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Staggered flux and stripes in doped antiferromagnets
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We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux
in the doped two-dimensionalt-J model. First we consider the properties of uniform systems and then we
extend the investigation to include models of striped phases where a fictitious flux is generated in the domain
wall, providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics
of uniform systems with stripes directed along the~10! and ~11! directions of the lattice, finding that phase
separation generically turns out to be energetically favorable. In addition to the numerical calculations, we
present topological arguments relating flux and staggered flux to geometric properties of the spin texture@S.
Östlund and M. Andersson, Phys. Rev. B65, 094408~2002!#. The calculation is based on a projection of the
electron operators of thet-J model into a spin texture with spinless fermions.
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I. INTRODUCTION

It is well known that topological spin textures are impo
tant in certain quantum Hall materials, the quantum H
ferromagnets.2,3 Considering a free-electron gas in a ma
netic field, the cyclotron gap exactly equals the Zeem
splitting between the spin bands. Therefore, as long as
filling factor is less than 1, the ground state is formed
filling up the lowest, spin-polarized Landau level, leading
a ferromagnetic ground state. This ferromagnetic grou
state is further stabilized when Coulomb interactions
taken into account.

However, in a material like GaAs, the effective mass
the electrons is strongly reduced and this, together wit
gyromagnetic ratiog.20.4, significantly changes the rati
between the Zeeman energy and the cyclotron gap. The
man energy is now small compared to the cyclotron gap
nontrivial spin configurations are possible within the qua
tum Hall state at intermediate temperatures,kBT.gmBB
!\vc . An electron moving in such a polarized spin textu
picks up a topological Berry phase which looks as com
from a ~fictitious! magnetic field. Since we know that, in th
quantum Hall system, magnetic flux is related to density
reach the conclusion that topological spin textures carry e
trical charge, leading to an association between topolog
and electrical charges. The exact relation is given byQe
5enQtop , whereQe and Qtop are the electrical and topo
logical charges of the texture, respectively. The size of s
a topological spin texture, or skyrmion, is determined by
competition between the Coulomb energy, favoring la
skyrmions, and the Zeeman energy, favoring small skyr
ons.

As it is known that an external flux through a system
tight binding electrons on a lattice can lower the electro
kinetic energy,4 it is tempting to find an internal mechanis
of the electron gas which could generate such a flux. Hav
the quantum Hall ferromagnets fresh in mind, one possibi
would be the formation of a spin texture in which the ele
trons move. The question is then in what kind of syste
such a spin texture could be expected. In doped tw
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dimensional Heisenberg antiferromagnets it has been
cussed whether there is an instability towards coplanar sp
spin textures due to the competition between the kinetic
antiferromagnetic exchange energies. This instability,
gether with the response of the kinetic energy to flux, s
gests that these materials may be suitable for the forma
of topological spin textures. The fact that these doped a
ferromagnets are also used as models of high-Tc materials
adds further interest to our investigation.

However, for the two-dimensional antiferromagne
Heisenberg model it has been argued5,6 that, taking the con-
tinuum limit and looking at long wavelength fluctuation
about the Ne´el state, there is no topological term in the e
fective action. Although this argument is correct, it does n
however, answer the question whether or not spin textu
can be important on a length scale comparable with the
tice. Furthermore, it does not address the issue of sec
neighbor hopping. These ideas will be explored in t
present paper which extends ideas presented previously1 In
particular, we generalize the topological arguments given
Ref. 1 and present a numerical comparison of the energ
flux-generating spin textures and flux-free spin configu
tions for uniform systems. Besides uniform systems, we a
consider if spin and charge stripes arise naturally as a to
logical fictitious flux generating spin texture.

The paper is organized as follows. In Sec. II we introdu
the t-J model and provide some background material on
properties. We proceed in Sec. III by deriving the effecti
model that we will work with. This model turns out to in
clude topological fluxes that are discussed in Sec. IV and
Sec. V we review the effect of such a flux on a system of f
electrons. Sec. VI contains a numerical mean-field invest
tion of the energetics of the system, comparing flux gene
ing states and more regular spiralling states where there i
flux generated. In Sec. VII we extend the discussion of u
form systems to include stripes forming antiphase dom
walls between Ne´el-ordered regions. We describe our stri
model and present data from numerical calculations com
ing different stripes. Finally, we summarize our results
Sec. VIII.
©2003 The American Physical Society03-1
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II. THE t-J MODEL

In order to explore these ideas we employ thet-J model
which most simply captures the competition betwe
Heisenberg exchange and kinetic energy,

H5 (
^rr 8&

F2t~crs
† cr8s1H.c.!1JS Sr•Sr82

1

4
nrnr8D G .

~1!

The summation is restricted to nearest-neighbor pairs on
square lattice and the spin operator is given bySr

5 1
2 cra

† sW abcrb , wheresW 5(sx ,sy ,sz) is the vector of Pauli
matrices. All states containing doubly occupied sites h
been excluded from the Hilbert space, leaving three st
per site:u&, u↑&, andu↓&. A natural generalization, deferred t
later in this paper, is to add Coulomb repulsion between p
ticles occupying nearest-neighbor sites.

Striped phases have been found experimentally in highTc
materials to which the present model has been applied. T
is an ongoing debate regarding the existence of stripes in
t-J and Hubbard models. Stripes were first found in Hartr
Fock solutions of the Hubbard model,7–9 but the stripes
found in these calculations had one hole per unit length
the stripe, in contrast to the results from experiments wh
half a hole per unit stripe length is found. From densi
matrix renormalization group~DMRG! calculations on finite
systems~of the order 20310). White and Scalapino10–12find
stripes in a wide range of dopings. For instance, usinJ
50.35t they find stripes for dopings in the interval 0,x
,0.3. Forx,0.125 the stripes have half a hole per unit c
of stripe, in agreement with experiments, and the dista
between two consecutive stripes isd5(2x)21. For higher
dopings they find that there is one hole per unit cell of
stripe and that the interdistance between the stripesd
5x21. On the other hand, using quantum Monte Carlo c
culations, Hellberg and Manousakis13,14 find that uniform or
phase-separated states are energetically favorable. In
case, the formation of stripes would also require the e
tence of a long-range Coulomb interaction preventing an
dinary phase separation.15,16

Incommensurate states were discussed in connectio
the t-J model before the notion of stripes was introduced
was found by Shraiman and Siggia17,18 using a continuum
limit of the model, that the antiferromagnetic order of t
undopedt-J model is unstable against the formation of
spiral state for small dopings. Using various mean-field
proaches other authors19–21 came to similar conclusions. W
will return to the spiral instability in Sec. VI using the effec
tive model to be described in the following section. It will b
shown how a small twist in the spin order leads to a red
tion of the kinetic energy of the ordertx while the loss in
exchange energy is of the orderJx2; showing that for small
enough dopings there is energy to be gained by twisting
spin order.

In addition to spin textures, Affleck and Marston22,23 dis-
cussed the possibility of flux textures. They replaced the
spin components of the electrons byN different flavors, ex-
tending the SU~2! spin symmetry to SU(N). Taking the limit
01440
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N→`, they obtained an essentially exact mean-field mo
to which they numerically looked for solutions. In particula
they found a phase, called the flux phase, where the sum
the phases of the link operatorsx rr 85cr

†cr8 around a
plaquette equals6p. This is interpreted as half a flux quan
tum penetrating each plaquette. These phases do not c
from a real electromagnetic field and are therefore referre
as fictitious.

Work by Hasegawaet al.4 showed that the energy of non
interacting spinless fermions has a minimum when a unifo
flux, corresponding to one flux quantum per particle, thre
the system. States havingF5n ~in units of the flux quan-
tum! are referred to as commensurate flux states. This sh
that a fictitious flux can lower the kinetic energy of the pa
ticles. The commensurate flux states have also been con
ered in connection with thet-J model.

Another possibility for a flux state is to have a stagger
flux through the system. In the case of half a flux quant
per plaquette there is no difference between uniform a
staggered fluxes, so the Affleck-Marston state can be thou
to belong to this category as well. Inspired by the work
Shraiman and Siggia, Kaneet al.21 suggested a double spira
state showing a staggered chiral spin order, and hence
according to a result of Wenet al.,25 a staggered fictitious
flux. In a staggered flux state, the time-reversal symme
can be broken locally but not globally, as the system is
variant under a time-reversal operation followed by a latt
translation, just like a Ne´el state. Staggered flux phases ha
also been investigated by other groups.24,26–28The effective
model used by Barford and Lu27 coincides with the mode
derived in the following section.

Our paper expands on results found by previous auth
We find that certain spin textures and charged stripes
particular, are coupled by the creation of a fictitiousp flux
which we show is a natural consequence of a stripe w
broken rotational symmetry.

III. DERIVATION OF THE EFFECTIVE MODEL

In order to make progress, we make certain simplific
tions of thet-J model. First, following Schulz,20 we intro-
duce a local quantization axisV̂ r at site r . In terms of
spherical coordinates we write V̂ r
5(sinurcosfr ,sinursinfr ,cosur). This local SU~2! trans-
formation oncr , denoted byUV̂r

, must fulfill the equation

UV̂r
szUV̂r

†
5V̂ r•sW . ~2!

As can be seen from the above equation, specifyingV̂ r de-
terminesUV̂r

only up to a rotation about the new localz axis.
For example, we may choose our SU~2! transformation ac-
cording to

UV̂r
5expF2 i

u r

2
v̂ r•sW G , ~3!

wherev̂ r5( ẑ3V̂ r)
ˆ

5(2sinfr ,cosfr,0).
Expressing thet-J Hamiltonian in terms of this new spin

coordinate system, we find
3-2
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H5 (
^rr 8&

F2t~cra
† Mab

rr 8cr8b1H.c.!

1JS Sr
aSr8

b Qab
rr 82

1

4
nrnr8D G , ~4!

with

M rr 85~UV̂r
!†UV̂r8

,

Qrr 85RV̂r

21
RV̂r8

,

~RV̂! i j 5cosud i j 1~12cosu!v iv j2sinue i jkvk. ~5!

We note thatRV̂ is the SO~3! rotation operator induced b
the SU~2! transformationUV̂ .

Thinking of the t-J model as the large-U limit of the
Hubbard model, we know that there is a gap between
Hubbard bands scaling asU, corresponding to the energ
cost for a double occupancy. Following Schulz,20 who ne-
glected holes in the lower Hubbard band, we will thro
away the upper Hubbard band because of this large gap w
we consider hole doping, corresponding to the remova
states containing double occupancies from the Hilbert sp
of the Hubbard model. Since the quantization axis at a sit
locally determined byV̂ r , we can arbitrarily assume that th
upper Hubbard band is associated with spin-down rela
V̂. Hence, our effective model is obtained by keeping o
the terms in Eq.~4! associated with spin-up particles. Th
spin of an electron at siter will now be determined by the
field V̂ r . As the simplest approximation, we will consid
theV̂ field as a classical field, neglecting spin fluctuations
the system. Keeping only terms containing particles align
with the positive localz axis, we obtain an effective Hamil
tonian

Heff5 (
^rr 8&

@2~t rr 8cr
†cr81H.c.!1K rr 8nrnr8# ~6!

with t rr 85tM11
rr 8 , K rr 85 1

4 J(V̂ r•V̂ r821), andcr5cr↑ . This
Hamiltonian describes a system of spinless fermions mov
in a lattice with position dependent hopping amplitudes a
interaction strengths.29

The effects of the spin texture on the charge motion
therefore to generate an effective hopping amplitudet
→t cos(u/2) and the appearance of a fictitious magne
field. We also note that there is a Coulomb-like neare
neighbor interaction of strength14 J(cosu21). When cosu
,1 this leads to an effective attraction between partic
which hints that the system may favor a phase separa
when being doped.

We have already mentioned that there is a degree of f
dom in UV̂ not being fixed byV̂. Since the effect of a spin
rotation about the localz axis on the ‘‘up’’ spin only intro-
duces a phase factor, it will be indistinguishable from a lo
electromagnetic gauge transformation in our approximat
Hence, the set of physically inequivalent choices ofUV̂ are
determined byV̂, i.e., they belong to SU(2)/U(1)>S2.
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The physical degrees of freedom of the hopping are c
tained within the size of the hopping amplitude and t
gauge invariant parts of the complex phases of the hopp
elements. In case of nearest-neighbor hopping only,
smallest closed loop that can be formed is around a plaqu
in the lattice, see Fig. 1, and the flux enclosed by suc
counterclockwise path 0→1→2→3→0 is given by

F01235Im ln~t01t12t23t30!. ~7!

One may show that this fluxF0123 is equal to half the solid
angle enclosed by the shortest path on the spin sphere
necting the points$V̂ i% i 50

3 . Thus the flux is equal to 2pQ,
where Q is the topological charge represented by t
plaquette.

In the following discussion we will refer to the flux as
fictitious flux, in contrast to a ‘‘real’’ electromagnetic flu
that would come from an applied magnetic field. The reas
for this distinction is that the fictitious spin generated flux
only seen by the spinless fermions in the system and is
related to a physical electromagnetic field. Furthermore,
fictitious flux does not couple to the charge of the fermio
but rather to thez component of the spin measured in th
local spin-coordinate system. Since all particles in our s
tem are polarized along the positivez axis, they will appear
as having the same fictitious charge. However, the flux
still drive currents through the system and, in principle, it
possible for the fictitious flux to cancel the effect of an e
ternal electromagnetic flux on the particles in the system

A physical magnetic field giving one flux quantum p
plaquette is enormous. If we assume that the lattice cons
is a.5 Å, the resulting magnetic field isB5h/(ea2)
.104 T. This energy is much larger than the typical ele
tronic energies per site, being of the order a few eV.

Before we proceed our investigations of the effecti
model, let us briefly discuss the approximations we ha
made. First of all we know30 that the ground state of th
two-dimensional Heisenberg antiferromagnet is antifer
magnetically ordered with the order-parameter being roug
60% of the full magnetization. The existence of this sp
order makes it a reasonable first-order approach to mode
system as electrons moving in a fixed spin background g
erating effective couplings. Spin fluctuations are strong
quantum antiferromagnets and taking them into acco

FIG. 1. The mapping of a real-space plaquette into spin sp
The solid angle spanned by the mapping is given byS5( ia i

22p.
3-3
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MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
could change the picture, but our model, nevertheless, co
sponds to a first-order approach that takes into accou
finite Nèel order parameter. As it is known that the Ne`el
order is suppressed as the antiferromagnet is doped, we
pect our approximation to be most accurate at small dop
levels.

Since the generation of flux is a local effect, as the fl
through a plaquette only depends on the neighboring sp
the formation of fictitious flux does not really require lon
range spin order and it should suffice with local spin cor
lations to create this flux.

IV. PROPERTIES OF FICTITIOUS FLUXES

In Ref. 1 we investigated the relations between the m
nitude of the hoppingt rr 8 and its complex phases for bot
ferromagnetic and antiferromagnetic spin configurations
the present section we shall briefly review and genera
these arguments.

We again consider a square lattice with a set of sp
placed at each lattice siter . The interior angles on the su
face of the sphere are described by anglesa i as can be seen
in Fig. 1. The fictitious flux through the plaquette is equal
half the solid angle covered by the plaquette in spin spa
which by spherical geometry is given by the sum of t
interior angles in excess of 2p. It is obvious from Fig. 1 that
if u rr 8 , the angle subtended by the arcs on the spher
small, the area of the spherical parallelogram, and hence
fictitious flux, will be small as well. The following expres
sions give the size of the hopping and the fictitious fl
through the plaquette:

ut rr 8u5tcos
u

2
,

F01235
1

2 (
i

a i2p. ~8!

For small values of opening angles on the spin sphereu rr 8
.u anda i.a21 i the flux is approximately given byF0123
.u2/2 cos(a12a2)/2, showing that the flux is bounded b
uFu<u2/2.

If we instead turn our attention to antiferromagnetic co
figurations described byu>p/2, the situation changes dra
tically. The path taken in spin space when going aroun
plaquette in an antiferromagnetic configuration is shown
Fig. 2. If we denote the antiferromagnetic~staggered! spin at
site r by V̂ r , the path taken isV̂0→V̂18→V̂2→V̂38→V̂0,

whereV̂852V̂ denotes the antipodal point on the spher
Redefiningu to denote the opening angle between tw

neighboring staggered spins, we find the following relatio
ships:

ut rr 8u5tsin
u

2
,

F0182385p2
1

2 (
i

~21! ia i . ~9!
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We note that the size of the fictitious flux is now complete
decoupled from the opening angleu, as long asu<p/2.
Furthermore, in the antiferromagnetic case the fictitious fl
is staggered since the path on a neighboring plaquette wi
traversed with the sublattices exchanged.

If we allow for the possibility of next-nearest-neighbo
~diagonal! hopping, we have to take into account addition
gauge invariant fluxes. There are four of these for ea
square plaquette, defined by the removal of one of the f
vertices of the plaquette. In Ref. 1 we show that there i
topological constraint relating these four fluxes. This co
straint takes the form

F01821F02382F018382F1823852pn, ~10!

wheren50 for a ferromagnet andn561 for an antiferro-
magnet. In case of a ferromagnet a prime does not denote
antipodal point, but rather the point itself. This relation
easy to verify by looking at Fig. 2, noting that the sphere
exactly covered by the four regions in Eq.~10!. The topo-
logical constraint, Eq.~10!, does not rely on the assumptio
of a spherical parallelogram and does also hold in the p
ence of an external electromagnetic flux. Counting degr
of freedom, we know that there are two degrees of freed
per plaquette~or site! in choosing the spin configuration and
in addition, we have one parameter coming from an exter
flux. All in all, there are three free parameters per plaque
and hence we expect that the four fluxes through the su
angles are related by a single constraint, given above.

V. SPINLESS FREE FERMIONS WITH FLUX

Before turning to a more through investigation of th
physics of the effective Hamiltonian, Eq.~6!, we will discuss
the effects of a flux through a system of free spinless fer
ons. Hasegawaet al.4 investigated a system of free electro
on a square lattice with a uniform magnetic flux. They fou
that the energy is minimized when there is exactly one fl
quantum per particle, i.e., the optimal flux per plaquette

FIG. 2. This figure shows the path taken on the spin sph
when going around a plaquette in an antiferromagnetic spin c
figuration.
3-4
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STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
related to the doping according toF5(12x)F0, whereF0
is the flux quantum. To illustrate this effect we have diag
nalized the Hamiltonian for such a system of free fermions
a uniform flux F for different values ofF, finding the
single-particle energiese i(F). The total energy of the sys
tem is then found by summing up the single-particle energ
according to

E~F,n!5 (
e i (F),eF(n,F)

e i~F!, ~11!

FIG. 3. This figure shows energy versus filling for free electro
using a set of different uniform fluxes,F5qp/12, where q
50,1, . . .,12. In the center of the figure, i.e., atn51/2, the optimal
energy is given byF5p. Moving to the right, the next minima
corresponds toF511p/12 and so on, finally finding an optima
flux F50 at n51.
n

ch

he
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pi
es
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ag

01440
-
n

s

whereeF(n,F) is the Fermi energy corresponding to fillin
n and fluxF.

In Fig. 3, we plotE(F,n)2E(0,n), i.e., the energy per
site for different fluxes compared to the flux-free case. T
figure clearly shows how the optimal flux changes with do
ing. We also note that the system is particle-hole symme
and henceE(F,n)5E(F,12n).

However, the flux that is generated by the antiferroma
netic skyrmions is staggered in which case the Hamilton
can be exactly diagonalized. The spectrum of this syst
assumingux5uy5u, is

s FIG. 4. This figure shows energy versus filling for free electro
compared to the flux-free case for a set of different staggered flu
F5qp. Going upwards in the center of the figureq
51,1/2,1/3,1/6. Note that for a certain doping, the minimum ene
is obtained either forF50 or F56p. The crossing points occu
at n.1/260.165.
ek~F!562t sinS u

2DAcos2kx12 cos
F

2
coskxcosky1cos2ky. ~12!
the
r-

re-

ral-

le-
In Fig. 4 we show a plot of the energy per site for differe
staggered fluxes. The figure shows that the optimal flux
either 0 or6p depending on doping, the only choices whi
are consistent with time-reversal invariance.

From this analysis we conclude that it is reasonable w
searching for minimum energy spin textures to consider c
figurations supporting flux 0~coplanar configurations! and
6p. In the following section we will construct a mean-fie
theory based on these observations.

A. Second-neighbor hopping

As we have seen in Sec. III, an antiferromagnetic s
configuration strongly suppresses the effective near
neighbor hopping on the square lattice. However, a ne
nearest-neighbor hopping is compatible with antiferrom
t
is

n
-

n
t-
t-
-

netic order. For the purpose of illustration let us consider
following purely kinetic Hamiltonian describing spinless fe
mions:

Ht2t852t (
^rr 8&

@cr
†cr81H.c.#2t8 (

^^rr 9&&
@cr

†cr91H.c.#,

~13!

where ^^rr 9&& denotes next-nearest-neighbor pairs. We
mark that the sign of the nearest-neighbor hoppingt is irrel-
evant as it can be changed by the transformationcr°
(21)rcr . This transformation leaves the sign oft8 un-
changed, and this sign is important. Without loss of gene
ity, we assumet51.

Another symmetry operation of interest is the partic
hole transformationcr°(21)rcr

† . Under this operation, the
3-5
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MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
sign of the nearest-neighbor hopping is unchanged while
sign of t8 is changed, showing that next-nearest-neigh
hopping breaks the particle-hole symmetry. Furthermore,
number operatornr°12nr as particles are mapped int
holes. This symmetry was seen in Figs. 3 and 4.

Let us defineE(n,t8) as the energy per site in the groun
state of Eq.~13! with next-nearest-neighbor hoppingt8. It is
easy to show that as long asn,1/2, E(n,ut8u),E(n,
2ut8u) showing that for small fillings the energy is lower fo
the positive t8 case. If we instead consider the regionn
.1/2 the particle-hole transformation discussed above
mediately tells us thatE(n,2ut8u),E(n,ut8u), showing that
the negativet8 case is favorable. At precisely half filling, th
energy is independent of the sign oft8.

Assume that we consider the casen,1/2 and t8,0.
Then, according to the discussion above, we would gain
ergy if we could somehow change the sign oft8. One way of
accomplishing this would be to add a uniform flux throu
the system, corresponding to one flux quanta per squ
plaquette. This flux would not affect the nearest-neigh
hopping, but it would change the sign oft8 and therefore
lower the energy of the system. Barford and Kim31 general-
ized the result of Hasegawaet al. to include thet2t8 model
above and found that in the thermodynamic limit, the kine
energy is minimized by a flux corresponding to one fl
quantum per site plus or minus one flux quantum per p
ticle.

VI. HARTREE-FOCK THEORY OF UNIFORM PHASES
OF H eff

It has been recognized for some time17,18 that a plausible
response of a Heisenberg antiferromagnet to doping is
form a spiral spin wave where the Ne´el order parameter ro
tates uniformly around a fixed spin axis as one moves al
a symmetry axis in the lattice. This, together with the fa
that the doped electron gas favors a staggered flux clos
half filling, indicates that a state containing an antiferroma
netic spin texture that generates both a staggered fictit
flux and a spiral-like order could lead to an energetica
favorable state.

In the remaining sections of this paper, we will addre
two related questions. First, we investigate the effect
Hamiltonian, Eq.~6!, looking for the spin textures that pro
vide the energetically most favorable uniform states. In p
ticular, we are interested in whether or not the syst
chooses to incorporate fictitious fluxes. Furthermore, it
known that thet-J model has a tendency to phase separ
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Concerning the thermodynamic stability of the spiral stat
Hu et al.32 found that in a Hubbard model, for small doping
the spiral phase is unstable against phase separation~for
U/t*10) or domain-wall formation~for U/t&10). For
larger dopings, there are regions in the phase diagram
cated aroundU/t.10, where the spiral phases are therm
dynamically stable. This indicates that, in thet-J model, for
small dopings the spiral state is not thermodynamica
stable. An interesting question is: if thet-J model prefers a
flux phase in some region of parameter space, can this t
modynamically stabilize the system, preventing it fro
phase separation?

Inspired by the recent interest in striped phases, in S
VII we use our approach to model different domain wa
between Ne´el-ordered regions. These domain walls have
appealing structure as they provide a smooth implementa
of the antiphase boundary and at the same time provides
electrons in the doped channel with a fictitious flux.

A. Mean-field theory formulation

We now look for different uniform phases of the effectiv
Hamiltonian given in Eq.~6!. The coefficientst rr 8 andK rr 8

are now given by

t rr 85tsin
u rr 8
2

exp@ iA~V̂ r ,V̂ r8 ,ẑ!/2#

K rr 852
J

4
~11cosu rr 8!, ~14!

whereV̂ r denotes the local staggered spin orientation at
r , and cosurr 85V̂ r•V̂ r8 . With this definition cosurr 851 for
a Néel state and cosurr 8521 for a ferromagnet, wherer and
r 8 are nearest neighbors.A(V̂ r ,V̂ r8 ,ẑ) is the solid angle of
the spherical triangle spanned by the vectorsV̂ r , V̂ r8 , and
ẑ.

The approach we will use is a simple mean-field theo
assuming a fixed spin texture$V̂ r%, defined as the direction
of the quantization axis,V̂ r . We will assume thatu rr 85ux
when r and r 8 are nearest horizontal neighbors, andu rr 8
5uy when they are nearest vertical neighbors. First of all
perform a standard mean-field decomposition of the Ham
tonian, allowing only for mean fields carrying no charge a
momenta zero orQ5(p,p). This results in the following
Hamiltonian:
HMF5 (
kPBZ8

Ck
†H 22tF S sin

ux

2
coskx1cos

F

2
sin

uy

2
coskyDs31sin

F

2
sin

uy

2
coskys2G

2
J

2N
@~21cosux1cosuy!D012~11cosux!coskxDcx

3 s32~11cosuy!cosky~Dcy
2 s21Dcy

3 s3!#J Ck

1
J

4N
@~21cosux1cosuy!~D0!22~11cosux!~Dcx

3 !22~11cosuy!@~Dcy
2 !21~Dcy

3 !2##, ~15!
3-6
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where we have introduced a two-component vectorCk
5(ck ,ck1Q) t, mixing momenta 0 andQ. We have intro-
duced the Pauli matrices as a basis for the 232 matrices
coupling theCk’s, although we want to emphasize that th
have nothing to do with spin in this context. The sum ov
momenta is reduced to half the Brillouin zone, defined
BZ85$ukxu1ukyu<p:2p<kx ,ky,p%. Furthermore, we
have only kept those four order parameters33 that turn out to
be nonzero numerically. These four fields are defin
through

D05 (
kPBZ8

^Ck
†1Ck&,

Dcy
2 5 (

kPBZ8
cosky^Ck

†s2Ck&,

Dcx
3 5 (

kPBZ8
coskx^Ck

†s3Ck&,

Dcy
3 5 (

kPBZ8
cosky^Ck

†s3Ck&, ~16!

where the averagê• & denotes a thermal expectation val
with respect to the Fermi-distribution of quasiparticles
HMF . The order parameterD0 is simply the number of par
ticles in the system, while the other three correspond to h
ping induced through the termnrnr8 in the effective Hamil-
tonian, Eq.~6!. In particular, we note thatD0 andDcx/y

3 are
diagonal and hence do not mix momentak andk1Q. On the
contrary,Dcx

2 does mix the two, and therefore carries a m
mentumQ. As can be seen from Eq.~15!, this term only
exists in the kinetic term when there is a nonzero stagge
flux that reduces the translational symmetry of the mode
ne

.
-
rd
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e
d
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th
.
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in
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B. Instability towards spiral order at low dopings

Before turning to the numerical results, let us now discu
the electron gas in Eq.~6! at low dopings, confining our
discussion to coplanar spin configurations and neglecting
change effects in the Heisenberg term so that all order
rameters, exceptD0, in Eq. ~16! are zero. We choose a spi
structureV̂ r•V̂ r1 x̂5cosux and V̂ r•V̂ r1 ŷ5cosuy , allowing
for an asymmetry between thex andy directions. This yields
a trivial system which is exactly diagonalized. The total e
ergy per site as a function of densityn and u i ( i 5x,y) is
given by

Eux ,uy
~n!5

1

N (
ek<eF(n)

ek~ux ,uy!

2
1

4
Jn2~cosux1cosuy12!, ~17!

whereeF(n) is the Fermi energy corresponding to densityn
and

ek~ux ,uy!522tFsin
ux

2
coskx1sin

uy

2
coskyG . ~18!

Our description of the spin order in terms of theu angles
does not distinguish between spiral states and so-ca
canted states. They both lack fictitious flux and both have
same relative angle between nearest-neighbor spins. O
second neighbor terms resolve this degeneracy. The di
ence between these two classes of states is illustrated in
5.

If we make a series expansion of the energy per site
terms of the dopingx we find the following expression to
first order inx:
Eux ,uy
~x!522tS sin

ux

2
1sin

uy

2 D x2
1

4
J~122x!~cosux1cosuy12!1O~x2!. ~19!
rmi
oes
ion
it
y
,

rro-
y
e

Remember that we have made the transformationu i°p
2u i , expressing the order relative to the antiferromag
instead of the ferromagnet. The energy is minimized byux
5uy52 arcsin@2tx/J(122x)#.4tx/J for moderate dopings
The dependence ontx/J clearly shows the competition be
tween the kinetic energy, which drives the system towa
ferromagnetism, and the Heisenberg term, which favors
tiferromagnetism. These results are consistent with thos
Schulz,20 who also found this instability. Shraiman an
Siggia,17,18 using a more elaborate method, also found t
instability, but their spiral state has its pitch vector along
~10! direction rather than the~11! direction as is found here
In the Hubbard model, it is known from Hartree-Fock theo
that the antiferromagnetic state is stabilized by the open
of a gap at the Fermi surface, and Schulz34 has argued that a
modulation of the spin order along the~10! direction opens
t

s
n-
of

s
e

g

up a gap more effectively than a spiral along the~11! direc-
tion, i.e., it opens up a gap at a larger part of the Fe
surface. The first-order theory described in this section d
not take this fact into account. We note that the deviat
from Néel order is proportional to the doping and in the lim
J→0, the deviation from Ne´el order becomes large for an
finite doping. This is consistent with Nagaoka’s theorem35

stating that in the limitJ→0, a single hole doped into a
Heisenberg antiferromagnet drives the system into a fe
magnetic state. The energy of the spiral state is given bE
524t2x2/J(122x)2J(122x) and hence we have for th
second derivative ofE with respect to the fillingn,

]2E

]n2
52

8t2

J~122x!3
. ~20!
3-7



ng
to
-
e

ea
in

re

to

o

hi

e

tc

or
hi

pi

-

on

in
nt

re
i-

the

site
ni-

i-

-

wo

t
he

er
ar-

g

to

g
gu-

ar-
q.

lds
um
on-

ing

the
ely
ce
the
to

xed
the
od
t is
we

MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
We note that the energy versus filling is concave for dopi
x,1/2, showing that the spiral state has an instability
wards phase separation for allJ.0. Recall that our expan
sion is only valid for small dopings, and in this regime w
expect the above conclusion to hold. Also, as mentioned
lier, we cannot distinguish between the spiral- and cant
states within this approach. According to Kaneet al.21 quan-
tum fluctuations seem to stabilize the spiral state compa
to the canting state.

A similar analysis can be performed for fillings close
zero, i.e.,n!1. In this case, measuringu i with respect to the
ferromagnetic configuration, the analog of Eq.~19! becomes
~now keeping terms up to second order inn)

Eux ,uy
~n!522tS cos

ux

2
1cos

uy

2 Dn12ptn2Acos
ux

2
cos

uy

2

1
1

4
Jn2~cosux1cosuy22!1O~n3!. ~21!

In particular, we note how the second term introduces a c
pling between the spin order in thex andy directions, allow-
ing for an asymmetry betweenux and uy . Minimizing the
above energy with respect to the anglesu i , we find that the
ferromagnetic state is stable up to a finite doping. At t
point different things can happen depending onJ/t, the sys-
tem can pick a state whereux50 anduy5p ~or vice versa!,
i.e., the system organizes itself ferromagnetically along thx
direction while being an antiferromagnet along they direc-
tion. Another possibility is that the system chooses a pi
vector along the~11! direction with ux5uy52 arccos(2
2np)t/Jn.

The picture we have obtained is therefore that starting
zero filling, the system remains in a ferromagnetically
dered state up to some threshold value of the filling. T
threshold increases with decreasing values of the ratioJ/t.
Above this threshold filling, the system can be a spiral s
wave with pitch along~10! or ~11!. When the filling ap-
proachesn51, a ~11! spiral state is optimal which continu
ously merges with the Ne´el state asn→1. But we find in all
cases that the system is unstable against phase separati
small dopings.

C. Numerics

Given the thermodynamic instability of the spiral sp
waves, we use the full Hartree-Fock theory and take i
account uniform phases that have a splay in the Ne´el order
parameter. The aim is to search the space of spin textu
parametrized by (ux ,uy ,F), to determine the one that min

FIG. 5. The difference between a~11! spiral state~left! and a
canting state~right! is illustrated.
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mizes the free energy of the system. We will consider
following two types of spin textures:

~1! Coplanar states, described byF50,

~2! p-flux state, described byux5uy ,F5p. ~22!

The argument for only consideringF50 andF5p states
was given in Sec. V; Fig. 4 showed that the energy per
for a system of free fermions in a staggered flux is mi
mized by either of these two choices.

Our numerical algorithms work within the grand canon
cal ensemble, with a free energyG(T,m)5^HMF&2TS
2mN, assuming a fixed chemical potentialm. Diagonalizing
the mean-field Hamiltonian, Eq.~15!, we obtain a set of qua
siparticle states specified by their momentakPBZ8, where
BZ8 is the reduced Brillouin zone corresponding toukx
1kyu<p, and band index. The band index refers to the t
bands occurring because of the staggered flux,aP$1,2%. If
we then minimize the free energyG(T,m) with respect to the
occupation numbersf ka of the quasiparticles, we find tha
they are distributed according to the Fermi-distribution. T
entropyS introduced above is defined through,

S52kB (
a,kPBZ8

@ f kalnf ka1~12 f ka!ln~12 f ka!#,

~23!

whereaP$1,2% labels the two bands.
In the analysis of the numerical data we would rath

consider the free energy as a function of the number of p
ticlesN than the chemical potentialm. This can be achieved
by forming the Helmholtz free energy through the followin
Legendre transformation;F(N,T)5G1mN. Having the
Helmholtz energy, we can use the Maxwell construction
discuss the thermodynamic stability of the phases.

Analyzing the Hartree-Fock theory involves the followin
procedure. Given a set of coupling constants, a spin confi
ration, temperatureT, and chemical potentialm; pick a set of
initial values of the mean fields. Then solve for the quasip
ticles of Eq.~15! and calculate the new mean fields using E
~16!. The procedure is then iterated until the mean fie
have converged to a fixed point corresponding to a minim
in the free energy. Since we are interested in the spin c
figuration minimizing the free energyF(T,N), we will
manually vary the spin configuration parameters search
for a global minimum of the free energy.

In practice, rather than choosing a certain value of
chemical potential, we choose a fixed filling, successiv
adjusting the chemical potential during the iterations. Sin
the chemical potential was assumed to be fixed during
derivation of the self-consistency equations, we have
make sure that the algorithm converges to the correct fi
point. We have checked explicitly in several cases that
correct fixed point is found. An advantage with this meth
is that we can access all possible fillings, whether or not i
a thermodynamically stable region. This is not the case if
specify the chemical potential, since the functionm(n) is not
invertible.
3-8
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STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
Let us start by considering a simple Hartree approxim
tion, see Figs. 6 and 7. This corresponds to puttingDcy

2

5Dcx
3 5Dcy

3 50. Starting at zero temperature, we find th
within the Hartree approximation there is a critical valueJc
.1 of the couplingJ below which the coplanar phase alwa
dominates over the flux-generating configurations. WheJ
.Jc , there appears a region aroundn.0.5 where the flux
states are the energetically lowest states, see Fig. 7. Whe
flux state minimizes the free energy, theu angles arep/2,
i.e., the maximally allowed values. This state correspond
having the spins distributed along the equator with an an
p/2 between two successive spins. The solid angle span
by this configuration covers half of the unit sphere, ensur
F5p. Thermodynamically, however, it seems to be fav
able for the system to phase separate into regions consi
of a hole-free antiferromagnet and a hole-rich coplanar st
ture, respectively. If we consider small dopings (x!1), theu
angle of the optimal state~coplanar! is successively reduce
to zero asx→0. Since the maximum amplitude of the ho
ping for a staggered flux-state isutu5t/A2 as determined by
u<p/2, it clearly has a disadvantage compared to the co
nar states, supportingutu5t. The effect of this is that the
coplanar state will always be favorable at fillings where
kinetic energy is dominant. However, as the filling is furth
increased, the Heisenberg energy becomes more impo
and it becomes favorable to reduceutu in order to improve
the Heisenberg energy. At this point, if this occurs at a s
able filling, the flux state can yield equally good Heisenb
and kinetic energies, while at the same time providing
fermions with a flux that can lower the energy even furth
We know from the work of Hasegawaet al.4 that the energy
of a system of free electrons on a square lattice is minimi
when there is exactly one flux quantum per particle. Sin
our flux state carries a fluxp per plaquette, it will be mos
suitable close ton51/2. The coplanar state, on the oth
hand, carries no flux, and will therefore be optimal whenn
50 or n51. This competition explains why the coplan
state becomes energetically favorable again when mo
from a flux phase towards higher fillings.

In our calculations, a slight technical point should
mentioned. When the system phase-separates into a cop
part and an undoped antiferromagnet, the chemical poten
in the two subsystems are not equal. This can be seen
instance, in Fig. 6, where the Maxwell construction conne
the antiferromagneticn151 point with a pointn0.0.55 in
the coplanar phase. Sincen1 is an end point of the free
energy curve, the derivatives atn0 andn1 are unequal, and
hence the chemical potential is different in the two phase

D. Results from Hartree-Fock calculations

We now apply the Hartree-Fock scheme to the problem
understand whether or not exchange effects can resolve
near degeneracies found in the Hartree calculations. The
textures considered are those given by Eq.~22!. Before start-
ing the full calculations, we determined numerically whi
of the different order parameters are the important ones.
tially there were ten33 but numerically we find that only fou
are nonzero in the spin-configurations we have examined
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speed up the calculations we have set the other six to zer
hand. We find that besides the filling (D0), Dcy

2 , andDcx
3 are

important for the flux phases, whileDcx
3 andDcy

3 are impor-
tant for the coplanar configurations.

Numerically we find that thep flux phase converges to
state where the nonzero order parameters areDcy

2 5Dcx
3

5D, which leads to a quasiparticle spectrum of the fo
ek52m̃62 t̃Acos2kx1cos2ky, wherem̃ and t̃ are renormal-
ized values of the chemical potential and hopping amplitu
respectively. The momentumk belongs to the reduced Bril

FIG. 6. The Helmholtz free energy for at-J model with J
50.75 at temperatureT50.1 is shown for the coplanar, staggere
flux, and antiferromagnetic spin configurations. Solid lines cor
spond to Hartree-Fock calculations, while the dashed lines co
spond to Hartree calculations.

FIG. 7. The Helmholtz free energy for at-J model with J
52.00 at temperatureT50.1 is shown for the coplanar, staggere
flux, and antiferromagnetic spin configurations. Solid lines cor
spond to Hartree-Fock calculations, while the dashed lines co
spond to Hartree calculations.
3-9
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MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
louin zone. At half filling, this dispersion relation has fo
gapless Dirac points where the energy vanishes linea
These points are located at (kx ,ky)5(6p/2,6p/2). Simi-
larly, for the coplanar states, the mean fields renormalize

hopping amplitudes so thatek52m̃6(t x̃coskx1tỹcosky).
If we look at a typical free energy plot, such as Fig. 6, w

find, as in the Hartree case, that for low fillings the copla
configuration is the optimal, where at low dopings it merg
with the antiferromagnet. For smallJ’s the coplanar configu-
ration clearly dominates over the flux configuration for
fillings up to the point where they merge with the pure an
ferromagnet. IncreasingJ brings the flux configuration ener
getically closer to the coplanar configuration. However,
contrast to the Hartree case, it does not seem like the
state will become energetically favorable over the copla
states. Concerning phase separation, the picture is very m
the same as the one described above. For low tempera
and dopings smaller than roughly 0.5, the system favor
phase separation into parts consisting of a hole-free ant
romagnet and a hole-rich coplanar state with dopingx
.0.5.

Figures 6 and 7 show the free energies for the best co
nar and flux configurations plotted together with the fr
energy of the pure antiferromagnet in two different casesJ
50.75 andJ52.00. The energy scale is fixed byt51. The
temperature is set toT50.1 and the size of the system bein
considered is 16316 sites.

In Fig. 7, it is clearly seen how the flux phase domina
over the coplanar phase close ton.0.5 at the Hartree level
but not in the Hartree-Fock approximation.

We have generalized thet-J-model by including a
nearest-neighbor Coulomb repulsion through a te
V(^r ,r8&nrnr8 . In our effective model this corresponds to r
definingK rr 8°K rr 81V. When including this term, the orde
parameter corresponding to a charge-density wave,D1

5(kPBZ8^Ck
†s1Ck&, becomes important. As it turns out,

positive value ofV can favor the flux phase as is seen in F
8, where we have shown the free energy versus filling fo
system described byJ51.25,K54V/J52.00, and tempera
tureT50.1. As can be seen from this figure, there appea
narrow region aroundn.0.53 where the flux phase has th
best energetics.

Finally, in Fig. 9, we show a phase diagram as a funct
of filling and couplingK. In these data we have fixed th
exchange couplingJ51.25 and temperatureT50.1. The fig-
ure shows how a narrow region of a staggered-flux ph
occurs close ton.0.5.

Summarizing our numerical results, we find that a st
gered flux phase can be energetically favorable compare
a coplanar spiral state. However, in the region of dop
where this happens, the system generically seems uns
against phase separation. Even if this indicates that the
phase does not occur as a thermodynamically stable pha
our effective model, it has good energetics and it would
interesting to investigate the effects of spin fluctuations
this picture. We expect that quantum spin fluctuations wo
suppress the spiral spin order, but it is hard to tell whethe
not it will be removed completely or if it is only weakene
01440
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It could also be that some other instability, such as str
formation, becomes dominant.

In the following section we discuss stripes within th
framework. We know that stripes are antiphase bounda
between antiferromagnetically ordered regions. One way
model this is to have a spin order twisting as the boundar
crossed. Since we also know that the stripes are doped,
tempting to think that the twisting is such that a fictitious flu

FIG. 8. The Helmholtz free energy for at-J model with J
51.25 andK52.00 at temperatureT50.1 is shown for the copla-
nar and staggered-flux spin configurations. Note the small reg
about n.0.53 where the flux configuration is energetically mo
favorable than the coplanar spin configuration.

FIG. 9. This figure shows the state that minimizes the free
ergy depending on doping and the coupling constantK. We have
chosenJ51.25, temperatureT50.10, and the linear dimension o
the system isL512. The data are based on Hartree-Fock calcu
tions. As can be seen, a narrow region where the flux configura
is the best uniform state appears aroundn.0.53. The coplanar
phase continuously merges with the antiferromagnet asn→1.
3-10



u
as

u
te
r

n

re
-
n
na
f t
e
n
th
dy

t

ym

p
t

ic
e

am
at

n
b

-
c

f a
in

ci

etic

d to
tion

d
g-

sed

tent
the

be-
eri-
re

d

ling
that

e
ach

ively

uld
on.

er-
r

STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
is generated. The picture is also appealing since it makes
of the instability of the doped antiferromagnet towards ph
separation. We will return to this topic in Sec. VII

E. Circulating currents

An important issue to address is whether or not the fl
states are accompanied by circulating currents in the sys
To answer this question, we consider the current operato
site r in the d direction, j d(r ), which can be identified from
charge conservation together with the Heisenberg equatio
motion,

(
d5 x̂,ŷ

@ j d~r !2 j d~r2d!#52
]r~r !

]t
52

i

\
@Heff ,r~r !#.

~24!

The result is a current operator taking the form

j d~r !52
i

\
~t r ,r1dcr

†cr1d2H.c.!. ~25!

We decompose the current into uniform and stagge
parts asj d(r )5 j d

u(r )1(21)r j d
s(r ). Using the mean-field de

composition we find that the expectation values of the u
form currents vanish. The uniform currents are proportio
to some of the order parameters that have been left out o
discussion. We know that our Hamiltonian is invariant und
a lattice translation followed by a time-reversal operatio
but this composite operation reverses the direction of
uniform currents which hence must vanish in a thermo
namic expectation value. The staggered currents take
form

^ j x
s~r !&5

2t

N\
sinS ux

2 DDcx
2 ,

^ j y
s~r !&5

2t

N\
sinS uy

2 D S Dcy
2 cos

F

2
2Dcy

3 sin
F

2 D . ~26!

The currents are gauge invariant, and the formal lack of s
metry between the currents in thex andy directions is due to
gauge choice. The order parameters are also gauge de
dent, and this restores the symmetry between currents in
two directions, see Fig. 10.

Noting that in the casesF56p and F50, the Hamil-
tonian is invariant under time-reversal and the one-part
states possibly carrying current must be degenerate in
ergy. In a thermodynamic ensemble, all states of the s
energy are weighted equally, and the currents from st
being related by a time-reversal operation cancel, leaving
staggered currents in the physical system. For a flux not
ing an integer multiple ofp, this symmetry is lost and cir
culating currents appear. This has also been observed by
culating the expectation values in Eq.~26! numerically for a
state having a fluxFÞp.

A proper treatment of this problem should consist o
gauge invariant coupling to a real electromagnetic flux
addition to the spin-generated flux.24 Let Fmag denote the
real electromagnetic flux through a plaquette, induced by
01440
se
e

x
m.
at

of

d

i-
l

he
r
,
e
-
he

-

en-
he

le
n-
e

es
o

e-

al-

r-

culating currents. The energy cost of creating the magn
field should be added through a term

Emag5
K

2 (
plaquettes

Fmag
2 . ~27!

The constantK is given byK5dh2/m0m re
2a2, wherea is

the two-dimensional lattice constant,d the distance between
the copper oxide planes, andm r the relative permeability. As
was discussed in Sec. III, this constant is huge compare
the typical electronic energies. The total energy as a func
of the electromagnetic flux is then written as

E~Fmag!5Et2J~Fmag!1Emag~Fmag!, ~28!

whereEt-J(Fmag) denotes the energy of thet-J model when
there is an extra fluxFmag in addition to the spin-generate
flux. Minimizing the energy with respect to the electroma
netic flux leads to an equation of the formg(Fmag)
1KFmag50, where g(Fmag)5Et-J8 (Fmag). As we have
pointed out, the magnetic energy scaleK is much larger than
the electronic energy which is of the order max(t,J). As a
consequence of this, the magnetic flux will be suppres
and it is reasonable to putFmag50 when we solve for the
eigenstates of the system. For this to be a self-consis
solution there must be no currents in the system due to
spin-generated flux. This is true for the casesF50 or p
which we have focused on.

VII. STRIPED STRUCTURES

Striped structures forming antiphase domain walls
tween undoped antiferromagnetic regions have been exp
mentally observed in the doped high-temperatu
superconductors.36 We would like to understand if a stripe
phase can be explored using the effectivet-J Hamiltonian,
Eq. ~6!. There are several facts that make this an appea
approach. We have already seen in the preceding section
for low dopings, the uniform~spiral! states are unstabl
against phase separation. Using our spin-polarized appro
we can create a smooth antiphase boundary, success
changing the order parameter from1 ẑ to 2 ẑ. And, since all
the holes of the stripe are located in the domain wall it co
be favorable for the system to generate a flux in this regi

FIG. 10. A site in the even sublattice is shown. Current cons
vation takes the form 2(j x1 j y)50, which we also observe in ou
numerics.
3-11
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MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
This can be accomplished using a spin texture, which sim
taneously generates the antiphase boundary. Furthermore
experimentally observed value of the doping of stripes
La22xSrxCuO4 is 0.5 holes per unit length of the stripe.36

This is close to the region where we have seen that ap flux
may be favorable~see Sec. V!. Inspired by these nice prop
erties we have undertaken an investigation of striped ph
within our approach. Our main ambition has been to gain
understanding of what such a striped phase would look l
and, in particular, whether a fictitious flux is exploited or n
in our model. The technique we use is a self-consistent H
tree calculation. The reason for using a Hartree scheme
stead of the full Hartree-Fock theory used in the preced
section is the following. As we found in the preceding se
tion about uniform systems; the flux phase was disfavored
the inclusion of the exchange~Fock! terms in the Hamil-
tonian. Therefore, if we are interested in the existence o
flux phase, it is reasonable to start using a Hartree theor
we do not find any stable flux phase using this approxima
it is reasonable to suspect that this result will not change
the inclusion of the Fock terms. On the other hand, if a fl
phase is found, we should check whether the flux phase
vives the inclusion of the exchange terms or not.

Let us consider a system with an antiphase bound
along thex axis, and with the antiferromagnetic order bei
1 ẑ at y5` and2 ẑ at y52`. Two possible scenarios fo
an antiphase spin order in a stripe come to mind. First,
amplitude of the antiferromagnetic order parameter may s
ply decrease, passing through zero and becoming negati
one passes through the stripe. This scenario preserve
rotational symmetry about the spinz axis. The second poss
bility is that the Néel order parameter starts to tilt as on
approaches the stripe along they axis, lying within the spin
x-y plane at the center of the stripe and then rotating towa
the positivez axis as one goes toy5`. Introducing holes in
the domain wall, the amplitude of the spin order will d
crease as it depends on the particle density throughSr

5 1
2 nrV̂ r , but it will not vanish. An illustration of these two

scenarios is shown in Fig. 11. From an experimental poin
view, Tranquada and co-workers argue37,38 that their results
speak in favor of the first scenario.

Four different stripe geometries with preserved uniax
symmetry come to mind. First, stripes can go along either
~10! or ~11! direction and we can choose either site- or bon
centered stripe, all in all four possible combinations. T

FIG. 11. Two possible spin orders making up an antiph
boundary between two Ne´el-ordered regions. They coordinate is
orthogonal to the direction of the stripe, andy50 corresponds to
the center of the stripe. The left part of the figure shows the a
ferromagnetic order parameter passing through zero, while the
part shows our scenario with the order parameter tilting as
passes through the stripe.
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difference between site- and bond-centered stripes is sh
in Fig. 12.

Our aim is to find the distribution of holes and spin te
ture that minimizes the energy of an antiferromagnet, wh
we assume the holes are arranged in stripes. The config
tions we consider have the structure shown in Fig. 13, c
sisting of a repeated structure of Ne´el-regions and antiphas
domain walls. The order parameter of the antiferromagn
regions changes sign every time a domain wall is passe

We will assume that all the holes are located near
domain walls. Following the notation in Fig. 13, we wi
denote the width of a single antiphase boundary byj, and
the width of an antiferromagnetic region byd. The average
particle density in the domain wall will be denotednd , and
we will also use the number of holes per unit length~along
x) of the domain wall,d5(12nd)j. Assuming an average
filling n of the system, we have (j1d)n5jnd1d.

Before writing the total energy of this configuration, w
make the following observations. We note that the system
Fig. 13 is build up from units~antiferromagnets and domai
walls! and we would like to write the total energy in terms
the energies of the individual units. To do this we define
energy per site of an antiferromagnetic unit,EAF , as the
energy per site of the antiferromagnet with periodic boun
ary conditions in thex- andy directions. The energy per sit
of the domain wall as a function of the number of holes p
unit length of the stripe,Ed(d), is similarly defined by put-
ting periodic boundary conditions on the domain wall. In th
case it is important that the edge of the domain wall is N´el
ordered and undoped. If this condition is not fulfilled, the
will be surface energies associated with the gluing of a
main wall to an antiferromagnetic region. It is easy to s
that minimizing the total energy of the system is equivale
to minimizing the energy per introduced hole in the doma
wall.

e

i-
ht
e

FIG. 12. To the left is shown a site-centered stripe, in wh
there is a site at which the spin order is in thex-y plane. In the
bond-centered case~right!, the antiferromagnetic spin order reside
in the x-y plane at an imagined point between two sites.

FIG. 13. Our model of the striped phase is shown.A and B
denote the two antiferromagnetic phases~order parameter61) and
in between eachA andB pair is an antiphase domain wall reversin
the sign of the antiferromagnetic order parameter. The figure
introducesj as the width of the antiphase boundary, andd as the
size of the antiferromagnetic layers between the stripes.
3-12
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STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
Our approach will therefore be to consider a single d
main wall and minimize the energy per introduced hole w
respect to the parameters describing the domain wall. Th
parameters contain spin-texture related parameters~which
will be introduced shortly!, the number of holes per un
length of the stripe (d), and finally we have the four option
for the stripe geometry; site/bond-centered and direc
~10!/~11!.

Note that the definition ofj is somewhat arbitrary in the
sense that there, in practice, may be a smooth crossover
the domain wall to the Ne´el-ordered region. For this reaso
d is a better measure of the stripe doping thannd which
depends onj. Knowing d andj, the stripe periodicity is

l 52~j1d!5
2d

x
, ~29!

where we have introduced the average doping of the sys
x512n. Thus we find that for low dopings, the separati
between the stripes scales asx21. This description is valid as
long as the stripes remain separated so that we can ne
stripe-stripe interactions. This condition is fulfilled as long
x! d/j. We note that as we change the overall doping of
system, the structure of the isolated stripes remains, at
as long asd@1. Thus the wave vector describing the sp
order is 2p/ l , and the wave vector of the charge order
twice that, i.e., 4p/ l .

A. Stripes in the „10… direction

Let us start with a description of how a single~10! stripe
is modeled. Although we are interested in infinite domai
in the numerical simulations we are forced to work w
finite stripe width, which we denote by the integerw. We will
assume the local spin orientation of the stripe to be descr
by a unit-vector fieldV̂ r as

V̂ r5~21!r~sinu rcosf r ,sinu rsinf r ,cosu r !, ~30!

where the spherical anglesu r andf r are functions of posi-
tion. The spatial dependence of these angles is assume
take the form

u r5arccosF tanh
w1122y

2j G , ~31!

f r5qxx.

The construction can be thought of as a cylindrical project
~also known as Mercator projection! of the lattice into the
spin sphere by associating latitude and longitude with thx
andy coordinates, respectively.

We are interested in the limitw→`. This limit has two
discrete values, depending on whetherw is even or odd. For
odd values ofw the spin order of Eq.~31! is such that the
spins aty5(w11)/2 are lying in thex-y plane, and hence
the stripe is site centered. If we instead consider an e
integerw, the center of the stripe is located in between t
rows and the stripe is bond centered.
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In addition to the discrete choice of bond- or site-cente
stripe, there are two free continuous parameters in Eq.~31!;
j, which determines the characteristic width of the sp
domain wall, andqx , which is the pitch of the rotation of the
spin about thez axis along the length of the stripe. Figure 1
illustrates this construction.

Making an apparently trivial point, which we return to i
the following section, we note that there is no choice forj
andqx which unwraps the antiferromagnet into a ferroma
net; takingqx5p will create a ferromagnetic channel in th
center of the domain wall, running along the stripe, but w
not affect thez component of the Ne´el order parameter.

When writing the Hamiltonian of this system we need
fix a gauge. If the spin-configuration around a squa
plaquette in terms of spherical angles is given by: (u1 ,f1),
(p2u2 ,f11p), (u2 ,f2), and (p2u1 ,f21p), the prod-
uct of the hopping elements around the plaquette is

t01t12t23t3052sinu1sinu2sin2
u12u2

2
sin2

f12f2

2
<0,

~32!

showing that the flux through a plaquette is exactly equa
p. The texture is therefore quite natural for the followin
reasons. It is periodic and has a uniform flux per square.
flux p per plaquette favors heavily doped regions near
center of the stripe, while the effective hopping in the Ne´el
regions, where the system is undoped, is vanishing. With
6p through the plaquettes there is no broken time-reve
symmetry, and there are no circulating currents or indu
local magnetic fields.

In order to perform our calculations, we use a mixed re
resentation using momentum space in thex direction and real
space in they direction due to the translational invariance
the system along thex direction. The length of our system
along the stripe will be denoted byL. Furthermore, we as
sume that the number density at a siter only depends on the

FIG. 14. A sketch of the Ne´el order parameter in the neighbo
hood of a stripe constituting an antiphase boundary between
regions with perfect Ne´el order. All spins are unit vectors. In th
figure we have also indicated the length scalej. Lx , the period
along thex direction, is related toqx through qx52p/Lx . This
particular spin configuration is clearly site centered.
3-13
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y coordinate, i.e.,n(r )5n(y). We will use the following Hartree decomposition of the interaction term in Eq.~6!:

nrnr8.n~y!nr81nrn~y8!2n~y!n~y8!. ~33!

The effective Hamiltonian can then be written as

Hbulk522t (
y51

w

~21!y(
k

cos~k!tx~y!nk,y2t (
y51

w21

ty~y!(
k

@ck,y11
† ck,y1H.c.#1

J

4 (
y51

w

@hx~y!21#

3(
k

@2nk,yn~y!2n~y!2#1
J

4 (
y51

w21

@hy~y!21#(
k

@nk,yn~y11!1nk,y11n~y!2n~y!n~y11!#, ~34!
co
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where we have introduced the coordinate-dependent
pling constants

hx~y!5V̂ r•V̂ r1 x̂ ,

tx~y!5S 11hx~y!

2 D 1/2

, ~35!

and the analogous relations forhy(y) andty(y). The factor
(21)y in the hopping term of Eq.~34! comes from the flux
6p through each plaquette. In addition to the terms in E
~34!, we have also added a local potential at the upper
lower edges of the system to simulate the effect of the
joining antiferromagnetic region. Without this potentia
which has the form

Hb.c.52
J

2 (
k

@nk,11nk,w#, ~36!

the system may gain energy by expelling the holes to
edges where they break fewer antiferromagnetic links. T
total Hamiltonian is then given by

H105Hbulk1Hb.c.. ~37!

The numerical calculation involves solving se
consistently for a charge profile described byn(y), where

n~y!5L21(
k

^nk,y&, ~38!

and the expectation value is with respect to the Fermi dis
bution of quasiparticles ofH10. We use a chemical potentia
to control the overall number of particles in the system. T
chemical potential is determined during each iteration of
self-consistency equation, Eq.~38!. Our calculations are per
formed at temperatures close to zero,T50.01t, and the
quantity we focus on is the free energy as a function of
number of particles and the parameters describing the st
F(T,N)5^H10&2TS.

B. Stripes in the „11… direction

The analysis of the~11! stripes is similar, although the
geometry of the stripe introduces some complications.
Fig. 15, we have shown the geometry used for these confi
rations. Due to the tilting of the lattice, we note that eve
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second row of constanty in the lattice is shifted to the righ
by half the lattice spacing in thex direction. Moreover, if we
denote the even and odd sublattices byA andB, respectively,
we find that all points belonging toA reside on points having
odd values ofy, while those belonging toB are assigned
even values ofy. This is shown explicitly in Fig. 15.

The stripe is directed along thex axis in the coordinate
system defined in Fig. 15, and the spin configuration is giv
by

V̂ r5~21!y~sinu rcosf r ,sinu rsinf r ,cosu r !. ~39!

We note thatu r50 andu r5p correspond to the two Ne´el
states, and hence we can~as in the~10! case! interpolate
between the two by continuously changingu r across the do-
main wall. To be explicit, we will use the following param
etrization of the spherical angles:

u r5arccosF tanh
w1122y

2j G ,
f r5H qxx, y odd

qx~x11/2!, y even.
~40!

Note that we have shiftedx by 1/2 for eveny values to
account for the shift of lattice points in thex direction as

FIG. 15. The geometry used for the description of~11! stripes is
shown. The original square lattice has been tilted 45°, and we h
labeled each point with a coordinate (x,y). These coordinates ar
not to be confused with the coordinates in the original, untilt
square lattice. Each lattice point has also been marked with
sublattice,A or B, to which it belongs. The domain wall is directe
along thex axis in this coordinate system, and coupling consta
will depend on they coordinate only.
3-14
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STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
discussed above. It is also important to stress that, cont
to the ~10! case, it is possible to recover a ferromagne
configuration by a suitable choice of parameters, nam
making j large and takingqx52p. This corresponds tou r
5p/2 and qx52p for odd y’s and qx5p for even y8s,
respectively. The effect of the rotation due toqx is therefore
to rotate all spins belonging to sublatticeB by p about the
spin z axis. The result is a ferromagnetic configuratio
where all spins point along the positivex axis. This differ-
ence between the~10! and ~11! stripes reflects the fact tha
the local field along either side of a~11! stripe is ferromag-
netic whereas in the~10! case it is antiferromagnetic.40

The next issue we will address is the properties of
fictitious fluxes generated by a certain spin configuration
the domain wall. Figure 16 shows the flux pattern that
generated from the spin configuration in Eq.~40!.

FIG. 16. The lattice of the~11! domain wall is shown. The
structure of the flux pattern is given by theFy’s. In particular, we
find that the flux is uniform along thex axis. We have fixed a gaug
by defining the phases associated with the links in the lattice.
gauge is chosen such that all non zero phases are on links con
ing sites with the samex coordinate.
l
y
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We find that the flux is uniform along thex direction,
while it depends on they-coordinate of the plaquette t
which it belongs. Figure 16 also fixes a gauge, defined by
phasesfy . As we can see from the figure, there is one ph
more than there are gauge invariant fluxes. Therefore, we
choose a gauge in whichf150. Next, we consider the flux
F1 which is determined byF15f11f2. More generally,
we find Fy5(21)y11(fy1fy11). In this way we can
solve for the phasesfy in terms of the fluxes, finding

fy115~21!y (
y851

y

Fy8 . ~41!

Numerically, given the spin configuration of the domain w
we calculate the fictitious fluxes,Fy , using Eq.~7! and then
use Eq.~41! to find the appropriate phases that enter
Hamiltonian.

We define the amplitudes of the hopping and Heisenb
interactions as

hy~y!5V̂x,y•V̂x,y11 ,

hd~y!5V̂x,y•V̂x1(21)y,y11 ,

ty~y!5S 11hy~y!

2 D 1/2

,

td~y!5S 11hd~y!

2 D 1/2

, ~42!

which allows us to write the bulk part of the Hamiltonian

e
ct-
Hbulk5 (
y51

w21

(
k

$2t@ty~y!eif(y)1td~y!ei (21)yk#ck,y11
† ck,y1H.c.%1 (

y51

w21
J

4
@hy~y!1hd~y!22#

3(
k

@nk,yn~y11!1nk,y11n~y!2n~y!n~y11!#. ~43!
ose

e
n-
ro-
imal
the
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For the same reasons as in the~10! case, we will add a loca
potential to the vertical boundaries~note that each boundar
site connects to two sites in the environment!,

Hb.c.52J(
k

@nk,11nk,w#. ~44!

The total Hamiltonian,H11, is the sum of the bulk and
boundary contributions, i.e.,

H115Hbulk1Hb.c.. ~45!
The numerical procedures are completely equivalent to th
used in the~10! case.

C. The optimal stripe

According to our model, the physically relevant strip
configuration is that which minimizes the domain-wall e
ergy per introduced hole. We will use the undoped antifer
magnet as an energy reference state, this being the opt
state at zero doping. As we dope holes into the system,
total energy of the domain wall will be a discrete function
the geometry@site or bond centered and direction~10! or
~11!# and a continuous function ofNh , qx , andj. Note that
3-15
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MARTIN ANDERSSON AND STELLAN ÖSTLUND PHYSICAL REVIEW B 67, 014403 ~2003!
since we work with a chemical potential, the number of ho
in the domain wall,Nh , is not restricted to be an integer.

We label this energyE(Nh ,qx ,j). However, the physi-
cally interesting quantity is the number of holes per u
stripe length,d5Nh /L. We define the domain wall energ
per hole according to

Eh~d,qx ,j!5
E~dL,qx ,j!2EAF

dL
. ~46!

As we argued in the beginning of this section, to find t
optimal stripe configuration we have to minimize this fun
tion with respect tod, qx , andj for bond and site centere
~10! and ~11! stripes.

Turning to our numerical results, we have initially consi
ered a system with a Heisenberg couplingJ50.40, where
the energy scale is fixed byt51. This value was chose
because it corresponds to a value of the exchange coup
constant which has been used by others to model the h
temperature superconductors. In Fig. 17 we show the opt
energy per hole as a function ofd for the four stripe geom-
etries, i.e., we have plottedEh(d)5minqx ,jEh(d,qx ,j).

From Fig. 17 we can read off the optimal stripe config
ration, which will make up the domain walls in the stripe
phase. As is indicated in this figure, the optimal domain w
is a site-centered stripe along the~10! direction havingd
.0.46 holes per unit length of the stripe. This agrees w
results from DMRG calculations by White an
collaborators,39 who find stripes withd50.5 for J50.35.
Furthermore, the experimental data indicate thatd.0.5.36

We also find thatj is very small for this optimal stripe, i.e.
there is a sharp spin-domain wall with a single tilted row
spins. This row is ferromagnetically ordered as we findqx
5p, and the holes are tightly confined in the neighborho
of the domain wall. The spin and charge profiles are sho
in Fig. 18.

FIG. 17. The energy per hole is shown as a function of
number of holes per unit stripe length,d. An investigation of the
curves shows that the minimum occurs for the site centered~10!
stripe atd.0.46.
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Since the optimal domain wall is so narrow, the product
the effective hopping-amplitudes around any plaquette in
lattice is approximately zero. Thus we must conclude that
system does not take advantage of the fictitiousp flux
through the plaquettes.

As Fig. 17 shows, the bond-centered~11! stripe is ener-
getically very close to the optimal~10! stripe described
above. An illustration of this domain-wall configuration
shown in Fig. 19. This~11! stripe is characterized byd
.0.71, qx52p, and j.0.73. It is important to point out
that qx52p is not equivalent toqx50 sinceqx52p per-
forms ap rotation about thez axis of one of the sublattices
as we discussed in the preceding subsection. Furtherm
we want to emphasize that this stripe configuration does
induce any fictitious fluxes and consequently there are
currents that could energetically disfavor this configuratio

Since the optimal~10! stripe is very close in energy to th
~11! stripes it is interesting to investigate what happens as
tune the strength of the Heisenberg interaction,J. Numeri-
cally we find that slightly increasingJ aboveJ50.40 favors
the ~10! stripes compared to~11! stripes, while decreasingJ
favors the~11! stripes. There will be a crossing point slight
below J50.40, at approximatelyJ.0.36, where the~11!
stripes have lower domain wall energy than the~10! stripes.

There is a technical point which is important when loo
ing at the energy per hole as a function ofd for the ~11!

e

FIG. 18. The structure of the optimal~10! stripe forJ50.40 is
shown. Arrows indicate the polarization of the spins, and the rad
of the circles indicates the amount of hole doping. Small circ
correspond to 4% hole doping, while large circles correspond
36% hole doping. Undoped regions lack circles.

FIG. 19. The structure of the optimal confined~11! stripe for
J50.40 is shown. Arrows indicate the polarization of the spins, a
the radius of the circles indicates the amount of hole doping. Sm
circles correspond to 5% hole doping, while large circles cor
spond to 31% hole doping. Regions being approximately undo
lack circles.
3-16
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STAGGERED FLUX AND STRIPES IN DOPED . . . PHYSICAL REVIEW B67, 014403 ~2003!
configurations. As we mentioned in the preceding subsect
it is possible to unwrap the~11! domain walls into ferromag-
nets. If we follow the~11! curves in Fig. 17 to larger value
of d we find that the energy successively decreases be
what we called the optimal stripe configuration. The config
rations that correspond to these low-energy states are clo
ferromagnetic and with an almost uniform charge distrib
tion. Physically this corresponds to a global phase separa
into an undoped Ne´el region and a heavily doped ferroma
netic region, i.e., the phase separation discussed in Sec
Let us therefore compare the energetics of the optimal~10!
domain wall and the global phase separation.

At the minimum ofEh(d) in Fig. 17, we can read off the
energy per hole of the optimal domain wall asEdw
.20.76. This is to be compared to the energy per hole
the totally phase-separated stateEps.21.06 for the same
value ofJ. This number was obtained from a Hartree calc
lation using Eq.~17! on a system of the same size as t
stripe grid. This clearly shows that, within our approximati
at least, phase separation is energetically advantageous
pared to domain-wall formation. In a real system, the ene
of the phase-separated state is raised due to the Cou
interaction between the holes and this could make the
main wall thermodynamically stable.

The cuprates seem to favor the formation of rather nar
stripes, not phase separation. We will take the point of v
that there is some mechanism, not captured in our appro
such as a long-range Coulomb interaction, which preve
grouping all the holes together and instead favors the for
tion of stripes on some intermediate length scale. Theref
we will only consider the stripe configurations that are lo
in nature.

D. Including next-nearest-neighbor hopping

An unphysical feature of our simulation is that since ho
ping between the antiferromagnetic spins is forbidden,
effect of second-neighbor~diagonal! hopping becomes im
portant in the Ne´el state. In our approximation of th
t-Jmodel, hopping is frozen out for this state, so that elect
transport will be dominated by any second-neighbor term
they are nonzero. This term will permit electrons to diffu
into the Néel state and could therefore be expected to de
calize the holes from the stripe center. We will extend o
model of the ~10! stripes by adding this hopping to th
Hamiltonian through a term,

Hnnn52t8 (
^^rr 8&&

@t rr 8
8 cr8

† cr1H.c.#, ~47!

where ^^rr 8&& denotes next-nearest-neighbor pairs. As
fore, the calculations reported below are performed with
Heisenberg couplingJ50.40 and at temperatureT50.01 in
terms of energy units set byt51. In this section, we will
only consider the effect of second-neighbor hopping on
~10! stripe, since this was found to be the optimal stri
configuration forJ50.40.

It has been argued in the literature that the sign oft8 in the
high-Tc cuprates depends on whether the system is h
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doped or electron doped.41,42 A hole-doped system corre
sponds tot8,0, while an electron-doped system hast8
.0. In an antiferromagnet, the presence of a seco
neighbor hopping is important since it allows for holes mo
ing through the sublattices without disrupting the antifer
magnetic order. Typically, the value oft8 used in the
literature for describing a hole-doped antiferromagnet ist8
.20.3.

If we consider the limit in which the nearest-neighb
hopping is completely frozen out, and there is only seco
neighbor hopping, i.e.,

Ht82J52t8 (
^^rr 8&&

@t rr 8
8 cr8

† cr1H.c.#

1
J

4 (
^rr 8&

~V̂ r•V̂ r821!nrnr8 , ~48!

we note that the transformationcr°(21)xcr leaves the
Heisenberg term unchanged, while the second-neighbor t
changes sign. This shows that in this limit the asymme
between6t8 vanishes. Hence, the sign oft8 is irrelevant in
the Néel-ordered regions, and it is only in the region whe
the spin twist occurs thatt andt8 are simultaneously presen
and accordingly, the sign oft8 is important.

Introducing next-nearest-neighbor hoppings as in Sec
allows for new closed particle orbits in the lattice, and hen
also for new gauge invariant fluxes. There are four of th
fluxes and they are defined in the right inset of Fig. 20.

Investigating the spin structure of Eqs.~30! and ~31!, we
find that the four fluxes$Fk

y%k51
4 associated with rowy are

determined by a single parameterCy according to

F1
y5Cy , F2

y56p2Cy , F3
y52Cy ,

F4
y57p1Cy . ~49!

Recalling our topological constraint, Eq.~10!, we find that it
is satisfied as

F1
y1F2

y2F3
y2F4

y52pn, ~50!

with n561, which is what we expect for an antiferroma
net. Which sign applies to a certain plaquette depends on

FIG. 20. Our gauge choice for the next-nearest-neighbor h
ping. The gauge choice on the horizontal and vertical links is
same as the one used previously for the~10! domain walls. The
right inset defines the fluxesFk

y through the four sub-plaquettes o
a square plaquette.
3-17
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sublattice associated with the plaquette as well as the
configuration. Figure 20 defines a gauge by introducing
phasesay andby . Using Eq.~49! it is easy to read off the
parametersay and by from Fig. 20. Doing this we finday
52by5Cy for odd values ofy, anday52by56p2Cy
for eveny’s.

As in the nearest-neighbor case, we will work in mome
tum space in thex direction, while keeping the real spac
description in they direction. We note from Fig. 20 that th
phases of the links form a staggered structure, doubling
size of the unit cell, and introducing a scattering betwe
states of momentak and k1p. To deal with this we intro-
duce the same two-component wave functions as was us
Sec. VI.

Using this model we have investigated how the optim
stripe evolves as the second-neighbor hopping amplitudt8
is changed from zero. For small values oft8, approximately,
20.3,t8,0.15, the structure of the stripe is largely u
changed. It is still described byqx5p and vanishingj. The
optimal number of holes per unit stripe length also rema
(d.0.46). All that happens is basically that there are sm
redistributions of the holes within the stripe.

Concerning the tendency to global phase separation
have considered the behavior ofEdw(t8)/Eps(t8), i.e., the
ratio of the energy per hole of the domain wall and pha
separated states, respectively. We find that this ratio
creases as we increaset8 slightly from zero, and decrease
when t8 becomes negative. This indicates that a negativet8
favors the domain wall configurations compared to the g
bal phase separation but, at least for smallt8, the domain
walls are still unstable against phase separation.

When t8 becomes larger than 0.15, the holes diffuse i
the antiferromagnet and widens the domain wall. The o
mal number of holes per unit stripe length increases. T
spin twistj becomes nonzero, making the antiphase bou
ary wider. Since we are working with a finite widthw of the
domain wall, we get problems when the holes start diffus
away from the center of the domain wall. For our model
be valid, we must require that the domain wall is Ne´el or-
dered and undoped at its vertical edges. This is to av
surface energies when gluing together the domain wall w
a Néel region.

In the case relevant for the hole-doped cuprate planes,
t8,0, we find that decreasing the value oft8 below 20.3
keeps the structure of the stripe rather intact in the sense
j remains vanishingly small and that the holes are locali
close to the antiphase boundary. The optimal number
holes per unit stripe length does however change, it is
duced ast8 is decreased, e.g., att8520.5 we find that the
energy per hole is minimized byd.0.38. However, if we
further decreaset8 the optimal dopingd will rise again as we
reach t8.20.7. For such large negative values oft8, the
holes will spread into the antiferromagnet just as we found
the positivet8 case. Our numerical calculations indicate th
j remains small, i.e., the spin twist still occurs over a ve
short distance.

VIII. CONCLUSION

We have considered an effective version of the tw
dimensionalt-J model where the electrons are considered
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completely spin polarized. The effect of such a spin textur
to generate a fictitious topological flux through the lattice.
this paper we have extended the discussion of a prev
paper1 concerning the properties of these fluxes.

Keeping in mind the result of Hasegawaet al.,4 where it
is shown that the energy of a free-electron gas on a sq
lattice is minimized when there is one flux quanta per p
ticle, the possibility of the system prefering a flux-generati
spin configuration does not seem remote.

To check the above theory we have performed Hartr
Fock mean-field theory calculations for the system. In
Hartree approximation it seems like the system prefers
form a flux-phase for certain choices of doping and coupl
constants. However, when the exchange-terms are inclu
this effect seems to vanish and the coplanar spiral phas
energetically more favorable than the flux phase. Introduc
a nearest-neighbor Coulomb repulsion, it is possible to m
the flux phase energetically most favorable also with the
change terms present. However, the calculations indicate
for a wide range of dopings, these uniform phases are
stable against phase separation into an undoped antife
magnet and a highly doped coplanar spiral phase. Thus
have to conclude that from a thermodynamic point of vie
we do not expect to find a flux phase in the phase diagram
the model we have considered.

The main part of the paper has been concerned with
generalization of this construction to describe stripes,
rected along either the~10! or ~11! direction of the lattice.
These stripes are appealing as they provide a smooth rea
tion of an antiphase domain wall, continuously merging tw
Néel-ordered regions with opposite signs of the order para
eter. The holes naturally reside within this domain w
which generates a fictitious flux that further can reduce
energy of the holes in domain wall. This construction pr
vides an appealing theoretical connection between the for
tion of stripes and flux phases. Contrary to what is assum
in the more common view of stripes, the spins along
stripes are ordered in our approach. Measuring a long-ra
spin correlation along the stripe would support our view
the stripe. Furthermore, if a smooth domain wall is prese
described by the wave vectorp/j, this might be visible in
the scattering characteristics of the system.

UsingJ50.40, we find that the optimal antiphase doma
wall is site centered and runs along the~10! direction of the
lattice. The structure of this domain wall is such that there
a sharp spin twist, basically only affecting a single row
spins, which aligns the spins ferromagnetically in a on
dimensional channel. The doping of the domain wall is a
proximately d51/2 holes per unit length of the stripe. A
holes are tightly bound to the domain wall, spreading o
three rows of lattice sites. Due to the narrow spin structure
this stripe, we found that the system does not exploit thep
flux generated through each plaquette by this domain-w
configuration.

We also find that stripes directed along the~11! direction
are energetically very close the optimal~10! stripe, and if we
decreaseJ they will become the most advantageous dom
walls at J.0.36, while increasingJ favors the~10! stripe.
Looking at the structure of the optimal~11! stripes we found
3-18
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that they do not generate any fictitious flux.
Comparing the energetics of the domain walls with glo

phase separation, we find that within our approximation
global phase separation is favorable. Furthermore, we h
incorporated second-neighbor hopping in the case of~10!
stripes. For small values of this hopping, the structure of
optimal domain wall remains, while at larger values the ho
starts spreading out, widening the domain wall. Compar
our results with previous studies of stripes, we find that
stripes ~even though they are not thermally stable in o
first-order approach! have the same number of holes per u
length as those found experimentally and in elaborate
hy

c

v

v.

d

01440
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merical DMRG-calculations on dopedt-J models.10–12 We
also find in agreement with previous studies that the dom
walls are sharp, consisting of a single row of lattice sites

There are a number of questions that are left unanswe
at this point, and which we believe are interesting to furth
investigate. Concerning the next-nearest-neighbor hoppin
would be interesting to investigate more thoroughly how
affects the tendency towards global phase separation, a
it can stabilize the stripes. Furthermore, it would be intere
ing to further examine the effect of this hopping on the stru
ture of the stripes, and also investigate its effects on the~11!
stripes.
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