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Staggered flux and stripes in doped antiferromagnets
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We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux
in the doped two-dimensionatJ model. First we consider the properties of uniform systems and then we
extend the investigation to include models of striped phases where a fictitious flux is generated in the domain
wall, providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics
of uniform systems with stripes directed along {1€) and (11) directions of the lattice, finding that phase
separation generically turns out to be energetically favorable. In addition to the numerical calculations, we
present topological arguments relating flux and staggered flux to geometric properties of the spingexture
Ostlund and M. Andersson, Phys. Rev6B, 094408(2002]. The calculation is based on a projection of the
electron operators of thed model into a spin texture with spinless fermions.
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[. INTRODUCTION dimensional Heisenberg antiferromagnets it has been dis-
cussed whether there is an instability towards coplanar spiral
It is well known that topological spin textures are impor- spin textures due to the competition between the kinetic and
tant in certain quantum Hall materials, the quantum Hallantiferromagnetic exchange energies. This instability, to-
ferromagnet$:® Considering a free-electron gas in a mag-gether with the response of the kinetic energy to flux, sug-
netic field, the cyclotron gap exactly equals the Zeemargests that these materials may be suitable for the formation
splitting between the spin bands. Therefore, as long as thef topological spin textures. The fact that these doped anti-
filling factor is less than 1, the ground state is formed byferromagnets are also used as models of Aighmaterials
filling up the lowest, spin-polarized Landau level, leading toadds further interest to our investigation.
a ferromagnetic ground state. This ferromagnetic ground However, for the two-dimensional antiferromagnetic
state is further stabilized when Coulomb interactions areHeisenberg model it has been argt@that, taking the con-
taken into account. tinuum limit and looking at long wavelength fluctuations
However, in a material like GaAs, the effective mass ofabout the Nel state, there is no topological term in the ef-
the electrons is strongly reduced and this, together with gective action. Although this argument is correct, it does not,
gyromagnetic rati@=— 0.4, significantly changes the ratio however, answer the question whether or not spin textures
between the Zeeman energy and the cyclotron gap. The Zeean be important on a length scale comparable with the lat-
man energy is now small compared to the cyclotron gap antce. Furthermore, it does not address the issue of second-
nontrivial spin configurations are possible within the quan-neighbor hopping. These ideas will be explored in the
tum Hall state at intermediate temperatur&gl=gugB present paper which extends ideas presented previbiisly.
<hw.. An electron moving in such a polarized spin texture particular, we generalize the topological arguments given in
picks up a topological Berry phase which looks as comingRef. 1 and present a numerical comparison of the energy of
from a(fictitious) magnetic field. Since we know that, in the flux-generating spin textures and flux-free spin configura-
guantum Hall system, magnetic flux is related to density wetions for uniform systems. Besides uniform systems, we also
reach the conclusion that topological spin textures carry eleazonsider if spin and charge stripes arise naturally as a topo-
trical charge, leading to an association between topologicdbgical fictitious flux generating spin texture.
and electrical charges. The exact relation is given(yy The paper is organized as follows. In Sec. Il we introduce
=evQyop, WhereQ, and Q,,, are the electrical and topo- thet-J model and provide some background material on its
logical charges of the texture, respectively. The size of suclproperties. We proceed in Sec. Il by deriving the effective
a topological spin texture, or skyrmion, is determined by themodel that we will work with. This model turns out to in-
competition between the Coulomb energy, favoring largeclude topological fluxes that are discussed in Sec. IV and in
skyrmions, and the Zeeman energy, favoring small skyrmiSec. V we review the effect of such a flux on a system of free
ons. electrons. Sec. VI contains a numerical mean-field investiga-
As it is known that an external flux through a system oftion of the energetics of the system, comparing flux generat-
tight binding electrons on a lattice can lower the electronicing states and more regular spiralling states where there is no
kinetic energy! it is tempting to find an internal mechanism flux generated. In Sec. VIl we extend the discussion of uni-
of the electron gas which could generate such a flux. Havindorm systems to include stripes forming antiphase domain
the quantum Hall ferromagnets fresh in mind, one possibilitywalls between Nel-ordered regions. We describe our stripe
would be the formation of a spin texture in which the elec-model and present data from numerical calculations compar-
trons move. The question is then in what kind of systemsng different stripes. Finally, we summarize our results in
such a spin texture could be expected. In doped twoSec. VIII.
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Il. THE t-J MODEL N—oo, they obtained an essentially exact mean-field model
to which they numerically looked for solutions. In particular,

n order to explore these ideas we employ th model they found a phase, called the flux phase, where the sum of
which most simply captures the competition between,[he hases of the link operato —cfe., around a
Heisenberg exchange and kinetic energy, b P Prrr = Cr Cov

plaguette equals 7. This is interpreted as half a flux quan-
tum penetrating each plaquette. These phases do not come
from a real electromagnetic field and are therefore referred to
as fictitious.
oy Work by Hasegawat al* showed that the energy of non-
o ] ) ] interacting spinless fermions has a minimum when a uniform
The summation is restricted to nearest-nelghbo_r pairs on thﬁ‘ux, corresponding to one flux quantum per particle, threads
square lattice and the spin operator is given By the system. States havirh=n (in units of the flux quan-
= %cfaa’)‘/’cr g, Whereo=(oy,0,,0,) is the vector of Pauli  tum) are referred to as commensurate flux states. This shows
matrices. All states containing doubly occupied sites havehat a fictitious flux can lower the kinetic energy of the par-
been excluded from the Hilbert space, leaving three stateicles. The commensurate flux states have also been consid-
per sitel]), | 1), and||). A natural generalization, deferred to ered in connection with the-J model.
later in this paper, is to add Coulomb repulsion between par- Another possibility for a flux state is to have a staggered
ticles occupying nearest-neighbor sites. flux through the system. In the case of half a flux quantum
Striped phases have been found experimentally in fiigh- per plaquette there is no difference between uniform and
materials to which the present model has been applied. Thestaggered fluxes, so the Affleck-Marston state can be thought
is an ongoing debate regarding the existence of stripes in th® belong to this category as well. Inspired by the work of
t-J and Hubbard models. Stripes were first found in HartreeShraiman and Siggia, Karet al?! suggested a double spiral
Fock solutions of the Hubbard modef but the stripes state showing a staggered chiral spin order, and hence also,
found in these calculations had one hole per unit length oficcording to a result of Went al,?® a staggered fictitious
the stripe, in contrast to the results from experiments wherdlux. In a staggered flux state, the time-reversal symmetry
half a hole per unit stripe length is found. From density-can be broken locally but not globally, as the system is in-
matrix renormalization groufDMRG) calculations on finite  variant under a time-reversal operation followed by a lattice
systemgof the order 26 10). White and Scalapid®?find  translation, just like a N& state. Staggered flux phases have
stripes in a wide range of dopings. For instance, using also been investigated by other grodpé®-2The effective
=0.3% they find stripes for dopings in the intervaki model used by Barford and Elicoincides with the model
<0.3. Forx<0.125 the stripes have half a hole per unit cellderived in the following section.
of stripe, in agreement with experiments, and the distance Our paper expands on results found by previous authors.
between two consecutive stripesds=(2x) 1. For higher ~We find that certain spin textures and charged stripes, in
dopings they find that there is one hole per unit cell of theparticular, are coupled by the creation of a fictitiomslux
stripe and that the interdistance between the striped is which we show is a natural consequence of a stripe with
=x"1. On the other hand, using quantum Monte Carlo calbroken rotational symmetry.
culations, Hellberg and Manousaki*find that uniform or
phase-separated states are energetically favorable. In this [ll. DERIVATION OF THE EFFECTIVE MODEL
case, the formation of stripes v_vould a_lso requwe_the eXiS- | order to make progress, we make certain simplifica-
tence of a long-range Coulomb interaction preventing an or-. ) ; . 30 intro-
dinary phase separatiGf® tions of thet-J modc.al. FII’S'[, fgIAIowmg .Schul , we intro
Incommensurate states were discussed in connection f§/ce @ local quantization axi®, at siter. In terms of
thet-J model before the notion of stripes was introduced. Itspherical coordinates we write (),
was found by Shraiman and Siglid® using a continuum = (siné,cosé; ,siné,sin¢, ,cosé,). This local SU2) trans-
limit of the model, that the antiferromagnetic order of the formation onc,, denoted by, , must fulfill the equation
undopedt-J model is unstable against the formation of a L
spiral state for small dopings. Using various mean-field ap- UgrchU}) =, 0. (2
proaches other authdfs! came to similar conclusions. We ' A
will return to the spiral instability in Sec. VI using the effec- As can be seen from the above equation, specifyingle-
tive model to be described in the following section. It will be terminesUg_only up to a rotation about the new locaéuxis.
shown how a small twist in the spin order leads to a reducgqy examplre, we may choose our @Jtransformation ac-
tion of the kinetic energy of the ordex while the loss in  cording to
exchange energy is of the ord&x?; showing that for small
enough dopings there is energy to be gained by twisting the Us —ex;{ O -
Q.7

H=>, | —t(c] ¢, +H.c)+J
(")

1
Sr'sr’_annr’) .

, ()

spin order. Tlpero
In addition to spin textures, Affleck and Marsti® dis- _

cussed the possibility of flux textures. They replaced the twavhere w, = (zx Q,) = (—sin ¢, ,cosd,,0).

spin components of the electrons Nydifferent flavors, ex- Expressing thé-J Hamiltonian in terms of this new spin-

tending the SIR) spin symmetry to SUY). Taking the limit  coordinate system, we find
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FIG. 1. The mapping of a real-space plaquette into spin space.
(Rq)ij=C€0s605;; + (1 - cosb) wjw; —sin 9€ijkwk- (5 The solid angle spanned by the mapping is givenby 2«

We note thatRg is the S@3) rotation operator induced by

the SU2) transformationUs, . o The physical degrees of freedom of the hopping are con-
Thinking of thet-J model as the larges limit of the  tained within the size of the hopping amplitude and the
Hubbard model, we know that there is a gap between thgayge invariant parts of the complex phases of the hopping
Hubbard bands scaling &3, corresponding to the energy glements. In case of nearest-neighbor hopping only, the
cost for a double occupancy. Following SChEﬂMhQ né-  smallest closed loop that can be formed is around a plaquette
glected holes in the lower Hubbard band, we will throw iy the lattice, see Fig. 1, and the flux enclosed by such a

away the upper Hubbard band because of this large gap whewynterclockwise path-01—2—-3—0 is given by
we consider hole doping, corresponding to the removal of

states containing double occupancies from the Hilbert space ® 1= I In( 701712723739) )
of the Hubbard model. Since the quantization axis at a site is

locally determined by}, , we can arbitrarily assume that the One may show that this flusbo;o3is equal to half the solid
upper Hubbard band is associated with spin-down relativ@ngle enclosed by the shortest path on the spin sphere con-

Q). Hence, our effective model is obtained by keeping onlynecting the pointg 2}, ‘Thus the flux is equal to 2Q,
the terms in Eq(4) associated with spin-up particles. The Where Q is the topological charge represented by the
spin of an electron at site will now be determined by the Plaquette.

field Q,. As the simplest approximation, we will consider I.n the foIIovylng discussion V\f,e W',l,l refer to the fqu asa
. fictitious flux, in contrast to a “real” electromagnetic flux

the{l field as a clqssical field, neglecting_ spin qu_ctuatio_ns "Nthat would come from an applied magnetic field. The reason
the system. Keeping only terms containing particles aligneqy s gistinction is that the fictitious spin generated flux is
with the positive locak axis, we obtain an effective Hamil- only seen by the spinless fermions in the system and is un-
tonian related to a physical electromagnetic field. Furthermore, the
fictitious flux does not couple to the charge of the fermions,
Heg= > [— (7" 'clc,i+H.c)+K™ n,n,]  (6)  but rather to thez component of the spin measured in the
(') local spin-coordinate system. Since all particles in our sys-
tem are polarized along the positizeaxis, they will appear

; ' _ ' m'—110 .0 ,— - i - oY
with - tM1, K aJ(Qr- 0y 1).’ andc, Cri - This ._as having the same fictitious charge. However, the flux can
Hamiltonian describes a system of spinless fermions movm%

. latti ith ition d dent hoboi litud till drive currents through the system and, in principle, it is
In a fatlice with position dependent hopping amplitudes ang, ,qqipie for the fictitious flux to cancel the effect of an ex-

mtirﬁé:tlé);ei;er;?tﬁ <pin texture on the charge motion is:[ernal electromagnetic flux on the particles in the system.
P 9 A physical magnetic field giving one flux quantum per

therefore to generate an effective hopping amplitutle, plaguette is enormous. If we assume that the lattice constant

—tcos@?2) and the appearance of a fictitious magnetic. . __ : L R >
field. We also note that there is a Coulomb-like nearest!S a=5A, the resulting magnetic field i8=h/(ea)

. . X =10" T. This energy is much larger than the typical elec-
neighbor interaction of strengthJ(cosé—1). When co9 tronic energies perggite, being of ?he order a fexpev.

<1 this leads to an effective attraction between particles, Before we proceed our investigations of the effective
which hints that the system may favor a phase SGp"’w""t'oﬂlodel, let us briefly discuss the approximations we have

when being doped. . . made. First of all we knoW that the ground state of the
We have already mentlonepl that there is a degree of free'E\'/vo-dimensional Heisenberg antiferromagnet is antiferro-
dom inUyg not being fixed by(). Since the effect of a spin magnetically ordered with the order-parameter being roughly
rotation about the locat axis on the “up” spin only intro- g9 of the full magnetization. The existence of this spin
duces a phase factor, it will be indistinguishable from a localrder makes it a reasonable first-order approach to model the
electromagnetic gauge transformation in our approximationsystem as electrons moving in a fixed spin background gen-
Hence, the set of physically inequivalent choicedJgf are  erating effective couplings. Spin fluctuations are strong in
determined by, i.e., they belong to S(2)/U(1)=S2. guantum antiferromagnets and taking them into account
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could change the picture, but our model, nevertheless, corre-
sponds to a first-order approach that takes into account a
finite Neel order parameter. As it is known that the élle
order is suppressed as the antiferromagnet is doped, we ex-
pect our approximation to be most accurate at small doping
levels.

Since the generation of flux is a local effect, as the flux
through a plaquette only depends on the neighboring spins,
the formation of fictitious flux does not really require long-
range spin order and it should suffice with local spin corre-
lations to create this flux.

IV. PROPERTIES OF FICTITIOUS FLUXES

In Ref. 1 we investigated the relations between the mag-

nitude of the hopping”™ " and its complex phases for both
ferromagnetic and antiferromagnetic spin configurations. In

the present section we shall briefly review and generalize FIG. 2. This figure shows the path taken on the spin sphere
when going around a plaquette in an antiferromagnetic spin con-
these arguments.

[ i i i ._figuration.
We again consider a square lattice with a set of spms'gura on

placed at each lattice site The interior angles on the sur-
face of the sphere are described by anglesas can be seen

in Fig. 1. The fictitious flux through the plaquette is equal toFurthermore, in the antiferromagnetic case the fictitious flux

half the solid angle covered by the plaquette in spin space . : . .
. . L § staggered since the path on a neighboring plaquette will be
which by spherical geometry is given by the sum of thetravergs,ged with the sublglttices exche?nged. gpag

@nterior angles in excess of2 Itis obvious from Fig. 1 that . If we allow for the possibility of next-nearest-neighbor
sl he area.of te sphecal parallogram, and hens 15129973 hoPPINg, We have (0 take into account addiiona
ficttious fiux, will be small as well. The Tollowing expres- DEOE invariant fluxes. There are four of these for each
sions give tr’1e size of the hoppir{g and the ficgtitioj)s ﬂuxsqugre plaguette, defined by the removal of one of the _four
h h the plaquette: vertices of the plaq_uette. In Ref. 1 we show that th_ere is a
throug plaq ' topological constraint relating these four fluxes. This con-
straint takes the form

We note that the size of the fictitious flux is now completely
decoupled from the opening angle as long asf< /2.

, 0
|7 |=tco§,
(1)01/2+q)023/_q)OlISI_q)lrzar:27Tn, (10)

o 1 S - 8 wheren=0 for a ferromagnet and==*1 for an antiferro-
012375 < @i (8) magnet. In case of a ferromagnet a prime does not denote the
antipodal point, but rather the point itself. This relation is
For small values of opening angles on the spin spltgre  easy to verify by looking at Fig. 2, noting that the sphere is
=0 and a;=a,; the flux is approximately given b¥,,,;3  exactly covered by the four regions in EQ.0). The topo-
= 0°/2 cosg, — a,)/2, showing that the flux is bounded by logical constraint, Eq(10), does not rely on the assumption
|d|<6%2. of a spherical parallelogram and does also hold in the pres-
If we instead turn our attention to antiferromagnetic con-ence of an external electromagnetic flux. Counting degrees
figurations described by= /2, the situation changes dras- of freedom, we know that there are two degrees of freedom
tically. The path taken in spin space when going around ger plaquettéor site) in choosing the spin configuration and,
plaguette in an antiferromagnetic configuration is shown irin addition, we have one parameter coming from an external
Fig. 2. If we denote the antiferromagnetstaggerefispin at  flux. All in all, there are three free parameters per plaguette
siter by Q,, the path taken i€2q—Q]—Q0,—05;—Q,, and hence we expect that the four fluxes through the subtri-

whereQ)’ = — Q) denotes the antipodal point on the sphere. angles are related by a single constraint, given above.

Redefining# to denote the opening angle between two
neighboring staggered spins, we find the following relation- V. SPINLESS FREE FERMIONS WITH FLUX

ships: . . S
P Before turning to a more through investigation of the

, 9 physics of the effective Hamiltonian, E), we will discuss
|7 |=tsin§, the effects of a flux through a system of free spinless fermi-

ons. Hasegawat al* investigated a system of free electrons

on a square lattice with a uniform magnetic flux. They found

D yrpg =T~ E 2 (-1)a. (9) that the energy is.mini_mized Wheq there is exactly one fqu
29 quantum per particle, i.e., the optimal flux per plaquette is
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FIG. 3. This figure shows energy versus filling for free electrons
using a set of different uniform fluxesp=qw/12, whereq
=0,1,...,12. In the center of the figure, i.e.,mt 1/2, the optimal
energy is given byd=. Moving to the right, the next minima
corresponds teb=117/12 and so on, finally finding an optimal
flux ®=0 atn=1.

related to the doping according #o=(1—x)d,, whered
is the flux quantum. To illustrate this effect we have diago-

nalized the Hamiltonian for such a system of free fermions in

a uniform flux ® for different values of®, finding the
single-particle energies;(®P). The total energy of the sys-
tem is then found by summing up the single-particle energie
according to

E(d,n)=
€(P) Zep(n,®)

D), (1)

&(
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FIG. 4. This figure shows energy versus filling for free electrons
compared to the flux-free case for a set of different staggered fluxes,
d=qw. Going upwards in the center of the figurqg
=1,1/2,1/3,1/6. Note that for a certain doping, the minimum energy
is obtained either fo =0 or ® =+ 7. The crossing points occur
atn=1/2+0.165.

whereeg(n,®) is the Fermi energy corresponding to filling
n and flux®d.

In Fig. 3, we plotE(®,n)—E(0n), i.e., the energy per
site for different fluxes compared to the flux-free case. The
figure clearly shows how the optimal flux changes with dop-
'glg. We also note that the system is particle-hole symmetric
and hencé&e(dP,n)=E(P,1—n).

However, the flux that is generated by the antiferromag-
netic skyrmions is staggered in which case the Hamiltonian
can be exactly diagonalized. The spectrum of this system
assumingd,= 6,= 0, is

e(P)==+2t :sin(2

In Fig. 4 we show a plot of the energy per site for different

0 )
) \/co§kx+2 co

s5-cosk,cosk, + cosk,. (12)

2

netic order. For the purpose of illustration let us consider the

staggered fluxes. The figure shows that the optimal flux igollowing purely kinetic Hamiltonian describing spinless fer-

either 0 or= 7 depending on doping, the only choices which
are consistent with time-reversal invariance.
From this analysis we conclude that it is reasonable whe

searching for minimum energy spin textures to consider con-

figurations supporting flux Qcoplanar configurationsand
+ . In the following section we will construct a mean-field
theory based on these observations.

A. Second-neighbor hopping

mions:

" H_p=—t> [cle,+He]-t" D [clea+H.cl,

(') (")
(13

where {{rr")) denotes next-nearest-neighbor pairs. We re-
mark that the sign of the nearest-neighbor hoppirgirrel-
evant as it can be changed by the transformatipr>
(—=1)'c,. This transformation leaves the sign ©f un-

As we have seen in Sec. lll, an antiferromagnetic spinchanged, and this sign is important. Without loss of general-
configuration strongly suppresses the effective nearesity, we assumeé=1.
neighbor hopping on the square lattice. However, a next- Another symmetry operation of interest is the particle-

nearest-neighbor hopping is compatible with antiferromag

01440

hole transformatior,— (— 1)’ch. Under this operation, the
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sign of the nearest-neighbor hopping is unchanged while th€oncerning the thermodynamic stability of the spiral states,
sign of t’ is changed, showing that next-nearest-neighboHu et al3?found that in a Hubbard model, for small dopings,
hopping breaks the particle-hole symmetry. Furthermore, théhe spiral phase is unstable against phase separéton
number operaton,—1—n, as particles are mapped into U/t=10) or domain-wall formation(for U/t=<10). For
holes. This symmetry was seen in Figs. 3 and 4. larger dopings, there are regions in the phase diagram, lo-
Let us defineE(n,t’) as the energy per site in the ground cated aroundJ/t=10, where the spiral phases are thermo-
state of Eq(13) with next-nearest-neighbor hopping Itis  dynamically stable. This indicates that, in thd model, for
easy to show that as long as<1/2, E(n,|t'|)<E(n, small dopings the spiral state is not thermodynamically
—|t’|) showing that for small fillings the energy is lower for stable. An interesting question is: if the] model prefers a
the positivet’ case. If we instead consider the region flux phase in some region of parameter space, can this ther-
>1/2 the particle-hole transformation discussed above immodynamically stabilize the system, preventing it from
mediately tells us thaE(n,—|t’|)<E(n,|t’|), showing that phase separation?
the negative’ case is favorable. At precisely half filling, the  Inspired by the recent interest in striped phases, in Sec.
energy is independent of the sign tf VIl we use our approach to model different domain walls
Assume that we consider the case1/2 andt’<O0. between Nel-ordered regions. These domain walls have an
Then, according to the discussion above, we would gain erappealing structure as they provide a smooth implementation
ergy if we could somehow change the sigrtafOne way of ~ of the antiphase boundary and at the same time provides the
accomplishing this would be to add a uniform flux throughelectrons in the doped channel with a fictitious flux.
the system, corresponding to one flux quanta per square
plaquette. This flux would not affect the nearest-neighbor A. Mean-field theory formulation

hopping, but it would change the sign of and therefore . . .
lower the energy of the system. Barford and Rirgeneral- We now look for different uniform phases of the effective

ized the result of Hasegaved al. to include thet—t’ model ~ Hamiltonian given in Eq(6). The coefficients™ " andK'™’
above and found that in the thermodynamic limit, the kinetic'€ Now given by

energy is minimized by a flux corresponding to one flux )

gglzntum per site plus or minus one flux quantum per par- T —tsi r2r extli A, .0, 2)12]

VI. HARTREE-FOCK THEORY OF UNIFORM PHASES , J
OF H ¢ K" :_Z(1+C030rr’)a (14)

It has been recognized for some tith& that a plausible . o _ _
response of a Heisenberg antiferromagnet to doping is t¥here€, denote:\s trje local staggered spin orientation at site
form a spiral spin wave where the dleorder parameter ro- r, and cog,,,={),- ), . With this definition co®,,,=1 for
tates uniformly around a fixed spin axis as one moves along Neel state and cog, = — 1 for a ferromagnet, whereand
a symmetry axis in the lattice. This, together with the factr’ are nearest neighborgl(Q, ,{), ,z) is the solid angle of

that the doped electron gas favors a staggered flux close {f¢ spherical triangle spanned by the vectfrs Q.. , and
half filling, indicates that a state containing an antiferromag-

netic spin texture that generates both a staggered fictitio The approach we will use is a simple mean-field th
flux and a spiral-like order could lead to an energetically PP we wilt use | 'mp n-fie eory

favorable state. assuming a fixed spin textufé),}, defined as the direction

In the remaining sections of this paper, we will addressof the quantization axis(), . We will assume tha#,,, = 6,
two related questions. First, we investigate the effectivewvhenr andr’ are nearest horizontal neighbors, aég
Hamiltonian, Eq.(6), looking for the spin textures that pro- = 6, when they are nearest vertical neighbors. First of all we
vide the energetically most favorable uniform states. In parperform a standard mean-field decomposition of the Hamil-
ticular, we are interested in whether or not the systentonian, allowing only for mean fields carrying no charge and
chooses to incorporate fictitious fluxes. Furthermore, it ismomenta zero oQ= (7, ). This results in the following
known that thet-J model has a tendency to phase separatetHamiltonian:

. 6, 0, @ g,
Huye= >, Wl —2t sincosk, + 08, Sin/cosky | o5 + sin sin-cosky o
keBZ’

J
— onL(2+cosb+ cosfy) A%~ (1+cosfy)cosk,A S, 03— (1+Cosby)cosky(AZ o+ A 0a) 1| Wy

+ oL (2+ cost+ costy)(A%)2—(1+cosb,)(AS)?— (1+coshy)[(AZ)?+(AZ)?]], (15)
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where we have introduced a two-component vecioy B. Instability towards spiral order at low dopings

— t i i
=(Cx,Cx+q)’, Mixing momenta 0 and). We have intro- Before turning to the numerical results, let us now discuss
duced the Pauli matrices as a basis for the22matrices e electron gas in Eq6) at low dopings, confining our

coupling thew’s, although we want to emphasize that they giscyssion to coplanar spin configurations and neglecting ex-

have nothing to do with spin in this context. The sum OVelchange effects in the Heisenberg term so that all order pa-

momenta is reduced to half the Brillouin zone, defined by,;meters exceph®, in Eq. (16) are zero. We choose a spin
BZ' ={|k|+|k,|=7:— m<ky,k,<m}. Furthermore, we A A

have only kept those four order parametétbat turn out to structure(), - €, , ;= cost, and ), Q’Ty gosay, a!lovymg

i . . for an asymmetry between thlxeandy directions. This yields
be nonzero numerically. These four fields are define o SO ) :
through a trivial system which is exactly diagonalized. The total en-

ergy per site as a function of densityand 6; (i=x,y) is
o 2 : given by
A"= (Vi 1),
keBZ’ “ 1
Eooa(M=1 2  &lb.6)

5 + ex=e€g(n)

AZ= D cosk( Vo, P,),
keBZ’ 1,

—ZJn (cosby+cosby+2), a7

3 _ +
Acx= E cosk(Wioa W), whereeg(n) is the Fermi energy corresponding to density

keBZ'
5 and
Ad= > cosk(W¥logWy), (16) 6, 0,
keBZ’ €Oy, 0))=—2t smEcostwL sm?cosky . (19

where the averagé- ) denotes a thermal expectation value

with respect to the Fermi-distribution of quasiparticles of oyr description of the spin order in terms of the@ngles
Hye . The order parametex® is simply the number of par- does not distinguish between spiral states and so-called
ticles in the system, while the other three correspond to hopcanted states. They both lack fictitious flux and both have the
ping induced through the termn,. in the effective Hamil-  same relative angle between nearest-neighbor spins. Only
tonian, Eq.(6). In particular, we note thaA® andA3,, are  second neighbor terms resolve this degeneracy. The differ-
diagonal and hence do not mix momehktandk+Q. Onthe  ence between these two classes of states is illustrated in Fig.
contrary,A2, does mix the two, and therefore carries a mo-5.

mentumQ. As can be seen from Edq15), this term only If we make a series expansion of the energy per site in
exists in the kinetic term when there is a nonzero staggeretérms of the doping we find the following expression to
flux that reduces the translational symmetry of the model. first order inx:

6 6 1
Ey, 5,0 ="— Zt( sinEX + sin%) X 73(1=2x)(cosby-+CoSh,+2) + O(x?). (19)

Remember that we have made the transformatior up a gap more effectively than a spiral along &) direc-
—6;, expressing the order relative to the antiferromagnetion, i.e., it opens up a gap at a larger part of the Fermi
instead of the ferromagnet. The energy is minimizedély surface. The first-order theory described in this section does
= 0y=2 arcsif2tx/J(1—2x)|=4tx/J for moderate dopings. not tak,e this fact into account. We note that the deviation
The dependence orx/J clearly shows the competition be- from Neel order is proportional to the doping and in the limit
tween the kinetic energy, which drives the system towardd—0, the deviation from Nel order becomes large for any
ferromagnetism, and the Heisenberg term, which favors arfinite doping. This is consistent with Nagaoka’s theorém,
tiferromagnetism. These results are consistent with those dftating that in the limitJ—0, a single hole doped into a
Schulz?® who also found this instability. Shraiman and Heisenberg antiferromagnet drives the system into a ferro-
Siggial”*® using a more elaborate method, also found thismagnetic state. The energy of the spiral state is givelE by
instability, but their spiral state has its pitch vector along the= —4t2x?/J(1— 2x) —J(1—2x) and hence we have for the
(10) direction rather than thél1) direction as is found here. second derivative of with respect to the fillingn,

In the Hubbard model, it is known from Hartree-Fock theory

that the antiferromagnetic state is stabilized by the opening E 812

of a gap at the Fermi surface, and Schfitzas argued that a S S (20)

modulation of the spin order along tti&0) direction opens an? J(1-2%)%

014403-7



MARTIN ANDERSSON AND STELLAN OSTLUND PHYSICAL REVIEW B 67, 014403 (2003

+ / o + / * mizes the free energy of the system. We will consider the
following two types of spin textures:
\ * / / * / (1) Coplanar states, described =0,
~ \ * + / + (2) m-flux state, described by, =0, , o=7. (22

FIG. 5. The difference between(dl) spiral state(left) and a

! \ b The argument for only considering=0 and® = 7 states
canting statdright) is illustrated.

was given in Sec. V; Fig. 4 showed that the energy per site

o __for a system of free fermions in a staggered flux is mini-
We note that the energy versus filling is concave for doping$yizeq by either of these two choices.

x<1/2, showing that the spiral state has an instability to-  ~,r numerical algorithms work within the grand canoni-
wards phase separation for dl-0. Recall that our expan- .| ensemble. with a free energ®(T, ) =(Hye)— TS

sion is only valid for smalll dopings, and in this regime we — N, assuming a fixed chemical potentjal Diagonalizing
expect the above conclusion to hold. Also, as mentioned €3fhe mean-field Hamiltonian E@L5), we obtain a set of qua-

lier, we cannot distinguish between the spiral- f‘lnd cantingjnarticle states specified by their momektaBZ', where

states within this approach. According to Kagteal™ quan- g7/ s the reduced Brillouin zone corresponding [to,

tum fluctuations seem to stabilize the spiral state compared | |<r, and band index. The band index refers to the two
J=m, .

to the.callnting stlatg. b ; q i | bands occurring because of the staggered fux{1,2}. If

A simi a; in? y;:; can be periorme ftohr f 'ngst? Of'r? 10 \ve then minimize the free ener@(T, ) with respect to the
fzero, 1.e.n " N b IS ca?e, rr:ﬁasurlrlﬁg W'f regpte)zc othe occupation numbers$,, of the quasiparticles, we find that
erronwkagng Ic configuration, the gnagg of E4i9) becomes they are distributed according to the Fermi-distribution. The
(now keeping terms up to second ordemin entropySintroduced above is defined through,

[ 6, @
n+ 2mwtn2\/ cos—cos= B
2952 S=—kg X [fralnfrat (1= fr)IN(1—Fy)],

a,keBZ’

2 2

Oy 0y
ngygy(n)= —2t| cosz- +cos=

1, 5 (23

+ ZJn (coséy+cosy—2)+0(n°). (21
wherea e{1,2} labels the two bands.

In particular, we note how the second term introduces a cou- N the analysis of the numerical data we would rather
pling between the spin order in tixeandy directions, allow- qon5|der the free energy as a fu_nct|on _of the number of par-
ing for an asymmetry betwee#, and 6,. Minimizing the ticles N than the chemical potential. This can be achieved
above energy with respect to the angles we find that the DY forming the Helmholtz free energy through the following
ferromagnetic state is stable up to a finite doping. At this-€gendre transformationfF(N,T)=G+ uN. Having the
point different things can happen dependingdén the sys- H_eImhoItz energy, we can use t.h.e Maxwell construction to
tem can pick a state whe®g=0 and6, = (or vice vers discuss the thermodynamic stability o_f the phases. '
i.e., the system organizes itself ferromagnetically alongxthe Analyzing the Hartree-Fock theory involves the following
direction while being an antiferromagnet along thelirec- prqcedure. Given a set of coupllng const_ants,-a spin configu-
tion. Another possibility is that the system chooses a pitcH&tion, temperaturg, and chemical potentiat; pick a set of
vector along the(11) direction with 6, =6, =2 arccos(2 initial values of the mean fields. Then solve for the quasipar-
—nm)t/an. Y ticles of Eq.(15) and calculate the new mean fields using Eq.

The picture we have obtained is therefore that starting atL®- The procedure is then iterated until the mean fields
zero filling, the system remains in a ferromagnetically or-"a@ve converged to a fixed point corresponding to a minimum
dered state up to some threshold value of the filling. Thid" the free energy. Since we are interested in the spin con-
threshold increases with decreasing values of the itio  fl9uration minimizing the free energy(T,N), we will
Above this threshold filling, the system can be a spiral spifnanually vary the spin configuration parameters searching
wave with pitch along(10) or (11). When the filling ap- [0 & global minimum of the free energy.
proachesi=1, a(11) spiral state is optimal which continu- In practice, rgther than choosing a certain value of the
ously merges with the N state asi— 1. But we find in all chemical potential, we choose a fixed filling, successively

cases that the system is unstable against phase separation justing _the chemi(_:al potential during the it_erations._ Since
small dopings. the chemical potential was assumed to be fixed during the

derivation of the self-consistency equations, we have to
make sure that the algorithm converges to the correct fixed
point. We have checked explicitly in several cases that the

Given the thermodynamic instability of the spiral spin correct fixed point is found. An advantage with this method
waves, we use the full Hartree-Fock theory and take intas that we can access all possible fillings, whether or not it is
account uniform phases that have a splay in theldeder a thermodynamically stable region. This is not the case if we
parameter. The aim is to search the space of spin texturespecify the chemical potential, since the functifn) is not
parametrized by 4y, 6, ,®), to determine the one that mini- invertible.

C. Numerics
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Let us start by considering a simple Hartree approxima- J=0.75; T=0.10; L=16
tion, see Figs. 6 and 7. This corresponds to puttA\{g 0 - - - -
=A3,=A2=0. Starting at zero temperature, we find that Antiferromagnet
within the Hartree approximation there is a critical vallje gtoaggﬁfa?d flux |

=1 of the coupling) below which the coplanar phase always
dominates over the flux-generating configurations. When

>J., there appears a region aroune-0.5 where the flux @ 1o i
states are the energetically lowest states, see Fig. 7. When tt /l\ AN

flux state minimizes the free energy, tleangles aren/2, e

i.e., the maximally allowed values. This state corresponds tc s
having the spins distributed along the equator with an angléx 000 | N N

/2 between two successive spins. The solid angle spanne
by this configuration covers half of the unit sphere, ensuring
® = 7. Thermodynamically, however, it seems to be favor-
able for the system to phase separate into regions consistin
of a hole-free antiferromagnet and a hole-rich coplanar struc-  _g4q . . . .
ture, respectively. If we consider small dopings<1), thed 0 0.2 0.4 06 08 1

angle of the optimal statecoplanay is successively reduced n

to zero ax—0. Since the maximum amplitude of the hop-  FIG. 6. The Helmholtz free energy for &J model with J

ping for a staggered flux-state|ig| =1/\/2 as determined by =0.75 at temperatur=0.1 is shown for the coplanar, staggered
o< /2, it clearly has a disadvantage compared to the coplaflux, and antiferromagnetic spin configurations. Solid lines corre-
nar states, Supportinbr|=t. The effect of this is that the spond to Hartree-Fock calculations, while the dashed lines corre-
coplanar state will always be favorable at fillings where thespond to Hartree calculations.

kinetic energy is dominant. However, as the filling is further

increased, the Heisenberg energy becomes more importasppeed up the calculations we have set the other six to zero by
and it becomes favorable to reduleé in order to improve hand. We find that besides the filling.¢), Aﬁy, andAgX are

the Heisenberg energy. At this point, if this occurs at a suitimportant for the flux phases, Whikkgx and Agy are impor-

able filling, the flux state can yield equally good Heisenbergant for the coplanar configurations.

and kinetic energies, while at the same time providing the Numerically we find that ther flux phase converges to a
fermions with a flux that can lower the energy even furtherstate where the nonzero order parameters Aii@: A3

We know from the work of Hasegavet al* that the energy  — A which leads to a quasiparticle spectrum of the form

of a system of free electrons on a square lattice is m|n|m|ze% =+t W’ where 7 andT are renormal-

when there is exactly one flux quantum per particle. Slnc‘i’zed values of the chemical potential and hopping amplitude,

our flux state carries a flux- per plaquette, it will be most : .
suitable close tan=1/2. The coplanar state, on the other respectively. The momentutn belongs to the reduced Bril

hand, carries no flux, and will therefore be optimal whren
=0 or n=1. This competition explains why the coplanar
state becomes energetically favorable again when movin¢
from a flux phase towards higher fillings.

In our calculations, a slight technical point should be
mentioned. When the system phase-separates into a coplan
part and an undoped antiferromagnet, the chemical potential
in the two subsystems are not equal. This can be seen, fg2
instance, in Fig. 6, where the Maxwell construction connects }
the antiferromagnetia;=1 point with a pointny=0.55 in
the coplanar phase. Singg is an end point of the free
energy curve, the derivatives ag andn, are unequal, and = _400 |
hence the chemical potential is different in the two phases.

J=2.00; T=0.10; L=16

—

Antiferromagnet
Staggered flux
Coplanar

-200

D. Results from Hartree-Fock calculations

We now apply the Hartree-Fock scheme to the problemto  _gq . . . .

understand whether or not exchange effects can resolve th 0 02 0.4 06 0.8 1
near degeneracies found in the Hartree calculations. The spin n
textures considered are those given by @3). Before start- FIG. 7. The Helmholtz free energy for 8J model with J

ing the .fuII calculations, we determined numerically whichlzz,oo at temperatur&=0.1 is shown for the coplanar, staggered
of the different order parameters are the important ones. Iniflux, and antiferromagnetic spin configurations. Solid lines corre-

tially there were tef® but numerically we find that only four spond to Hartree-Fock calculations, while the dashed lines corre-
are nonzero in the spin-configurations we have examined. Tspond to Hartree calculations.
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louin zone. At half filling, this dispersion relation has four J=1.25; K=2.00; T=0.10; L=16
gapless Dirac points where the energy vanishes linearly 0 T T T T

These points are located &f,(ky)=(* 7/2,~ m/2). Simi- Staggered flux
larly, for the coplanar states, the mean fields renormalize the / Colﬂanaf

hopping amplitudes so thaf = — u* (t,cosk,+t,cosk,).

If we look at a typical free energy plot, such as Fig. 6, we
find, as in the Hartree case, that for low fillings the coplanar‘éJ
configuration is the optimal, where at low dopings it merges,'\
with the antiferromagnet. For smallls the coplanar configu-
ration clearly dominates over the flux configuration for all i
fillings up to the point where they merge with the pure anti-
ferromagnet. Increasind brings the flux configuration ener- _150 | i
getically closer to the coplanar configuration. However, in
contrast to the Hartree case, it does not seem like the flw
state will become energetically favorable over the coplanar
states. Concerning phase separation, the picture is very muc =~ 2% 4 ) 0d 06 oY) y
the same as the one described above. For low temperature _ n

and dopings smaller than roughly 0.5, the system favors a FIG. 8. The Helmholtz free energy for &J model with J
phase separation into parts consisting of a hole-free antifer- ; 55 4 k=200 at temperatur&=0.1 is shown for the copla-
romagnet and a hole-rich coplanar state with doping nar and staggered-flux spin configurations. Note the small region

20'_5' . aboutn=0.53 where the flux configuration is energetically more
Figures 6 and 7 show the free energies for the best coplgayorable than the coplanar spin configuration.

nar and flux configurations plotted together with the free

energy of the pure antiferromagnet in two different cases, |t could also be that some other instability, such as stripe

=0.75 andJ=2.00. The energy scale is fixed by 1. The  formation, becomes dominant.

temperature is set ©=0.1 and the size of the system being | the following section we discuss stripes within this

considered is 18 16 sites. . framework. We know that stripes are antiphase boundaries
In Fig. 7, it is clearly seen how the flux phase dominatesyetween antiferromagnetically ordered regions. One way to

over the coplanar phase closerte-0.5 at the Hartree level, model this is to have a spin order twisting as the boundary is

but not in the Hartree-Fock approximation. crossed. Since we also know that the stripes are doped, it is

We have generalized thé-J-model by including a tempting to think that the twisting is such that a fictitious flux
nearest-neighbor Coulomb repulsion through a term

VZ NN . In our effective model this corresponds to re- J=1.25: T=0.10; L=12
definingK,, +—K,,»+V. When including this term, the order 2 : : : :
parameter corresponding to a charge-density wavé,
=3 gz (Vi ¥,), becomes important. As it turns out, a
positive value oV can favor the flux phase as is seen in Fig.
8, where we have shown the free energy versus filling fora 15|

|
(o]
o

T

1

-100 .

system described hy=1.25,K=4V/J=2.00, and tempera- N ‘g
tureT=0.1. As can be seen from this figure, there appears & = 2
narrow region arounti=0.53 where the flux phase has the = Ferromagnet Coplanar E
best energetics. IO £

Finally, in Fig. 9, we show a phase diagram as a function® £
of filling and couplingK. In these data we have fixed the <

exchange coupling=1.25 and temperature=0.1. The fig-
ure shows how a narrow region of a staggered-flux phase
occurs close to=0.5.

Summarizing our numerical results, we find that a stag-
gered flux phase can be energetically favorable compared t 0 ! ! . .
a coplanar spiral state. However, in the region of doping 0 0.2 0.4 0.6 0.8 1
where this happens, the system generically seems unstabic n
against phase separation. Even if this indicates that the flux £ 9. This figure shows the state that minimizes the free en-
phase does not occur as a thermodynamically stable phasedpyy depending on doping and the coupling constanWe have
our effective model, it has good energetics and it would behoseni=1.25, temperaturd=0.10, and the linear dimension of
interesting to investigate the effects of spin fluctuations inthe system id. =12. The data are based on Hartree-Fock calcula-
this picture. We expect that quantum spin fluctuations wouldions. As can be seen, a narrow region where the flux configuration
suppress the spiral spin order, but it is hard to tell whether ofs the best uniform state appears around0.53. The coplanar
not it will be removed completely or if it is only weakened. phase continuously merges with the antiferromagnet-a<.
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is generated. The picture is also appealing since it makes use
of the instability of the doped antiferromagnet towards phase
separation. We will return to this topic in Sec. VI jy

E. Circulating currents jx jx

An important issue to address is whether or not the flux
states are accompanied by circulating currents in the system.
To answer this question, we consider the current operator at

siter in the & direction, j s(r), which can be identified from ]y
charge conservation together with the Heisenberg equation of
motion,
ap(r) i FIG. 10. A site in the even sublattice is shown. Current conser-
js(H)—=js(r=0)]=———=——[Hex,p(r)]. vation takes the form 3(+j,)=0, which we also observe in our
2 LI Js gt 7 LMeitsP y
5=X,y numerics.
(24)
The result is a current operator taking the form culating currents. The energy cost of creating the magnetic
field should be added through a term
. i
J(S(r):_g(Tr,HEC:CHa_H-C-)- (295 _5 2
Emag_ q)mag' (27)
2 plaquettes

We decompose the current into uniform and staggere L .
b 99 q’he constanK is given byK=dh? uou,e?a®, wherea is

; _iu _1\riS ; _fi -
parts asl_,s'(r) J&‘T“( 1)’ 5(r). Usmg the mean-field de .the two-dimensional lattice constawtthe distance between
composition we find that the expectation values of the uni-,

. . . fhe copper oxide planes, apd the relative permeability. As
form currents vanish. The uniform currents are proportiona ; ; . X
was discussed in Sec. lll, this constant is huge compared to

to some of the order parameters that have been left out of t ; : X .
discussion. We know that our Hamiltonian is invariant underrﬁ%]e typical electronic energies. The total energy as a function

a lattice translation followed by a time-reversal operation,Of the electromagnetic flux is then written as
but this composite operation reverses the direction of the -
uniform currents which hence must vanish in a thermody- E(Pmag =E1-a(Pmag + Ema Prag) @8
namic expectation value. The staggered currents take th&hereE ;(® .9 denotes the energy of thel model when
form there is an extra fluxb .4 in addition to the spin-generated
flux. Minimizing the energy with respect to the electromag-
A S netic flux leads to an equation of the form(® .9
(Ix(r)= NaSN o A% +K® =0, where g(®Ppag =E{(Pmag. As we have
pointed out, the magnetic energy scKlés much larger than
the electronic energy which is of the order ma®( As a
. (26) consequence of this, the magnetic flux will be suppressed
and it is reasonable to pud,,;~0 when we solve for the
The currents are gauge invariant, and the formal lack of symeigenstates of the system. For this to be a self-consistent
metry between the currents in thendy directions is due to  solution there must be no currents in the system due to the
gauge choice. The order parameters are also gauge depapin-generated flux. This is true for the casks-0 or =
dent, and this restores the symmetry between currents in thehich we have focused on.
two directions, see Fig. 10.
Noting that in the case® == 7 and®=0, the Hamil- VII. STRIPED STRUCTURES
tonian is invariant under time-reversal and the one-particle
states possibly carrying current must be degenerate in en- Striped structures forming antiphase domain walls be-
ergy. In a thermodynamic ensemble, all states of the sam@veen undoped antiferromagnetic regions have been experi-
energy are weighted equally, and the currents from state®entally observed in the doped high-temperature
being related by a time-reversal operation cancel, leaving nguperconductor® We would like to understand if a striped
staggered currents in the physical system. For a flux not be2hase can be explored using the effectivé Hamiltonian,
ing an integer multiple ofr, this symmetry is lost and cir- Ed. (6). There are several facts that make this an appealing
culating currents appear. This has also been observed by ca@pproach. We have already seen in the preceding section that
culating the expectation values in E§6) numerically fora  for low dopings, the uniform(spira) states are unstable
state having a fluxb # . against phase separation. Using our spin-polarized approach
A proper treatment of this problem should consist of awe can create a smooth antiphase boundary, successively
gauge invariant coupling to a real electromagnetic flux inchanging the order parameter frofiz to —z. And, since all
addition to the spin-generated flé% Let ® g denote the  the holes of the stripe are located in the domain wall it could
real electromagnetic flux through a plaquette, induced by cirbe favorable for the system to generate a flux in this region.

<-s _2- ﬂ A2 (I)_As @
jy(r)= Nz S cyCOS; —Agsin-
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This can be accomplished using a spin texture, which simul-S, S
taneously generates the antiphase boundary. Furthermore, tt T RN —s ’ ‘ ooy > ~1 1 T
experimentally observed value of the doping of stripes in

La,_,Sr,CuQ, is 0.5 holes per unit length of the strip. 0 y 0 y

This is close to the region where we have seen thatflix

may be favorablésee Sec. V. Inspired by these nice prop- there is a site at which the spin order is in tke plane. In the

erties we have undertaken an investigation of striped phas%%nd-centered cageight), the antiferromagnetic spin order resides

within our approach. Our main ambition has been to gain af, e x-y plane at an imagined point between two sites.

understanding of what such a striped phase would look like,
and, in particular, whether a fictitious flux is exploited or not gifference between site- and bond-centered stripes is shown
in our model. The technique we use is a self-consistent Harn Fig. 12.
tree calculation. The reason for using a Hartree scheme in- Qur aim is to find the distribution of holes and spin tex-
stead of the full Hartree-Fock theory used in the precedingure that minimizes the energy of an antiferromagnet, when
section is the following. As we found in the preceding sec-we assume the holes are arranged in stripes. The configura-
tion about uniform systems; the flux phase was disfavored byions we consider have the structure shown in Fig. 13, con-
the inclusion of the exchangéock terms in the Hamil- sisting of a repeated structure of &leegions and antiphase
tonian. Therefore, if we are interested in the existence of alomain walls. The order parameter of the antiferromagnetic
flux phase, it is reasonable to start using a Hartree theory. ifegions changes sign every time a domain wall is passed.
we do not find any stable flux phase using this approximation We will assume that all the holes are located near the
it is reasonable to suspect that this result will not change bglomain walls. Following the notation in Fig. 13, we will
the inclusion of the Fock terms. On the other hand, if a fluxdenote the width of a single antiphase boundary¢byand
phase is found, we should check whether the flux phase suthe width of an antiferromagnetic region loly The average
vives the inclusion of the exchange terms or not. particle density in the domain wall will be denoteg, and

Let us consider a system with an antiphase boundarye will also use the number of holes per unit len¢ong
along thex axis, and with the antiferromagnetic order being x) of the domain wall,6=(1—ny)¢. Assuming an average
+z aty=o and—z aty=—o. Two possible scenarios for filling n of the system, we havef(-d)n=¢ny+d.
an antiphase spin order in a stripe come to mind. First, the Before writing the total energy of this configuration, we
amplitude of the antiferromagnetic order parameter may simmake the following observations. We note that the system in
ply decrease, passing through zero and becoming negative b 13 is build up from unitsantiferromagnets and domain
one passes through the stripe. This scenario preserves thells) and we would like to write the total energy in terms of
rotational symmetry about the spirexis. The second possi- the energies of the individual units. To do this we define the
bility is that the Nel order parameter starts to tilt as one energy per site of an antiferromagnetic uriiar, as the
approaches the stripe along thexis, lying within the spin  energy per site of the antiferromagnet with periodic bound-
x-y plane at the center of the stripe and then rotating towardd"y conditions in the- andy directions. The energy per site
the positivez axis as one goes tp= . Introducing holes in  Of the domain wall as a function of the number of holes per
the domain wall, the amplitude of the spin order will de- unit length of the stripeEy(5), is similarly defined by put-

crease as it depends on the partide density throsgh tlng periOdiC bOUndary conditions on the domain wall. In this
—1n,0),, but it will not vanish. An illustration of these two case it is important that the edge of the domain wall i€INe

scenarios is shown in Fig. 11. From an experimental point 0f)rdered and undoped. If this condition is not fulfilled, there

view, Tranquada and co-workers arg(r& that their results will be surface energies associated with the gluing of a do-
spea{k in favor of the first scenario main wall to an antiferromagnetic region. It is easy to see

Four different stripe geometries with preserved uniaxialthat minimizing the total energy of the system is equivalent

symmetry come to mind. First, stripes can go along either th® Minimizing the energy per introduced hole in the domain

(10) or (11) direction and we can choose either site- or bond-Wa”'

centered stripe, all in all four possible combinations. The

FIG. 12. To the left is shown a site-centered stripe, in which

— .

S, Sz % \gi %

' ,.‘HH o~ 11 d M H
R P 41 H E

0 y 0 y

FIG. 11. Two possible spin orders making up an antiphase
boundary between two Né&ordered regions. Thg coordinate is FIG. 13. Our model of the striped phase is shownand B
orthogonal to the direction of the stripe, age-0 corresponds to  denote the two antiferromagnetic phaseder parameter-1) and
the center of the stripe. The left part of the figure shows the antiin between eacl andB pair is an antiphase domain wall reversing
ferromagnetic order parameter passing through zero, while the righhe sign of the antiferromagnetic order parameter. The figure also
part shows our scenario with the order parameter tilting as onéntroduces¢ as the width of the antiphase boundary, ahds the
passes through the stripe. size of the antiferromagnetic layers between the stripes.
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Our approach will therefore be to consider a single do- L,=21/q,
main wall and minimize the energy per introduced hole with
respect to the parameters describing the domain wall. These
parameters contain spin-texture related paramdishsch
will be introduced shortly, the number of holes per unit
length of the stripe §), and finally we have the four options
for the stripe geometry; site/bond-centered and direction
(10)/(12).

Note that the definition of is somewhat arbitrary in the
sense that there, in practice, may be a smooth crossover from J o/
the domain wall to the Nad-ordered region. For this reason,

5 is a better measure of the stripe doping thepwhich i SN N N .
depends org. Knowing é and &, the stripe periodicity is Vb
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26
I=2(¢+d)= e (29 FIG. 14. A sketch of the N order parameter in the neighbor-

hood of a stripe constituting an antiphase boundary between two

where we have introduced the average doping of the systemegions with perfect N&l order. All spins are unit vectors. In the
x=1-n. Thus we find that for low dopings, the separationfigure we have also indicated the length scéleL,, the period
between the stripes scalesxas'. This description is valid as along thex direction, is related tay, throughq,=2m/L,. This
long as the stripes remain separated so that we can neglerticular spin configuration is clearly site centered.
stripe-stripe interactions. This condition is fulfilled as long as
x<< 8/ ¢. We note that as we change the overall doping of the In addition to the discrete choice of bond- or site-centered
system, the structure of the isolated stripes remains, at leastripe, there are two free continuous parameters in(&n;
as long asd>1. Thus the wave vector describing the spiné, which determines the characteristic width of the spin-
order is 27/l, and the wave vector of the charge order isdomain wall, andy,, which is the pitch of the rotation of the
twice that, i.e., 47/l. spin about the axis along the length of the stripe. Figure 14
illustrates this construction.

Making an apparently trivial point, which we return to in
) o _ ) the following section, we note that there is no choice §or
~ Let us start with a description of how a sindIE)) stripe  and g, which unwraps the antiferromagnet into a ferromag-
Is modeled. Although we are interested in infinite domallnsnet; takingg, = 7 will create a ferromagnetic channel in the
in the numerical simulations we are forced to work with center of the domain wall, running along the stripe, but will

A. Stripes in the (10) direction

finite stripe width, which we denote by the integerWe will  not affect thez component of the R order parameter.
assume the local spin orientation of the stripe to be described \when writing the Hamiltonian of this system we need to
by a unit-vector field}, as fix a gauge. If the spin-configuration around a square

plaguette in terms of spherical angles is given b§;,4),
0,=(—1)"(sing,cosg, ,sing,sing, ,cosh,), (30 (7= 0,41+ m), (02,¢,), and (@— 61, p,+ ), the prod-
uct of the hopping elements around the plaquette is
where the spherical angles and ¢, are functions of posi-

tion. The spatial dependence of these angles is assumed to 0,— 0, . 1— b
take the form To1T12T23T30= — SiN 61SiN O,Sir? 5 sir? >— =0,
_ w+1-2y a1 (32
6 =arccostan 2¢ ' @D showing that the flux through a plaquette is exactly equal to

7. The texture is therefore quite natural for the following
b= X. reasons. It is periodic and has a uniform flux per square. The
flux 7 per plaguette favors heavily doped regions near the

The construction can be thought of as a cylindrical projectiorcenter of the stripe, while the effective hopping in theeNe
(also known as Mercator projectipiof the lattice into the regions, where the system is undoped, is vanishing. With flux
spin sphere by associating latitude and longitude withxthe = 7r through the plaquettes there is no broken time-reversal

andy coordinates, respectively. symmetry, and there are no circulating currents or induced
We are interested in the limiw—c. This limit has two local magnetic fields.
discrete values, depending on whetheis even or odd. For In order to perform our calculations, we use a mixed rep-

odd values ofw the spin order of Eq(31) is such that the resentation using momentum space inxttérection and real
spins aty=(w+1)/2 are lying in thex-y plane, and hence space in theg direction due to the translational invariance of
the stripe is site centered. If we instead consider an evethe system along the direction. The length of our system
integerw, the center of the stripe is located in between twoalong the stripe will be denoted Hy. Furthermore, we as-
rows and the stripe is bond centered. sume that the number density at a sitenly depends on the
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y coordinate, i.e.n(r)=n(y). We will use the following Hartree decomposition of the interaction term in(gg.

nrnr’:n(y)nr’_"nrn(y,)_n(y)n(y’)- (33
The effective Hamiltonian can then be written as

w—1

w J w
Hou= =2t 2 (1) cosk) i(y)niy =t 2 7y (V)2 [y s1CkytHel+ 7 2 [hy(y)—1]
y=1 k y=1 k y=1

w—1

J
X2 20N =N(y)21+ 7 2 [hy() =112 [Nyn(y+ D +nean) -nyny+ 11 (34

where we have introduced the coordinate-dependent cowsecond row of constantin the lattice is shifted to the right
pling constants by half the lattice spacing in thedirection. Moreover, if we
L denote the even and odd sublatticesfbgndB, respectively,
hy(Y)=Q- Q15 we find that all points belonging ta reside on points having
odd values ofy, while those belonging t@ are assigned
L+hy(y)|*? even values of. This is shown explicitly in Fig. 15.
(Y)= 2 : The stripe is directed along theaxis in the coordinate

) system defined in Fig. 15, and the spin configuration is given
and the analogous relations foy(y) and 7,(y). The factor

(—1)Y in the hopping term of Eq(34) comes from the flux by

+a through each plaquette. In addition to the terms in Eq. Q,=(-1)Y(sin6,cose, ,sind,siné, ,cosd,).  (39)

(34), we have also added a local potential at the upper and ' ' D r '

lower edges of the system to simulate the effect of the adWe note thatg,=0 and 6,= = correspond to the two ¢

joining antiferromagnetic region. Without this potential, states, and hence we cdas in the(10) case interpolate

which has the form between the two by continuously changifgacross the do-
main wall. To be explicit, we will use the following param-

(39

J etrization of the spherical angles:
Hoe= =5 2 [MkatNewl, (36) g ?
w+1—2y
the system may gain energy by expelling the holes to the 6, =arcco tanhT '
edges where they break fewer antiferromagnetic links. The
total Hamiltonian is then given by X, y odd .
H10=Hpukt Hp.c.- 37 " laux+1/2), y even. (40

The numerical calculation involves solving self- Note that we have shifted by 1/2 for eveny values to
consistently for a charge profile describedry), where account for the shift of lattice points in the direction as

n(y):pzk (Ney), (38)

and the expectation value is with respect to the Fermi distri-
bution of quasiparticles dfl ;. We use a chemical potential

to control the overall number of particles in the system. The
chemical potential is determined during each iteration of the
self-consistency equation, E@®8). Our calculations are per-
formed at temperatures close to ze+=0.01t, and the
guantity we focus on is the free energy as a function of the
number of particles and the parameters describing the stripe,

F(T,N)=(H;9—TS. FIG. 15. The geometry used for the descriptior{If stripes is
shown. The original square lattice has been tilted 45°, and we have
B. Stripes in the (11) direction labeled each point with a coordinate,y). These coordinates are

not to be confused with the coordinates in the original, untilted
The analysis of théll) stripes is similar, although the square lattice. Each lattice point has also been marked with the
geometry of the stripe introduces some complications. Irsublattice A or B, to which it belongs. The domain wall is directed
Fig. 15, we have shown the geometry used for these configurong thex axis in this coordinate system, and coupling constants
rations. Due to the tilting of the lattice, we note that everywill depend on they coordinate only.
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We find that the flux is uniform along the direction,
while it depends on the-coordinate of the plaquette to
which it belongs. Figure 16 also fixes a gauge, defined by the
phasesp, . As we can see from the figure, there is one phase
more than there are gauge invariant fluxes. Therefore, we can
choose a gauge in whicih; =0. Next, we consider the flux
@, which is determined byb,= ¢,+ ¢,. More generally,
we find ®y=(—1)*"*(¢y+y.1). In this way we can
solve for the phaseg, in terms of the fluxes, finding

y
FIG. 16. The lattice of thg11) domain wall is shown. The —(—1)Y ® 41
structure of the flux pattern is given by tldg,’s. In particular, we ¢y+1 (=1) E v (42)

find that the flux is uniform along theaxis. We have fixed a gauge . . . . . .
by defining the phases associated with the links in the lattice. Th&lumerically, given the spin configuration of the domain wall

gauge is chosen such that all non zero phases are on links conne¥f€ calculate the fictitious fluxes;, , using Eq.(7) and then
ing sites with the same coordinate. use Eq.(41) to find the appropriate phases that enter the

Hamiltonian.
discussed above. It is also important to stress that, contrary We define the amplitudes of the hopping and Heisenberg
to the (10) case, it is possible to recover a ferromagneticinteractions as
configuration by a suitable choice of parameters, namely,
making ¢ large and takingy,=2. This corresponds t@, hy(y)=0, .- Q
=x/2 andq,=27 for odd y's and g,= for eveny’s, Y Xy Ehey L
respectively. The effect of the rotation duedpis therefore R R
to rotate all spins belonging to sublattiBeby = about the ha(Y)=Qyy  Qyp(—1yy+1s
spin z axis. The result is a ferromagnetic configuration,

y'=1

where all spins point along the positixeaxis. This differ- 1+hy(y)| 2
ence between thé&l0) and (11) stripes reflects the fact that Ty(y)z(—y> ,
the local field along either side of @1) stripe is ferromag- 2
netic whereas in th€l0) case it is antiferromagnetfe.
The next issue we will address is the properties of the 1+hgy(y) |2
fictitious fluxes generated by a certain spin configuration in Td(Y):(T , (42
the domain wall. Figure 16 shows the flux pattern that is
generated from the spin configuration in E40). which allows us to write the bulk part of the Hamiltonian as
w—1 w—1 J
Hou= 2 20 (e 0+ rg(y)el ey eyt Hed+ 2 7Ty +hay) =2
X 24 [MiyN(y+1) +ngyan(y) = n(y)n(y+1)]. (43)

For the same reasons as in {€) case, we will add a local The numerical procedures are completely equivalent to those
potential to the vertical boundariésote that each boundary used in thg10) case.
site connects to two sites in the environment

C. The optimal stripe

_ According to our model, the physically relevant stripe
Hoo= J; [t Ml “4 configuration is that which minimizes the domain-wall en-
ergy per introduced hole. We will use the undoped antiferro-
magnet as an energy reference state, this being the optimal
state at zero doping. As we dope holes into the system, the
total energy of the domain wall will be a discrete function of
the geometry[site or bond centered and directighO) or
Hi1=Hpuk+Hpe.- (45  (11] and a continuous function &}, g,, andé. Note that

The total Hamiltonian,H;, is the sum of the bulk and
boundary contributions, i.e.,
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J=0.40; r=0.00 ; L=24 : 4
Site centered (10) é}

Bond centered (10) -
— Site centered (11)

Bond centered (11) ] _é}__@.--@..--@---e}-—-@---é:} O 36%doping

-0.25

FIG. 18. The structure of the optimél0) stripe forJ=0.40 is
shown. Arrows indicate the polarization of the spins, and the radius
of the circles indicates the amount of hole doping. Small circles
correspond to 4% hole doping, while large circles correspond to
- 0 L ' . 36% hole doping. Undoped regions lack circles.

05 1 15
#Holes per unit stripe length &

-0.75

Energy per hole E(8)/(3L)

™~ Optimal stripe configuration

Since the optimal domain wall is so narrow, the product of
FIG. 17. The energy per hole is shown as a function of thethe effective hopping-amplitudes around any plaguette in the
number of holes per unit stripe length, An investigation of the lattice is approximately zero. Thus we must conclude that the
curves shows that the minimum occurs for the site cent¢t®l  system does not take advantage of the fictitiausflux
stripe at6=0.46. through the plaquettes.
As Fig. 17 shows, the bond-centerétd) stripe is ener-
since we work with a chemical potential, the number of holeggetically very close to the optimall0) stripe described
in the domain wallNy,, is not restricted to be an integer.  above. An illustration of this domain-wall configuration is
We label this energye(Ny,,dy,&). However, the physi- shown in Fig. 19. This(11) stripe is characterized by
cally interesting quantity is the number of holes per unit=0.71, q,=2, and £=0.73. It is important to point out
stripe length,0=Ny/L. We define the domain wall energy that q,=2 is not equivalent tay,=0 sinceq,=2m per-

per hole according to forms ar rotation about the axis of one of the sublattices,
as we discussed in the preceding subsection. Furthermore,
E (8 _ E(OL.0x.&) —Enr 46 we want to emphasize that this stripe configuration does not
h(8,0x, ) : (46) . T
oL induce any fictitious fluxes and consequently there are no

currents that could energetically disfavor this configuration.
Since the optimal10) stripe is very close in energy to the

(11) stripes it is interesting to investigate what happens as we

tune the strength of the Heisenberg interactidnNumeri-

cally we find that slightly increasing aboveJ=0.40 favors

the (10) stripes compared t@ll) stripes, while decreasing

As we argued in the beginning of this section, to find the
optimal stripe configuration we have to minimize this func-
tion with respect tos, q,, and¢ for bond and site centered
(10) and (11) stripes.

Turning to our numerical results, we have initially consid-

ered a system with a Heisenberg couplilwg 0.40, where f : : . ' .
L . avors the(11) stripes. There will be a crossing point slightl
the energy scale is fixed biy=1. This value was chosen belowJ=e(0.4)0, aFt) approximatelyi=0.36, whgefe the(l% y

because it corresponds to a value of the exchange couplinsq : . :
: . Stripes have lower domain wall energy than thé) stripes.
constant which has been used by others to model the high- 'Fl?here is a technical point which isg)i/mportant wheﬁ look-

temperature superconductqrs. In Fig. 17 we shqw the Optlm%g at the energy per hole as a function dffor the (11)
energy per hole as a function éffor the four stripe geom-

etries, i.e., we have plotteffl,(5) =ming £x(5,0x.4). W N e S

From Fig. 17 we can read off the optimal stripe configu- "~ " . o e o Undoped
ration, which will make up the domain walls in the striped &’ g X ) X o 5% doping
phase. As is indicated in this figure, the optimal domain wall @, @Y @, @« @r @' O 31% doping
is a site-centered stripe along tl&0) direction havingé RN N NN i
~0.46 holes per unit length of the stripe. This agrees with, & & & & O31%doping
results from DMRG calculations by White and g % BB Q( BQ © 5% doping
collaborators? who find stripes withd=0.5 for J=0.35. = 47 T T T TN Undoped
Furthermore, the experimental data indicate that0.5.3 P
We also find tha is very small for this optimal stripe, i.e.,  FiG. 19. The structure of the optimal confinétll) stripe for
there is a sharp spin-domain wall with a single tilted row of 3— ¢ 40 is shown. Arrows indicate the polarization of the spins, and
spins. This row is ferromagnetically ordered as we fqpd  the radius of the circles indicates the amount of hole doping. Small
=, and the holes are tightly confined in the neighborhooctircles correspond to 5% hole doping, while large circles corre-
of the domain wall. The spin and charge profiles are showrpond to 31% hole doping. Regions being approximately undoped
in Fig. 18. lack circles.
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configurations. As we mentioned in the preceding subsection__ ,
it is possible to unwrap thel1) domain walls into ferromag- y=3 n n T (I)ly
nets. If we follow the(11) curves in Fig. 17 to larger values a, o B o % 0 CIg
of 6 we find that the energy successively decreases belov
what we called the optimal stripe configuration. The configu- o B, % B,
rations that correspond to these low-energy states are close V=4 0 0 0
ferromagnetic and with an almost uniform charge distribu- o)
tion. Physically this corresponds to a global phase separatior 0 ! 0 op 0 ¢§V
into_ an u_ndoped N region and a he_avily_doped fe_rromag- () B, o @
netic region, i.e., the phase separation discussed in Sec. Vy=1 " w = 4
Let us therefore compare the energetics of the optirhal
domain wall and the global phase separation. FIG. 20. Our gauge choice for the next-nearest-neighbor hop-
At the minimum ofE(8) in Fig. 17, we can read off the ping. The gauge choice on the horizontal and vertical links is the
energy per hole of the optimal domain wall &8, same as the one used previously for ti€) domain walls. The
=—0.76. This is to be compared to the energy per hole foright inset defines the fluxe®y, through the four sub-plaquettes of
the totally phase-separated stdig~—1.06 for the same @& square plaquette.
value ofJ. This number was obtained from a Hartree calcu- 42
lation using Eq.(17) on a system of the same size as thedoPed or ellectron dopéd** A hole-doped system corre-
stripe grid. This clearly shows that, within our approximationSPonds tot’<0, while an electron-doped system heis
at least, phase separation is energetically advantageous comQ- [N an antiferromagnet, the presence of a second-
pared to domain-wall formation. In a real system, the energy*€ighbor hopping is important since it allows for holes mov-
of the phase-separated state is raised due to the Coulond thro_ugh the subla_ttlces without disrupting the _antlferro-
interaction between the holes and this could make the dgnagnetic order. Typically, the value dof used in the
main wall thermodynamically stable. literature for describing a hole-doped antiferromagnet’ is
The cuprates seem to favor the formation of rather narrow™ — 0.3. . S ] .
stripes, not phase separation. We will take the point of view |f we consider the limit in which the nearest-neighbor
that there is some mechanism, not captured in our approachOPPINg is completely frozen out, and there is only second-
such as a long-range Coulomb interaction, which prevent§€ighbor hopping, i.e.,
grouping all the holes together and instead favors the forma-

tion of stripes on some intermediate length scale. Therefore, Hy_y=—t" > [Tr’r,c:,cr+ H.c]
we will only consider the stripe configurations that are local 'y
in nature. 3
+7 2 (@-0u-Dnn,, (48)

D. Including next-nearest-neighbor hopping ()

An unphysical feature of our simulation is that since hop-W& Nnote that the transformatiog—(—1)*c, leaves the
ping between the antiferromagnetic spins is forbidden, thé—|e|senberg term L_mchanged, wh!le th_e s_ec_ond-nelghbor term
effect of second-neighbadiagonal hopping becomes im- changes S|9n. T.hIS shows that in thls I|m|t .the asymmetry
portant in the Nel state. In our approximation of the Petween=t’ vanishes. Hence, the sign tfis irrelevant in
t-Jmodel, hopping is frozen out for this state, so that electrorf'® Neel-ordered regions, and it is only in the region where
transport will be dominated by any second-neighbor terms if"€ SPin twist occurs thatandt’ are simultaneously present
they are nonzero. This term will permit electrons to diffuse@d accordingly, the sign df is important. _
into the Neel state and could therefore be expected to delo- Introducing next-nearest-neighbor hoppings as in Sec. IV

calize the holes from the stripe center. We will extend our@!lows for new closed particle orbits in the lattice, and hence
model of the (10) stripes by adding this hopping to the also for new gauge mvarlam fluxes_. Thgre are foyr of these
Hamiltonian through a term, fluxes an_d they are de_flned in the right inset of Fig. 20.
Investigating the spin structure of Eq80) and(31), we
find that the four fluxe§®}}¢_, associated with row are
Hpnn=—1' 2 [T;r,cf,cr+ H.c], (47) determined by a single paramety, according to
"))

. _ OI=Vv,, PY=+7-V¥,, >OI=-V,,
where ({rr ")) denotes next-nearest-neighbor pairs. As be-
fore, the calculations reported below are performed with the PY=Fm+V,. (49)
Heisenberg couplingd=0.40 and at temperatufe=0.01 in . ] . ] ]
terms of energy units set by=1. In this section, we will _Recal_lln_g our topological constraint, EGL0), we find that it
only consider the effect of second-neighbor hopping on thdS satisfied as
(10) stripe, since this was found to be the optimal stripe
configuration forJ=0.40.

It has been argued in the literature that the sigtf @f the ~ with n=*1, which is what we expect for an antiferromag-

high-T. cuprates depends on whether the system is holeet. Which sign applies to a certain plaquette depends on the

DY+ BY— DY~ PY=2mn, (50)
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sublattice associated with the plaquette as well as the spicompletely spin polarized. The effect of such a spin texture is

configuration. Figure 20 defines a gauge by introducing theo generate a fictitious topological flux through the lattice. In

phasesy, and B, . Using Eq.(49) it is easy to read off the this paper we have extended the discussion of a previous

parametersy, and B, from Fig. 20. Doing this we findv,  papet concerning the properties of these fluxes.

=—pB,="V, for odd values ofy, anday=—fB,=* 7V, Keeping in mind the result of Hasegawaal,* where it

forAevenyhs. b i work i is shown that the energy of a free-electron gas on a square
S In the nearest-neighbor case, we will work In MOMEN-| e is minimized when there is one flux quanta per par-

tum space in the direction, while keeping the real space ticle, the possibility of the system prefering a flux-generatin
description in they direction. We note from Fig. 20 that the ~ . P Ity Y P 9 9 9
pin configuration does not seem remote.

phases of the links form a staggered structure, doubling thal To check the ab h h ‘ dH
size of the unit cell, and introducing a scattering between 10 check the above theory we have performed Hartree-
states of moment andk+ 1. To deal with this we intro- F0ck mean-field theory calculations for the system. In the

duce the same two-component wave functions as was used fgtree approximation it seems like the system prefers to
Sec. VI. form a flux-phase for certain choices of doping and coupling

Using this model we have investigated how the optimalconstants. However, when the exchange-terms are included
stripe evolves as the second-neighbor hopping amplitide this effect seems to vanish and the coplanar spiral phase is
is changed from zero. For small valuestof approximately, —energetically more favorable than the flux phase. Introducing
—0.3<t’'<0.15, the structure of the stripe is largely un- @ nearest-neighbor Coulomb repulsion, it is possible to make
changed. It is still described hy, = 7 and vanishingt. The  the flux phase energetically most favorable also with the ex-
optimal number of holes per unit stripe length also remainshange terms present. However, the calculations indicate that
(6=0.46). All that happens is basically that there are smalfor a wide range of dopings, these uniform phases are un-
redistributions of the holes within the stripe. stable against phase separation into an undoped antiferro-

Concerning the tendency to global phase separation wmagnet and a highly doped coplanar spiral phase. Thus we
have considered the behavior Bf,(t')/E,{t’), i.e., the have to conclude that from a thermodynamic point of view,
ratio of the energy per hole of the domain wall and phasewe do not expect to find a flux phase in the phase diagram of
separated states, respectively. We find that this ratio dghe model we have considered.
creases as we increas’ejslightly fron) zero, and decreases  The main part of the paper has been concerned with the
whent’ becomes negative. This indicates that a negative generalization of this construction to describe stripes, di-
favors the domaln_wall configurations compared to the_ 9l0yected along either théL0) or (11) direction of the lattice.
bal phase separation but, at least for smallthe domain  These stripes are appealing as they provide a smooth realiza-
walls are still unstable against phase separation. tion of an antiphase domain wall, continuously merging two

Whent’ becomes larger than 0.15, the holes diffuse into\ae|_ordered regions with opposite signs of the order param-
the antiferromagnet and widens the domain wall. The optiv. The holes naturally reside within this domain wall
ma_1| nu_mber of holes per unit strlp_e length INCréases. Th%\/hich generates a fictitious flux that further can reduce the
spin twist¢é becomes nonzero, making the antiphase bound-

arv wider. Since we are working with a finite widdof the ~ c1er9Y of the holes in domain wall. This construction pro-
y wider. 9 ... vides an appealing theoretical connection between the forma-
domain wall, we get problems when the holes start diffusin

. %ion of stripes and flux phases. Contrary to what is assumed
away from the center of the domain Wa"'. For our model toin the more common view of stripes, the spins along the
3;;3“2}];\'%%%Stegelli'rifstr\ﬁtrgggl o(la%m:;n \'/I'vlili"s Iisttgr:avoi tripes are ordered in our approach. Measuring a long-range
}dop . ges. . -.5pin correlation along the stripe would support our view of
surface energies when gluing together the domain wall Wm{he stripe. Furthermore, if a smooth domain wall is present

a Neel region. . described by the wave vectar/&, this might be visible in
In the case relevant for the hole-doped cuprate planes, I-8pe scattering characteristics of the system

t'<0, we find that decreasing the value téfbelow —0.3 ; _ ) ; : .
keeps the structure of the stripe rather intact in the sense that Using J=0.40, we find that the optimal antiphase domain

& remains vanishingly small and that the holes are localize all is site centered and runs along 1) direction of the
ngly : ttice. The structure of this domain wall is such that there is
close to the antiphase boundary. The optimal number o

holes per unit stripe length does however change, it is re- sharp spin twist, basically only affecting a single row of
q dpg' is d P dg =05 f d?h’t th spins, which aligns the spins ferromagnetically in a one-

uced as 1S cecreased, €.9., At=—4.owe lind that € 4,0 hsional channel. The doping of the domain wall is ap-
energy per hole is minimized by=0.38. However, if we

: . o ; proximately 6=1/2 holes per unit length of the stripe. All
further decreast the optimal dopings will rise again as we . : :
reacht’~—0.7. For such large negative values t6f the holes are tightly bound to the domain wall, spreading over

. three rows of lattice sites. Due to the narrow spin structure of

holes will spread into the antiferromagnet just as we found Nhis stripe, we found that the system does not exploitzthe

the positivet” case. Our numerical calculations indicate thatg - gener’ated through each plaquette by this domain-wall

¢ remains small, i.e., the spin twist still occurs over a Veryconfiguration.

short distance. We also find that stripes directed along il14) direction

are energetically very close the optiniaD) stripe, and if we

decrease) they will become the most advantageous domain
We have considered an effective version of the two-walls atJ=0.36, while increasing favors the(10) stripe.

dimensionak-J model where the electrons are considered ag.ooking at the structure of the optimél1) stripes we found

VIll. CONCLUSION
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that they do not generate any fictitious flux. merical DMRG-calculations on dopedJ modelst®12 We
Comparing the energetics of the domain walls with globalalso find in agreement with previous studies that the domain
phase separation, we find that within our approximation thevalls are sharp, consisting of a single row of lattice sites.
global phase separation is favorable. Furthermore, we have There are a number of questions that are left unanswered
incorporated second-neighbor hopping in the casd€16f  at this point, and which we believe are interesting to further
stripes. For small values of this hopping, the structure of thénvestigate. Concerning the next-nearest-neighbor hopping it
optimal domain wall remains, while at larger values the holesvould be interesting to investigate more thoroughly how it
starts spreading out, widening the domain wall. Comparingffects the tendency towards global phase separation, and if
our results with previous studies of stripes, we find that ouiit can stabilize the stripes. Furthermore, it would be interest-

stripes (even though they are not thermally stable in ouring to further examine the effect of this hopping on the struc-
first-order approaghhave the same number of holes per unitture of the stripes, and also investigate its effects on(thg
length as those found experimentally and in elaborate nustripes.
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