUcZ(ri)cg(ri) is

the density operatord being the spin suffix andh(r;) is

the local Hamiltonian by whichd is given byH=23;h(r;).

By using these current operatori,and Q are given by
J(r)=(j(r;)) andQ(r;)=(j(ry)), respectively.
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In Eq. (13), ep=3t; ' ("', wheret;; is the hopping
parameter betweem; and r;. U,,(q) represents the
electron-electron correlation betweenand o’ spins. For
exampleU,,.(q)=US§, _, for the on-site Coulomb inter-
action.

The one-particle Green function is given b$,(¢€)

_ _0_ H
To derive the expressions for various conductivities mi-= L€t #—ec—Zi(€)], whereX,(e) is the self-energy and
croscopically, we introduce the virtual external potential term# IS the chemical potential. In a Fermi liquigh<T is sat-

F which causes the currents' (1=1,2). Then the *“total
Hamiltonian” is expressed adt=H-+F-el"'**9t where

isfied at sufficiently low temperatures because of the relation
%= T?.25In such a temperature region, the following quasi-

5>0 is an infinitesimally small constant. According to the particle representation of the Green function is possible:

linear response theoly the current)' att is given by
J(®)=(j"(a=01)
t N . ,
:—if dt’([['(g=0,),F(t")])el "1t (g)

Because of the relatiodF/dt=T(3S./at)=T%,j'- X', the
expression fol.'™ is given by

LM=L"(w+i8)],-0. (7)

-T (B .
Im _ T i _ i _ _
Ln(io)= WJO e'“(T,j,(q=0,1j5(q=0,r=0)),
tS)
where8=1/T and w,v=Xx,y. T, is the r-ordering operator,
andw,;=27TI (I being the integeris the bosonic Matsubara

frequency. By writing the diagonal componentdf asL'™,
o, S andk are given by

e
o= ?Lll, (9)
1 L21 e L21
TeTin T o (19
1 L12L21
_ Ty 22
K TZ(L ik (1)

wheree (e<0) is the charge of an electron.
Hereafter, we analyze the functi®™(i w,) given by Eq.

(8) at first, and perform the analytic continuation to derive

L'™ by Eq. (7). We study a tight-binding model with two-

Z
Gyw)= ——, 15
k(@) oot (19
where z=[1—(d/d€)2 (€)1 is the renormaliza-

tion factor, €f =zJeo+3(0)—ul, ¥ =zy and v
=Im3,(—i0), respectively.

According to Eq.(3), the electron current operator for Eq.
(12) is given by

j(p)= ekE JECl—p/z,gCH P2, s (16)

Where52=§keﬁ. Apparently,f(p) is a one-body operator.

In the same way, we consider the heat current operator
defined by Eq(12): In the case of the on-site Coulomb in-
teraction, for simplicity, it is obtained after a long but
straightforward calculation as

fQ<p=0)=k2 (e)— p)vpct,Cuo

LY
2

} e _’_"O ) T
Z(Uk+q/2 Uk—q/2)Ck—qi20

>

kk'qo
17

which contains a two-body term in the case Wf#0. It
becomes more complicated for general long-range potential.
This fact seems to make the analysis of the thermoelectric
coefficient very difficult.

Fortunately, as shown in Appendix A, E(L7) can be
transformed into the following simple one-body operator
form by using the kinetic equation

N
X Chtq/2,0Ck7 1 qr2,— Ok’ —af2,~ o1

N B )
TQ(h— _ (FoTks
body interactions, which is expressed in the absence of thd ~(P~0®1) ;, fo dre™

magnetic field as

H=Hy+Hj, (12
Ho=2 €lck,Cuor (13
1
+
Hintzz kkz UUU’(q)CII+q,UCk’—q,—gck’,—ack,a'
"qoo’
(14

., 2\ 0dr

T —T

1/ 9 a\
Xlim5| ———|C (T)C o(7")
ar' '

=Tk2 i(€n+ wi/2)vp-Cf (€n)Ck o(€nt ),

(18

wherew, ande,, are boson and fermion Matsubara frequen-
cies, respectively. The case of the nonlocal electron-electron
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ke keEtw j - N de’( of
T keke'o) k(€)=v(€) 2 | 21\ " e
LSRN SN X T ke k' €)g (€ vw(e), (22
ke ket - TS de’ () 1,0
vi(e)=vp+ —T“(ke,k"€")g, /(e v,,,
= Aw (&) “ X Kiz1ad 4 K K
(23
A%

FIG. 1. The four-point vertex correctioil and the three-point
vertex functionA ,, respectively.

de’ - -
1= TP (ke k' eNgl(eevy,
(24)

interaction is discussed in the next section by constructingvhere g{*(€) ={G2(¢)}?, 9{?(e)=|Gy(€)|% and g{>(e)
the Ward identity for the heat velocity. ={GR(€)}?, respectively. The definition of the four-point

By using Eq.(18), we obtain the expression far? with-  yertex7™!(pe,p’ €') is given in Ref. 6, which are listed in
out the magnetic field as follows: Appendix B. In general7 ?' is well approximated at lower
temperatures as7( +7%)/2.% Thus, taking the Ward iden-
tity for electron current is taken into accofit” v,(e) is
simply given by

= >0
Qe =evp+ >
k’,i=1,3

T?%e
Li2(iw)=— > i
,uv( I) w| k,zen

1 0
€nt 501 |V Ok(€n ) Ay, (€, @),
(19 A A
vi(€)=Vi[el+ReI(€)]. (25)

Ay (€, 0 N
ol €n 1) Next, we consideq,(€) defined in Eq(24): By seeing its

=00, +T X T(ken K € ;0) (€ @)y, (20)

!
k', en

where gk(en,w,)EGk(ien+iw|)Gk(ien). Akv(envwl) and

functional form, the relationg,(e=0)=0 is nontrivial.
However, if q,(e=0) were nonzero, theh? in Eq. (19)
would be proportional tafy~ 1. In this caseS=el'%¢T?
diverges atT=0, which contradicts “the third law of the

I'(ke, k'€, ;w)) are the three- and four-point vertices re- thermodynamics.” In this sense, E@4) is too primitive for
spectively, which are expressed in Fig. 1. They are reducibla reliable(numerical analysis at lower temperatures.
with respect to the particle-hole channel. Note that we put Fortunately, by noticing thaf 2'= (7% +7%)/2 at lower

the outer momenturp=0 in Eq. (20) because we are inter- temperatures, the quasiparticle heat velogjtye) given in

ested in the dc-conductivity. Eq. (24) can be rewritten in a simple form as
Expression(19) for L*? derived for the on-site Coulomb

interaction is equal to that for a system with the impurity ar(€)=evi(e), (26)

scattering and the electron-phonon interaction derived by R

Jonson and Mahahln Sec. Ill, we will show that the ex- wherev,(€) is given in Eq.(25). Equation(26) is the Ward

pression is also valid for general types of two-body interacidentity which will be derived from the local energy conser-

tions as for the most divergent term with respectyfo' on  vation law in Sec. Ill. This Ward identity leads th'?

the basis of the Ward identity. «T3y~ 1 because ofy(e=0)=0, so the difficulty in ana-
The dc-TEP is obtained by the analytic continuation oflyzing the TEP towardr—0 is removed.

Eq. (19) with respect toiw|, by taking all the VC's into In the same way, we derive the exact formula for the

account(The analysis on the VC's in Ref. 3 is insufficient. thermal conductivity within the most divergent term with

In the present work, we perform the analytic continuationrespect toy . By the similar way to the derivation of Eq.
rigorously by referring to the Eliashberg’s procedure in Ref.(21), we obtain that

6. Next, by using the Ward identiffeq. (26)], we derive the
simple expression for the TEP within the most divergent de[ of
term with respect toy 1. Lizl,(+i5)=T; J?( - ﬁ)qm(fﬂGk(szka(f),
After the analytic continuation of Eq19), L}LZV(H&) of 27)
orderO(y~ 1) is given by
where Qk(e) is the total heat current with VC's, which is

de/ of given by
12 H _ -
L,w(+|5)—eT; f W( -

Ok, (€)|Gr(€)[2y,(€),
R - de’ of

21 = -

(21) Qx(e)=qy(e)+ < | 2 ( &e)

where the total electron curredt, with VC's and the qua-

1w (2) NS ’
siparticle heat velocity,, are respectively given by XT (ke k'€ )9 (") (€"). (28)
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We stress thaﬁk(ezo):o at zero temperature, because theHere we use the following four-dimensional notations xor
€’-integration range in Eq(28) is restricted to withinje’| P, and ki (t,X1,Xz,X3)=X,, (= ®,p1,P2,P3)=p,, and

~T due to the thermal factors ifi 2 given by the analytic (—€.K1.Ka,k3)=k, .

continuation; see Appendix B. This fact leads to the result For the moment, we assume ti{z) is a local operator,
thatL2%(+i5) given by Eq.(27) is proportional taT*y ' as  1-€., the two-body interactiok)(x—y) is a 5-function type.
T—0. As a result, at lower temperatures, the relation (This restriction orh(z) is released later in the present sec-

«Ty ! is assured in the present analysis. tion) Because the relation i[h(2),c(x)]6(zo—Xo)
In summary, (i) the TEP is given byS=(e/T20)L12,  =(9/dxo)c(x)&*(z—x) is satisfied, then
whereL'?is given in Eq.(21) andJ, v, andq are given by 3 x 3 2%2)
Egs.(22), (25), and(26), respectively(ii) The thermal con- E L E © )et(y)
it s oy 2272 2 22 T c(x)ci(y
ductivity is given by k=(L“Y/T%)—TS o, where L is v=0 9Z, =0 09z,

given in Eq. (27). At lower temperatures, the first term T _
L2?%T? is dominant because it is proportional By ! +H(TLh(2).c(x)]c’(y)) 8(zo=Xo)
whereas the second term is proportionalTtey 1. Finally, +(T.c(x)[h(2),c"(y)])8(z0—yo)
we note that the conductivity is given by

14
de[ of = G(x=y)- 8 (z=x)
O-,uV:ezzk J' 5( - %) Uk,u( €)|Gk( E)|2‘]kv( 6)! (29) %o

1%
- + —G(x—y)- 6 y—2), 32
whereJ,(¢€) is given by Eq.(22). Yo (x=y)-oy=2) (32
where 8*(x)=58(x) 8(xo). In the transformation, the local
energy conservation law is taken into account. Performing

As we discussed in Sec. I, the TEP becomes zero at zef§€ Fourier transformation of E¢32), we obtain
temperature, which are ensured bya;[?e third law of the ther-
modynamics.” This fact means th given by Eq.(21)
should be proportional td%y~! as T—0. This relation is Z‘ p,,A(S(ker,k)
ensured if the Ward identitjEq. (26)] is satisfied exactly. In 0 0
this section, we derive the generalized Ward identity for gen- =[ex+2(K)1(kot Po) —[ €+ pt Z(k+p)IKo-
eral types of the two-body interactions, by noticing the local (33
energy conservation lawg(at)h+V - j°=0, whereh(z) is
the local part of the Hamiltonian. The obtained heat velocity =By puttingp,,=0 for u#i (i=1, 2, or 3 in Eq.(33) and
has a correction termq [see Eq(36)], which turn out to be  taking the limitp;— 0, we obtain the component of the heat
negligible for transport coefficients at lower temperaturesvelocity g(k) as
The present derivation is analogous to the proof for the gen-

Ill. GENERALIZED WARD IDENTITY

w

eralized Ward identity for the electron current which is de- (K= lim AQ k+p k +3(k 34
scribed in Ref. 28. In this section, we drop the spin suffixes aitk= pl_,o (k+pik)= ok [ek 1 G4
for simplicity of the description. In the same reason, we put

w=0 because it will not cause a confusion. fori=1,2,3, which is equivalent to the Ward identity for the

Here we introduce the four-dimensional heat velocityheat velocity[Eq. (26)]. By constructing the Bethe-Salpeter
[h(2),]%2)1=[]§ (Z)J (2),j%(2),i(2)]. Then, we con- equatiort®*’ q(k,e) in Eq. (34) is expressed by using the

sider the functlonX” (u=0~3), k-limit four-point vertexI'¥(ke, k' €’) as follows:
X2(xy.2)=(Tj22)e(x)c'(y)) 6k<e)=ev}[e8+2<p>]
=f f G(x.x)AS(X".y",2)G(y’,y)d*x"d%’, =ev+ —— >, k(ke k'e)
(277)3 k'
30
30 X{G (€)K€ vk, (35

where AQ(x ,y',2) is the three-point vertex function with
respect to the heat velocity. For the simplicity of the descripin terms of the zero-temperature perturbation theory, which
tion, we assume hereafter thaty, and z are continuous IS dlagrammatlcally shown in Fig. 2. In the finite temperature
variables, not discrete ones. Because of the translationallperturbation theor;q (€) is expressed as ER4). We stress
invariance of the system, we can write that Eq.(35) is satlsﬁed only when we take account of all the
diagrams fol¥(ke,k’ ') which are given by the functional
_ Tl — _ derivative 52/ 5G (see Appendix I Finally, we discuss the
Xg(x,y,z)=f f X3kt p, kel O e Alddktp, following two restrictions assumed in the proof of the Ward
(31 identity:
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ke ke e ke LT where &SB)EI:H(B)/T2 is called the Peltier tensor
_ N Mkelk’e”) [J=a(—VT)], and tard,=oy,/ o is the Hall angle. Note
= that ay,(B)=Lyx(B)/T?=L7(—B)/T?=—L%(B)/T? be-
a(e) eve v cause of the Onsager relation. In addition,,(B)=
Al

— a,,(B) in the presence of the fourfold symmetry along the
= eVi(eHE(e)) magnetic fields. . j
In this section, we investigate the off-diagonal Peltier co-

FIG. 2. The Ward identity for the heat velocity(e) derived in  €fficienta,, due to the Lorentz force to derive the expression
this section. This identity assures tha{e=0)=0. for the Nernst coefficient. Up to now, the general expression
for the Hall coefficiert?® and that for the
@agnetoresistan%avere derived by using the Fermi liquid
term in h(z) is local, which is not true if the potential is theory based on the Kubo formula. These works enabled us

long-range. In this case, a correction te@fx,y:z) given in to perform numerical calculations for the Hubbard

Eq. (C9) should be added to E6@2), as discussed in Appen- model*143lwithin the conservation approximation as Baym
. , 5 _ :
dix C. This correction term gives rise to the additional heat?"d Kadanoff.” Hereafter, we derive the general expression

veIocityAﬁ(k) given by Eq.(C13. Note thatAﬁk(e) van- :‘grr\fz?s N;rgstazzegément by using the technique developed
ishes identically in the case of the on-site Coulomb potential. For t.he, pr,esent pﬁrpose we have to include the external

As a result, the Ward identity for the heat velocity in the Casemagnetic field. In the presence of the vector potential, the

of general two-body interactions is given by hopping parametet; in Eq. (13) is multiplied by the Peierls
phase factof,

(i) In the above discussion, we assumed that the potenti

d(k,e)=evi(€) +Ad(e). (36)

R ) tijﬁtijexqie(Ai"‘Aj)'(ri_r]‘)/2], (38)
FortunatelyAq(k) does not contribute to the transport coef-
ficients as discussed in Appendix C. As a result, we can usehereA, is the external vector potential gt, ande(<0) is

the expression fog(k) in Eq. (35) for the purpose of calcu- the charge of an electron, Here we introdugeas

lating S, k, andv, even if the potential (k) is momentum- -
dependent. Aj=Ae ", (39

(ii) Here we treated the space variables iy, andz as whereA is a constant vector. In this case, the magnetic field
continuous ones for the simplicity. However, it is easy to. ' ! g

. - P is given byB=ipxA in the uniform limit, i.e.,|p|<1.%%%
perform the similar analysis for the tight-binding model, by . . .
replacing the derivative ok with the differentiation. For Bearing Eqs.(38) and (39 in mind, the current operator

example, the local energy conservation law is expressed éjsennEd by Eq(3) and the Hamiltonian are given by

(alat)yh(r))+[j(ri+1)—j(r—1)]/2a=0, wherea is the lat-

-B _ _ . i o
tice spacing. We stress that the Ward identity in B34 is 1 (P=0)=] 0 —eA J,a(=P), (40)
rigorous also in the case of the tight-binding model. Note )
that we give the another proof for the Ward identity based on He=Hg_o—€Auja(—P), (41)

#2(:gdéﬁg:gmgﬁﬂgi:ﬁgg|<rq#oed:ar;sAppend|x D, which is valid in the tight-binding model up t®(A). Here and hereafter,
We comment that Langer studied the Ward identity for thef[he summation with respect to the suffix which appears twice

heat velocity in Ref. 15. Unfortunately, because of a mistake'S taken implicitly. j .(p) is given in Eq.(16), and

an extra factor— Jka’l(w) should be subtracted from the

right hand side of his Ward identitfi.e., the hear velocity Jap(P) =€ (9,056 Ch_ poCipia- (42
[Eq. (3.3)) in Ref. 15; see Eq.(35) or (36) in the present k

paper. In fact, the factdk- (k+q) in Egs.(3.16 and(3.22 ) o

[in Egs.(3.19 and(3.23)] of Ref. 15 should be replaced with To derive the Nernst coefficient, we have to calculate the
k2 (with (k+q)2). This failure, which is fortunately not se- L, under the magnetic field, which is given by

rious in studying the transport coefficients at lower tempera-

tures, becomes manifest if one study the Ward identity in Lii(p,iw, A)

terms of thex representation, as in the present study. s 1
= — | drer">Tr{e T j2(p, 1)y (0,0)},
IV. FORMULA FOR THE NERNST COEFFICIENT @i Jo

According to the linear response theory, the Nernst coef- (43

ficient is given by and take the derivative of E¢43) with respect taj, andA,,
up to the first orderZ is the partition function. By taking
Egs. (40 and (41) into account, theA,,q, derivative of
L2(p,iw;A) is given b

xyl P, 1y g y

—ayy

—Stanéy|/B, (37)
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(a) (b) (©) (d)
@) 2 o 9 @+ D Q
+m +o +0 +0
P P c [y P G
ac \Y ac v \% v
+{o—p) +(0=—p)
with sign change with sign change (e) ()
Q Q
n u
A A
didk| T | (ki) I ;>g

FIG. 3. All the diagrams forr,,,. The symbol “0p” on each
line represents the momentum derivativg, *” The notations in the
diagrams are explained in Ref. 9 in detail.

—ayio)=2 Cl(iw)(ip, A,), (44)
ap
po; — i (92 21 .
ny(lwl): TZ apP&AULXy(p’wI 1A)|p:A:0' (45)

Below, we see that the dc-Peltier coefficieny, is given by
the analytic continuation afxyx(iw,)
The diagrammatic expression fa%J(iw|) is very com-

PHYSICAL REVIEW B 67, 014408 (2003

(46) is expressed a€y, 7 Y(iw))- €, . This fact assures
that a, (i w;) given in Eq.(45) is gauge invariant, that is,

—ay(io)=CL " Y(iw)B,. (47)

We note that Eq46) is equivalent tary(iw)/T if Affy S
replaced byA, ; see “A” and “B” on p. 632 of Ref. 8.

In performing the analytic continuation of E¢46), the
most divergent term with respect tg~! is given by the
replacementsG(e,+ o) —GR(e+ w) and G(e,)—G*(e).
Taking account of the relatio,GR(€) =GR(e)[vy,(e)
—id,y(€)], the dc-Peltier coefficienuxy(w+i5)|w:0 is
obtained as

e? de of
Sap=BT f?(‘a—e)

X{|Im Gy (€)]| Gk(€) 2 Quxl Vikxdy— Uiy dx]Iky

+1Gi(€)]*Quxdiyl — Vixdy Y+ viydx i}
(48)

whereQ,(¢) is given in Eq.(28). We stress thaQ,(e=0)
=0 atT=0, as is discussed in Sec. Il.

It is instructive to make a comparison betweey, and
oy /eT. The latter is given by E¢(48) by replacingQ, with
J,. In this case, the second term of E48), which contains
the k-derivative of y,, vanishes identically because of the
Onsager relatiowr,,(B) = — oy(B). As a result, the general
expression foro,, given in Eq.(3.39 of Ref. 8 is repro-
duced.

If the system has the four-fold symmetry along thexis,
then a,y(B)=—ay,(B). In this case, considering that
|Im263k(e)||Gk(e)|2—|Gk(e)|4yk, Eq. (48) can be rewritten

plicated, containing six-point vertices. Fortunately, as for the?

most divergent term with respect tg !, they can be col-

lected into a small number of simpler diagrams by taking the

Ward identity into accourft®?®We can perform the present
calculation forC{J(iw)) in a S|m|Iar way to that foio,, in
Ref. 8, only by replacing,, - with j# , and using the Ward

X|Im Gy(€)||Gk(€)|*yk(€)Ac(€), (49

identity for the heat velocity. As a result, we obtain the result

ie2
Chylion="- % AR(i€n;io){[GT,G 14,

—[GI,G"1d,} Ayyli€niw))

in2
+£E

W) K,iep

_(90.G+ . apG]Aky“ €n ;iw|),

A(iensio)[d,G"-d,G
(46)

whereG*=G,(¢+ ), G=Gy(g), and[AJ B]=A-3,B
—B-39,A. AZ(i€,;iw) is the three point vertex for the heat
velocity, which is derived in Sec. Ill. EquatigA6) is shown
in Figs. 3a)—3(d). Here, we neglect the diagrane and(f)

because their contribution is less singular with respect to

v~ 1.8 Here, we assume that the magnetic fiBlds parallel
to thez-axis. Then, we can easily check ti@/ (i w|) in Eq.

={Qu(e) X[V (&)X VLI (&) yd( e},

|Uk(€)|i

Qk(6)>< [Jk(e)/vk(f)]>, (50)

z

where|v,|, = \/Uzkx+vzkx1 andk is the momentum on they
plane along the Fermi surface, i.e., along the veejer (e,

Xvy)!|vyl, . As noted above, Eq49) becomesuy,/eT by
replacingQ, with J, ; see Eq(22) in Ref. 12.
It is notable thatd,(€) in Eq. (50) is rewritten as

- 960
[y(e)|v] 1A(€) = (QuxIikxt+ Qkkay)&—le

S - Jd R
+ (QkXJk)zO»)_kHIOg(UkV'Yk),

(51
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(b)
24 (&) = ©

: 3 :

FIG. 5. The self-energy given by the second order perturbation.

k-

FIG. 4. The vertex correctionéy 7,,) for the heat/electron
current in the second order perturbation theory.

!

- de
AQP(e) =02 | -
kl

where Hﬂztanfl(\]kx/\]ky). In an interacting system without
rotational symmetry, the second term witjrderivative of 70
X

v« does not vanish in general sindeis not parallel toQ kio(€€)[C(e 1%Qui (e,
owing to the VC's byZ:** In contrasty(e) =d(€)/€ be-  \wherer=a,b,c. TU), (e,e’) is a VC which is classified a&
cause of the Ward identity. In Ref. 21, based on the(Ref_ 22. ’

fluctuation-exchange (FLEX) T-matrix approximation, we
studied the Nernst coefficient of the square lattice Hubbard
model as an effective model for highs cuprates. We found 2
that the second term of E¢b1) gives the huge contribution T(ka,)(,(e,e’)= —Im XEka,(e— €)
in the pseudogap region if the VC's for currents are taken ' &

(52

Their functional form are given by

into account in a conserving way. As a result, the origin of w+e w+e'
the abrupt increase of the Nernst coefficient under the =2 | do —th—o+th—
pseudo-gap temperature is well understood. P
Xpiipleto)ppriple +o), (53
V. DISCUSSIONS
Tow(e.€) =T (e,€), (54)
A. Vertex correction for thermal conductivity ' '
In previous sections, we studied various analytical prop- © w+e w—¢€'
) > B ) I T (e,€)=2, | do|th—=— —th—=—|pys (€
erties forqy(e) or Qy(€), using the Ward identity for the Kk S 2T 2T P
heat velocity derived in Sec. lll. In this subsection, we study
a free dispersion modekf=k?/2m) in the presence of the T w)prr+ple — o), (55

electron-electron interaction without umklapp processes.

— i 2
This situation will be realized in a tight-binding Hubbard WNe'®  p(€)=(L/m)ImG(e=id)  and |Gi(e)]
model when the density of carrier is low<1. Here we _ 7Pk(€)/7k(e). By expanding Eq(52) with respect toe

o - , andT up to O(e?,T?) as was discussed in Ref. 7 and notic-

explicitly calculate the total heat curre@(e) in terms of ing that
the conserving approximation. The present result explicitly
shows thatl(€) # Q(¢€)/e. P

Next, as a useful application of the expression for the de’
transport coefficients derived in previous sections, we study
the thermal conductivityc in a free-dispersion model. Be- \ye obtain that
cause of the absence of umklapp processes, Thegrm of
the) resistivity p of this system should be zero even at finite E e+ (7T)2
temperatures. In a microscopic study based on the Kubo foraA Q{® =—U22, mpy, (0)pys 4 p(0) py(0)————Cyr
mula, this physical requirement is recovered by taking ac- 3 2y (€)
count of all the VC’s for the current given by the Ward (56)
identity.” On the other hand, the thermal conductivity is finite
even in the absence of the umklapp processes because heat AQP=AQ®, (57)
currents are not conserved in the elastic normal scattering
processes. Hereafter, we derive thg ! linear term ofx in AQE)=—AO® (58)
the free dispersion model in terms of the conserving approxi- K ko
mation. For this purpose, we can drop the second term of eqn deriving Eq.(58), we have changed the integration vari-
(11) becauselL'L?YT?L"=TSo~O(T?y™!). The ob- aples k’,e')—(—k',—€'), and used the relatiop_(0)
ta_lned result is exact within the second order perturbatlon:pk(o) and (j—k(—f)z(jk(f)- In general, within the
W|th_respect tOU: , .. FLEX approximation, the Aslamazov-Larkin type VC’s by

First we Eon5|der the second order}/Cs asﬁshown in F|gT'zz which correspond tdb) and (c), turn out to cancel out
4. Becaus&(e=0)=0, we can writeQ,(€)=Cy-€ Up t0  for the heat current.
O(e). The correction terms given bf@—(c) in Fig. 4, In the same way, the imaginary part of the self-energy,
AQ® 9e), are given by v«(€), is given by

! !

h " —th X (aT)?
ct ?—t —§(7T ),

e=0

€ ’ !
> (e'—€)e

014408-8
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U2
Y=L+ (7)o 2 mpicep(0)picrp(0)picr(0),
°F (59
which is shown in Fig. 5.

In a spherical system, we can pﬁI(:C(k’/kF) on the
Fermi surface. Then the total correction fris given by

a,b,c ’
A= AG0= 5D o o(0)pip(0)pie (0)-C,
r k’p F
(60)
2= pisp(0)pir +p(0)pir (0). (61
k'p

3Z

33
C471'2 m Ef dak,fZKﬁsinz(}kr/(17cosz9kr)dp _
0 Vak2

4rmie (7

Sin 6y, cos6y.

PHYSICAL REVIEW B 67, 014408 (2003

Here we putk=(0,0kg). Then, thez component of Eq.
(60) is given by

€ .
Cs7 | dk dak,d¢>k,f dpde,de,yk’ 2p?sin by

X sin 0p- 5( €xr — /.L) o €k+p— ,LL) 5(Ekr+p_ ,LL) -COSHy .
(62)

Note that in a free dispersion model (0)=z5(z(ex— w))
= 8(ex— u), wheree,=k?/2m andz is the renormalization
factor. By performingk’ integration,6,, integration, andp,
and ¢, integrations successively, E(2) becomes

sin 6, cosé,.
Sir? 6, — 2p%(1—cosby)

8mmie

=C

In the same wayZ is calculated as

Sin 6y

Z=477m3f dfpy —————=8mm°. (64
0 V2(1—cosby/)
As a result AQ, is given by
AG=—C K _1s 65
Q=g P Q- (65)

By solving the Bethe-Salpeter equatid@=q+AQ, we
obtain

9

Q= gak ) (66)

whereq = ev\ . As a result, the thermal conductivity within
the second-order perturbation theory is given by

k=3 K, (67)
m2nk3T
KO= 6my (68)

wherex? is the result of the RTA, where VC's are neglected.

Note thatmin Eqg. (68) is unrenormalized, and is the num-

I — dal =
32 Jo ¥ \J2(1—cosby)

97 (63

23

27

y=[€+(nT)?] (69)

In conclusion, the vertex corrections slightly enhangsss
times the thermal conductivity in a three-dimensional free-
dispersion model within the second order perturbation
theory.

It is instructive to make a comparison between the role of
VC'’s for the heat current and that for the electron current.
The VC's for the electron current which correspond to Figs.
4(a)—4(c) are given by

AFP=ATP =30
e+ (mT)%.
=U?Y mpii p(0)picr 1 p(0)pir (0)————Jpr
k'p 2y (€)
(70

which was already derived in Ref. 7 Here we pﬁu
=D (k/kg) on the Fermi surface. Performing all the momen-
tum integrations in the spherical case as before, we find that

!

a,b,c
R 3 My . 3
AJ=2 AJ0=5 2 piip(0)pir+p(0)pir(0)- D —
r k'p F

k

ke’ (71)

ber of electrons in a unit volume. Finally, performing the WhereZ is given in Eq.(61). As a result, the solution of the

momentum summations in E¢69), y of orderU? is given
by

Bethe-Salpeter equatiah=v + AJ is given byJ=c, which
means that the conductivity diverges in the absence of the

014408-9
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umklapp processes, even at finite temperatures. Thus, thg takes its minimum value is called the “cold spot,” and the
important result in Ref. 7 is recovered. On the other handelectrons around the cold spot mainly contribute to the trans-
the thermal CondUCtiVity does not diverge even in the ab'port phenomena_ Becaus@(s"’k‘) has a hug«L dependence
sence of the umklapp processes, because the normal scattg{-high-T, cuprates around the cold spot, the signSofs

ing process attenuates the heat current.

B. TEP and the Nernst coefficient

almost determined by the sign e[&y[l(e’;)/&kl] at the
cold spot!
Next we discuss the Nernst coefficient. Within the RTA,

In this section, we discuss the effect of the anisotropy adhe Nernst coefficient is derived from Eq27), (29), and
well as the role of the VC's for the TEP and the Nernst(48) by dropping all the VC's byl ™. In an isotropic system,
coefficient. First, we discuss the validity of the Mott formula ¥ by RTA is expressed in a simple form*as

for S (Ref. 30 which is given by

dIno(E)
JE

m2k3T

3e

(72

Er

w?k3T
3m

J7(E)
JE

: (79

F

VRTA=

where 7(€)=1/2y(e) is the energy-dependent relaxation

It is easy to see that E¢72) is valid even in the presence of time andEg is the Fermi energy. According to E(9), v is

Coulomb interactions, if we define o(e)
=e?3,|Gy(€)|?vix(€)Iui(€):® o and S given by Eqgs.(21)
and(29) are rewritten usingr(e) as

de of
0'=f?(—% o(e), (73
1 de of
:ﬁ ? _ﬁ) 60'(6). (74)

At sufficiently lower temperatures, Eqé73) and (74) be-
come

o=0(0), (75)
m2k3T do(e€)
" Beo de o (76

determined by the energy-dependence of the relaxation time.
Unfortunately, Eq(79) will be too simple to analyze re-

alistic metals with(strong anisotropy. For that purpose, we

perform thee integration of,, in Eq. (49) by using the

quasiparticle representation. The obtained expressioa,fpr

is given by

ds. 4

z|vyl %

e?m? k3T 1
ay,=B f
y 12 (27)3
N

X[ - } il (80)
Avil v e=c

whereQ' (¢)=Q,(¢€)/ € at zero temperature. We stress that
Q' (e=0) is finite atT=0 as explained in Sec. II, which
leads to the relatiom~O(Ty ). We stress tha@’k(O) is

et
k (9k|| Yk

As a result, Mott formula is also satisfied in the case ofqot equal toJ,(0) in general, because the VC's for heat
electron-electron interaction. Note that the renormalizationsyrrent and the electron one work in a different way; see
factor z does not appear in E¢72). discussions in Secs. IV and V A.

~ To analyze the TEP in more detail, we rewrite the expres- \we also comment that the Mott formula type expression
sion for S by using the quasiparticle representation of thegg, ,

Green function[Eq. (15)] which is possible at sufficiently
low temperatures in the Fermi liquid. Using the relation

Xy 1

RTA 7r2k3T

axy = _3_e

doyy(E)
JE

: (81)
Er

dS.de dSder
S(ek:fsxek 77

S - [ asan - [ 5= T ]
K vl kIUk is obtained within the RTA, by assuming thad,(e¢)

whereS, represents the Fermi surface andis the momen- = €Jk(€). This assumption, however, will be totally violated

tum perpendicular to the Fermi surface, we obtain the exonce we take the VC's into account. As a result, B4) is
pression no more valid in a correlated electron system.

Finally, we discuss the Nernst coefficient in high-cu-
prates, which increases drastically below the pseudogap tem-
perature,T*. According to the numerical analysis based on

the conserving approximaticn, the k, dependence 0|f3k|
becomes huge due to the VC caused by the strong supercon-

ducting fluctuations. Moreove@kx 3k is large because the

em’k3T 1
s= |

dS¢ 9 [vidkx
30 (277)3

eyl e ' (78)
Zivy] ok, Ivklvk]f_f*
k

where we performed the-integration first by assuming the
relationy<T. In an anisotropic system, ttkedependence of ) ) S e
the integrand in Eq(78) may be strong. In high~, cuprates, VC is much more effective only fady . By considering Eq.
for example, it is known that the anisotropy #f(0) on the  (51), the growth of the Nernst coefficient in highs-cuprates
Fermi surface is very large because of the strong antiferrounderT* is caused by the enhancement éfdk|)|J,|, not
magnetic fluctuations. The point on the Fermi surface wherdy (d/JE) 7(E).*
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VI. SUMMARY work gives us the fundamental framework for the micro-

scopic study of the thermoelectric transport phenomena in
gtrongly correlated electron systems. Owing to the present
work, the conserving approximation for thermoelectric trans-
I .. . .

%ort coefficients becomes much practical on the basis of the
Fermi liquid theory.

In the present paper, we have derived the general expre
sions for S «, and v in the presence of electron-
electroninteractions based on the linear response theory f
the thermoelectric transport phenomena. Each expression
“exact” as for the most divergent term with respect4o?®.

The heat velocityik(e), which is required to calculat8 «,
andv, is given by the Ward identity with respect to the local
energy conservation law. We have studied the analytical The author is grateful to T. Saso, K. Yamada, and K. Ueda
properties ofj(€) as well as the total heat curre@i(e) in  for useful comments and discussions.
detail.

The expressions fof, «, and v derived in the present ~ APPENDIX A: ANOTHER DERIVATION OF THE HEAT
paper are summarized as follows. Note that they are valid CURRENT OPERATOR, EQ. (18)
even if the Coulomb potentiaU(k) has a momentum-
dependence, as discussed in Appendix C. HHr€,0) is the
charge of an electron.

ACKNOWLEDGMENT

In Ref. 3 the authors derived the formula fot*(w,) un-
der the condition that electron-phonon scattering and impu-

(i) TEP: It is better to include the “incoherent correction.” rity scattering exist. In this appendix, for an instructive pur-

. . ) . . pose, we derive Eq19) in Sec. Il in the case of the on-site
\évlzg]sggl(lj ?r? I'Qrzgoéiargslnasrtegﬂﬁl%ﬁg;{ﬁﬁtgg ?gzggnéﬁea;s 'SCoulomb interaction by using the similar technique used in
given by e ' P Ref. 3. This fact means that the heat current operator in the

Hubbard model can be rewritten as E@9).
According to the equation of motion, the following equa-
tions are satisfied:

de( of

S= % ; f ?E( - £>QKx(€)[|Gk(€)|Zka(6)

2 Okl 1) =[H. 6, (7)]
—Re[Gi(€)}vik(€)], (82)

U
_ 0.t t +
=€Cy, T > E Ck—q,6% +qi2,- oCk' — a2~ 0

where o=0,, is the electric conductivityp (€)= V[ €2 K'qo

+Re3 (€)1, (jk(e)= eJk(e), and the total electron current (A1)
Ji(e€) is given in EQ.(22).
(i) Thermal conductivity: In the same way, we include

the incoherent correction. Then, the final expressiornkfis ickg( P=[H,Cro(7)]

given by ar
U
== 6(k)clo'_ E k’z Ck+q,(rcll +q/2,— ,ka' —-ql2—0*
qo
1 de of
K:f; j?(_ﬁ)qu(e)HGk(E)FQkx(e) (A2)
Using jS given in Eq.(17) and taking Egs(Al) and (A2)
—Re{Gi(e)}au(€)] - TS0, (83) into account, we see that
where Q,(€) is given in Eq. (28). Note that Q,(e)/e (T.i%(7)] (0))
#J.(€), although the Ward identitg,(e)/e=0v(€) is rig- e
orously satisfied. _ 0 0/ -t .
(iii ) The expression for is given by Eq.(37), whereay, _% Ok €k TrCio(7)Cho(7)1,(0))
is given by Eq.(48) or Eg. (49). As for a,, (and a,,), no
incoherent correction exists as discussed in Ref. 34. n u 2 0 40 Tl
These derived expressions enable us to calculate the VC'’s 2 5 (Vich a2 Vg2 TrCkgr20(7)

. . . K kk’
in the framework of the conserving approximation. In each a7

expression, the factor 2 due to the spin degeneracy is taken X Cy+ grao r)cl,+q,2,_(r( T)Cx/ —qr2,— o(7)],(0))
into account. We note that our expression are equivalent to

that of the relaxation time approximati@RTA), if we drop 1) d 0 + N
all the vertex corrections in the formulas. However, the RTA = I’|m AV %‘4 Vi u{ T oCro(7) Cio( 71} ,(0)).
is dangerous because it may give unphysical results owing to T

the lack of conservation laws. In conclusion, the present (A3)
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€y +(D[ &y +(Q Imée
(3.1 C (@D (1,1)
€, o \\H i H///,
" I 1 Ime€
FIG. 6. The diagrammatic expression (i e, ,iey ;iw)). ST
_ - _ 32)  fea m| a2
By inputting the above expression in E®), we can obtain G- : (,f )\ (.2
the same expression as Ef9). As a resuIt,jaQ(pz O,w)can . __ s *:'-/_--I-Y--‘-\ e <« Im(€ +in,)=0
be expressed as E(L8). We note that Eq(18) is not exact L Ny
in the case of the finite range interactions. Nonetheless, Eq. I .
(18) is valid for an analysis of the transport coefficient as for (3.3 $ (2.3) (1.3)
the most divergent term with respect40?, as discussed in Im (e+ i0,)=0

Sec. Il or in Appendix C.
FIG. 7. The definition of the regiof(l,m),N].

. m ! !
APPENDIX B: DEFINITION OF Z™"(pe,p'e) comes from the analytic region(1,1),|] in Fig. 7 (where
Considering the convenience for readers, we list the exe,>0) and taking the limitw— O at the final stage. There
pression for7™(pe,p’€’) introduced by Eliashberg in Eq. analytic properties are well studied in Ref. 6.
(12) of Ref. 6, following the advice of referees. Here we
qupped the momentum §uffixes for simplicity. By taking the  A\ppeNDIX C: WARD IDENTITY IN THE CASE OF THE
limit of w—0, they are given by NONLOCAL ELECTRON-ELECTRON INTERACTION

€' € — In this appendix, we show that the expressionsSok,
T (ee )—th FnCth (F 1T, andv derived in the present paper is valid beyond the on-site
Coulomb interaction. For that purpose, we reconsider the
Ward identity for the following Hamiltoniamd with a long-

12, Y —
T™(e,€')=0, range interactiotd (x—y):
/ /+ 2v2
3 " I r! I —hV 1
Tl(e,e )=— h2TF13 cth——(I"}5—T'13), h(Z)ZCT(Z)( )C(Z)+§CT(Z)C(Z)
T (e e )—th le- Xf c(r)c(r)V(z—r)d*r, (CY
22 _1\_ € —e €\ €' te H:f h(z)dz, (C2
Te,€") (cth >T th2_|_ 5+ | cth—=— >T
¢ ' te where V(x—y)=U(Xx—Yy) 8(Xo—Yo), andh(z) is the local
—cth )Fg'2+ th— — cth—— F|2V2’ Hamiltonian. Hereafter, we drop the spin suffixes for sim-
2T 2T plicity. In the same reason, we put=0

Here, it is easy to check that

TH(e,e)=—thoeT 5
(656 ) 2-|— 231 ,}_LZVZ

[h(2),c(0)]8(z0=X0) = 6*(x—2) 5 —c(x) = 5'(z

/ /

T3 e, e')= h F +eth e (F T30 L
, 31 31> —X)EC(Z)f CT(r)C(I’)V(Z—r)d4r

32 Y —
T™ee)=0, —%CT(Z)C(Z)CT(Z)V(Z—X), (C3)

T3¥ee')=— h2TF33 cth—t (rg3 Ik, (B e
[H,c(x)]= 5 c(x)—fcT(r)c(r)V(x—r)d“r'c(x).
Wh_erel“,“r'nzl“,’\,‘n(e,.e’) (I, m=1,23N=LILIILIV) is a four- (Ca)
point vertex function, which is introduced by the analytic

continuation of the four-point vertex function By comparing Eqs(C3) and(C4) and using the kinetic equa-
I'(iey,i€n ;iw) as shown in Fig. 6. For instancBy,(e, ') tion [H,c(x)]= —i(d/dxg)c(x), we obtain that
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[h(2),c(x)]8(zo—Xo)

4 1
= 64(2_)()(_')&_)(00()()_ ECT(z)c(z)c(x)V(z—x)

+ 64(z—x)%J’ ct(r)e(r)V(r—x)d* -c(x).

(CH

As a result,
(T[h(z),c(x)]c'(y)) 8(xo—2o)
J
=0*(x=2) =—G(x=y) = Y(X,y;2)V(x—2)
Ao

+64(x—z)f Y(x,y;r)V(x—r)d*, (C6)

whereT is a time-ordering operator, and

1
Y(xy;2)=5(Tc!(2)e(z)c(x)c'(y))

1
:EJ fG(XaX')Ao(X’yy’,Z)G(y’,y)d4x’d4 '

(C7)

whereAy(x',y’,z) is the three-point vertex function for the

electron densityp(z)=c'(z)c(z). In the same way,

(Te(x)[h(z),c'(y)]1)d(yo—20)
J
=54y-2) - COX=Y)=Y(xy;2)V(y=2)
Yo

+54(y—z)f Y(x,y;r)V(y—r)d®. (C9

As a result, we find that the correction term

C(x,y;Z)=—Y(x,y:Z)[V(X—Z)+V(y—2)]+f Y(X,y;r)

X[ 84 x—2)V(x—r)+ 6*(y—2z)V(y—r)]d*r
(CY

is added to Eq(32) whenU(x—Yy) is a finite-range poten-
tial. It is easy to see th&k(x,y;z) =0 if the potential is local

[i.e., U(x—y)=Uys(x—y)].

Now we take the Fourier transformation 6{x,y;z) ac-
cording to Eq(31). If we putp,=0 for u#i (i=1, 2, or 3
and|p;|<1, C(k;k+p;) is given by

C(k;k+p;)= f d*xd*yd*zC(x,y;z)ekxy)Tip(x=2)

—ip, [ dixatya'zvixy V-2 (4-2)

+V(y—2)-(yi—2z)1e*¥V+0(p?). (C10
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FIG. 8. The diagrammatic expression for EG11).

Because the Fourier transformation\6fx) - x; is given by
—i[aU(k)/ok;],

. C(k;k+py)

lim ——

pj—0 ID;
:f d4k’[Y(k+k’;k)+Y(k;k+k’)](—i)%U(k’)
_1 (1 (1)
=§[Wi (K)G(k)+G(k)W;(K)], (C1y)

which is diagrammatically shown in Fig. aNi(')(k) and
W (k) are introduced in the last line of E¢C11).

Here we note that the energy dependencensf" (k)
around the Fermi level is same as that Xfk), that is,
ReW, (k) ~const. and InW; (k) ~k3 for |ko|<1. This fact is
easily recognized because

f d*k'TY(k+K";K)+ Y(k;k+k")]iU (k")

1
=§[2(k)G(k)+G(k)2(k)], (C12
which is same as EqC11) except for the momentum de-
rivative onU.

Wi("r) given in Eq.(C12) provides the correction for the
heat velocity due to the non-locality f(z), which we de-
note asAq(k). As shown in Eq.21) or (27), in the most
divergent term forlL", the (heaj current is connected with
9‘®(k)=|G(k)|? after the analytic continuation. Bearing this
fact in mind and using 2 = (7% + 7 %)/2 under the limit of
T—T as discussed in Ref. a,(i(k) is given by

Aq(k)=

S GRGA ({ReW}GR+ GA{ReW(})

=ReG (k)-ReW,(k), (C13

which should be added (k) given by Eq.(35) in Sec. IIL.
W; (k) is given by

Wi (k) =W (k) =W (k)
1
= Ef d*k'[Ag(k+K' ;1K) +Ag(kik+k')]

><G(k+k’)(—i)iU(k’),

5 (14
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| i >~ AGrn Ak e 4! ke kpe k£ kp.g
A,k = m% . / . I (E.(8)-Z.(g)) = K€ K4pe kg K+p.e
Kk « R € k+P( k
FIG. 9. The diagrammatic expression faq(k) given by Eq. e Geufe) & Gote)

(C13. FIG. 10. The generalized Ward identity with respect to the heat

o L ) ) _ velocity.
which is expressed in Fig. 9. In conclusion, the Ward identity

for the heat velocity for general two-body interaction is
given by gy (€)= evy(€) +Aq(k), instead of Eq(35). 3 (M=
Finally, we study the contribution akq(k) to the trans- P.{ki}

port coefficients. Let us assume thatT at sufficiently )UK K, [k, k)
lower temperatures. In this case, the correction term for the Thagl tay tag

TEP due toAq(k), AS, is calculated as XU (Ky Ko Ko Ko ) -
[e3 5 o

A(P)
n! Gk, Gk, G,y

XU(K,, K k), (D2

“4n—3| k%n—z’

1 de[ of )
ase S [ 5= 2 lemlaam0a0
where P represents the permutation of (42) numbers,

1 &f Z A k, * J k, * (al,az, P ,a4n_2)=P(1,1,2,2 P ,21_1,21_1) A(P)
:T_E (——> A% Eki o ek), ==*1 for a skelton diagram, and\(P)=0 for others.
7k I€] o y(€) U(kq,ko|k3,ky) is the two-body interaction whetg andks

(C19 are incoming and, and ks are outgoing, respectivefy:>°
Here we consider the on-site Coulomb interaction:

whereej is the quasiparticle spectrum given by the solution
of ReG1(k,ef)=0. Considering that\g,(k,ef)=0 be-
cause of Eq(C13), we recognize thak S given by Eq.(C15
is zero.

In summary, whenU(k) is momentum dependent, the

corrections term for the heat velocityq(k), given by Eq.

(C13), emerges. Fortunately, its contribution to transport co-Note that in Eq.(D2), the tadpole-typgHartree-typg dia-
efficients would be negligible when the concept of the qua-grams are dropped because they karedependent.
siparticle is meaningful, except for very high temperatures. Next, we consider the right-hand-side of EB1), which
In conclusion, the derived expressions 81, andv, given  can be rewritten as

by Egs.(82), (83), and(49), respectively, are valid for gen-

eral electron-electron interactions, with the use of the heat

velocity q(k) in Eq. (35).

U(ky,kaks,kyg)

=U 5k1+k3,k2+k45el+53,52+e4501,02503,045a1,*03'

T [T'(k;k+pl|k’,k'—p)
e'k’

APPENDIX D: ANOTHER PROOF OF THE WARD T (kik+plK + p.k )]G (¢ €’ (D3)
IDENTITY: BASED ON THE DIAGRAMMATIC ' ' K '

TECHNIQUE

In the present Appendix, we give another proof that theVhich is shown in Fig. 11. _ _
following generalized Ward identity is correct in a tight-  1hen thenth-order skeleton diagrams for E@3) is ex-

binding model with on-site Coulomb interaction: pressed as
e[Siip(€)—2(€)]=TX T'(kek+p,elk’ +p,eik’e’) B S R N
€'k’ k-p. g ke K. k’+p.e’
! ’ ! / - | \ ’
X[Gkr+p(€')=Gy:(€")]e’,  (D1)
*Go(e’ *Gyo(e
whereI"" is irreducible with respect to a particle-hole chan- &Ml &0
nel. Equation(D1) is shown diagrammatically in Fig. 10. FIG. 11. The diagrammatic expression for EB3). Here, the
Hereafter, we write thak=(€,k,0). Thenth-order skel- momentum conservation is violated hy only at the junction
eton diagrams for the self-energy are given by pointed by the arrow.
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>y ?kakz- -G, AT €a UKo, —PlKgyKey) + €0 UK Kg Ko Koy~ P) = €0, UK K Ko+ DKo,
XU (K Kag|KagKa) - UKo, Ko, [Ka, o K+P)+[€ U(Ka, Ko = PlKagKa,) + ea7U(ka4, KaglKag Ka, —P)
— €0,U (K, DKo K K = €U (K Koo K oK ) TU K K (K Ka) UKy Ky Ky kD)
+len, UKa, Ko —PlKe, Ktp)—€q, UK,  +pK, K, k+p)
—uy UKy Kay ey PR PTUKK [KapKay) - UlKe, Ky Ky oKy O (D4)
|
Because of the relatiob (k; + p,ks| ks, k) =U(Kq Ko Ks . de’
+p.Ke) =U(Ky ko~ plks,ka) =U (ks Kolks kg—p) and the — ViSK(e)-e= > 4—71'(ke k'eNgl)(e) - vp€,
energy conservation with respectlly we see that Eq.D4) Khi=13 (D7)

+e(Z— Ek+p) 0. As a result, the generalized Ward iden-
tity [Eq. (D1)] is proved in the framework of the microscopic \yhere the four-point verteg' was introduced by Eliashberg

perturbation theory. _ in Ref. 6, andg{’(¢) was introduced in Sec. IIl. Thus the
By taking the limit|p|—0 of Eq.(D1), we obtain Ward identity[Eq. (D7)] is derived in terms of the diagram-
matic technique. EquatiofD7) is equivalent to Eq(35),
en ViSi(e)=T > limI'(ke,;k+ P, €q K’ which is expressed in terms of the zero temperature pertur-
en'k’ p—0 bation method.
K We note that “the usual Ward identity” related to the
+P.€n K €n) - G pl€n) G (€nr) charge conservation law is given5y?’
X En/[ljg,‘l‘ﬁkrzkl(énr)]. (DS) de’

. . . . . . 1wy 120
Equation(D5) is rewritten by using the reducible four-point sz z 4o 71'“‘6 k'€ )gy (€)vy, .
vertexI” as 1=13 (D8)

€n- VikZi(€n) According to Eqs(D7) and(D8),

=T, limT(ke,:k+p, ek’ de’ .
Sy e o > | —=TY(kek €Ngl)(e) vy €
! Wiz13d 4l
’ -0
+p,€nr;k en’)’Gk’er(en’)Gk’(En’)'En’vk'- de’ . () -0
— . i ’ ’
(D6) € g 13[47147 (ke,k'€")g,/(€)vy, .
After an analytic continuation of E4D6), we find that (D9)
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