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Piezoresistivity and conductance anisotropy of tunneling-percolating systems
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Percolating networks based on interparticle tunneling conduction are shown to yield a logarithmic divergent
piezoresistive response close to the critical point as long as the electrical conductivity becomes nonuniversal.
At the same time, the piezoresistivity or, equivalently, the conductivity anisotropy exponentl remains univer-
sal also when the conductive exponent is not, suggesting a purely geometric origin ofl. We obtain these
results by an exact solution of the piezoresistive problem on a Bethe lattice and by Monte Carlo calculations
and finite-size scaling analysis on square lattices. We discuss our results in relation to the nature of transport for
a variety of materials such as carbon-black–polymer composites and RuO2-glass systems which show nonuni-
versal transport properties and coexistence between tunneling and percolating behaviors.
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I. INTRODUCTION

Tunneling-percolating network models have been s
gested to properly describe transport properties of disord
systems in which tunneling coexists with percolation beh
iors. Examples of such systems are provided by vari
carbon-black–polymer composites,1 for which, close to the
metal-insulator transition, the conductivitys follows a per-
colationlike power law of the form

s.s0~p2pc!
t, ~1!

wheres0 is a prefactor,p is the concentration of the con
ducting phase,pc is the percolation critical concentration
and t is the critical exponent.2 A clear indication that trans
port is dominated by tunneling between carbon-black gra
is provided by a large strain and/or volume sensitivity
s.3,4 Similar situations are encountered also in orga
conductors-polymer composites,5 and thick-film resistors
made of metal-oxide conductive grains inhomogeneou
embedded in a glassy matrix.6,7 These latter compounds dis
play quite large piezoresistive effects and their use for sen
applications is widespread.8

Modelling such systems in terms of tunneling-percolat
networks resides on the assumption that the exponentia
cay exp(22r/j) of the tunneling amplitude permits one
retain only nearest neighboring conducting grains. Since
tunneling factorj}1/AV depends only on the potential ba
rier V separating the grains, a modification of the tunnel
distancer induced by an applied strain« can lead to a large
variation of the total conductivity, and so to large values
the piezoresistive coefficientd log(s21)/d«. For example
both carbon-black–polymer composites and RuO2-based
thick-film resistors can display piezoresistive coefficients
to about 30.3,8

Although percolating network theories predict that t
conductivity exponentt should be universal and equal tot
.2.0 for three-dimensional lattices,9 tunneling-percolating
systems display important deviations from universality. F
example, values oft up to aboutt.6 have been reported fo
0163-1829/2003/67~1!/014205~6!/$20.00 67 0142
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some kind of carbon-black composites,1,2 while t.4.0 has
been measured for RuO2-based thick-film resistors.10

Nonuniversality has been theoretically proposed to a
from specific conducting-insulating phases distributions s
as in the swiss-cheese model where spherical insulating
clusions are introduced in a continuous conductor.11 An al-
ternative explanation has been put forward specifically
tunneling-percolating materials by arguing that, if the co
posite has a sufficiently wide distribution of tunneling di
tances, the distribution of bond conductances between c
ductive grains has a power-law divergence.12 It is well
known that such anomalous distribution can lead
nonuniversality.13

In this paper we argue that the piezoresistive effect, i
the sensitivity ofs upon applied strain, could be a decisiv
tool to investigate the origin of nonuniversality. We sho
that if the nonuniversality of tunneling-percolating systems
given by a diverging distribution of tunneling conductance
then the piezoresistive response diverges logarithmically
the percolation thresold, while at the same time the piezo
sistivity anisotropy remains universal regardless of the u
versality breakdown of the conductivity exponentt. We ob-
tain these results by an analytic solution of the piezoresis
problem on a Bethe lattice and by Monte Carlo calculatio
and a finite-size scaling analysis on square lattices.

This paper is organized as follows. In Sec. II we introdu
the lattice model and the relevant quantities concerning
piezoresistive response. In Sec. III we solve the piezore
tive problem analytically for a Bethe lattice, while in Sec. I
we investigate the square lattice numerically. A discussion
our results in connection with real materials is presented
Sec. V, where also the conclusions are drawn.

II. MODEL

Let us consider a random resistor network where the b
conductivity distribution is given by

r~g!5ph~g!1~12p!d~g!, ~2!

wherep is the fraction of bonds with finite conductivityg
with distribution h(g). In the following, we implicitly as-
©2003 The American Physical Society05-1
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sume that the temperature is high enough to neglect o
processes than intergrain tunneling~grain charging effects
Coulomb repulsion!. This is certainly a good approximatio
for thick-film resistors which shows a very weak temperat
dependence ofs already at room temperature. Hence, with
a tunneling-percolation framework,h(g) depends upon the
distribution of tunneling distances between nearest neigh
ing grains. For narrow distributions,h(g) is peaked around
g5g0exp(22a/j), wherea is the mean intergrain distance,j
is the tunneling factor, andg0 has units of a conductivity. We
assume that the main dependence upon the mean inte
distancea is all contained in the argument of the exponent
and for simplicity we setg051. In a first approximation, we
can set

h~g!5d~g2e22a/j!, ~3!

as an extreme case for narrow distribution for tunneling d
tances. In this situation, close to the metal-insulator tra
tion, transport follows Eq.~1! with universal exponentt de-
pending only upon dimensionality and all dependence u
tunneling distancea is embodied in the prefactors0 which
measures the average bond conductivity. Hence we ex
that a change of the tunneling distancea induced by an ap-
plied external strain would affect onlys0.

Let us consider now the case in whichN spherical par-
ticles of radiusR0 are placed at random so that the tunneli
distancer between two neighboring grains fluctuates. Wh
the average distancea between two adjacent grains is su
that a@R0, Balberg argued that the salient feature of t
resulting bond conductivity distribution is captured by
power-law divergence at smallg,12

h~g!5~12a!g2a, ~4!

wherea512j/2a and the prefactor 12a assures the cor
rect normalization ofh(g) and r(g). As first shown by
Kogut and Straley,13 for values of a larger than some
dimensionality-dependent critical valueac , universality
breaks down and the transport exponentt becomesa depen-
dent: t→t(a).t. The important point here is that sincea
depends on the mean intergrain distancea, then the exponen
t(a) can be affected by an applied external strain« and this
would lead to an anomalous piezoresistive response.

To investigate this issue, let us assume that the netwo
embedded in a homogeneous elastic medium and tha
elastic coefficients of the network and the medium are eq
Moreover we set the bond directions parallel to the axes
D-dimensional cubic lattice. In this situation, if we apply a
uniaxial strain« along, for example, thex axis, then the
tunneling distance for a bond directed alongx changes toa
→ax5a(11«), while the bonds directed along the oth
orthogonal axes remain unchanged:ai5a for iÞx. The
strain-induced change of the tunneling distances leads th
fore to anisotropic bond conductivity distributionsrx(g) and
r iÞx(g)5r(g). For an external electric fieldEi applied
along thei axis and up to linear order in«, the resulting
network conductivitiess i are sx5s(12G i«) and s iÞx
5s(12G'«), wheres is the unstrained conductivity, and
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G i5
d ln sx

21

d«
, G'5

d ln s i
21

d«
~ iÞx! ~5!

are the longitudinal and transverse piezoresistive coe
cients, respectively. These two quantities completely de
the piezoresistive properties of the network. For example,
isotropic ~or hydrostatic! piezoresistive responseG obtained
by applying equal strain« along all bonds directions is14

G5
d ln s21

d«
5G i1~Z/221!G' , ~6!

whereZ is the coordination number, while information abo
the tortuosity the current has in flowing through the netwo
is given by the piezoresistive anisotropy factor, defined a

x5
G i2G'

G i
, ~7!

which measures the degree of macroscopic trans
anisotropy.14 Close to the percolation thresold,x displays a
power law of the form14

x;~p2pc!
l, ~8!

where the exponentl is the same of that governing critica
ity of the conductivity anisotropyA512sy /sx of random
resistor networks with anisotropic bond conductances.15–17

In the present case, in fact, bond anisotropy is induced by
applied uniaxial strain and, sincel is independent of the
degree of bond anisotropy,18 A andx have the same critica
behavior with the same exponentl.

Having introduced the main quantities defining the
ezoresistive properties of random resistor networks, let
now discuss qualitatively the effects of universality brea
down induced by the diverging bond conductances distri
tion function@Eq. ~4!#. The anisotropy factorx and its expo-
nent l cannot be accounted for in a simple way witho
explicitly solving the anisotropy problem, which is done
the following sections. However, the hydrostatic piezores
tive responseG can be simply evaluated by noticing that, b
definition, it is obtained by changing the tunneling distanca
to a(11«) for all bond directions. HenceG can be readily
found by differentiating Eq.~1! with respect to«,

G5H G0 , a,ac ,

G01~12a!lnS 1

p2pc
D t8~a!, a>ac ,

~9!

whereG052d ln s0
21/d«. For a,ac , transport is universa

and the piezoresistive response is governed solely by
strain dependence ofs0 in Eq. ~1! leading to the
p-independent factorG0. Of course, distribution functions
for occupied bonds like Eq.~3! would trivially lead to the
same qualitative result, i.e., a piezoresistive response in
pendent of the concentration of occupied bonds. Instead
soon as transport becomes nonuniversal (a>ac), the
tunneling-percolation model of Balberg@Eq. ~4!# predicts a
logarithmic divergence of the hydrostatic piezoresistive
sponse. Note that such an anomalous behavior is also
5-2
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pected for distributions more complicated than Eq.~4! as
long as their asymptotic behavior forg→0 has a power-law
divergence with exponent depending upon the tunne
distance.

In the next sections we shall verify the correctness of
~9!, and calculate thep dependence ofx by considering two
quite dinstinct cases: the Bethe lattice model, which is pa
digmatic of high-dimensionality lattices for which transpo
is governed by mean-field exponents,19 and the two-
dimensional square lattice.

III. BETHE LATTICE

The conductivity problem on a Bethe lattice, or Cayl
tree model, was considered and solved in Refs. 20 and 21
we show below, for this model the concentration depende
of the piezoresistive response in the critical regime can
obtained analytically for both distributions@Eqs.~3! and~4!#.
For simplicity in the following we shall consider a Beth
lattice with coordination numberZ54 @pc51/(Z21)
51/3)]. According to Ref. 22, the distributionPi(s) of con-
ductivities from an arbitrary bond directed alongi 5x,y to
infinity and the current distributionsJi(s) induced by an
applied electric fieldEi satisfy the following coupled nonlin
ear integral equations:

Px~s1!5E
0

1

dgrx~g!E ds2ds3ds4Px~s2!Py~s3!

3Py~s4!dFs12
g~s21s31s4!

g1s21s31s4
G , ~10!

Jx~s1!5Exs1Px~s1!1E
0

1

dgrx~g!E ds2ds3ds4

3
g Jx~s2!Py~s3!Py~s4!

g1s21s31s4

3dFs12
g~s21s31s4!

g1s21s31s4
G . ~11!

The corresponding equations forPy(s) and Jy(s) are ob-
tained from Eqs.~10! and ~11! by substitutingx with y ~and
vice rversa!, and the total conductivitiess i are obtained from

sx522E
0

`

dzJx~z!Py~z!
d@Px~z!Py~z!#

dz
, ~12!

wherePi(z) andJi(z) are the Laplace transforms ofPi(s)
andJi(s), respectively.22

Let us first consider the case of a narrow tunnelin
distances distribution Eqs.~2! and ~3!#, for which, in the
absence of applied strain, the conductivity iss56 exp
(22a/j)(p2pc)

t for up2pcu!1 wheret53 is the universal
transport exponent.21 The effect of an applied uniaxial strain
«Þ0, can be readily found by following Ref. 22. In th
critical region, we find that the piezoresistive coefficien
@Eq. ~5!# reduce to
01420
g
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j F11~2 !
15

16
~p2pc!G . ~13!

The above result captures the essential physics at the bas
the piezoresistive response of percolating networks.14 For p
.pc , G i.G' because the strain sensitivity is stronger f
sample conductivities measured along the direction of
applied strain. Asp moves towardpc , the macroscopic an
isotropy induced by« gets reduced by the enhanced tortuo
ity of the current carrying paths until, atp5pc , the longitu-
dinal and transverse piezoresistive coefficients beco
equal.14 From Eq.~13!, we find that the piezoresistive aniso
ropy x @Eq. ~7!#, goes to zero as

x5
15

8
~p2pc!. ~14!

Hence the anisotropy exponent for the Bethe lattice isl
51, in accord with previous results.22

Now we consider how the piezoresistive response o
Bethe lattice changes when the bond conductances ha
power-law distribution as in Eqs.~2! and~4!. In doing so, we
generalize the procedure described in Ref. 13 to the an
tropic bond conductance case of Eqs.~10!–~12!, and perform
an expansion in powers of«. To obtain the piezoresistive
coefficients, it is sufficient to keep only terms up to line
order in «. Here we stress that the resulting piezoresist
response for the Bethe lattice model depends crucially on
sign of a. For a,0, corresponding to the quite unphysic
relation a,j/2, conductivity is universal witht53,13 and
the piezoresistive response can be easily shown to be
qualitatively as in the binary distribution case discuss
above~finite values ofG i(') at p5pc and l51). Instead,
when a.0, the piezoresistive response changes qua
tively, as discussed in the following.

From Eq. ~10! we find that fora.0 the p2pc depen-
dence of the Laplace transforms ofPx(s) andPy(s) is

Px(y)~z!512d f ~v!1d ln d@g~v!1~2 !d g1~v!#«,
~15!

where v5d1/(12a)z and d5(p2pc)/pc . The functions
f (y), g(y), andg1(y) satisfy coupled integral equations, b
their explicit expressions are not of interest here. By app
ing the same procedure to Eq.~11! we find

Jx(y)~z!5
3

2
d11[1/(12a)]Ex$ f 8~v!2 ln d@g8~v!

1~2 !d g2~v!#«%. ~16!

Finally, by substituting these results into Eq.~12! we obtain

sx(y)5d31[a/(12a)]$a02a1«2 ln~d21!@a21~2 !a3d#«%,
~17!

wherea0 , . . . ,a3 are positive functions ofa. For «50, we
obtain the result of Kogut and Straley,13 sx(y)5s;(p
2pc)

t(a), with t(a)531a/(12a), indicating that trans-
port is non-universal fora.ac50. In this regime, the pi-
ezoresistive coefficients are obtained from the terms of
~17! proportional to«:
5-3
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G i(')5
a11 ln~d21!@a21~2 !a3d#

a0
; lnS 1

p2pc
D . ~18!

We have arrived therefore at the result that, as long as
tunneling-distance distribution is such that transport beco
nonuniversal, then the piezoresistive response diverges l
rithmically asp→pc . This must be contrasted with the finit
value of G i and G' at p5pc @Eq. ~13!#, obtained from the
simple binary distribution Eqs.~2! and ~3!!. From Eq.~18!
we obtain also that the piezoresistive anisotropyx @Eq. ~7!#,
reduces to

x5
2a3

a2
d}~p2pc!. ~19!

Hence x goes to zero with the universal exponentl51,
irrespective of the logarithmic divergence ofG i(') and of the
universality breakdown ofs.

IV. SQUARE LATTICE

The results of Sec. III have been derived for a Be
lattice and are therefore in general relevant for hig
dimensionality (D>6) lattices.19 To investigate the piezore
sistive response for low-dimensional networks, we consi
now a square lattice. We employ the transfer-matrix meth
of Derrida and Vannimenus, which permits one to calcul
exactly the conductivity of a long strip of widthN ~alongx)
and lengthL@N ~along y).23 The distribution of theN3L
conductors follows Eq.~2! and ~4! and the longitudinal and
transverse piezoresistive coefficients are obtained by se
ax5a(11«), ay5a andax5a, ay5a(11«), respectively,
with «50.001. For each value ofa.0 at the percolation
thresold p5pc51/2, we perform the calculations atN
58 (L513108), N516 (L57.53107), N532 (L52.5
3107), N545 (L523107), N564 (L513107), N
582 (L513107), andN5100 (L50.83107).

In Figs. 1 and 2 we show our results for the unstrain
conductivitys, the longitudinal and transverse piezoresist
coefficientsG i(') , and the piezoresistive anisotropyx. From
the s-vs-N data of Fig. 1~a! we extract the conductivity ex
ponent t from the finite-size scaling relations(N)
5c1N2t/n(11c2 /N), wheren5 4

3 is the correlation length
exponent.24 The resultingt values~solid circles! are reported
in Fig. 1~c! as function of the power-law distribution expo
nenta of Eq. ~4!. For comparison, we report also thet values
obtained in Ref. 25 by a different numerical method~empty
circles!. As expected, for sufficiently largea, the t exponent
increases well beyond its universal valuet.1.3,24,25 signal-
ing a breakdown of universality. According to Refs. 25 a
26, universality is lost fora.ac50.2460.08, and the con-
ductivity exponent should follow the relationt(a)51/(1
2a) reported in Fig. 1~c! by the dashed curve. Our numer
cal results, as those of Ref. 25, agree well with the theoret
expectations for large values ofa but somehow overesti
mates thet-values fora;ac . This deviation from the theo
retical expectations should be due to finite-size effects
plified by the presence of two competing fixed points.25,26

In contrast to the largea dependence ofs(N), the data
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for different a values of the piezoresistive anisotropyx re-
ported in Fig. 1~b! all collapse in a single curve. Hence th
piezoresistivity ~or conductivity! anisotropy exponentl
@filled squares in Fig. 1~c!# estimated from the finite-size
scaling relationx(N)5c3N2l/n(11c4 /N) does not show
appreciable variations over the entire range ofa values
considered.27 This is in striking contrast withl5t2bB ,
wherebB.0.48 is the fraction of conducting bones in th
backbone, conjectured to hold true forD52 in Ref. 17. As
for the Bethe lattice case, the universality ofl also for a
.ac suggests that this exponent depends only upon the
ometry of the conducting cluster and is not influenced byt.

The results for the piezoresistive coefficientsG i andG' as
functions of N are reported in Figs. 2~a! and 2~b!, respec-
tively. With the exclusion of the largeN values fora50.6,
which we think are affected by too small values ofL, G i and

FIG. 1. Unstrained conductivitys ~a! and piezoresistive anisot
ropy x ~b! calculated atp5pc51/2 as function of the widthN of
the strip fora50.05,0.1,0.15,0.2,0.3, . . . 0.6. ~c! Solid circles: con-
ductivity exponentt as a function of the distribution exponenta.
Empty circles: results from Ref. 25. Dashed curve is the theoret
estimatet(a)51.3158 for a,ac50.24 andt(a)51/(12a) for
a.ac . Solid squares: conductivity~or piezoresistivity! anisotropy
exponentl. Solid line: average valuel50.87.

FIG. 2. ~a! and ~b! Longitudinal and transverse piezoresistiv
coefficients as a function ofN for different values of the power-law
distribution exponenta. ~c! Prefactor ofG i(')5ai(')ln(N) as a
function of a.
5-4
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G' follow approximately a ln(N) behavior. This signals a
ln@(p2pc)

21# divergence of the piezoresistive coefficients
p→pc . How the logarithmic divergence depends upona is
studied in Fig. 2~c!, where we plot the prefactorsai anda'

of the finite-size scaling law:G i(')5ai(')ln(N)(11•••). The
correction-to-scaling terms••• which best fitted the data
where proportional to 1/N and 1/ln(N). Clearly, ai(') is a
monotonically increasing function ofa, indicating that the
logarithmic divergence ofG i(') is stronger fora larger. In
analogy with the results on the Bethe lattice, we would
pect thatai(') vanishes fora,ac , so thatG i(') has a finite
limit at p5pc . However theai(') data of Fig. 2~c! are small
but nonzero even fora,ac50.24. We think that this is due
to the same finite-size errors affecting the unstrained cond
tivity exponent @Fig. 1~c!#, which lead to a spurious
a-dependence ofs and consequently toai(')Þ0.

V. DISCUSSION AND CONCLUSIONS

Let us now discuss the applicability of our theory to re
materials. The thermal expansion effect on the resistanc
nonuniversal (t.3.0) carbon-black–polymer composite r
ported in Ref. 4 provides a first indirect clue. From t
resistance-vs-volume data we have extracted a hydros
piezoresistive coefficientG of about 30 which keeps increas
ing as the volume is expanded by the temperature. If
volume expansion effectively reduces the carbon-black c
centration, we obtain a piezoresistive coefficient enhan
ment as the concentrationp moves down to its critical value
However, due to the uncontrolled effect of polymer melti
on the microstructure of the composite, we have been un
to single out any logarithmic divergence of the piezoresis
ity response.

A much clearer situation is found for RuO2-based thick-
film resistors. In Fig. 3~a! we report conductanceG measure-
ments on several RuO2-glass composites for different value
of the metal volume concentrationx.6,7 When ln(G/G0)

1/t is
plotted as a function of ln(x2xc), whereG0 is a prefactor and
xc is the critical volume concentration, the whole set of d
collapses into a single straight line indicating a power law
the form

G.G0~x2xc!
t. ~20!

In Fig. 3~a!, the different symbols refer to different relativ
particles sizes of the glass and RuO2 and the values ofxc and
t which best fit the experimental data are reported in
inset. Clearly, all composites display values oft much higher
than the three-dimensional universal valuet.2.0.9

The origin of such universality breakdown is investigat
in Fig. 3~b! where we plot thex dependence of the longitu
dinal piezoresistance coefficientK5d ln G21/d« obtained by
cantilever bar measurements.6,7 The measuredK values fit
reasonably well with a logarithmically divergent function
the form

K.K01B lnS 1

x2xc
D , ~21!

represented in the (K2K0)/B-vs-ln(x2xc) plot of Fig. 3~b!
by the straight line. Since all the samples lie well within t
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critical region @Fig. 3~a!#, we expect that the piezoresistiv
anisotropyx is sufficiently small to regardK as a good ap-
proximation of the isotropic~hydrostatic! piezoresistance
coefficient.28 Hence the data of Fig. 3 are fully consiste
with Eq. ~9! for a>ac and provide a rather good example
the effect we have described in this paper.

Unfortunately we are not aware of reported measureme
recordingx as a function ofx, so that the universality ofl
claimed here even fora>ac cannot be verified. However
the measurements reported in of Ref. 29 show thatx de-
creases as the sheet resistance of commercial RuO2-based
thick-film resistors increases. This is in qualitative acco
with x;(x2xc)

l if higher resistance values are due to low
RuO2 concentrations.

In summary, we have shown by means of analytical a
numerical results that when the tunneling exponenta51
2j/2a of the power-law distribution@Eq. ~4!# is such that
transport becomes nonuniversal, the piezoresistive resp
changes drastically, leading to a logarithmic divergence
the piezoresistive coefficients asp→pc . In addition, we
have demonstrated that despite of the universality breakd
of transport, the conductivity anisotropy exponentl remains
universal. These features seem to be quite robust and
for experimental verifications on systems like carbon-blac
polymer composites and thick-film resistors for whic
tunneling-percolation mechanism of transport have been
posed and nonuniversality has been reported.1,2,12,13Earlier
experimental results on carbon-black–polymer composit4

and especially RuO2 thick-film resistors,6,7 seem to indicate
that indeed these systems are in the diverging tunneling c
ductance distribution regime.
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FIG. 3. ConductanceG ~a! and piezoresistanceK ~b! of
RuO2-glass composites for various RuO2 volume concentrationsx.
Open symbols: Ref. 6. Solid symbols: Ref. 7.
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