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Tile Hamiltonian for decagonal AlCoCu derived from first principles
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A tile Hamiltonian~TH! replaces the actual atomic interactions in a quasicrystal with effective interactions,
between and within tiles. We studied Al-Co-Cu decagonal quasicrystals described as decorated hexagon-boat-
star~HBS! tiles usingab initio methods. The dominant term in the TH counts the number of H, B, and S tiles.
The phason flips that replace an HS pair with a BB pair lower the energy. In Penrose tilings, quasiperiodicity
is forced by arrow matching rules on the tile edges. The edge arrow orientation in our model of AlCoCu is due
to Co/Cu chemical ordering. The tile edges meet in vertices with 72° or 144° angles. We find strong interac-
tions between edge orientations at 72° vertices that force a type of matching rule. Interactions at 144° vertices
are somewhat weaker.
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I. INTRODUCTION

Both quasicrystals and ordinary crystals are made of
ementary building blocks. In crystals, copies of a sin
building block ~known as a unit cell! are arranged side b
side to cover the space periodically. In quasicrystals, build
blocks are arranged to cover the space quasiperiodically.
approaches to build the quasilattices have been propo
One approach uses a single~quasi! unit cell, but allows ad-
jacent cells to overlap. Gummelt1 proved that using a limited
number of overlapping positions between decagons prod
a quasicrystal structure. Steinhardt and Jeong2 further proved
that the overlapping conditions can be relaxed when sup
mented by the maximization of a specific cluster density
produce quasilattices.

In the other ‘‘tiling’’ approach, space is covered wit
building blocks called tiles. Two or more tile types are use3

No overlapping is allowed, and depending on the way
tiles are arranged, quasicrystal structures can be produ
Matching rules between tiles govern the local tile configu
tions by allowing only a subset of all possible arrangeme
Globally, the matching rules enforce quasiperiodicity.4,5 Pen-
rose proposed his famous matching rules before the dis
ery of quasicrystalline materials. In two dimensions, Penr
tiles are fat and thin rhombi@Fig 1~a!#. The edges are as
signed arrow decorations which must match for comm
edges in adjacent tiles. In perfect quasicrystals these rule
obeyed everywhere. The very restrictive Penrose match
rules are sufficient, but not necessary, to force quasiper
icity. Socolar6 showed that weaker matching rules can s
force quasilattices. The less restrictive set of rules are
rived by allowing bounded fluctuations in perp space. F
thermore, matching rules can be abandoned entirely and
siperiodicity may arise spontaneously in the most proba
random tiling.7

A fundamental question is, whether matching rules
enforced by energetics of real materials. Burkov8 proposed
matching rule enforcement by chemical ordering of Co a
Cu among certain sites in Al-Co-Cu. However, that mo
involved an unnatural symmetry linking Co sites to Cu sit
Cockayne and Widom9 deduced a different, physically rea
0163-1829/2003/67~1!/014204~10!/$20.00 67 0142
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istic, type of Co/Cu ordering based on total-energy calcu
tions. In their model, tile edges are assigned arrow direc
based on their Co/Cu decorations@Fig. 1~b!#. The suggested
physical origin of Co/Cu chemical ordering rests on the s
tus of Cu as a noble metal with completely filledd orbitals,
unlike normal transition metals such as Co.

In a tiling model of quasicrystals, the actual atomic inte
actions in the system Hamiltonian can be replaced with
fective interactions, between and within tiles.10 The resulting
tile Hamiltonian is a rearrangement of contributions to t
actual total energy. In simple atomic interaction pictur
~pair potentials for example! the relation between the two
~actual atomic interactions and tile Hamiltonian! is straight-
forward. It might be difficult to find the relations betwee
them for more complicated atomic interactions~many-body
potentials, or fullab initio energetics, for example! but it is
theoretically possible. The tile Hamiltonian includes term
which depends only on the number of tiles and other ter
for different interactions. The tile Hamiltonian greatly sim
plifies our understanding of the relationship between str

FIG. 1. The HBS tiles and their decompositions to Penrose t
~a! and atomic decorations~b!. In ~b!, only TM and symmetry
breaking Al atoms are shown.
©2003 The American Physical Society04-1
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ture and energy, and it is a reasonable way to describe
tiles.

Space can be tiled in many different ways, even wh
holding the number of atoms or the number of similar ti
fixed. Figure 2 shows three different tiling configurations
132 atoms. The first two have the same tiles arranged di
ently. The third has the same atoms but different tiles. Th

FIG. 2. Space can be tiled in many ways using HBS tiles.
these approximants (a5B2H2 , b5B2H28, andc5S1H3) have 132
atoms per unit cell. Structures in~b! and~c! differ by a phason flip
outlined in ~c! with a small dashed line. Bonds surrounded by t
dashed square and circle in~a! are bonds that can give informatio
about pure angle interactions.
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are called quasicrystal approximants~crystals that are very
close to quasicrystals in structure and properties!. One ad-
vantage of approximants is that they can be studied us
conventional tools developed for ordinary crystals.

In a preceding paper11 we studied matching rules in de
cagonal Al-Co-Cu using a limited group of quasicrystal a
proximants. Some specific details of the tile Hamiltoni
could not be extracted from our limited data set. Here
study more thoroughly the set of rules controlling these co
pounds, using different techniques and a much bigger se
approximants.

We describe our model of decagonal Al-Co-Cu in Sec
of this paper. Section III gives our detailed calculations us
ab initio methods. We extract a set of parameters that al
an excellent approximation to the total energy. Similar c
culations done using pair potentials are described in Sec
for comparison. In Sec. V, we talk about various other effe
that could be considered in a more accurate model. We a
lyze our findings and study their implications for Al-Co-C
compounds in Sec. VI.

II. DECAGONAL Al-Co-Cu MODEL

Decagonal Al-Co-Cu quasicrystals have been studied
many authors, theoretically8,9,12 and experimentally.13 Cock-
ayne and Widom9 employed mock-ternary pair potentials
propose a model based on tiling of space by hexagon, b
and star tiles~HBS! decorated deterministically with atom
~Fig. 2!. The tile edge length is 6.38 Å. The tile vertices a
occupied by 11-atom decagonal clusters. Each cluster c
sists of two pentagons of atoms stacked on top of each o
at 1

2 c52.07 Å and rotated by 36°. The pentagon in one la
contains only Al atoms. The pentagon in the other layer c
tains a mixture of transition metal~TM! atom species and
can contain also Al atoms. The mixed Al/TM pentagon co
tains an additional ‘‘vertex’’ Al atom at its center. All TM
atoms surrounding a vertex Al atom belong to tile edges. T
decagonal clusters meet along pairs of Co/Cu atoms. It
shown in the original model9 that TM atoms prefer to alter
nate in chemical species on tile edges. This was confirm
later byab initio calculations using the locally self-consiste
multiple-scattering~LSMS! method,11,14 and is confirmed
again in this study.

We assign arrows to edges based on their TM atom de
rations. By our definition, an arrow points from the Cu ato
towards the Co atom. The tile edges meet in vertices of
or 144° angles. An angle is of typei if both edges point in
towards their common vertex. Typeso and m are out and
mixed pointings, respectively.

The HBS tiles are composed of Penrose rhombi w
double-arrow matching rules satisfied~by definition! inside
the HBS tiles. Some of their properties are summarized
Table I. Quasiperiodic tilings can then be constructed fr
HBS tiles obeying the single-arrow matching rules~Fig. 1!.

We choose to define a tile Hamiltonian for the system

l
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H5(
a

nt
aEt

a1l72(
b

n72
b E72

b 1l144(
b

n144
b E144

b . ~1!

Herent
a is the number of specific tile typea that can be H,

B, or S;n72
b andn144

b are the numbers of 72° and 144° angl
and b defines the angle type that can bei, o, or m. We fit
energy parameters in the Hamiltonian~1! to achieve H
'Etot for a wide class of structures. The tile energies
more important than the other terms, and it turns out that
72° angle interactions are more important than the 144°’s
is desirable to check how each term can alter the sys
energies. We setl72 and l144 to 1 or 0 or the purpose o
including and excluding the 72° and 144° angle interactio
The form of Hamiltonian 1 contains the most general t
vertex energies up to two-edge interactions. Three-edge
teractions and other effects are considered later in Sec.

An H tile contains 25 atoms, counting those on the per
eter fractionally. All but three internal atoms~one Al and two
Co! belong to vertex decagonal clusters. The internal
atoms occupy symmetric sites, but the internal Al ato
breaks the symmetry by residing on one of two geometric
equivalent positions between the two Co atoms@Fig. 1~b!,
left#. Its interaction with tile edge TM atoms determines t
preferred position. A B tile has 41 atoms. An internal Al ato
breaks the symmetry@Fig. 1~b!, center# by residing in one of
two equivalent sites. An S tile has 57 atoms. Two internal
atoms break the symmetry@Fig. 1~b!, right# by occupying
any two of five equivalent sites as long as hey are 144° ap
A phason flip can switch a specially arranged star and he
gon into a pair of boats. This is shown in Fig. 2~c! outlined
by a dashed line@compare with Fig. 2~b!#.

The present structure differs slightly from the origin
model.9 In the original model, Cu atoms take certa

TABLE I. Basic tiles in HBS model and their compositions.

Tile Composition Penrose rhombi

H Al17Co5Cu3 2T1F
B Al29Co8Cu4 T13F
S Al41Co11Cu5 5F
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symmetry-breaking positions inside the boat and the
which makes it difficult to parametrize their interactions. W
choose to replace the Cu atoms in the tile interiors with
atoms. Also in the original model, symmetry-breaking
atoms inside H, B, and S were placed in averaged sites
tween two Co atoms. Their vertical heights lay midway b
tween the two main atomic layers. Here we place them in
main atomic layers as shown in Fig. 1~b!. In terms of the
atomic surfaces,9 the atomic surface~AS2! that is mainly Al
with a thin ring of Cu becomes pure Al, and the Al atom
surface between layers~AS3! fills the hole in the pure Al
atomic surface~AS2!.

Many different quasicrystal approximants are exploit
here to study different terms in the tile Hamiltonian. All th
approximant tilings we used are listed in Table II with som
of their properties. The smallest tiling is the monoclin
single-hexagon approximant H1 ~Fig. 3!. It contains one
‘‘horizontal’’ and two ‘‘inclined’’ tile edges. For the decora
tion shown, Eq. ~1! becomes H5Et

H1l72(E72
i 1E72

o )
1l144(2E144

i 12E144
o ). The next bigger approximant is a 41

atom single-boatB1 ~Fig. 4! for which H5Et
B1l72(3E72

o )
1l144(2E144

i 1E144
o ) when decorated as shown. Stars alo

do not tile the plane, so a single-star unit-cell approximan
not possible. Two-hexagon approximants can be constru
in orthorhombic cells, either by a genuine orthorhomb
structure H28 ~Fig. 5! or by doubling the monoclinic H1
cell to create H2 shown in Fig. 3. In each case,H5Et

H

FIG. 3. Filling space with hexagons. This approximant has o
hexagon per monoclinic cell~fine dashing, H1 structure in the text!.
The unit cell has 25 atoms. The cell can be doubled to get a 50-a
orthorhombic unit cell~coarse dashing, H2 structure in the text!.
rent

or a few
TABLE II. The approximant tilings we use for our study, their compositions and the number of diffe
decorations (Nd) of each of them. The unit cells are either orthorhombic (a, b are given! or monoclinic (a,
b andu are given!. All of them havec54.14 Å in thez direction. The number of independentk-points is the
number on which most of the structures are calculated. To investigate the convergence we go higher f
structures~see Tables III and IV!.

Tiling Figure Composition a, b (u) Independentk-points Nd

H1 3 Al17Co5Cu3 12.14, 7.50 (72°) 132 3
B1 4 Al29Co8Cu4 12.13, 12.13 (108°) 88 6
H2 3 Al34Co10Cu6 23.08, 7.56 66 5
H28 5 Al34Co10Cu6 14.27, 12.13 66 4
B2 6 Al58Co16Cu8 12.13, 30.30 (134.5°) 55 3
B2H2 2a Al92Co26Cu14 19.63, 23.08 20 27
B2H28 2b Al92Co26Cu14 19.63, 23.08 20 6
S1H3 2c Al92Co26Cu14 19.63, 23.08 20 12
4-3
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IBRAHIM AL-LEHYANI AND MIKE WIDOM PHYSICAL REVIEW B 67, 014204 ~2003!
1l72(2E72
i 12E72

o )1l144(4E144
i 14E144

o ). The doubling
process gives more freedom in controlling edge arrow ori
tations by performing Co/Cu swaps. Similarly, a two-bo
approximant can be constructed, either by doubling
single-boat tiling B1 or by tiling the two boats as shown i
B2 ~Fig. 6!, with H5Et

B1l72(3E72
o 13E72

m )1l144(3E144
i

1E144
m 12E144

o ) when decorated as shown.
To isolate the tile Hamiltonian parametersEt

a and Eu
b ,

even larger approximants are needed. The three app
mants in Fig. 2 each have 132 atoms per unit cell but dif
ent tile configurations. Two of them@B2H28 and S1H3 in Fig.
2~b! and 2~c! respectively# are related to each other by
single phason flip. The phason flip turns out to raise
energy, indicating that stars are disfavored in these c
pounds. The angle orientations are investigated by swap
a TM pair on tile edges, reversing the directions of the ed
arrows.

Long-range interactions and other small terms omit
from the tile Hamiltonian~1! can be estimated by swappin
pairs surrounded by symmetric CoCu bonds on their sid
For example, the CoCu bonds on the sides of the horizo

FIG. 4. Single-boat (B1) approximant containing 41 atoms pe
monoclinic cell. The circled CoCu pair was used for our conv
gence study.

FIG. 5. Orthorhombic two-hexagon approximant (H28) with a
different arrangement of hexagons from Fig. 3.
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tile edges of H2 can be specially arranged to cancel all ang
interactionsEu

b and leave only other effects.

III. Ab initio STUDY

For our calculations we employab-initio pseudopotential
calculations utilizing the ViennaAb-initio simulation pack-
age ~VASP! program.15 We use ultrasoft Vanderbilt type
pseudopotentials16 as supplied by Kresse and Hafner.17 Our
calculations are carried out on the Cray T3E and on
newly installed Compaq TCS machine at the Pittsburgh
percomputer center.

The k-space mesh size~among other parameters! deter-
mines the accuracy of the calculations. Biggerk-space grids
are more accurate but more expensive in calculation ti
One has to find a balance between the number of atoms
unit cell and the size of the k-space grid in order to fit with
the available computer resources. As explained before,
use different approximants for our study each with its o
convergence behavior. Thek-space mesh is increased until
consistency of about 0.02 eV is reached in worst cases.
within a reasonable use of our allocated computer times
are able to get better convergence~0.002–0.01 eV! for most
structures.

-

FIG. 6. Two-boat approximant (B2). One of the ‘‘keel’’ bonds
~circled! in the boats participates only in 144° angles and ha
highly symmetric Al environment.
4-4
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TABLE III. Energies of approximantB1 ~Fig. 4 and one of its single-swap variants!. Our convergence
investigation goes through severalk-point grids. Nearly isotropick-point distributions are the 13133 mesh
and its multiples. For finer grids, 434311 is more isotropic than 434312.

k-point grid Independentk-points EB1
EB1

sw DE5EB1

sw2EB1

13131 1 2186.83238 2186.78158 0.05080
13132 1 2217.02636 2216.68522 0.34114
13133 2 2215.95009 2215.63608 0.31401
23232 4 2218.18586 2217.90238 0.28348
23234 8 2216.75311 2216.51774 0.23537
23236 12 2216.74436 2216.49251 0.25185
33333 14 2216.59210 2216.32712 0.26498
33339 41 2216.74029 2216.48619 0.25410
43434 32 2216.77625 2216.53784 0.23841
434311* 88 2216.74116 2216.48698 0.25418
434312 96 2216.74323 2216.48616 0.25707
535315 188 2216.74291 2216.48615 0.25676
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The convergence test calculations are summarized
Table III for our B1 tiling and in Table IV for our B2H2
tilings. We compared two slightly different structures f
each tiling, differing in orientation of a single arrow@CoCu
pair circled in Fig. 4 and Fig. 2~a!#. The tables suggest that a
the chosenk-space grid used in our calculations, marked b
star in the tables, the accuracy is better than 0.02 eV.
smallest grid of 13131 ~singlek-point in the center of the
k-space unit cell! for our B1 approximant takes about 8 mi
on the T3E machine~450-MHz alpha processors! using 8
processors. The largest grid we use for B1 of 535315 ~188
independentk point! takes 4.8 h on 64 processors. The B2H2
structure has 132 atoms per unit cell. The smallest 131
31 grid takes 2 h on 8processors. The largest grid of
32310 ~20 independentk points! takes about 6 h on 64
processors.

For a fixed number of processors, calculation time gro
linearly with the number of independentk points. Calculation
time decreases linearly with increasing number of proces
only up to about 16 processors. Beyond that, the total ch
ing time ~number of processors multiplied by elapsed tim!
increases notably. Large structures and bigk-space grids re-
quire large numbers of processors because they need
memory.

Note from Tables III and IV that the more isotropic th
01420
in

a
e
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distribution of thek-space grid points alongkx , ky , andkz ,
the faster the convergence. For our B1 approximant, meshes
that most isotropically distributek-space points are 131
33 and its multiples, but for finer meshes 434311 is
slightly more isotropic than 434312. For fixed numbers of
kx andky points, the total-energy converges towards its li
iting value as the number ofkz points approaches its isotro
pic value. In all our structures, we choose the most isotro
distribution ofk-space points possible.

Many rearrangements of edges are performed by sw
ping TM atom pairs and the different structure energies
calculated. Most of these are done for the large approxima
because they give more configurational freedom. In gene
pure 72° angle interaction parameters (E72

b ) can be deduced
if the bond to be swapped has an equal number of 1
connections on each side~since we can arrange for 144
interaction to cancel! and either a single 72° connection th
can be attached to any side or two 72° connections attac
to the same side. An example is outlined by a dashed r
angle in Fig. 2~a!. The bond is surrounded by a single 14
on each side. Both point towards the middle bond, mak
E144

i on one side, andE144
m on the other. One extra 72° on on

side makesE72
o . If the middle pair is swapped, the 144

angle interactions will be conserved. The swap mer
TABLE IV. Energies of approximant B2H2 @Fig. 2~b! and one of its single-swap variants#.

k-point grid Independent k-points EB2H2
EB2H2

sw DE5EB2H2

sw 2EB2H2

13131 1 2606.30421 2606.22773 0.07648
13132 1 2704.05048 2703.77620 0.27428
13134 2 2700.48922 2700.24548 0.24374
23232 4 2704.02670 2703.77286 0.25384
13238 8 2700.38011 2700.12094 0.25917
23234 8 2700.73700 2700.49654 0.24046
132310 10 2700.42044 2700.15409 0.26635
23238 16 2700.44533 2700.18672 0.25861
232310* 20 2700.45159 2700.19033 0.26126
4-5
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TABLE V. Fitting our data with different number of parameters. Units are eV. The standard deviatio
each set is reported in the last row. Including 72° the 144° angle interactions improved the fits as sh

Parameters l725l14450 l7251,l14450 l725l14451

Et
H 2133.17 2133.15 2133.15

Et
B 2216.42 2216.76 2216.77

Et
S 2298.32 2300.08 2300.15

2Et
B2Et

H2Et
S 21.35 20.29 20.24

E72
i 0.55 0.55

E72
m 0.23 0.22

E72
o 0 0

E144
i 0.037

E144
m 20.003

E144
o 20.034

Standard deviation 0.37 0.0026 0.0013
tu
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For
ets
switches their sides, while theE72
o becomesE72

m . The differ-
ence in energy between the swapped and the basic struc
yields the differenceE72

m 2E72
o 5Ea f ter2Ebe f ore50.26 eV.

Reversing the 72° outer bond and then making the sw
again can giveE72

i 2E72
m 50.35 eV. For pure 144° interac

tions, we use a middle bond surrounded by two 144° an
on one side and a single 144° angle on the other side.
arrange for any 72° angles to cancel. The pair surrounde
a dashed circle in Fig. 2~a! is one example that yieldsE144

m

2E144
o 50.06 eV.

We compute energies for an over-complete set of str
tures and use a least-square fit to determine average pa
eter values. First, we fit withl725l14450 in Eq.~1!, leaving
only three adjustable parametersEt

H , Et
B , and Et

S . The fit
01420
res
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le
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by
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finds the values of our parameters that minimize the ro
mean square of the difference between the calculatedEtot

and modelH values for an ensemble of tilings with differen
angle orientations. The fitted valuesEt

B ,Et
H , and Et

S are
shown in the second column of Table V. The fitting is show
in Fig. 7. The graph shows clearly that the three-paramete
is not adequate because there is a significant variation
Etot among different approximants. The main source of t
variation is angle interactions that contribute toEtot ~as cal-
culated by VASP! but not to our model when we setl72
5l14450 in Eq. ~1!.

Note that the values of H, B, and S are individually mea
ingless unless compared with pure elemental energies.
example, the data quoted does not include arbitrary offs
es
es

ot
FIG. 7. Plots of calculated structure energi
vs our model expectations using only tile energi
~turning off angle interactions!. The spread of en-
ergies vertically is due to angle interactions n
accounted for in the model energy whenl72

5l14450. The diagonal line indicatesH5Etot .
4-6
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TABLE VI. The energy costs of significant parameters in our model obtained from eight-paramete

Parameters Energy~VASP! Energy~mGPT! Energy~mock-T!

~eV! ~eV! ~eV!

2Et
B2Et

H2Et
S 20.24 20.59 20.13

E72
i 0.55 0.60 0.12

E72
m 0.23 0.31 0.05

E72
o 0 0 0

E144
i 0.037 20.042 20.0079

E144
m 20.003 0.010 0.0001

E144
o 20.034 0.032 0.0080
c
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eak.
EATOM15 of each chemical species. However, the differen
2Et

B2Et
H2Et

S521.35 eVis meaningful because the offse
cancel out~since S1H3 has the same number of atoms
each type as B2H2). Thus a pair of boats is favored over
hexagon-star pair.

The five-parameter fit values are shown in the third c
umn of Table V, where we setl7251 to includeE72

b and set
l14450 to excludeE144

b . The 72° angles are all internal t
the tiles so their energies can not be separated from the
energies. Only differences in energies can be calculated,
asE72

i 2E72
o andE72

m 2E72
i , so we set the lowest-energy or

entationE72
o equal to zero without any loss of generality. Th

fourth column of Table VI shows the eight-parameter
when we setl725l14451. In contrast to the number of 72
angles, the number of which is determined entirely by
number of tiles, the number of 144° angles depends on
arrangements of tiles. As a result, we may calculate all th
energiesE144

b independently. The fitting is shown in Fig. 8
01420
e
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ile
ch

t

e
e
e

The remaining deviation from they5x line ~standard
deviation50.0013 eV! is due to other effects not included i
our modelH @Eq. 1#, as well as incomplete convergence
other calculational inaccuracies.

IV. PAIR POTENTIALS

The ground-state total energy of a system can be
panded in terms of a volume energy and potentials desc
ing n-body (n52,3,4, etc.! interactions.18 The volume en-
ergy is the dominant contribution to cohesive energy.
depends on the composition and density, but not the spe
structure. Then-body interactions distinguish between diffe
ent crystal structures at the same composition and densi
is customary to truncate thisn-body series at the pair poten
tials (n52), because they are much easier to calculate
use, and because higher-order interactions are often w
Even for transition metals, with their localizedd band, the
FIG. 8. Including the angle interactions~set-
ting l725l14451) greatly improves the fitting.
4-7
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truncation at pair potentials proved to be practical.19,20 The
pair potentials are functionsVab(r ) of pair separationr and
atom typesa andb.

Different pair potentials have been used to study this
other quasicrystals. Cockayne and Widom9 proposed mock-
ternary potentials extracted from Al-Co pair potentials. N
ing that, in Al-Co-Cu, Cu substitutes for an equal combin
tion of Al and Co, they approximated Cu interactions by t
average interactions of Al and Co. In addition, the Co-
interaction was defined as the average of the Co-Co
Cu-Cu interactions in order to obtain ternary potentials fr
the AlTM binaries. They adopted Al-Co pair potentials ca
culated by Phillipset al.21 Their discovery of alternation o
CoCu pairs atoms on tile edges, and many other details
all consistent with our VASP results.

Later, more rigorous pair potentials derived by gener
ized pseudopotential theory~GPT! were developed for Al-
Co-Ni and Al-Co-Cu.19,22 The original GPT pair potentials
suffered from TM over-binding which is an unphysical a
traction between TM atoms at small separations. The st
gest over-binding appears in Co-Co pair potentials.
modified the CoCo and NiNi pair potentials at short d
tances by adding a repulsive term using VASP to get
energy and length scale.19 The resulting potentials behav
really well in simulations.23 The Co-Cu pair potentials wer
defined as equal to the Ni-Ni pair potentialsVCoCu(r )
[VNiNi( r ). These, in turn, were close to the average
Co-Co and Cu-Cu potentials because Ni resides between
and Cu in the periodic table. Specifically,VNiNi(r )
' 1

2 @VCoCo(r )1VCuCu(r )#, with biggest error of 0.002 eV a
3.12 Å which is about 15% error. The other AlCoCu pa
potentials were found to be well behaved up to large
composition.22

We calculated the energies of the approximants using b
mock-ternary and modified GPT pair potentials, to che
how pair potential results compare to VASP. Results of
fitting are summarized in Table VI for all the methods use
Besides a difference in energy scale between the mod
GPT and the mock-ternary pair potential calculations, th
are qualitatively close to each other and to VASP. The or
of 144° angle interaction is reversed compared to VASP,
these interactions are very weak.

In Table VI, we see thatE72
m' 1

2 (E72
i 1E72

o ) and E144
m

' 1
2 (E144

i 1E144
o ) for all three calculation methods~VASP,

mGPT, and mock ternary!. To understand this, note tha
when two tile edges meet at a vertex, the TM bonds on th
are at three different separations from each other. One s
ration lengthr i is between the TM positions close to th
vertex,r o is between the far positions, andr m is the separa-
tion between mixed positions. Take the smallest of all,r i , as
an example and consider pair interactions. In bonds with
i configuration, two Co atoms are distancer i from each
other. The energy contribution due to this pair isVCoCo(r i).
The same positions are occupied by two Cu atoms
theoconfiguration with energy contributionVCuCu(r i), and by
one Co and one Cu atom in the m configuration with ene
VCuCo(r i). The contribution to the energy differenceE72

m

2 1
2 (E72

i 1E72
o ) calculated from these pairs at separationsr i
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is VCuCo(r i)2 1
2 @VCoCo(r i)1VCuCu(r i)#. Similar identities

hold at the separationsr o and r m . In mock-ternary pair po-
tentials, these differences of potentials are defined to be z
suggestingEu

m5 1
2 (Eu

i 1Eu
o) should hold exactly. The smal

deviations from this identity in the fourth column of Table V
are due to the fitting procedure. The potential differences
again close to zero for mGPT pair potentials as discus
above, and the small deviations from the energy identity
the third column of Table VI are also due to the fitting.
VASP, energies are calculated accurately, considering
n-body interactions. An averaging of interactions is not a
sumeda priori, but our calculations confirm that averagingis
a good approximation, as shown in the second column
Table VI.

Another interesting near-degeneracy occurs in a zigza
72° angles. Such a zigzag runs vertically across Fig. 3. C
sider three consecutive bonds in a zigzag. If both outer bo
point in towards, or both point out from, the middle bond
swap of the middle bond leaves unchanged the total num
of i, o, or m interactions. If one of the outer bonds point
towards the middle bond and the other points out from
then the swap of the middle bond changes the energy
2E72

m 2E72
i 2E72

o . BecauseE72
m is very close to the average o

E72
i and E72

o ~as previously shown! these configurations ar
again nearly degenerate.

V. OTHER EFFECTS

Chemical ordering of TM atoms on tile edges define ed
arrowing in our model. We study chemical ordering he
using ourH2 approximant~the orthorhombic unit cell in Fig.
3! which contains two horizontal tile edges. When a Cu at
from one horizontal edge is swapped with the Co atom
the other, the resulting edges contain pairs of similar spe
~one CoCo and one CuCu!. The process raises the energy
0.68 eV/cell. The same swap was studied before11 with
LSMS and gave 0.17 eV/cell. Using the pair potentials, T
atoms favor alternation on the tile edges by 0.022 eV/cell
mGPT and 0.079 eV/cell for mock ternary. Although th
magnitude is not certain, the sign consistently favors Co
ordering.

In Al-Co-Ni, CoCo, and NiNi pairs are slightly preferre
over CoNi pairs. As a result Al-Co-Ni has no arrow decor
tions at low temperatures. Cu and Ni are adjacent in
periodic table, but they are notably different in their prop
ties. In an isolated Ni atom, the 3d shell has six electrons an
the 4s shell is filled. The partial filling of thed band strongly
influences atomic interactions. The 3d shell in Cu is filled
with electrons and the 4s has one electron which makes C
act more like a simple metal. Thed band of Cu is buried and
does not participate strongly in interactions. This is w
chemical ordering is strong for CoCu pairs but not for Co
pairs.

An important issue is the position of the symmetr
breaking Al atom inside a hexagon we mentioned in Sec
There are two symmetrically related positions between
two internal Co atoms, and we force the Al atom to take o
of these positions as shown in Fig. 1~b! ~left!. If the horizon-
tal edge arrows are parallel to each other, the Al atom pre
4-8
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to reside in the side closest to the Co atoms by about 0.03
With the off-center Al, we define the decomposition of t
hexagon into rhombi such that the symmetry-breaking A
placed as in Fig. 1. The position of the internal Al ato
inside a hexagon, together with the horizontal tile edge
rows, define a ‘‘direction’’ for the hexagon. We noticed th
generally hexagons prefer to align parallel to each othe
our H2 structure by about 0.01 eV. These effects are v
small but are enough to account for some of the discrep
cies betweenEtot andH in our calculations.

The decomposition of the hexagon into rhombi is lost
placing the Al atom exactly at the center of the hexag
However, this position is lower in energy by 0.2 eV as c
culated by VASP. In the pair potential picture, the cent
position for the Al atom is preferred by 0.11 eV/cell usin
mGPT and 0.01 eV/cell using mock-ternary potentials. D
pending on the edge decoration, this Al may relax ve
slightly from the central positions, but this effect is minim
and does not significantly influence the energy. Thus a m
realistic model in which the Al atoms are centered should
described even more accurately by our tile Hamiltonian.

One more small effect appears in ‘‘hidden’’ 144° angle
where two 72° angles share one edge making an extra 1
~Fig. 4 has two hidden 144°’s!. The shared edge orientatio
affects the angle interactionE144

b of the outer edges. We ca
culate the differenceE144

o 2E144
m with the shared edge point

ing outward and again with it pointing inward. With th
shared edge outward pointing, the difference E144

o -E144
m

520.075 eV. An inward-pointing middle edge raises t
difference by 0.015 eV, so thatE144

o 2E144
m 520.060 eV.

This effective three-arrow interaction can account for m
of the remaining small discrepancies betweenEtot andH.

So far we have examined interactions within the quas
eriodic plane. Now consider perpendicular interactions. P
of TM atoms on the tile edges are 1.51 Å apart within t
quasiperiodic plane and 2.07 Å apart along the perpend
lar, periodic direction. The net bond length is 2.56 Å. T
lines connecting them make a zigzag of alternating TM
oms extending along the periodic axes. We turn our atten
to atomic order in this direction. The approximant B2H2 @Fig.
2~a!# has a horizontal glide plane parallel to the long side
its unit cell that can be exploited for this purpose. We sw
one CoCu pair on a horizontal edge~call this paira) and call
the structure A. Another structure B is made from B2H2 by
swapping instead the glide-equivalent image of paira ~call
this pair b). These two structures have equal energies
symmetry. Further, we build a 264-atom unit cell by stack
two 132-atom unit cells. It is built once by stacking anA
layer over anA layer and another time by stacking aB layer
over anA layer. In theAA stacking, TM alternation along th
vertical zigzag is conserved. InAB the zigzag sequence i
violated along paira and along pairb. Along each pair the
alternation defect includes a CoCo pair and a CuCu pair.
AA andAB structure energies are calculated with ak-point
mesh of 23235. The differenceEAB2EAA50.392 eV per
264-atom cell. We thus find an energy cost of about 0.1
per alternation defect, which is sufficiently weak that w
may anticipate alternation stacking disorder at character
01420
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equilibrium temperatures of 1000 K. To fully describe
three-dimensional tile Hamiltonian we must also determ
the energy of phason stacking defects

VI. DISCUSSION

We discuss here the implications of our findings on t
structure of decagonal AlCoCu. The main result is that n
energy can be calculated quickly and accurately for th
compounds by adding the relevant terms in the tile Ham
tonianH @Eq. ~1!# using parameters obtained in Table VI. F
example, consider the cohesive energy of each tile type.
define a tie-line energyEtie-l ine to be the energy per atom o
the pure element: fcc Al, fcc Cu, and spin-polarized hcp C
The structure energies lie below the tie line and the diff
ence is the cohesive energy per atomEcoh . We calculate
Etot@Al #524.17 eV/atom,Etot@Cu#524.72 eV/atom, and
Etot@Co#528.07 eV/atom, all at the experimental lattic
constants. The tile cohesive energies areEcoh@H#
527.75 eV, Ecoh@B#5212.4 eV, and Ecoh@S#5
216.81 eV ~using data from our eight-parameter fit!. The
difference between two boats and a hexagon-star pai
2Ecoh@B#2Ecoh@H#2Ecoh@S#520.24 eV. We can add up
the cohesive energies of the tiles to obtain a quick estim
of the cohesive energy of the quasicrystal. For HBS tilin
the ‘‘golden’’ ratio H:B:S5A5t:A5:1 can be obtained, fo
example, by removing double-arrow edges from a Penr
tiling.23,24 For such a tiling the cohesive energy is
20.3035 eV/atom. Our results show that stars are dis
vored, and a tiling with hexagon and boats is lower in e
ergy. The ratio of H:B in HB tilings is 1:t and the cohesive
energy is2.3045 eV/atom.

Most bonds participate in combinations of 144° and 7
angles. The stronger interactions determine bond arrow
When a bond is surrounded by a total of four 144° ang
and no 72° angles, the middle bond is a part of 144° zig
and its decoration does not matter. An example of this
circled in Fig. 6. There is only one configuration where
bond orientationis determined by 144° interactions. This
the configuration we used to get pure 144° angle effects~see
Sec. III!. These configurations occur occasionally@one is in
Fig. 2~b!#, but usually bond orientations are determined p
marily by 72° interactions.

Quasicrystals are observed to be stable mainly at h
temperatures.25 This can be due to a variety of entropic co
tributions. Transitions from crystal to quasicrystal phases
reported26 at aboutT'1000 K or aboutkBT50.1 eV. At
such temperatures the 144° angle interactions are irrele
because they are small compared to energy fluctuations,
the structure is determined primarily by its tile types and
the 72° angle interactions.

Our model expectations are in reasonable agreement
calculated energies, suggesting that we have captured
most important energetic effects. The worst deviation
about 0.1 eV. Out of that we account for 0.03–0.05 eV fro
the internal Al atom effects on tile edges. The rest can b
collection of long-range interactions. We do see these lo
range effects in some instances. For example, when calc
ing pure 72° angle interactions using the bond surrounded
4-9
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a rectangle in Fig. 2~a! in two different approximants (B2H2
and S1H3). The environments are identical up to about 7
but a difference of about 0.02 eV in E72

m 2E72
o between the

two cases shows up.
The pair potential calculations show that they are capa

of catching qualitatively the dominant 72° interactions w
are investigating with a much less calculation time.

In our preceding paper,11 we reported several results re
lated to edge arrowing calculated using an all-elect
multiple-scattering method27 known as LSMS. The approxi
mants H2 and H28 were used, with internal Al atoms centere
The swap energy for chemical ordering agrees in sign,
VASP’s are four times bigger that LSMS. Other swaps t
give 2E72

m 2E72
i 2E72

o agree in sign, with a similar factor dis
agreement in magnitudes.

Further studies might include the effect of TMAl~as op-
posed to CoCu! arrows on tile edges. The difficulty come
,

s.

ci.

S

n,

ci.

.

:
-
.

. A

01420
,

le

n

ut
t

from the fact that such arrowing exist not only on tile edg
but also inside the tiles. Phason disorder along the perio
axes is important. So far we studied only Co/Cu disord
along the periodic axis but not tile flips. The system’s beh
ior under relaxation and the preferred relaxed atomic po
tions are wide areas to explore. Relaxation may alter
quantitative values of our tile Hamiltonian parameters.
nally, the biggest unresolved question28 is: what type of
structure minimizes the value of our tile Hamiltonian?
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