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General formula for the thermoelectric transport phenomena based on Fermi liquid theory:
Thermoelectric power, Nernst coefficient, and thermal conductivity

Hiroshi Kontani
Department of Physics, Saitama University, 255 Shimo-Okubo, Urawa-city, 338-8570, Japan

~Received 5 July 2002; revised manuscript received 3 October 2002; published 16 January 2003!

On the basis of linear response transport theory, the general expressions for the thermoelectric transport
coefficients, such as thermoelectric power (S), Nernst coefficient (n), and thermal conductivity (k), are
derived by using Fermi liquid theory. The obtained expression is exact for the most singular term in terms of
1/gk* (gk* being the quasiparticle damping rate!. We utilize Ward identities for the heat velocity which is
derived by the local energy conservation law. The derived expressions enable us to calculate various thermo-
electric transport coefficients in a systematic way, within the framework of the conserving approximation of
Baym and Kadanoff. Thus the present expressions are very useful for studying strongly correlated electrons
such as high-Tc superconductors, organic metals, and heavy fermion systems, where the current vertex cor-
rection ~VC! is expected to play important roles. By using the derived expression, we calculate the thermal
conductivityk in a free-dispersion model up to second order with respect to the on-site Coulomb potentialU.
We find that it is slightly enhanced due to the VC for the heat current, although the VC for electron current
makes the conductivity (s) of this system diverge, reflecting the absence of the umklapp process.

DOI: 10.1103/PhysRevB.67.014408 PACS number~s!: 72.10.Bg, 74.25.Fy
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I. INTRODUCTION

In general, transport phenomena in metals are very im
tant physical objects because they offer much information
the many-body electronic properties of the system. Es
cially in strongly correlated electron systems like high-Tc

cuprates or heavy fermion systems, various transport co
cients show striking non-Fermi-liquid-type behaviors. H
torically, theoretical studies of transport phenomena g
considerable progress in various fields of condensed m
physics, such as the Kondo problem and high-Tc supercon-
ductivity.

According to the linear response theory1–3 or the Kubo
formula,4 transport coefficients are given by correspond
current-current correlation functions. Thus, to study transp
phenomena, we need to calculate the two-body Green fu
tion with appropriate vertex corrections~VC’s!. Unfortu-
nately, in many cases this is a difficult analytical or nume
cal work. Therefore, at the present stage, transp
coefficients are usually studied within the relaxation tim
approximation~RTA!, by dropping all the VC’s. The effec
of the VC can be included by the standard variational met
by Ziman based on the Boltzmann transport theory.5 How-
ever, it is not so powerful for anisotropic correlated syste
because there is no systematic way of choosing the trial fu
tion. Thus it is desirable to establish the microscopic tra
port theory based on the linear response formula.

Based on the Kubo formula, Eliashberg derived a gen
expression for the dc-conductivity (s) in the Fermi liquid by
taking VC’s into account, by performing an analytic contin
ation of the current-current correlation functions.6 Based on
the expression, Yamada and Yosida proved rigorously thas
diverges even at finite temperatures if the umklapp scatte
process is absent.7 By generalizing Eliashberg’s theory in
cluding the outer magnetic field, exact formulas for the H
coefficient (RH) ~Ref. 8! and the magnetoresistance (Dr/r)
0163-1829/2003/67~1!/014408~16!/$20.00 67 0144
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~Ref. 9! in Fermi liquid systems were derived. By usin
these formulas, in principle, we can perform the conserv
approximation for these coefficients with including approp
ate VC’s for currents.10

In general, the VC’s for currents are expected to be i
portant especially in strongly correlated systems. For
ample, in high-Tc cuprates, the so-called Kohler’s rul
(uRHu}r0 andDr/r}r22) is strongly violated.11 Moreover,
RH,0 in electron-doped compounds, although the shape
the Fermi surface is everywhere holelike. These behavi
which cannot be explained within RTA, had been an op
problem in high-Tc cuprates. Based on the conserving a
proximation, we found that these anomalies are well rep
duced by the VC’s for electron currents.12–14 The effect of
the VC’s, which are dropped in the RTA, becomes mu
important in a Fermi liquid with strong antiferromagnetic
superconducting fluctuations.

However, as for the thermoelectric transport coefficie
such as the thermoelectric power~TEP,S), the Nernst coef-
ficient (n), and the thermal conductivity (k), we do not
know useful expressions for analysis in the strongly cor
lated systems so far. Here the definition ofS, k, andn under
the magnetic filedB parallel to thez axis are given by

S52Ex /]xT,

k52Qx /]xT, ~1!

n52Ey /B]xT,

whereQW is the heat current. Unfortunately, the conservi
approximation for these coefficients is not practicable
cause we do not know how to calculate the VC’s for the
Thus, at the present stage, the RTA is widely used unc
cally, although it will be insufficient for a reliable analysis o
the strongly correlated systems because VC’s should be
cluded.
©2003 The American Physical Society08-1
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HIROSHI KONTANI PHYSICAL REVIEW B 67, 014408 ~2003!
There is a long history of the microscopic study on th
moelectric transport phenomena. To this problem, we can
apply the Kubo formula to the electronic conductivity n
ively because there is no Hamiltonian which describes a t
perature gradient]xT. In 1964 Luttinger gave a microscopi
proof that thermoelectric transport coefficients are given
the corresponding current-current correlation functio1

Later, Mahanet al. much simplified the Luttinger’s expres
sion in the case of electron-phonon and electron-impu
interactions.3 However, the analysis of the VC for the he
current for electron-electron interacting systems is still
open problem, which is necessary to go beyond the R
This analysis will be more complicated and profound th
that for the electric conductivity performed by Eliashberg6

In the present paper, we derive the thermoelectric tra
port coefficients by performing the analytic continuations
the current-current correlation functions, on the basis of
linear response theory developed by Luttinger or Mahan.
expressions are valid for general two-body interactions. T
VC for the heat current is given without ambiguity by th
Ward identity with respect to the local energy conservat
law. The derived expressions are ‘‘exact’’ as for the m
divergent term with respect togk

21 , wheregk is the quasi-
particle damping rate. The present work enables us to
form the ‘‘conserving approximation’’ forS, n, andk, which
is highly demanded to avoid unphysical results. Actually,
VC’s would totally modify the behavior of these quantities
strongly correlated electron systems, as it does for the H
effect and the magnetoresistance. In this respect, the RT
unsatisfactory because all the current VC’s are neglec
there.

We note that Langer studied the Ward identity for the h
velocity, and discussed the thermal conductivity.15 However,
the derived Ward identity was not correct because of a m
take, although it did not influence the thermal conductivity
lower temperatures fortunately. In the present work, we
rive the correct Ward identity in Sec. III, and give expre
sions fork, S, andn.

In thermodynamics, the TEP of metals becomes zero
absolute zero temperature, which is the consequence of
third law of the thermodynamics.’’~As is well known, the
third law also tells that the heat capacity vanishes atT50.!
Similarly, both n and k also become zero atT50 if the
quasiparticle relaxation timet (51/2g) is finite atT50 due
to impurity scatterings. Unfortunately, these indisputa
facts are nontrivial in a naive perturbation study once
electron-electron correlations are set in. In the present w
we derive the general expression forS which automatically
satisfyS(T50)50 owing to the Ward identity for the hea
velocity.

In high-Tc cuprates, the Nernst coefficientn increases
drastically below the pseudogap temperature, which is ne
possible to explain within the RTA.16 According to recent
theoretical works, superconducting fluctuation is one of
promising origins of the pseudogap phenomena.17–20 Based
on the opinion, we studiedn for high-Tc cuprates using the
general expression derived in the present paper.21 Then, we
could reproduce the rapid increase ofn only when the VC’s
due to the strong antiferromagnetic and superconduc
01440
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fluctuations are taken into account. This work strongly su
gests that the origin of the pseudogap phenomena in highTc
cuprates is the strongd-wave superconducting fluctuations

In the case of heavy fermion systems, the TEP takes
enhanced value around the coherent temperature, and its
changes in some compounds at lower temperatures. Suc
interesting non-Fermi-liquid-like behavior is mainly attrib
uted to a huge energy dependence of the relaxation ti
t(e) @51/2g(e)#, due to the Kondo resonance. This ph
nomenon was studied by using the dynamical mean fi
theory.22,23Also, the TEP in the Kondo insulator was studie
in Ref. 24 in detail.

The contents of this paper are as follows: In Sec. II,
develop the linear response theory for thermoelectric tra
port coefficients. By performing the analytic continuatio
we derive the general formula ofS andk in the presence of
the on-site Coulomb potentialU. In Sec. III, we derive the
Ward identity for the heat current which is valid for gener
two-body interactions, by using the local energy conser
tion law. The Ward identity assures that the expressions foS
and k derived in the previous section are valid even if t
interaction is long range, as for the most divergent ter
with respect tog21. In Sec. IV, the general formula forn is
derived. It is rather a complicated task because the ga
invariance should be maintained. In Sec. V, we calculatek in
a spherical correlated electron system in the absence of
klapp process, and obtain its exact expression by includ
the VC’s within the second order perturbation. The physi
meaning of the VC is discussed. Finally, the summary of
present work is shortly expressed in Sec. VI.

II. LINEAR RESPONSE THEORY FOR S AND k

First, we shortly summarize the linear response theory
thermoelectric transport coefficients, initiated by Lutting
Here we consider the situation that both the electron cur
JW1[JW and the heat currentJW2[QW are caused by the externa
forces XW 1[EW /T and XW 2[¹W (1/T), where EW is the electric
field. In the linear response,

JW l5 (
m51,2

L̂ lm~BW !XW m, ~2!

where l ,m51,2. Because the relationdSe /dt5( lJW
l
•XW l (Se

being the entropy! is satisfied in the present definition, th
tensor L̂ lm(BW ) satisfy the Onsager relation;Lmn

lm (B)
5Lnm

ml (2B), wherem,n5x,y,z.25

According to the quantum mechanics, the electron curr
operatorjW and the heat current onejWQ are given by2

jW~r i !5 i @H,er~r i !r i #, ~3!

jWQ~r i !5 jWE~r i !2
m

e
jW~r i !, ~4!

jWE~r i !5 i @H,h~r i !r i #, ~5!
8-2
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GENERAL FORMULA FOR THE THERMOELECTRIC . . . PHYSICAL REVIEW B 67, 014408 ~2003!
wheree(,0) is the charge of an electron,H is the Hamil-
tonian without external fieldsXl , r(r i)5(scs

†(r i)cs(r i) is
the density operator (s being the spin suffix!, andh(r i) is
the local Hamiltonian by whichH is given byH5( ih(r i).
By using these current operators,JW and QW are given by
JW (r i)5^ jW(r i)& andQW (r i)5^ jWQ(r i)&, respectively.

To derive the expressions for various conductivities m
croscopically, we introduce the virtual external potential te
F which causes the currentsXl ( l 51,2). Then the ‘‘total
Hamiltonian’’ is expressed asHT5H1F•e(2 iv1d)t, where
d.0 is an infinitesimally small constant. According to th
linear response theory,1,4 the currentJl at t is given by

JW l~ t !5^ jW l~q50,t !&

52 i E
2`

t

dt8^@ jW l~q50,t !,F~ t8!#&e(2 iv1d)t8. ~6!

Because of the relation]F/]t5T(]Se/]t)5T( l jW
l
•XW l , the

expression forL̂ lm is given by

L̂ lm5L̂ lm~v1 id!uv50 , ~7!

Lmn
lm ~ iv l !5

2T

v l
E

0

b

eiv lt^Tt j m
l ~q50,t! j n

m~q50,t50!&,

~8!

whereb51/T andm,n5x,y. Tt is thet-ordering operator,
andv l52pTl ( l being the integer! is the bosonic Matsubar
frequency. By writing the diagonal component ofL̂ lm asLlm,
s, S, andk are given by2

s5
e2

T
L11, ~9!

S5
1

eT

L21

L11
5

e

T2

L21

s
, ~10!

k5
1

T2 S L222
L12L21

L11 D , ~11!

wheree (e,0) is the charge of an electron.
Hereafter, we analyze the functionL̂ lm( iv l) given by Eq.

~8! at first, and perform the analytic continuation to deri
L̂ lm by Eq. ~7!. We study a tight-binding model with two
body interactions, which is expressed in the absence of
magnetic field as

H5H01H int , ~12!

H05(
k,s

ek
0cks

† cks , ~13!

H int5
1

2 (
kk8qss8

Uss8~q!ck1q,s
† ck82q,2s

† ck8,2sck,s .

~14!
01440
-

he

In Eq. ~13!, ek
05( i t i ,0e

ik•(r i2r0), where t i j is the hopping
parameter betweenr i and r j . Uss8(q) represents the
electron-electron correlation betweens and s8 spins. For
example,Uss8(q)[Uds,2s8 for the on-site Coulomb inter-
action.

The one-particle Green function is given byGk(e)
51/@e1m2ek

02Sk(e)#, whereSk(e) is the self-energy and
m is the chemical potential. In a Fermi liquid,gk!T is sat-
isfied at sufficiently low temperatures because of the rela
gk}T2.26 In such a temperature region, the following qua
particle representation of the Green function is possible:

Gk~v!5
zk

v2ek* 1 igk*
, ~15!

where zk5@12(]/]e)Sk(e)#21 is the renormaliza-
tion factor, ek* 5zk@ek

01Sk(0)2m#, gk* 5zkgk and gk
5Im Sk(2 i0), respectively.

According to Eq.~3!, the electron current operator for Eq
~12! is given by

jW~p!5e(
k,s

vW k
0ck2p/2,s

† ck1p/2,s , ~16!

wherevW k
05¹Wkek

0 . Apparently, jW(p) is a one-body operator.
In the same way, we consider the heat current oper

defined by Eq.~12!: In the case of the on-site Coulomb in
teraction, for simplicity, it is obtained after a long bu
straightforward calculation as

jWQ~p50!5(
k,s

~ek
02m!vW k

0cks
† cks

1
U

2 (
kk8qs

1

2
~vW k1q/2

0 1vW k2q/2
0 !ck2q/2,s

†

3ck1q/2,sck81q/2,2s
† ck82q/2,2s , ~17!

which contains a two-body term in the case ofUÞ0. It
becomes more complicated for general long-range poten
This fact seems to make the analysis of the thermoelec
coefficient very difficult.

Fortunately, as shown in Appendix A, Eq.~17! can be
transformed into the following simple one-body opera
form by using the kinetic equation

jWQ~p50,v l !5(
k,s

E
0

b

dteiv lt

3 lim
t8→t

1

2 S ]

]t
2

]

]t8
D ck,s

† ~t!ck,s~t8!

5T (
kens

i ~en1v l /2!vW k
0
•ck,s

† ~en!ck,s~en1v l !,

~18!

wherev l anden are boson and fermion Matsubara freque
cies, respectively. The case of the nonlocal electron-elec
8-3
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HIROSHI KONTANI PHYSICAL REVIEW B 67, 014408 ~2003!
interaction is discussed in the next section by construc
the Ward identity for the heat velocity.

By using Eq.~18!, we obtain the expression forL12 with-
out the magnetic field as follows:

Lmn
12 ~ iv l !5

T2e

v l
(
k,en

i S en1
1

2
v l D vkm

0 gk~en ,v l !Lkn~en ,v l !,

~19!

Lkn~en ,v l !

5vkn
0 1T (

k8,en8

G~ken ,k8en8 ;v l !gk8~en8 ,v l !vk8n
0 , ~20!

where gk(en ,v l)[Gk( i en1 iv l)Gk( i en). Lkn(en ,v l) and
G(ken ,k8en8 ;v l) are the three- and four-point vertices r
spectively, which are expressed in Fig. 1. They are reduc
with respect to the particle-hole channel. Note that we
the outer momentump50 in Eq. ~20! because we are inter
ested in the dc-conductivity.

Expression~19! for L12 derived for the on-site Coulomb
interaction is equal to that for a system with the impur
scattering and the electron-phonon interaction derived
Jonson and Mahan.3 In Sec. III, we will show that the ex-
pression is also valid for general types of two-body inter
tions as for the most divergent term with respect tog21 on
the basis of the Ward identity.

The dc-TEP is obtained by the analytic continuation
Eq. ~19! with respect toiv l , by taking all the VC’s into
account.~The analysis on the VC’s in Ref. 3 is insufficient!
In the present work, we perform the analytic continuati
rigorously by referring to the Eliashberg’s procedure in R
6. Next, by using the Ward identity@Eq. ~26!#, we derive the
simple expression for the TEP within the most diverge
term with respect tog21.

After the analytic continuation of Eq.~19!, Lmn
12 (1 id) of

orderO(g21) is given by

Lmn
12 ~1 id!5eT(

k
E de

p S 2
] f

]e Dqkm~e!uGk~e!u2Jkn~e!,

~21!

where the total electron currentJkn with VC’s and the qua-
siparticle heat velocityqkn are respectively given by

FIG. 1. The four-point vertex correctionG and the three-point
vertex functionLn , respectively.
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JW k~e!5vW k~e!1(
k8

E de8

4p i S 2
] f

]e D
3T 22~ke,k8e8!gk8

(2)
~e8!vW k8~e8!, ~22!

vW k~e!5vW k
01 (

k8,i 51,3
E de8

4p i
T 2i~ke,k8e8!gk8

( i )
~e8!vW k8

0 ,

~23!

qW k~e!5evW k
01 (

k8,i 51,3
E de8

4p i
T 2i~ke,k8e8!gk8

( i )
~e8!e8vW k8

0 ,

~24!

where gk
(1)(e)5$Gk

A(e)%2, gk
(2)(e)5uGk(e)u2, and gk

(3)(e)
5$Gk

R(e)%2, respectively. The definition of the four-poin
vertexT m,l(pe,p8e8) is given in Ref. 6, which are listed in
Appendix B. In general,T 2i is well approximated at lower
temperatures as (T 1i1T 3i)/2.6 Thus, taking the Ward iden
tity for electron current is taken into account,26,27 vW k(e) is
simply given by

vW k~e!5¹Wk@ek
01ReSk~e!#. ~25!

Next, we considerqW k(e) defined in Eq.~24!: By seeing its
functional form, the relationqW k(e50)50 is nontrivial.
However, if qW k(e50) were nonzero, thenL12 in Eq. ~19!
would be proportional toTg21. In this case,S5eL12/sT2

diverges atT50, which contradicts ‘‘the third law of the
thermodynamics.’’ In this sense, Eq.~24! is too primitive for
a reliable~numerical! analysis at lower temperatures.

Fortunately, by noticing thatT 2i5(T 1i1T 3i)/2 at lower
temperatures, the quasiparticle heat velocityqW k(e) given in
Eq. ~24! can be rewritten in a simple form as

qW k~e!5evW k~e!, ~26!

wherevW k(e) is given in Eq.~25!. Equation~26! is the Ward
identity which will be derived from the local energy conse
vation law in Sec. III. This Ward identity leads toL12

}T3g21 because ofqW k(e50)50, so the difficulty in ana-
lyzing the TEP towardT→0 is removed.

In the same way, we derive the exact formula for t
thermal conductivity within the most divergent term wi
respect tog21. By the similar way to the derivation of Eq
~21!, we obtain that

Lmn
22 ~1 id!5T(

k
E de

p S 2
] f

]e Dqkm~e!uGk~e!u2Qkn~e!,

~27!

where QW k(e) is the total heat current with VC’s, which i
given by

QW k~e!5qW k~e!1(
k8

E de8

4p i S 2
] f

]e D
3T 22~ke,k8e8!gk8

(2)
~e8!qW k8~e8!. ~28!
8-4
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GENERAL FORMULA FOR THE THERMOELECTRIC . . . PHYSICAL REVIEW B 67, 014408 ~2003!
We stress thatQW k(e50)50 at zero temperature, because t
e8-integration range in Eq.~28! is restricted to withinue8u
;T due to the thermal factors inT 22 given by the analytic
continuation; see Appendix B. This fact leads to the res
thatLmn

22 (1 id) given by Eq.~27! is proportional toT3g21 as
T→0. As a result, at lower temperatures, the relationk
}Tg21 is assured in the present analysis.

In summary, ~i! the TEP is given byS5(e/T2s)L12,
whereL12 is given in Eq.~21! andJW , vW , andqW are given by
Eqs.~22!, ~25!, and~26!, respectively.~ii ! The thermal con-
ductivity is given by k5(L22/T2)2TS2s, where L22 is
given in Eq. ~27!. At lower temperatures, the first term
L22/T2 is dominant because it is proportional toTg21

whereas the second term is proportional toT3g21. Finally,
we note that the conductivitys is given by6

smn5e2(
k
E de

p S 2
] f

]e D vkm~e!uGk~e!u2Jkn~e!, ~29!

whereJW k(e) is given by Eq.~22!.

III. GENERALIZED WARD IDENTITY

As we discussed in Sec. I, the TEP becomes zero at
temperature, which are ensured by ‘‘the third law of the th
modynamics.’’ This fact means thatL12 given by Eq.~21!
should be proportional toT3g21 as T→0. This relation is
ensured if the Ward identity@Eq. ~26!# is satisfied exactly. In
this section, we derive the generalized Ward identity for g
eral types of the two-body interactions, by noticing the lo
energy conservation law; (]/]t)h1¹W • jWQ50, whereh(z) is
the local part of the Hamiltonian. The obtained heat veloc
has a correction termDqW @see Eq.~36!#, which turn out to be
negligible for transport coefficients at lower temperatur
The present derivation is analogous to the proof for the g
eralized Ward identity for the electron current which is d
scribed in Ref. 28. In this section, we drop the spin suffix
for simplicity of the description. In the same reason, we
m50 because it will not cause a confusion.

Here we introduce the four-dimensional heat veloc

@h(z), jWQ(z)#[@ j 0
Q(z), j 1

Q(z), j 2
Q(z), j 3

Q(z)#. Then, we con-
sider the functionXm

Q (m50;3),

Xm
Q~x,y,z![^Tt j m

Q~z!c~x!c†~y!&

5E E G~x,x8!Lm
Q~x8,y8,z!G~y8,y!d4x8d4y8,

~30!

where Lm
Q(x8,y8,z) is the three-point vertex function with

respect to the heat velocity. For the simplicity of the descr
tion, we assume hereafter thatx, y, and z are continuous
variables, not discrete ones. Because of the translation
invariance of the system, we can write

Xm
Q~x,y,z![E E Xm

Q~k1p,k!ei [k(x2y)1p(x2z)]d4kd4p.

~31!
01440
lt

ro
-

-
l

y

.
n-
-
s
t

-

lly

Here we use the following four-dimensional notations forx,
p, and k: (t,x1 ,x2 ,x3)[xm , (2v,p1 ,p2 ,p3)[pm , and
(2e,k1 ,k2 ,k3)[km .

For the moment, we assume thath(z) is a local operator,
i.e., the two-body interactionU(x2y) is a d-function type.
~This restriction onh(z) is released later in the present se
tion.! Because the relation i @h(z),c(x)#d(z02x0)
5(]/]x0)c(x)d4(z2x) is satisfied, then

(
n50

3
]Xn

]zn
5K TtS (

n50

3 ] j m
Q~z!

]zn
D c~x!c†~y!L

1^Tt@h~z!,c~x!#c†~y!&d~z02x0!

1^Ttc~x!@h~z!,c†~y!#&d~z02y0!

5
]

]x0
G~x2y!•d4~z2x!

1
]

]y0
G~x2y!•d4~y2z!, ~32!

where d4(x)[d(x)d(x0). In the transformation, the loca
energy conservation law is taken into account. Perform
the Fourier transformation of Eq.~32!, we obtain

(
n50

3

pnLn
Q~k1p,k!

5@ek
01S~k!#~k01p0!2@ek1p

0 1S~k1p!#k0 .

~33!

By putting pm50 for mÞ i ( i 51, 2, or 3! in Eq. ~33! and
taking the limitpi→0, we obtain thei component of the hea
velocity qi(k) as

qi~k![ lim
pi→0

L i
Q~k1pi ,k!5e

]

]ki
@ek

01S~k!# ~34!

for i 51,2,3, which is equivalent to the Ward identity for th
heat velocity@Eq. ~26!#. By constructing the Bethe-Salpete
equation,26,27 qW (k,e) in Eq. ~34! is expressed by using th
k-limit four-point vertexGk(ke,k8e8) as follows:

qW k~e!5e¹Wk@ek
01S~p!#

5evW k
01

1

~2p!3 (
k8

E de8

2p i
Gk~ke,k8e8!

3$Gk8~e8!2%k
•e8vW k8

0 ~35!

in terms of the zero-temperature perturbation theory, wh
is diagrammatically shown in Fig. 2. In the finite temperatu
perturbation theory,qW p(e) is expressed as Eq.~24!. We stress
that Eq.~35! is satisfied only when we take account of all th
diagrams forGk(ke,k8e8) which are given by the functiona
derivativedS/dG ~see Appendix D!. Finally, we discuss the
following two restrictions assumed in the proof of the Wa
identity:
8-5
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HIROSHI KONTANI PHYSICAL REVIEW B 67, 014408 ~2003!
~i! In the above discussion, we assumed that the pote
term in h(z) is local, which is not true if the potential i
long-range. In this case, a correction termC(x,y;z) given in
Eq. ~C9! should be added to Eq.~32!, as discussed in Appen
dix C. This correction term gives rise to the additional he
velocity DqW (k) given by Eq.~C13!. Note thatDqW k(e) van-
ishes identically in the case of the on-site Coulomb poten
As a result, the Ward identity for the heat velocity in the ca
of general two-body interactions is given by

qW ~k,e!5evW k~e!1DqW k~e!. ~36!

Fortunately,DqW (k) does not contribute to the transport coe
ficients as discussed in Appendix C. As a result, we can
the expression forqW (k) in Eq. ~35! for the purpose of calcu
lating S, k, andn, even if the potentialU(k) is momentum-
dependent.

~ii ! Here we treated the space variables likex, y, andz as
continuous ones for the simplicity. However, it is easy
perform the similar analysis for the tight-binding model,
replacing the derivative ofx with the differentiation. For
example, the local energy conservation law is expresse
(]/]t)h(r l)1@ j (r l 11)2 j (r l 21)#/2a50, wherea is the lat-
tice spacing. We stress that the Ward identity in Eq.~34! is
rigorous also in the case of the tight-binding model. No
that we give the another proof for the Ward identity based
the diagrammatic technique in Appendix D, which is va
for general tight-binding models.

We comment that Langer studied the Ward identity for
heat velocity in Ref. 15. Unfortunately, because of a mista
an extra factor2vW kGk

21(v) should be subtracted from th
right hand side of his Ward identity~i.e., the hear velocity!,
@Eq. ~3.31! in Ref. 15#; see Eq.~35! or ~36! in the present
paper. In fact, the factork•(k1q) in Eqs.~3.16! and ~3.22!
@in Eqs.~3.19! and~3.23!# of Ref. 15 should be replaced wit
k2 ~with (k1q)2). This failure, which is fortunately not se
rious in studying the transport coefficients at lower tempe
tures, becomes manifest if one study the Ward identity
terms of thex representation, as in the present study.

IV. FORMULA FOR THE NERNST COEFFICIENT

According to the linear response theory, the Nernst co
ficient is given by

n5F2ayx

s
2S tanuHG /B, ~37!

FIG. 2. The Ward identity for the heat velocityqW k(e) derived in

this section. This identity assures thatqW k(e50)50.
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where â(B)[L̂12(B)/T2 is called the Peltier tenso

@JW5â(2¹W T)#, and tanuH[sxy /s is the Hall angle. Note
that ayx(B)5Lyx

12(B)/T25Lxy
21(2B)/T252Lxy

21(B)/T2 be-
cause of the Onsager relation. In addition,ayx(B)5
2axy(B) in the presence of the fourfold symmetry along t
magnetic fieldB.

In this section, we investigate the off-diagonal Peltier c
efficientayx due to the Lorentz force to derive the expressi
for the Nernst coefficient. Up to now, the general express
for the Hall coefficient8,29 and that for the
magnetoresistance9 were derived by using the Fermi liqui
theory based on the Kubo formula. These works enabled
to perform numerical calculations for the Hubba
model12,14,31within the conservation approximation as Bay
and Kadanoff.10 Hereafter, we derive the general expressi
for the Nernst coefficient by using the technique develop
in Refs. 8, 9, and 29.

For the present purpose, we have to include the exte
magnetic field. In the presence of the vector potential,
hopping parametert i j in Eq. ~13! is multiplied by the Peierls
phase factor,9

t i j →t i j exp@ ie~A i1A j !•~r i2r j !/2#, ~38!

whereA i is the external vector potential atr i , ande(,0) is
the charge of an electron, Here we introduceA i as

A i5Aeip•r i, ~39!

whereA is a constant vector. In this case, the magnetic fi
is given byB5 ip3A in the uniform limit, i.e.,upu!1.8,9,29

Bearing Eqs.~38! and ~39! in mind, the current operato
defined by Eq.~3! and the Hamiltonian are given by9

j n
B~p50!5 j n~0!2eAa• j na~2p!, ~40!

HB5HB502eAa j a~2p!, ~41!

in the tight-binding model up toO(A). Here and hereafter
the summation with respect to the suffix which appears tw
is taken implicitly. j a(p) is given in Eq.~16!, and

j ab~p!5e(
k

~]a]bek
0!ck2p/2

† ck1p/2 . ~42!

To derive the Nernst coefficient, we have to calculate
Lxy

21 under the magnetic field, which is given by

Lxy
21~p,iv l ;A!

5
2T

v l
E

0

b

dteiv lt
1

Z
Tr$e2bHBTt j x

Q~p,t! j y
B~0,0!%,

~43!

and take the derivative of Eq.~43! with respect toqr andAs

up to the first order.Z is the partition function. By taking
Eqs. ~40! and ~41! into account, theAs ,qr derivative of
Lxy

12(p,iv l ;A) is given by
8-6
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2ayx~ iv l ![(
sr

Cxy
rs~ iv l !~ ipr•As!, ~44!

Cxy
rs~ iv l ![

2 i

T2

]2

]pr]As
Lxy

21~p,v l ;A!up5A50 . ~45!

Below, we see that the dc-Peltier coefficientayx is given by
the analytic continuation ofayx( iv l).

The diagrammatic expression forCxy
rs( iv l) is very com-

plicated, containing six-point vertices. Fortunately, as for
most divergent term with respect tog21, they can be col-
lected into a small number of simpler diagrams by taking
Ward identity into account.8,9,29 We can perform the presen
calculation forCxy

rs( iv l) in a similar way to that forsxy in
Ref. 8, only by replacingj m5x with j m5x

Q and using the Ward
identity for the heat velocity. As a result, we obtain the res

Cxy
rs~ iv l !5

ie2

v l
(
k,i en

Lkx
Q ~ i en ; iv l !$@G]JrG1#]s

2@G]JsG1#]r%Lky~ i en ; iv l !

1
ie2

v l
(
k,i en

Lkx
Q ~ i en ; iv l !@]rG1

•]sG

2]sG1
•]rG#Lky~ i en ; iv l !, ~46!

whereG1[Gk(e l1v l), G[Gk(e l), and@A]JaB#[A•]aB
2B•]aA. Lky

Q ( i en ; iv l) is the three point vertex for the hea
velocity, which is derived in Sec. III. Equation~46! is shown
in Figs. 3~a!–3~d!. Here, we neglect the diagrams~e! and~f!
because their contribution is less singular with respec
g21.8 Here, we assume that the magnetic fieldB is parallel
to thez-axis. Then, we can easily check thatCxy

rs( iv l) in Eq.

FIG. 3. All the diagrams foramn . The symbol ‘‘or’’ on each
line represents the momentum derivative ‘‘]r . ’’ The notations in the
diagrams are explained in Ref. 9 in detail.
01440
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~46! is expressed asCxy
r5x,s5y( iv l)•ezrs . This fact assures

that axy( iv l) given in Eq.~45! is gauge invariant, that is,

2ayx~ iv l !5Cxy
r5x,s5y~ iv l !Bz . ~47!

We note that Eq.~46! is equivalent tosxy( iv l)/T if Lky
Q is

replaced byLky ; see ‘‘A’’ and ‘‘ B’’ on p. 632 of Ref. 8.
In performing the analytic continuation of Eq.~46!, the

most divergent term with respect tog21 is given by the
replacementsG(en1v l)→GR(e1v) and G(en)→GA(e).
Taking account of the relation]rGR(e)5GR(e)2@vkr(e)
2 i ]rgk(e)#, the dc-Peltier coefficientaxy(v1 id)uv50 is
obtained as

2ayx5B•
e2

T (
k
E de

p S 2
] f

]e D
3$uIm Gk~e!uuGk~e!u2Qkx@vkx]y2vky]x#Jky

1uGk~e!u4QkxJky@2vkx]ygk1vky]xgk#%,

~48!

whereQW k(e) is given in Eq.~28!. We stress thatQW k(e50)
50 at T50, as is discussed in Sec. II.

It is instructive to make a comparison betweenaxy and
sxy /eT: The latter is given by Eq.~48! by replacingQx with
Jx . In this case, the second term of Eq.~48!, which contains
the k-derivative of gk , vanishes identically because of th
Onsager relationsxy(B)52syx(B). As a result, the genera
expression forsxy given in Eq. ~3.38! of Ref. 8 is repro-
duced.

If the system has the four-fold symmetry along thez axis,
then axy(B)52ayx(B). In this case, considering tha
uIm Gk(e)uuGk(e)u25uGk(e)u4gk , Eq. ~48! can be rewritten
as12,13

2ayx5axy5B
e2

T (
k
E de

2p S 2
] f

]e D
3uIm Gk~e!uuGk~e!u2gk~e!Ak~e!, ~49!

Ak~e!5$QW k~e!3@vW k~e!3¹W #z@JW k~e!/gk~e!#%z

5uvW k~e!u'S QW k~e!3
]

]ki
@JW k~e!/gk~e!# D

z

, ~50!

whereuvW ku'5Avkx
2 1vkx

2 , andki is the momentum on thexy

plane along the Fermi surface, i.e., along the vectoreW i5(eW z

3vW k)/uvW ku' . As noted above, Eq.~49! becomessxy /eT by
replacingQx with Jx ; see Eq.~22! in Ref. 12.

It is notable thatAk(e) in Eq. ~50! is rewritten as

@gk~e!/uvW u'#Ak~e!5~QkxJkx1QkyJky!
]uk

J

]ki

1~QW k3JW k!z

]

]ki
log~ uJW ku/gk!,

~51!
8-7
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whereuk
J5tan21(Jkx /Jky). In an interacting system withou

rotational symmetry, the second term withki-derivative of
gk does not vanish in general sinceJW is not parallel toQW

owing to the VC’s byT.22 In contrast,vW k(e)5qW k(e)/e be-
cause of the Ward identity. In Ref. 21, based on
fluctuation-exchange (FLEX)1T-matrix approximation, we
studied the Nernst coefficient of the square lattice Hubb
model as an effective model for high-Tc cuprates. We found
that the second term of Eq.~51! gives the huge contribution
in the pseudogap region if the VC’s for currents are tak
into account in a conserving way. As a result, the origin
the abrupt increase of the Nernst coefficient under
pseudo-gap temperature is well understood.

V. DISCUSSIONS

A. Vertex correction for thermal conductivity

In previous sections, we studied various analytical pr
erties for qW k(e) or QW k(e), using the Ward identity for the
heat velocity derived in Sec. III. In this subsection, we stu
a free dispersion model (ek5k2/2m) in the presence of the
electron-electron interaction without umklapp process
This situation will be realized in a tight-binding Hubba
model when the density of carrier is low:n!1. Here we
explicitly calculate the total heat currentQW k(e) in terms of
the conserving approximation. The present result explic
shows thatJW k(e)ÞQW k(e)/e.

Next, as a useful application of the expression for
transport coefficients derived in previous sections, we st
the thermal conductivityk in a free-dispersion model. Be
cause of the absence of umklapp processes, the (T2 term of
the! resistivity r of this system should be zero even at fin
temperatures. In a microscopic study based on the Kubo
mula, this physical requirement is recovered by taking
count of all the VC’s for the current given by the Wa
identity.7 On the other hand, the thermal conductivity is fin
even in the absence of the umklapp processes because
currents are not conserved in the elastic normal scatte
processes. Hereafter, we derive theTg21 linear term ofk in
the free dispersion model in terms of the conserving appr
mation. For this purpose, we can drop the second term of
~11! becauseL12L21/T2L115TS2s;O(T3g21). The ob-
tained result is exact within the second order perturba
with respect toU.

First we consider the second order VC’s as shown in F
4. BecauseQW k(e50)50, we can writeQW k(e)5CW k•e up to
O(e). The correction terms given by~a!–~c! in Fig. 4,
DQW k

~a2c!(e), are given by

FIG. 4. The vertex corrections~by T22) for the heat/electron
current in the second order perturbation theory.
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DQW k
(r )~e!5U2(

k8
E de8

4 Fcth
e82e

2T
2th

e8

2TG
3Tk,k8

(r )
~e,e8!uGk8~e8!u2QW k8~e8!, ~52!

wherer 5a,b,c. Tk,k8
(r ) (e,e8) is a VC which is classified asT

~Ref. 22!.
Their functional form are given by

Tk,k8
(a)

~e,e8!5
2

p
Im xk2k8

0R
~e2e8!

5(
p
E dvF2th

v1e

2T
1th

v1e8

2T G
3rk1p~e1v!rk81p~e81v!, ~53!

Tk,k8
(b)

~e,e8!5T k,k8
(a)

~e,e8!, ~54!

Tk,k8
(c)

~e,e8!5(
p
E dvF th

v1e

2T
2th

v2e8

2T Grk1p~e

1v!rk81p~e82v!, ~55!

where rk(e)5(1/p)Im Gk(e2 id) and uGk(e)u2
5prk(e)/gk(e). By expanding Eq.~52! with respect toe
andT up to O(e2,T2) as was discussed in Ref. 7 and noti
ing that

]

]eE de8Fcth
e82e

2T
2th

e8

2TG~e82e!e8U
e50

5
1

3
~pT!2,

we obtain that

DQW k
(a)5

e

3
U2(

k8p
prk1p~0!rk81p~0!rk8~0!

e21~pT!2

2gk8~e!
CW k8 ,

~56!

DQW k
(b)5DQW k

(a) , ~57!

DQW k
(c)52DQW k

(a) . ~58!

In deriving Eq.~58!, we have changed the integration va
ables (k8,e8)→(2k8,2e8), and used the relationr2k(0)
5rk(0) and QW 2k(2e)5QW k(e). In general, within the
FLEX approximation, the Aslamazov-Larkin type VC’s b
T,22 which correspond to~b! and ~c!, turn out to cancel out
for the heat current.

In the same way, the imaginary part of the self-ener
gk(e), is given by

FIG. 5. The self-energy given by the second order perturbat
8-8
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gk~e!5@e21~pT!2#
U2

2 (
k8p

prk1p~0!rk81p~0!rk8~0!,

~59!

which is shown in Fig. 5.
In a spherical system, we can putCW k5C(k8/kF) on the

Fermi surface. Then the total correction forQW is given by

DQW k[ (
r

a,b,c

DQW k
(r )5

e

3Z (
k8p

rk1p~0!rk81p~0!rk8~0!•C
k8

kF
,

~60!

Z5(
k8p

rk1p~0!rk81p~0!rk8~0!. ~61!
n

d

e

01440
Here we putk5(0,0,kF). Then, thez component of Eq.
~60! is given by

C
e

3ZE dk8duk8dfk8E dpdupdfpk82p2sinuk8

3sinup•d~ek82m!d~ek1p2m!d~ek81p2m!•cosuk8 .

~62!

Note that in a free dispersion model,rk(0)5zd„z(ek2m)…
5d(ek2m), whereek5k2/2m andz is the renormalization
factor. By performingk8 integration,up integration, andfp
andfk8 integrations successively, Eq.~62! becomes
C
4pz3m3e

3Z E duk8E
0

2kF
2sin2uk8 /(12cosuk8)

dp
sinuk8cosuk8

A4kF
2sin2uk822p2~12cosuk8!

5C
4pm3e

3Z E
0

p

duk8

sinuk8cosuk8

A2~12cosuk8!
5C

8pm3e

9Z
. ~63!
e-
ion

of
nt.
s.

n-
that

the
In the same way,Z is calculated as

Z54pm3E
0

p

duk8

sinuk8

A2~12cosuk8!
58pm3. ~64!

As a result,DQW k is given by

DQW k5
e

9
C

k

kF
5

1

9
QW k . ~65!

By solving the Bethe-Salpeter equation,QW 5qW 1DQW , we
obtain

QW k5
9

8
qW k , ~66!

whereqW k5evW k . As a result, the thermal conductivity withi
the second-order perturbation theory is given by

k5
9

8
k0, ~67!

k05
p2nkB

2T

6mg
, ~68!

wherek0 is the result of the RTA, where VC’s are neglecte
Note thatm in Eq. ~68! is unrenormalized, andn is the num-
ber of electrons in a unit volume. Finally, performing th
momentum summations in Eq.~59!, g of orderU2 is given
by
.

g5@e21~pT!2#
U2m3

2p
. ~69!

In conclusion, the vertex corrections slightly enhances~by 9
8

times! the thermal conductivity in a three-dimensional fre
dispersion model within the second order perturbat
theory.

It is instructive to make a comparison between the role
VC’s for the heat current and that for the electron curre
The VC’s for the electron current which correspond to Fig
4~a!–4~c! are given by

DJW k
(a)5DJW k

(b)5DJW k
(c)

5U2(
k8p

prk1p~0!rk81p~0!rk8~0!
e21~pT!2

2gk8~e!
JW k8 ,

~70!

which was already derived in Ref. 7 Here we putJW k
5D (k/kF) on the Fermi surface. Performing all the mome
tum integrations in the spherical case as before, we find

DJW k[ (
r

a,b,c

DJW k
(r )5

3

Z (
k8p

rk1p~0!rk81p~0!rk8~0!•D
k8

kF

5D
k

kF
, ~71!

whereZ is given in Eq.~61!. As a result, the solution of the
Bethe-Salpeter equationJW5vW 1DJW is given byJW5`, which
means that the conductivity diverges in the absence of
8-9
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umklapp processes, even at finite temperatures. Thus,
important result in Ref. 7 is recovered. On the other ha
the thermal conductivity does not diverge even in the
sence of the umklapp processes, because the normal sc
ing process attenuates the heat current.

B. TEP and the Nernst coefficient

In this section, we discuss the effect of the anisotropy
well as the role of the VC’s for the TEP and the Nern
coefficient. First, we discuss the validity of the Mott formu
for S ~Ref. 30! which is given by

S5
p2kB

2T

3e F] ln s~E!

]E G
EF

. ~72!

It is easy to see that Eq.~72! is valid even in the presence o
Coulomb interactions, if we define s(e)
[e2(kuGk(e)u2vkx(e)Jkx(e):3 s and S given by Eqs.~21!
and ~29! are rewritten usings(e) as

s5E de

p S 2
] f

]e Ds~e!, ~73!

S5
1

eTsE de

p S 2
] f

]e D es~e!. ~74!

At sufficiently lower temperatures, Eqs.~73! and ~74! be-
come

s5s~0!, ~75!

S5
p2kB

2T

3es

ds~e!

de
U

e50

. ~76!

As a result, Mott formula is also satisfied in the case
electron-electron interaction. Note that the renormalizat
factor z does not appear in Eq.~72!.

To analyze the TEP in more detail, we rewrite the expr
sion for S by using the quasiparticle representation of t
Green function@Eq. ~15!# which is possible at sufficiently
low temperatures in the Fermi liquid. Using the relation

(
k

5E dSkdk'5E dSkdek
0

uvk
0u

5E dSkdek*

zkuvku
, ~77!

whereSk represents the Fermi surface andk' is the momen-
tum perpendicular to the Fermi surface, we obtain the
pression

S5
ep2kB

2T

3s

1

~2p!3E dSk

zkuvku
]

]k'
H vkxJkx

uvW kugk
J

e5ek*

, ~78!

where we performed thee-integration first by assuming th
relationg!T. In an anisotropic system, thek-dependence o
the integrand in Eq.~78! may be strong. In high-Tc cuprates,
for example, it is known that the anisotropy ofgk(0) on the
Fermi surface is very large because of the strong antife
magnetic fluctuations. The point on the Fermi surface wh
01440
he
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-
ter-

s
t

f
n

-

-
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gk takes its minimum value is called the ‘‘cold spot,’’ and th
electrons around the cold spot mainly contribute to the tra
port phenomena. Becausegk(ek* ) has a hugek' dependence
in high-Tc cuprates around the cold spot, the sign ofS is
almost determined by the sign ofe@]gk

21(ek* )/]k'# at the
cold spot.31

Next we discuss the Nernst coefficient. Within the RT
the Nernst coefficient is derived from Eqs.~27!, ~29!, and
~48! by dropping all the VC’s byT 22. In an isotropic system
n by RTA is expressed in a simple form as32,33

nRTA5
p2kB

2T

3m F]t~E!

]E G
EF

, ~79!

where t(e)51/2g(e) is the energy-dependent relaxatio
time andEF is the Fermi energy. According to Eq.~79!, n is
determined by the energy-dependence of the relaxation t

Unfortunately, Eq.~79! will be too simple to analyze re
alistic metals with~strong! anisotropy. For that purpose, w
perform thee integration ofaxy in Eq. ~49! by using the
quasiparticle representation. The obtained expression foraxy
is given by

axy5B
e2p2kB

2T

12

1

~2p!3E dSk

zkuvku
]

]k'

3H FQW 8k3
]

]ki
S JW k

gk
D G

z

uvW ku'
uvW kugk

J
e5ek*

, ~80!

whereQW 8k(e)[QW k(e)/e at zero temperature. We stress th
QW 8k(e50) is finite atT50 as explained in Sec. II, which
leads to the relationn;O(Tg21). We stress thatQW 8k(0) is
not equal toJW k(0) in general, because the VC’s for he
current and the electron one work in a different way; s
discussions in Secs. IV and V A.

We also comment that the Mott formula type express
for axy ,

axy 5
RTA p2kB

2T
3e F]sxy~E!

]E G
EF

, ~81!

is obtained within the RTA, by assuming thatQW k(e)
5eJW k(e). This assumption, however, will be totally violate
once we take the VC’s into account. As a result, Eq.~81! is
no more valid in a correlated electron system.

Finally, we discuss the Nernst coefficient in high-Tc cu-
prates, which increases drastically below the pseudogap
perature,T* . According to the numerical analysis based
the conserving approximation,21 the ki dependence ofuJW ku
becomes huge due to the VC caused by the strong super
ducting fluctuations. Moreover,QW k3JW k is large because the
VC is much more effective only forJW k . By considering Eq.
~51!, the growth of the Nernst coefficient in high-Tc cuprates
underT* is caused by the enhancement of (]/]ki)uJW ku, not
by (]/]E)t(E).21
8-10
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VI. SUMMARY

In the present paper, we have derived the general exp
sions for S, k, and n in the presence of electron
electroninteractions based on the linear response theory
the thermoelectric transport phenomena. Each expressio
‘‘exact’’ as for the most divergent term with respect tog21.
The heat velocityqW k(e), which is required to calculateS, k,
andn, is given by the Ward identity with respect to the loc
energy conservation law. We have studied the analyt
properties ofqW k(e) as well as the total heat currentQW k(e) in
detail.

The expressions forS, k, and n derived in the presen
paper are summarized as follows. Note that they are v
even if the Coulomb potentialU(k) has a momentum
dependence, as discussed in Appendix C. Here,e(,0) is the
charge of an electron.

~i! TEP: It is better to include the ‘‘incoherent correction
which will be important in strongly correlated systems, as
discussed in Ref. 34. As a result, the final expression forS is
given by

S5
e

Ts (
k
E de

p S 2
] f

]e Dqkx~e!@ uGk~e!u2Jkx~e!

2Re$Gk
2~e!%vkx~e!#, ~82!

where s5sxx is the electric conductivity,vW k(e)5¹Wk@ek
0

1ReSk(e)#, qW k(e)5evW k(e), and the total electron curren
JW k(e) is given in Eq.~22!.

~ii ! Thermal conductivity: In the same way, we includ
the incoherent correction. Then, the final expression fork is
given by

k5
1

T (
k
E de

p S 2
] f

]e Dqkx~e!@ uGk~e!u2Qkx~e!

2Re$Gk
2~e!%qkx~e!#2TS2s, ~83!

where QW k(e) is given in Eq. ~28!. Note that QW k(e)/e
ÞJW k(e), although the Ward identityqW k(e)/e5vW k(e) is rig-
orously satisfied.

~iii ! The expression forn is given by Eq.~37!, whereaxy
is given by Eq.~48! or Eq. ~49!. As for axy ~and sxy), no
incoherent correction exists as discussed in Ref. 34.

These derived expressions enable us to calculate the V
in the framework of the conserving approximation. In ea
expression, the factor 2 due to the spin degeneracy is ta
into account. We note that our expression are equivalen
that of the relaxation time approximation~RTA!, if we drop
all the vertex corrections in the formulas. However, the R
is dangerous because it may give unphysical results owin
the lack of conservation laws. In conclusion, the pres
01440
s-

for
is

l
al

id

s

’s
h
en
to

to
t

work gives us the fundamental framework for the micr
scopic study of the thermoelectric transport phenomena
strongly correlated electron systems. Owing to the pres
work, the conserving approximation for thermoelectric tran
port coefficients becomes much practical on the basis of
Fermi liquid theory.
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APPENDIX A: ANOTHER DERIVATION OF THE HEAT
CURRENT OPERATOR, EQ. „18…

In Ref. 3 the authors derived the formula forL12(v l) un-
der the condition that electron-phonon scattering and im
rity scattering exist. In this appendix, for an instructive pu
pose, we derive Eq.~19! in Sec. II in the case of the on-sit
Coulomb interaction by using the similar technique used
Ref. 3. This fact means that the heat current operator in
Hubbard model can be rewritten as Eq.~18!.

According to the equation of motion, the following equ
tions are satisfied:

]

]t
cks

† ~t!5@H,cks
† ~t!#

5ek
0cks

† 1
U

2 (
k8qs

ck2q,s
† ck81q/2,2s

† ck82q/2,2s ,

~A1!

]

]t
cks~t!5@H,cks~t!#

52ek
0cks

† 2
U

2 (
k8qs

ck1q,sck81q/2,2s
† ck82q/2,2s .

~A2!

Using j m
Q given in Eq.~17! and taking Eqs.~A1! and ~A2!

into account, we see that

^Tt j m
Q~t! j n~0!&

5(
ks

vk,m
0 ek

0^Ttcks
† ~t!cks~t! j n~0!&

1
U

2 (
kk8qs

1

2
~vk1q/2,m

0 1vk2q/2,m
0 !^Ttck2q/2s

† ~t!

3ck1q/2s~t!ck81q/2,2s
†

~t!ck82q/2,2s~t! j n~0!&

5 lim
t8→t

1

2 S ]

]t
2

]

]t8
D(

ks
vk,m

0 ^Ttcks
† ~t!cks~t8! j n~0!&.

~A3!
8-11
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By inputting the above expression in Eq.~8!, we can obtain
the same expression as Eq.~19!. As a result,jWQ(p50,v l) can
be expressed as Eq.~18!. We note that Eq.~18! is not exact
in the case of the finite range interactions. Nonetheless,
~18! is valid for an analysis of the transport coefficient as
the most divergent term with respect tog21, as discussed in
Sec. III or in Appendix C.

APPENDIX B: DEFINITION OF T lm
„pe,p8e8…

Considering the convenience for readers, we list the
pression forT lm(pe,p8e8) introduced by Eliashberg in Eq
~12! of Ref. 6, following the advice of referees. Here w
dropped the momentum suffixes for simplicity. By taking t
limit of v→0, they are given by

T 11~e,e8!5th
e8

2T
G11

I cth
e82e

2T
~G11

II 2G11
I !,

T 12~e,e8!50,

T 13~e,e8!52th
e8

2T
G13

I 2cth
e81e

2T
~G13

II 2G13
I !,

T 21~e,e8!5th
e8

2T
G21,

T 22~e,e8!5S cth
e82e

2T
2th

e8

2TDG22
II 1S cth

e81e

2T

2cth
e82e

2T DG22
III 1S th

e8

2T
2cth

e81e

2T DG22
IV ,

T 23~e,e8!52th
e8

2T
G23,

T 31~e,e8!5th
e8

2T
G31

I 1cth
e81e

2T
~G31

II 2G31
I !,

T 32~e,e8!50,

T 33~e,e8!52th
e8

2T
G33

I 2cth
e82e

2T
~G33

II 2G33
I !, ~B1!

whereG lm
N [G lm

N (e,e8) ( l ,m51,2,3,N5I,II,III,IV) is a four-
point vertex function, which is introduced by the analy
continuation of the four-point vertex functio
G( i en ,i en8 ; iv l) as shown in Fig. 6. For instance,G11

I (e,e8)

FIG. 6. The diagrammatic expression forG( i en ,i en8 ; iv l).
01440
q.
r

x-
comes from the analytic region@(1,1),I # in Fig. 7 ~where
v l.0) and taking the limitv→0 at the final stage. There
analytic properties are well studied in Ref. 6.

APPENDIX C: WARD IDENTITY IN THE CASE OF THE
NONLOCAL ELECTRON-ELECTRON INTERACTION

In this appendix, we show that the expressions forS, k,
andn derived in the present paper is valid beyond the on-
Coulomb interaction. For that purpose, we reconsider
Ward identity for the following HamiltonianH with a long-
range interactionU(x2y):

h~z!5c†~z!S 2\2¹W 2

2m
D c~z!1

1

2
c†~z!c~z!

3E c†~r !c~r !V~z2r !d4r , ~C1!

H5E h~z!dz, ~C2!

whereV(x2y)[U(x2y)d(x02y0), and h(z) is the local
Hamiltonian. Hereafter, we drop the spin suffixes for si
plicity. In the same reason, we putm50.

Here, it is easy to check that

@h~z!,c~x!#d~z02x0!5d4~x2z!
\2¹W 2

2m
c~x!2d4~z

2x!
1

2
c~z!E c†~r !c~r !V~z2r !d4r

2
1

2
c†~z!c~z!c†~z!V~z2x!, ~C3!

@H,c~x!#5
\2¹W 2

2m
c~x!2E c†~r !c~r !V~x2r !d4r •c~x!.

~C4!

By comparing Eqs.~C3! and~C4! and using the kinetic equa
tion @H,c(x)#52 i (]/]x0)c(x), we obtain that

FIG. 7. The definition of the region@( l ,m),N#.
8-12
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@h~z!,c~x!#d~z02x0!

5d4~z2x!~2 i !
]

]x0
c~x!2

1

2
c†~z!c~z!c~x!V~z2x!

1d4~z2x!
1

2E c†~r !c~r !V~r 2x!d4r •c~x!.

~C5!

As a result,

^T@h~z!,c~x!#c†~y!&d~x02z0!

5d4~x2z!
]

]x0
G~x2y!2Y~x,y;z!V~x2z!

1d4~x2z!E Y~x,y;r !V~x2r !d4r , ~C6!

whereT is a time-ordering operator, and

Y~x,y;z![
1

2
^Tc†~z!c~z!c~x!c†~y!&

5
1

2E E G~x,x8!L0~x8,y8,z!G~y8,y!d4x8d4y8,

~C7!

whereL0(x8,y8,z) is the three-point vertex function for th
electron density;r(z)5c†(z)c(z). In the same way,

^Tc~x!@h~z!,c†~y!#&d~y02z0!

5d4~y2z!
]

]y0
G~x2y!2Y~x,y;z!V~y2z!

1d4~y2z!E Y~x,y;r !V~y2r !d4r . ~C8!

As a result, we find that the correction term

C~x,y;z!52Y~x,y;z!@V~x2z!1V~y2z!#1E Y~x,y;r !

3@d4~x2z!V~x2r !1d4~y2z!V~y2r !#d4r

~C9!

is added to Eq.~32! when U(x2y) is a finite-range poten
tial. It is easy to see thatC(x,y;z)50 if the potential is local
@i.e., U(x2y)5U0d(x2y)].

Now we take the Fourier transformation ofC(x,y;z) ac-
cording to Eq.~31!. If we put pm50 for mÞ i ( i 51, 2, or 3!
and upi u!1, C(k;k1pi) is given by

C~k;k1pi ![E d4xd4yd4zC~x,y;z!eik(x2y)1 ip(x2z)

5 ipiE d4xd4yd4zY~x,y;z!@V~x2z!•~xi2zi !

1V~y2z!•~yi2zi !#e
ik(x2y)1O~pi

2!. ~C10!
01440
Because the Fourier transformation ofV(x)•xi is given by
2 i @]U(k)/]ki #,

lim
pi→0

C~k;k1pi !

ipi

5E d4k8@Y~k1k8;k!1Y~k;k1k8!#~2 i !
]

]ki8
U~k8!

[
1

2
@Wi

( l )~k!G~k!1G~k!Wi
(r )~k!#, ~C11!

which is diagrammatically shown in Fig. 8.Wi
( l )(k) and

Wi
(r )(k) are introduced in the last line of Eq.~C11!.
Here we note that the energy dependence ofWi

( l ,r )(k)
around the Fermi level is same as that ofS(k), that is,
ReWi(k);const. and ImWi(k)'k0

2 for uk0u!1. This fact is
easily recognized because

E d4k8@Y~k1k8;k!1Y~k;k1k8!# iU ~k8!

5
1

2
@S~k!G~k!1G~k!S~k!#, ~C12!

which is same as Eq.~C11! except for the momentum de
rivative onU.

Wi
( l ,r ) given in Eq.~C11! provides the correction for the

heat velocity due to the non-locality ofh(z), which we de-
note asDqW (k). As shown in Eq.~21! or ~27!, in the most
divergent term forLi j , the ~heat! current is connected with
g(2)(k)[uG(k)u2 after the analytic continuation. Bearing th
fact in mind and usingT 2i5(T 1i1T 3i)/2 under the limit of
T→T as discussed in Ref. 6,DqW (k) is given by

DqW ~k!5
1

2GRGA
~$ReWi

( l )%GR1GA$ReWi
(r )%!

5ReG21~k!•ReWi~k!, ~C13!

which should be added toqW (k) given by Eq.~35! in Sec. III.
Wi(k) is given by

Wi~k!5Wi
( l )~k!5Wi

(r )~k!

5
1

2E d4k8@L0~k1k8;k!1L0~k;k1k8!#

3G~k1k8!~2 i !
]

]ki8
U~k8!, ~C14!

FIG. 8. The diagrammatic expression for Eq.~C11!.
8-13
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which is expressed in Fig. 9. In conclusion, the Ward iden
for the heat velocity for general two-body interaction
given byqW k(e)5evW k(e)1DqW (k), instead of Eq.~35!.

Finally, we study the contribution ofDqW (k) to the trans-
port coefficients. Let us assume thatg!T at sufficiently
lower temperatures. In this case, the correction term for
TEP due toDqW (k), DS, is calculated as

DS}
1

Ts (
k
E de

p S 2
] f

]e D uG~k!u2Dqx~k!Jx~k!

5
1

Ts (
k

S 2
] f

]e D
ek*

zkDqx~k,ek* !Jx~k,ek* !

gk~ek* !
,

~C15!

whereek* is the quasiparticle spectrum given by the soluti
of ReG21(k,ek* )50. Considering thatDqx(k,ek* )50 be-
cause of Eq.~C13!, we recognize thatDS given by Eq.~C15!
is zero.

In summary, whenU(k) is momentum dependent, th
corrections term for the heat velocityDqW (k), given by Eq.
~C13!, emerges. Fortunately, its contribution to transport
efficients would be negligible when the concept of the q
siparticle is meaningful, except for very high temperatur
In conclusion, the derived expressions forS, k, andn, given
by Eqs.~82!, ~83!, and~49!, respectively, are valid for gen
eral electron-electron interactions, with the use of the h
velocity qW (k) in Eq. ~35!.

APPENDIX D: ANOTHER PROOF OF THE WARD
IDENTITY: BASED ON THE DIAGRAMMATIC

TECHNIQUE

In the present Appendix, we give another proof that
following generalized Ward identity is correct in a tigh
binding model with on-site Coulomb interaction:

e@Sk1p~e!2Sk~e!#5T(
e8k8

G I~ke;k1p,euk81p,e;k8e8!

3@Gk81p~e8!2Gk8~e8!#e8, ~D1!

whereG I is irreducible with respect to a particle-hole cha
nel. Equation~D1! is shown diagrammatically in Fig. 10.

Hereafter, we write thatk5(e,k,s). The nth-order skel-
eton diagrams for the self-energy are given by

FIG. 9. The diagrammatic expression forDqW (k) given by Eq.
~C13!.
01440
y

e

-
-
.

at

e

Sk
(n)5 (

P,$ki %

A~P!

n!
Gk1

Gk2
•••Gk2n21

3U~k,ka1
uka2

,ka3
!

3U~ka4
,ka5

uka6
,ka7

!•••

3U~ka4n24
,ka4n23

uka4n22
,k!, ~D2!

where P represents the permutation of (4n22) numbers,
(a1 ,a2 , . . . ,a4n22)5P(1,1,2,2, . . . ,2n21,2n21). A(P)
561 for a skelton diagram, andA(P)50 for others.
U(k1 ,k2uk3 ,k4) is the two-body interaction wherek1 andk3

are incoming andk2 and k3 are outgoing, respectively.27,35

Here we consider the on-site Coulomb interaction:

U~k1 ,k2uk3 ,k4!

5Udk11k3 ,k21k4
de11e3 ,e21e4

ds1 ,s2
ds3 ,s4

da1 ,2s3
.

Note that in Eq.~D2!, the tadpole-type~Hartree-type! dia-
grams are dropped because they arek independent.

Next, we consider the right-hand-side of Eq.~D1!, which
can be rewritten as

T(
e8k8

@G I~k;k1puk8,k82p!

2G I~k;k1puk81p,k8!#Gk8~e8!e8, ~D3!

which is shown in Fig. 11.
Then thenth-order skeleton diagrams for Eq.~D3! is ex-

pressed as

FIG. 10. The generalized Ward identity with respect to the h
velocity.

FIG. 11. The diagrammatic expression for Eq.~D3!. Here, the
momentum conservation is violated byp only at the junction
pointed by the arrow.
8-14
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(
P,$ki %

A~P!

n!
Gk1

Gk2
•••Gk2n21

$@ea1
U~k,ka1

2puka2
,ka3

!1ea1
U~k,ka1

uka2
ka3

2p!2ea2
U~k,ka1

uka2
1p,ka3

!#

3U~ka4
,ka5

uka6
,ka7

!•••U~ka4n24
,ka4n23

uka4n22
,k1p!1@ea5

U~ka4
,ka5

2puka6
,ka7

!1ea7
U~ka4

,ka5
uka6

,ka7
2p!

2ea4
U~ka4

1p,ka5
uka6

,ka7
!2ea6

U~ka4
,ka5

uka6
1p,ka7

!#U~k,ka1
uka2

,ka3
!•••U~ka4n24

,ka4n23
uka4n22

,k1p!1•••

1@ea4n23
U~ka4n24

,ka4n23
2puka4n22

,k1p!2ea4n24
U~ka4n24

1p,ka4n23
uka4n22

,k1p!

2ea4n22
U~ka4n24

,ka4n23
uka4n22

1p,k1p!#U~k,ka1
uka2

,ka3
!•••U~ka4n28

,ka4n27
uka4n26

,ka4n25
!%. ~D4!
n-
ic

t

g
e
-

tur-

e

Because of the relationU(k11p,k2uk3 ,k4)5U(k1 ,k2uk3
1p,k4)5U(k1 ,k22puk3 ,k4)5U(k1 ,k2uk3 ,k42p) and the
energy conservation with respect toU, we see that Eq.~D4!
1e(Sk2Sk1p)50. As a result, the generalized Ward ide
tity @Eq. ~D1!# is proved in the framework of the microscop
perturbation theory.

By taking the limit upu→0 of Eq. ~D1!, we obtain

en•¹WkSk~en!5T (
en8k8

lim
p→0

G I~ken ;k1p,enuk8

1p,en8 ;k8en8!•Gk81p~en8!Gk8~en8!

3en8@vW k8
0

1¹Wk8Sk8~en8!#. ~D5!

Equation~D5! is rewritten by using the reducible four-poin
vertexG as

en•¹WkSk~en!

5T (
en8k8

lim
p→0

G~ken ;k1p,enuk8

1p,en8 ;k8en8!•Gk81p~en8!Gk8~en8!•en8vW k8
0 .

~D6!

After an analytic continuation of Eq.~D6!, we find that
,
n-

01440
¹WkSk
R~e!•e5 (

k8,i 51,3
E de8

4p i
T 1i~ke,k8e8!gk8

( i )
~e8!•vW k8

0 e8,

~D7!

where the four-point vertexT i j was introduced by Eliashber
in Ref. 6, andgk

( i )(e) was introduced in Sec. II. Thus th
Ward identity@Eq. ~D7!# is derived in terms of the diagram
matic technique. Equation~D7! is equivalent to Eq.~35!,
which is expressed in terms of the zero temperature per
bation method.

We note that ‘‘the usual Ward identity’’ related to th
charge conservation law is given by26,27

¹WkSk
R~e!5 (

k8,i 51,3
E de8

4p i
T 1i~ke,k8e8!gk8

( i )
~e8!vW k8

0 .

~D8!

According to Eqs.~D7! and ~D8!,

(
k8,i 51,3

E de8

4p i
T 1i~ke,k8e8!gk8

( i )
~e8!•vW k8

0 e8

5e• (
k,i 51,3

E de8

4p i
T 1i~ke,k8e8!gk8

( i )
~e8!vW k8

0 .

~D9!
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