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Piezoresistivity and conductance anisotropy of tunneling-percolating systems
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Percolating networks based on interparticle tunneling conduction are shown to yield a logarithmic divergent
piezoresistive response close to the critical point as long as the electrical conductivity becomes nonuniversal.
At the same time, the piezoresistivity or, equivalently, the conductivity anisotropy experrentains univer-
sal also when the conductive exponent is not, suggesting a purely geometric originVéé obtain these
results by an exact solution of the piezoresistive problem on a Bethe lattice and by Monte Carlo calculations
and finite-size scaling analysis on square lattices. We discuss our results in relation to the nature of transport for
a variety of materials such as carbon-black—polymer composites angt@tass systems which show nonuni-
versal transport properties and coexistence between tunneling and percolating behaviors.
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[. INTRODUCTION some kind of carbon-black compositeswhile t=4.0 has
been measured for Ryased thick-film resistor?,
Tunneling-percolating network models have been sug- Nonuniversality has been theoretically proposed to arise
gested to properly describe transport properties of disorderefdom specific conducting-insulating phases distributions such
systems in which tunneling coexists with percolation behavas in the swiss-cheese model where spherical insulating in-
iors. Examples of such systems are provided by variouslusions are introduced in a continuous conduttan al-
carbon-black—polymer composité$or which, close to the ternative explanation has been put forward specifically for
metal-insulator transition, the conductivity follows a per-  tunneling-percolating materials by arguing that, if the com-
colationlike power law of the form posite has a sufficiently wide distribution of tunneling dis-
tances, the distribution of bond conductances between con-
ductive grains has a power-law divergergelt is well

~ _pt A
o=00(P~Pc)’, (1) known that such anomalous distribution can lead to
nonuniversality®
where o is a prefactorp is the concentration of the con- In this paper we argue that the piezoresistive effect, i.e.,

ducting phasep, is the percolation critical concentration, the sensitivity ofc upon applied strain, could be a decisive
andt is the critical exponertA clear indication that trans- tool to investigate the origin of nonuniversality. We show
port is dominated by tunneling between carbon-black grainshat if the nonuniversality of tunneling-percolating systems is
is provided by a large strain and/or volume sensitivity ofgiven by a diverging distribution of tunneling conductances,
o.>* Similar situations are encountered also in organicthen the piezoresistive response diverges logarithmically at
conductors-polymer compositésand thick-film resistors the percolation thresold, while at the same time the piezore-
made of metal-oxide conductive grains inhomogeneouslistivity anisotropy remains universal regardless of the uni-
embedded in a glassy matfiX.These latter compounds dis- versality breakdown of the conductivity exponéntVe ob-
play quite large piezoresistive effects and their use for sensaain these results by an analytic solution of the piezoresistive
applications is widespredd. problem on a Bethe lattice and by Monte Carlo calculations
Modelling such systems in terms of tunneling-percolatingand a finite-size scaling analysis on square lattices.
networks resides on the assumption that the exponential de- This paper is organized as follows. In Sec. Il we introduce
cay exp(-2r/¢) of the tunneling amplitude permits one to the lattice model and the relevant quantities concerning the
retain only nearest neighboring conducting grains. Since thpiezoresistive response. In Sec. Ill we solve the piezoresis-
tunneling factoréx=1/\/V depends only on the potential bar- tive problem analytically for a Bethe lattice, while in Sec. IV
rier V separating the grains, a modification of the tunnelingwe investigate the square lattice numerically. A discussion of
distancer induced by an applied strain can lead to a large our results in connection with real materials is presented in
variation of the total conductivity, and so to large values ofSec. V, where also the conclusions are drawn.
the piezoresistive coefficientl log(c™Y)/de. For example

both carbon-black—polymer composites and Ri@sed Il. MODEL

thick-film resistors can display piezoresistive coefficients up . .

to about 36°8 Let us g:ons_ler a random_ resistor network where the bond
Although percolating network theories predict that theConductivity distribution is given by

conductivity exponent should be universal and equal to p(g)=ph(g)+(1—p)s(g), )

=2.0 for three-dimensional lattic8stunneling-percolating
systems display important deviations from universality. Forwherep is the fraction of bonds with finite conductivity
example, values dfup to about=6 have been reported for with distribution h(g). In the following, we implicitly as-
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sume that the temperature is high enough to neglect other din U;l dIn Ui_l
processes than intergrain tunnelifgrain charging effects, F”:T’ r = ds
Coulomb repulsion This is certainly a good approximation

for thick-film resistors which shows a very weak temperatureare the longitudinal and transverse piezoresistive coeffi-
dependence aof already at room temperature. Hence, within cients, respectively. These two quantities completely define
a tunneling-percolation frameworky(g) depends upon the the piezoresistive properties of the network. For example, the
distribution of tunneling distances between nearest neighboisotropic (or hydrostati¢ piezoresistive responde obtained

ing grains. For narrow distribution(g) is peaked around by applying equal straie along all bonds directions %
g=goexp(—2a/¢), wherea is the mean intergrain distancé,

is the tunneling factor, ang, has units of a conductivity. We _ding™t ’

assume that the main dependence upon the mean intergain I'= de =+ (Z2=1r,, ®)

distancea is all contained in the argument of the exponential i o o .
and for simplicity we set,=1. In a first approximation, we whereZ is the coordination number, while information about

(i#x) (5)

can set the tortuosity the current has in flowing through the network
is given by the piezoresistive anisotropy factor, defined as
h(g)=5(g—e_2a/'f), ©) FH_FJ_
= y 7
as an extreme case for narrow distribution for tunneling dis- X I @

tances. In this situation, close to the metal-insulator transi-

tion. t < foll Eq(1) with uni | d which measures the degree of macroscopic transport
lon, transport Tollows Eqi.L) with universal exponert de- anisotropy:* Close to the percolation thresolg, displays a
pending only upon dimensionality and all dependence upo

4
tunneling distance is embodied in the prefactar, which Bower law o the for

measures the average bond conductivity. Hence we expect ~(p—p)\

N ) X~ (P=P)", ()
that a change of the tunneling distarecénduced by an ap-
plied external strain would affect only,. where the exponent is the same of that governing critical-

Let us consider now the case in whidhspherical par- ity of the conductivity anisotropA=1—o,/0, of random
ticles of radiusR, are placed at random so that the tunnelingresistor networks with anisotropic bond conductancey’
distancer between two neighboring grains fluctuates. Whenlin the present case, in fact, bond anisotropy is induced by the
the average distance between two adjacent grains is such applied uniaxial strain and, since is independent of the
that a>R,, Balberg argued that the salient feature of thedegree of bond anisotrop§,A and y have the same critical
resulting bond conductivity distribution is captured by abehavior with the same exponext

power-law divergence at smaj|'? Having introduced the main quantities defining the pi-
ezoresistive properties of random resistor networks, let us
h(g)=(1—a)g~*, (4)  now discuss qualitatively the effects of universality break-

down induced by the diverging bond conductances distribu-
where a=1— £/2a and the prefactor 4 o assures the cor- tion function[Eq. (4)]. The anisotropy factog and its expo-
rect normalization ofh(g) and p(g). As first shown by nent\ cannot be accounted for in a simple way without
Kogut and Straley? for values of a larger than some explicitly solving the anisotropy problem, which is done in
dimensionality-dependent critical value, universality the following sections. However, the hydrostatic piezoresis-
breaks down and the transport exponebécomesy depen-  tive responsd’ can be simply evaluated by noticing that, by
dent:t—t(a)>t. The important point here is that since  definition, it is obtained by changing the tunneling distaace
depends on the mean intergrain distaacthen the exponent to a(1+e¢) for all bond directions. HencE can be readily
t(«) can be affected by an applied external straiand this ~ found by differentiating Eq(1) with respect tce,
would lead to an anomalous piezoresistive response.

To investigate this issue, let us assume that the network is Iy, a<ac,
embedded in a homogeneous elastic medium and that the = (9)
elastic coefficients of the network and the medium are equal. Lot (1-a)ln o—p t'(a), a=ac,
Cc

Moreover we set the bond directions parallel to the axes of a
D-dimensional cubic lattice. In this situation, if we apply an whereI'y3=—d In crgllds. For a<a,, transport is universal
uniaxial straine along, for example, the axis, then the and the piezoresistive response is governed solely by the
tunneling distance for a bond directed alonghanges ta  strain dependence ofr, in Eg. (1) leading to the
—ay,=a(l+e¢), while the bonds directed along the other p-independent factof',. Of course, distribution functions
orthogonal axes remain unchangemj=a for i#x. The for occupied bonds like Eq.3) would trivially lead to the
strain-induced change of the tunneling distances leads thereame qualitative result, i.e., a piezoresistive response inde-
fore to anisotropic bond conductivity distributiopg(g) and  pendent of the concentration of occupied bonds. Instead, as
pi-x(9)=p(g). For an external electric fieldE; applied soon as transport becomes nonuniversal=g.), the
along thei axis and up to linear order im, the resulting tunneling-percolation model of Balbef&q. (4)] predicts a
network conductivitieso; are o,=o(1—T'jg) and oj.y logarithmic divergence of the hydrostatic piezoresistive re-
=0(1-T,¢), whereo is the unstrained conductivity, and sponse. Note that such an anomalous behavior is also ex-
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pected for distributions more complicated than E4). as a 15

long as their asymptotic behavior fgr—~0 has a power-law FH(L):E 1+ (=) 3g(P=Pc) |- (13
divergence with exponent depending upon the tunneling

distance. The above result captures the essential physics at the basis of

In the next sections we shall verify the correctness of Eqthe piezoresistive response of percolating netw&tor p
(9), and calculate the dependence of by considering two  >p., I')>I", because the strain sensitivity is stronger for
quite dinstinct cases: the Bethe lattice model, which is parasample conductivities measured along the direction of the
digmatic of high-dimensionality lattices for which transport applied strain. A9 moves towardy., the macroscopic an-
is governed by mean-field exponefis,and the two- isotropy induced by gets reduced by the enhanced tortuos-
dimensional square lattice. ity of the current carrying paths until, gat=p., the longitu-
dinal and transverse piezoresistive coefficients become
equal** From Eq.(13), we find that the piezoresistive anisot-
ropy x [Eq. (7)], goes to zero as

The conductivity problem on a Bethe lattice, or Cayley
tree model, was considered and solved in Refs. 20 and 21. As _ 1_5( “py) (14)
we show below, for this model the concentration dependence X=g (PP
of the piezoresistive response in the critical regime can b
obtained analytically for both distributiofEqgs.(3) and(4)].
For simplicity in the following we shall consider a Bethe
lattice with coordination numberZz=4 [p.,=1/(Z—1)
=1/3)]. According to Ref. 22, the distributid®, (o) of con-
ductivities from an arbitrary bond directed alohg X,y to
infinity and the current distributiond;(o) induced by an
applied electric fieldg; satisfy the following coupled nonlin-
ear integral equations:

Ill. BETHE LATTICE

Fence the anisotropy exponent for the Bethe latticex is
=1, in accord with previous resulfs.

Now we consider how the piezoresistive response of a
Bethe lattice changes when the bond conductances have a
power-law distribution as in Eq$2) and(4). In doing so, we
generalize the procedure described in Ref. 13 to the aniso-
tropic bond conductance case of EG0)—(12), and perform
an expansion in powers af. To obtain the piezoresistive
coefficients, it is sufficient to keep only terms up to linear
order ing. Here we stress that the resulting piezoresistive
1 . .
Px(al):f ngx(g)f dopdosdosPy(o2)Py(0) response for the Bethe lattice quel depends_ crucially on the

0 sign of @. For «<0, corresponding to the quite unphysical
relation a< £/2, conductivity is universal with=3,'* and

XPy(04)8 01— 9(oat o3+ 04) ’ (10  the piezoresistive response can be easily shown to behave
gtoytoztoy qualitatively as in the binary distribution case discussed
above (finite values ofl'y,y at p=p; andA=1). Instead,
1 when a>0, the piezoresistive response changes qualita-
Jx(o'l):Exo'lpx(o'l)"'f dgpx(g)f doydozdoy tively, as discussed in the following.
° From Eg.(10) we find that fora>0 the p—p. depen-
g J(02)Py(03)Py(04) dence of the Laplace transforms Bf(o) andP,(o) is
9T o2t st o Pyy)(2)=1=8F(0)+8In o[g(@)+(—)80y(w)]e,
g(oat o3t oy) (15
X 8| oq— g+ oot ogtoal’ 1D \where w=86Y1"9z and 8=(p—p.)/pc- The functions

f(y), g(y), andg,(y) satisfy coupled integral equations, but
The corresponding equations f& (o) andJ,(o) are ob-  their explicit expressions are not of interest here. By apply-
tained from Eqs(10) and(11) by substitutingx with y (and  ing the same procedure to Ed.1) we find
vice rversg, and the total conductivities; are obtained from 3
— _ S1+[U(1- )] ’ _ ’
) ALPL()Py(2)] (D) =59 Edf’ (@)~ Inalg'(w)
axz—zf dz\lx(z)Py(z)d—, (12
0 z +(=)89z(w)]e}. (16)
andJ;(o), respectively: /(1o _

Let us first consider the case of a narrow tunneling- oypy)= 07 1M ag—ae —In(s 1)[a2+(—)a35]s}1,
distances distribution Eqg2) and (3)], for which, in the (
absence of applied strain, the conductivity és=6 exp  whereay, . .. ,a; are positive functions of. Fore=0, we
(—2a/&)(p—py)! for |p—pc<1 wheret=3 is the universal obtain the result of Kogut and Stralé?y,crx(y)=cr~(p
transport exponerit: The effect of an applied uniaxial strain, —p.)"®, with t(a)=3+a/(1— ), indicating that trans-
e#0, can be readily found by following Ref. 22. In the port is non-universal fom>a=0. In this regime, the pi-
critical region, we find that the piezoresistive coefficientsezoresistive coefficients are obtained from the terms of Eq.
[Eq. (5)] reduce to (17) proportional toe:
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a;+In(8 Hlay+(—)azd] ( 1 ) 107 ; 40
o a "oopd 1T : time| © e
We have arrived therefore at the result that, as long as theNcma. s /a0
tunneling-distance distribution is such that transport becomes
nonuniversal, then the piezoresistive response diverges loga '°f § {25
rithmically asp— p.. This must be contrasted with the finite 1F ' ] 5/
value of I’y andI", at p=p. [Eq. (13)], obtained from the . ® [ ./' 120
simple binary distribution Eq92) and (3)). From Eq.(18) " ~ [ ee 0, .,
we obtain also that the piezoresistive anisotraphEq. (7)], ~ RA- Rty
reduces to N*l T T
01} L e
X= Za_a; 5oc(p— pc) (19) 1‘0 N 160 0.0 011 0f2 0j3 &I4 0:5 016 0f7 08

FIG. 1. Unstrained conductivity (a) and piezoresistive anisot-
ropy x (b) calculated ap=p.=1/2 as function of the widtiN of
the strip fora=0.05,0.1,0.15,0.2,0,3. . 0.6. (c) Solid circles: con-
ductivity exponent as a function of the distribution exponeat
Empty circles: results from Ref. 25. Dashed curve is the theoretical
IV. SQUARE LATTICE estimatet(a)=1.3158 for a<a,=0.24 andt(«)=1/(1—«) for

. a>a.. Solid squares: conductivitfor piezoresistivity anisotropy
The results of Sec. Ill have been derived for a Betheexponem)\_ Solid line: average valug=0.87.

lattice and are therefore in general relevant for high-
dimensionality D=6) lattices!® To investigate the piezore- for different o values of the piezoresistive anisotrogyre-
sistive response for low-dimensional networks, we C°”3ideborted in Fig. 1b) all collapse in a single curve. Hence the
now a square lattice. We employ the transfer-matrix methodhie; oresistivity (or conductivity anisotropy exponent.
of Derrida and Vannimenus, which permits one to calculatgfiieq squares in Fig. (t)] estimated from the finite-size
exactly the conductivity ofze?} long s_trlp of ywdﬂki (alongx) scaling relationy(N)=csN""(1+c,/N) does not show
and lengthL >N (alongy).™ The distribution of theNXL 5 5reciaple variations over the entire range cofvalues
conductors follows Eq(2) and(4) and the longitudinal and considered” This is in striking contrast with\=t— g,
transverse piezoresistive coefficients are obtained by Settir\ﬂhereBB:OAS is the fraction of conducting bones in the
a¥=a(i+s), ay=aanda,=a, ay=a(l+e), respectively, pacpone, conjectured to hold true =2 in Ref. 17. As
with 8_0'901'_':” each value o#>0 at the percolation (o the Bethe lattice case, the universality Jofalso for «
ti"eSO'E p= pég— 172, we pe_rform th7e calc_ulanons_ & - 4, suggests that this exponent depends only upon the ge-
=8 g'—_l><1 ), N=16 (|7-_7'5>< 109, N=32 Q-_Z'S ometry of the conducting cluster and is not influenced.by
%107, N:457 (L=2%10), N=64 (L:71>< 109, N The results for the piezoresistive coefficieRtsandI’; as
=82 (L=1x107), andN=100 (L=0.8x10). _ functions ofN are reported in Figs.(3) and 2b), respec-
In Figs. 1 and 2 we show our results for the unstrained;q|y with the exclusion of the larghl values fora=0.6,

conductivityo, the longitudinal and transverse piezoresistive,,hich we think are affected by too small valueslof; and
coefficientsl’,y, and the piezoresistive anisotropy From |

the o-vs-N data of Fig. 1a) we extract the conductivity ex- , , 10

Hence y goes to zero with the universal exponent1,
irrespective of the logarithmic divergencelof,, y and of the
universality breakdown ofr.

ponent t from the finite-size scaling relationo(N) 30} (a) /hj a=06 1| (c) R
=c,;N"Y"(1+c,/N), wherev=1% is the correlation length 25| - I 1°°
exponent* The resulting values(solid circles are reported 20l " I —e—a {08

in Fig. 1(c) as function of the power-law distribution expo- v _/'/'/./-": [ —o—a * 1oz
nenta of Eq. (4). For comparison, we report also thealues 7 :4£i§i§i§ii =0.05 | * '
obtained in Ref. 25 by a different numerical methednpty o Lé" , 1 06
circles. As expected, for sufficiently large, thet exponent g 0=06 1F S {os
increases well beyond its universal valise1.3,24% signal- 20 " i / / 04
ing a breakdown of universality. According to Refs. 25 and T, ‘[ -~ e '
26, universality is lost for> ;= 0.24+0.08, and the con- 15 :.ﬁ i /o/O/O 0.3
ductivity exponent should follow the relatiot{«)=1/(1 10 = 0=0.05 L o0 {02
—a) reported in Fig. {c) by the dashed curve. Our numeri- 05} IR P
cal results, as those of Ref. 25, agree well with the theoretical 100 00 01 02 03 04 05 06
expectations for large values @f but somehow overesti- a

mates the-values fora~a.. This deviation from the theo- FIG. 2. (8 and (b) Longitudinal and transverse piezoresistive
retical expectations should be due to finite-size effects amcoefficients as a function ¢ for different values of the power-law
plified by the presence of two competing fixed pOiﬁ%@ distribution exponenta. (c) Prefactor of'j,,=a(,)In(N) as a

In contrast to the larger dependence of(N), the data function of a.
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I', follow approximately a In{) behavior. This signals a
In[(p—pe) "] divergence of the piezoresistive coefficients as 2 (@) 1
p—p.. How the logarithmic divergence depends upeis
studied in Fig. ), where we plot the prefactoes anda,

of the finite-size scaling lawE(, y=ay(,)IN(N)(1+---). The “ao A 1
correction-to-scaling terms- - which best fitted the data )

where proportional to N and 1/In{N). Clearly, 3, is a T &l X, t i
monotonically increasing function at, indicating that the

logarithmic divergence of |, is stronger fora larger. In | 0015 242
analogy with the results on the Bethe lattice, we would ex- -8 — : : t : g'g‘;; g:; —
pect thata(, y vanishes fore<ac, so thatl’, ) has a finite o o o0 ’ ]
limit at p=p.. However thea(, ) data of Fig. 2c) are small A 1
but nonzero even fotr<a.=0.24. We think that this is due

to the same finite-size errors affecting the unstrained conduc-
tivity exponent [Fig. 1(c)], which lead to a spurious
a-dependence of and consequently tey,)#0.

(KK)/B

V. DISCUSSION AND CONCLUSIONS

Let us now discuss the applicability of our theory to real oL — . - . . . -
materials. The thermal expansion effect on the resistance ol
nonuniversal {=3.0) carbon-black—polymer composite re-
por_ted in Ref. 4 provides a first indirect clue. From the_ FIG. 3. ConductanceG (@) and piezoresistanc& (b) of
resistance-vs-volume data we have extracted a hydrostatig,o,-glass composites for various Ru@olume concentrations.
piezoresistive coefficierdt of about 30 which keeps increas- Open symbols: Ref. 6. Solid symbols: Ref. 7.
ing as the volume is expanded by the temperature. If the ) ) ) o
volume expansion effectively reduces the carbon-black corgfitical region[Fig. 3(@)], we expect that the piezoresistive
centration, we obtain a piezoresistive coefficient enhance@nisotropyy is sufficiently small to regarék as a good ap-
ment as the concentratignmoves down to its critical value, Proximation of the isotropic(hydrostati¢ piezoresistance
However, due to the uncontrolled effect of polymer meltingcoeff'c'ent' Hence the data of Fig. 3 are fully consistent

on the microstructure of the composite, we have been unabl¥ith Ed- (9) for a=a. and provide a rather good example of
the effect we have described in this paper.

to single out any logarithmic divergence of the piezoresistiv-

ity response. Unfprtunately we are not aware of reported measurements
A much clearer situation is found for Ry@ased thick- recordingy as a function ok, so that the universality ot

) . . claimed here even fow= . cannot be verified. However,

film resistors. In Fig. 8a) we report cqnductang@ measure- o measurements reported in of Ref. 29 show thate-

ments on several Rudylass composites for d|fferentl>t/alues creases as the sheet resistance of commercial,®oa€ed

of the metal volume concentratioa™” When InG/Go)™ is  thick-film resistors increases. This is in qualitative accord

plotted as a function of In¢-x;), whereGy is a prefactor and  ith y~ (x—x)* if higher resistance values are due to lower

X is the critical volume concentration, the whole set of dataRuo2 concentrations.

collapses into a single straight line indicating a power law of  |n summary, we have shown by means of analytical and

the form numerical results that when the tunneling exponeanst1

G=Go(X—X)". (20) —&/2a of the power-law distributiodEq. (4)] is such that
transport becomes nonuniversal, the piezoresistive response

In Fig. 3(@), the different symbols refer to different relative changes drastically, leading to a logarithmic divergence of

particles sizes of the glass and Ru&nhd the values of, and  the piezoresistive coefficients gs—p.. In addition, we

t which best fit the experimental data are reported in théhave demonstrated that despite of the universality breakdown

inset. Clearly, all composites display values afiuch higher  of transport, the conductivity anisotropy expon&ntemains

than the three-dimensional universal vatue2.0.° universal. These features seem to be quite robust and calls
The origin of such universality breakdown is investigatedfor experimental verifications on systems like carbon-black—

in Fig. 3(b) where we plot thex dependence of the longitu- Polymer composites and thick-film resistors for which

dinal piezoresistance coefficieKt=d In G~ */de obtained by ~ tunneling-percolation mechanism of transport have been pro-

cantilever bar measuremefits The measure values fit ~Posed and nonuniversality has been repottetf:'* Earlier

reasonably well with a logarithmically divergent function of €xPerimental results on carbon-t_)lack—Polymer cqmpoéites,
the form and especially Ruthick-film resistor$:’ seem to indicate

) that indeed these systems are in the diverging tunneling con-

4
In(x-x )

K=Ky+BIn

(22) ductance distribution regime.

C

represented in theK(—Kg)/B-vs-In(x—x.) plot of Fig. 3b) ACKNOWLEDGMENT

by the straight line. Since all the samples lie well within the  This work is part of TOPNANO 21 project n.5947.1.
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