PHYSICAL REVIEW B 67, 014204 (2003

Tile Hamiltonian for decagonal AICoCu derived from first principles
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A tile Hamiltonian(TH) replaces the actual atomic interactions in a quasicrystal with effective interactions,
between and within tiles. We studied Al-Co-Cu decagonal quasicrystals described as decorated hexagon-boat-
star(HBS) tiles usingab initio methods. The dominant term in the TH counts the number of H, B, and S tiles.
The phason flips that replace an HS pair with a BB pair lower the energy. In Penrose tilings, quasiperiodicity
is forced by arrow matching rules on the tile edges. The edge arrow orientation in our model of AICoCu is due
to Co/Cu chemical ordering. The tile edges meet in vertices with 72° or 144° angles. We find strong interac-
tions between edge orientations at 72° vertices that force a type of matching rule. Interactions at 144° vertices
are somewhat weaker.
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[. INTRODUCTION istic, type of Co/Cu ordering based on total-energy calcula-
tions. In their model, tile edges are assigned arrow direction
Both quasicrystals and ordinary crystals are made of elbased on their Co/Cu decoratioffsg. 1(b)]. The suggested
ementary building blocks. In crystals, copies of a singlephysical origin of Co/Cu chemical ordering rests on the sta-
building block (known as a unit cellare arranged side by tus of Cu as a noble metal with completely fillddbrbitals,
side to cover the space periodically. In quasicrystals, buildinginlike normal transition metals such as Co.
blocks are arranged to cover the space quasiperiodically. Two In a tiling model of quasicrystals, the actual atomic inter-
approaches to build the quasilattices have been proposegections in the system Hamiltonian can be replaced with ef-
One approach uses a singtguas) unit cell, but allows ad- fective interactions, between and within tif¥sThe resulting
jacent cells to overlap. Gummélroved that using a limited  tile Hamiltonian is a rearrangement of contributions to the
number of overlapping positions between decagons producegtual total energy. In simple atomic interaction pictures
a quasicrystal structure. S_t(_einhardt and Jédagher proved (pair potentials for examplethe relation between the two
that the overlapping conditions can be relaxed when suppléxciyal atomic interactions and tile Hamiltonjda straight-
mented by the maximization of a specific cluster density tq,yard, It might be difficult to find the relations between

produce quasilattices. them for more complicated atomic interactiofmsany-body

] 'llg' theblowller "t|||||rljg"_|app_lfoa(:ha space1 is covered "%V'tg potentials, or fullab initio energetics, for exampléut it is
uilding blocks called tiles. Two or more tile types are USed. o, atically possible. The tile Hamiltonian includes terms

No overlapping is allowed, and depending on the way th& pich depends only on the number of tiles and other terms

tiles are arranged, quaS|_crystaI structures can be prgduc r different interactions. The tile Hamiltonian greatly sim-
Matching rules between tiles govern the local tile configura-

. ; ; plifies our understanding of the relationship between struc-
tions by allowing only a subset of all possible arrangements.
Globally, the matching rules enforce quasiperiodiéityen-
rose proposed his famous matching rules before the discov- (a)

ery of quasicrystalline materials. In two dimensions, Penrose

tiles are fat and thin rhomHiFig 1(a)]. The edges are as-

signed arrow decorations which must match for common @
edges in adjacent tiles. In perfect quasicrystals these rules are

obeyed everywhere. The very restrictive Penrose matching

rules are sufficient, but not necessary, to force quasiperiod- (b)

icity. SocolaP showed that weaker matching rules can still

force quasilattices. The less restrictive set of rules are de-

rived by allowing bounded fluctuations in perp space. Fur-

thermore, matching rules can be abandoned entirely and qua-

siperiodicity may arise spontaneously in the most probable
random tiling’

A fundamental question is, whether matching rules are
enforqed by energetics of real materlals. Buﬂ.(woposed 5 Ci. -® Al o
matching rule enforcement by chemical ordering of Co and
Cu among certain sites in Al-Co-Cu. However, that model FIG. 1. The HBS tiles and their decompositions to Penrose tiles
involved an unnatural symmetry linking Co sites to Cu sites.(a) and atomic decorationg). In (b), only TM and symmetry
Cockayne and Widofhdeduced a different, physically real- breaking Al atoms are shown.
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are called quasicrystal approximaritsystals that are very
close to quasicrystals in structure and properti€ne ad-
vantage of approximants is that they can be studied using
conventional tools developed for ordinary crystals.

In a preceding pap&rwe studied matching rules in de-
cagonal Al-Co-Cu using a limited group of quasicrystal ap-
proximants. Some specific details of the tile Hamiltonian
could not be extracted from our limited data set. Here we
study more thoroughly the set of rules controlling these com-
pounds, using different techniques and a much bigger set of
approximants.

We describe our model of decagonal Al-Co-Cu in Sec. Il
of this paper. Section IIl gives our detailed calculations using
ab initio methods. We extract a set of parameters that allow
an excellent approximation to the total energy. Similar cal-
culations done using pair potentials are described in Sec. IV
for comparison. In Sec. V, we talk about various other effects
that could be considered in a more accurate model. We ana-
lyze our findings and study their implications for Al-Co-Cu
compounds in Sec. VI.

Il. DECAGONAL Al-Co-Cu MODEL

Decagonal Al-Co-Cu quasicrystals have been studied by
many authors, theoreticafty*?and experimentally® Cock-
ayne and Widorhemployed mock-ternary pair potentials to
propose a model based on tiling of space by hexagon, boat,
and star tile§HBS) decorated deterministically with atoms
(Fig. 2. The tile edge length is 6.38 A. The tile vertices are
occupied by 11-atom decagonal clusters. Each cluster con-
sists of two pentagons of atoms stacked on top of each other
at3c=2.07 A and rotated by 36°. The pentagon in one layer
contains only Al atoms. The pentagon in the other layer con-
tains a mixture of transition metdlf’M) atom species and
can contain also Al atoms. The mixed AlI/TM pentagon con-
tains an additional “vertex” Al atom at its center. All TM
atoms surrounding a vertex Al atom belong to tile edges. The
decagonal clusters meet along pairs of Co/Cu atoms. It was
shown in the original mod&lthat TM atoms prefer to alter-
nate in chemical species on tile edges. This was confirmed
later byab initio calculations using the locally self-consistent

FIG. 2. Space can be tiled in many ways using HBS tiles. All Multiple-scattering(LSMS) method,* and is confirmed
these approximantsa& B,H,, b=B,H}, andc=S,H,) have 132  again in this study.
atoms per unit cell. Structures {b) and(c) differ by a phason flip We assign arrows to edges based on their TM atom deco-
outlined in(c) with a small dashed line. Bonds surrounded by therations. By our definition, an arrow points from the Cu atom
dashed square and circle (@ are bonds that can give information towards the Co atom. The tile edges meet in vertices of 72°
about pure angle interactions. or 144° angles. An angle is of tydef both edges point in

towards their common vertex. Typ@sand m are out and
ture and energy, and it is a reasonable way to describe thmixed pointings, respectively.
tiles. The HBS tiles are composed of Penrose rhombi with

Space can be tiled in many different ways, even wherdouble-arrow matching rules satisfi€dy definition inside
holding the number of atoms or the number of similar tilesthe HBS tiles. Some of their properties are summarized in
fixed. Figure 2 shows three different tiling configurations of Table I. Quasiperiodic tilings can then be constructed from
132 atoms. The first two have the same tiles arranged diffe-BS tiles obeying the single-arrow matching rul@&sg. 1).
ently. The third has the same atoms but different tiles. These We choose to define a tile Hamiltonian for the system
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TABLE I. Basic tiles in HBS model and their compositions.
Tile Composition Penrose rhombi
H Al,,CosCus 2T+F
B Al,CosCu, T+3F
S Aly1C0.1Cug 5F
H=> NnfEf+N7o0, NEEL+N 10> NS ELL. (D) FIG. 3. Filling space with hexagons. This approximant has one
@ B B hexagon per monoclinic ceffine dashing, H structure in the text

o o The unit cell has 25 atoms. The cell can be doubled to get a 50-atom
Heren;" is the number of specific tile type that can be H,  41thorhombic unit cellcoarse dashing, Hstructure in the text
B, or S;n%, andn%,, are the numbers of 72° and 144° angles

and 8 defines the angle type that can be, or m. We fit symmetry-breaking positions inside the boat and the star

energy parameters in the Hamiltonidaf) to achieveH . N . e :
~E,,, for a wide class of structures. The tile energies areWhlch makes it difficult to parametrize their interactions. We

more important than the other terms, and it turns out that thghoose to replace the Cu atoms in the tile interiors with Al

72° angle interactions are more important than the 144°’s. I?Egm:'i r?slf doe 'Ir_ll tge aonr('jgga\lllveTeOd?;’ngr?nmae\}g:)rggks'ﬂgfge_
is desirable to check how each term can alter the syste ' P 9

energies. We sek-, and A4 to 1 or O or the purpose of ween two Co ato_ms. Thglr vertical heights lay mldway be-
. . . o o . .~ _tween the two main atomic layers. Here we place them in the
including and excluding the 72° and 144° angle interactions

oo X . ~main atomic layers as shown in Fig(bl In terms of the
The form of_Hamlltonlan 1 contains th? most general t'I.Gatomic surfaces the atomic surfac€AS?2) that is mainly Al
vertex energies up to two-edge interactions. Three-edge in-. S .
) ; ; with a thin ring of Cu becomes pure Al, and the Al atomic
teractions and other effects are considered later in Sec. V. ; .
An H tile contains 25 atoms, counting those on the erim—Surface between layef@S3) fills the hole in the pure Al
) > 9 P atomic surfacg€ AS2).
eter fractionally. All but three internal atonfene Al and two . : : .
Co) belong to vertex decagonal clusters. The internal C Many different quasicrystal approximants are exploited
atoms. ocouny svmmetric sites. but the.internal Al atomchere to study different terms in the tile Hamiltonian. All the
Py sy N . napproximant tilings we used are listed in Table Il with some
breaks the symmetry by residing on one of two geometrically . : oo -
equivalent positions between the two Co atoffig. 1(b) of their properties. The smallest tiling is the monoclinic
q nt posit S . 1), single-hexagon approximantHFig. 3. It contains one
left]. Its interaction with tile edge TM atoms determines the“horizontal" and two “inclined” tile edaes. For the decora-
preferred position. A B tile has 41 atoms. An internal Al atom . 9 H . i o
: TR tion shown, Eg. (1) becomes H=E; + \;(E5,+E?)
breaks the symmetryFig. 1(b), centet by residing in one of L v i t TA=T2 T =T
two equivalent sites. An S tile has 57 atoms. Two internal AT M1442E 1441 2E140). The next bigger appr%mmant Sa 41-
atoms break the symmetiyFig. 1(b), right] by occupying &tom SmEJi'e'bOﬁ(‘)Bl (Fig. 4) for which H=E+ \7x(3E7,)
any two of five equivalent sites as long as hey are 144° apartt M1442E144+ E14) When decorated as shown. Stars alone
A phason flip can switch a specially arranged star and hexado not tile the plane, so a single-star unit-cell approximant is
gon into a pair of boats. This is shown in FigcRoutlined  not possible. Two-hexagon approximants can be constructed
by a dashed lingcompare with Fig. )]. in orthorhombif: cells, either by a genuine orth_orhombic
The present structure differs slightly from the original structure H (Fig. 5 or by doubling the monoclinic H

model® In the original model, Cu atoms take certain cell to create H shown in Fig. 3. In each casdﬂzEtH

TABLE II. The approximant tilings we use for our study, their compositions and the number of different
decorations l) of each of them. The unit cells are either orthorhomlaiclf are given or monoclinic @,
b and 6 are given. All of them havec=4.14 A in thez direction. The number of independdapoints is the
number on which most of the structures are calculated. To investigate the convergence we go higher for a few
structuregsee Tables Il and IV

Tiling Figure Composition a, b(6) Independenk-points Ng

H, 3 Al;;Co5Cug 12.14, 7.50 (72°) 132 3
B, 4 Al,oCosCu, 12.13, 12.13 (108°) 88 6
H, 3 Al3,C0,,Clg 23.08, 7.56 66 5
H, 5 Al3,Co;Clyg 14.27,12.13 66 4
B, 6 AlsgC0,6CUg 12.13, 30.30 (134.5°) 55 3
B,H, 2a Alg,C0,6ClUy 4 19.63, 23.08 20 27
B,H, 2b Alg,C0Clh4 19.63, 23.08 20 6
S;Hs 2c Alg,C0,Cly4 19.63, 23.08 20 12

014204-3



IBRAHIM AL-LEHYANI AND MIKE WIDOM PHYSICAL REVIEW B 67, 014204 (2003

FIG. 4. Single-boat (B approximant containing 41 atoms per
monoclinic cell. The circled CoCu pair was used for our conver-
gence study.

+ N7 2B+ 2E9) + N 144(4E 44+ 4ES,). The doubling
process gives more freedom in controlling edge arrow orien-
tations by performing Co/Cu swaps. Similarly, a two-boat
approximant can be constructed, either by doubling the
single-boat tiling B or by tiling the two boats as shown in
B, (Fig. 6), with H=EP+\;y(3ES,+3ET) +\1443E! 4
+ET,4+ 2EJ,) when decorated as shown.

To isolate the tile Hamiltonian parameteE§ and E4,
even larger approximants are needed. The three approxi-
mants in Fig. 2 each have 132 atoms per unit cell but differ-
ent tile configurations. Two of thefiB,H5 and SH; in Fig.

2(b) and 2c) respectively are related to each other by a
single phason flip. The phason flip turns out to raise the FIG. 6. Two-boat approximant (. One of the “keel” bonds
energy, indicating that stars are disfavored in these comicircled in the boats participates only in 144° angles and has a
pounds. The angle orientations are investigated by swappingjghly symmetric Al environment.

a TM pair on tile edges, reversing the directions of the edge

arrows. tile edges of H can be specially arranged to cancel all angle

Long-range interactions and other small terms OmlttednteracnonsEﬁ and leave only other effects.
from the tile Hamiltonian(1) can be estimated by swapping
pairs surrounded by symmetric CoCu bonds on their sides.
For example, the CoCu bonds on the sides of the horizontal

Ill. Ab initio STUDY

For our calculations we emplagb-initio pseudopotential
‘ ‘\/. Y“ calculations utilizing the Vienn&b-initio simulation pack-
< ‘ ‘\ age (VASP) program'® We use ultrasoft Vanderbilt type
m @) 2@ ‘Q. ( pseudopotential§ as supplied by Kresse and HafféiOur
%’ () . ‘ ‘.} ‘{‘\,‘. calculations are carried out on the Cray T3E and on the
q‘r’ .{O{‘ ‘ newly installed Compaq TCS machine at the Pittsburgh su-
() * percomputer center.
1‘ (0 .(0 The k-space mesh sizéamong other parametegrdeter-
) W mines the accuracy of the calculations. Biggespace grids
w w‘ are more accurate but more expensive in calculation time.
‘{“‘. One has to find a balance between the number of atoms in a
. . c{ unit cell and the size of the k-space grid in order to fit within
< the available computer resources. As explained before, we
. .}‘ use different approximants for our study each with its own
‘ J convergence behavior. Thespace mesh is increased until a
.M M consistency of about 0.02 eV is reached in worst cases. But
within a reasonable use of our allocated computer times we

FIG. 5. Orthorhombic two-hexagon approximant,jHvith a  are able to get better converger(@e002—-0.01 eYfor most
different arrangement of hexagons from Fig. 3. structures.

%\_4
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TABLE lIl. Energies of approximanB; (Fig. 4 and one of its single-swap variant®ur convergence
investigation goes through sevekapoint grids. Nearly isotropi&-point distributions are the X 1X 3 mesh
and its multiples. For finer grids,»4 X 11 is more isotropic than 44X 12.

k-point grid Independerkt-points B, Egvlv AE= Egle— Es,
1X1x1 1 —186.83238 —186.78158 0.05080
1X1X2 1 —217.02636 —216.68522 0.34114
1X1X3 2 —215.95009 —215.63608 0.31401
2X2X2 4 —218.18586 —217.90238 0.28348
2X2X4 8 —216.75311 —216.51774 0.23537
2X2X6 12 —216.74436 —216.49251 0.25185
3X3X%X3 14 —216.59210 —216.32712 0.26498
3X3X9 41 —216.74029 —216.48619 0.25410
4X4X4 32 —216.77625 —216.53784 0.23841
4X4X11* 88 —216.74116 —216.48698 0.25418
4X4X12 96 —216.74323 —216.48616 0.25707
5X5X15 188 —216.74291 —216.48615 0.25676

The convergence test calculations are summarized idistribution of thek-space grid points alonk, k,, andk,,
Table IIl for our B, tiling and in Table IV for our BH, the faster the convergence. For our &proximant, meshes
tilings. We compared two slightly different structures for that most isotropically distributé-space points are X1
each tiling, differing in orientation of a single arrdMCoCu  x3 and its multiples, but for finer meshes<4x 11 is
pair circled in Fig. 4 and Fig.(@)]. The tables suggest that at s|ightly more isotropic than % 4x 12. For fixed numbers of
the c.hoselk-space grid used in our calculations, marked by %, and k, points, the total-energy converges towards its lim-
star in the tables, the accuracy is better than 0.02 eV. Thg: ; .

' fling value as the number d&, points approaches its isotro-

imallest grid of I% 1x1 (singlek-point in thke cerkl)ter 0;; the " nic'value. In all our structures, we choose the most isotropic
-space unit cellfor our B, approximant takes about 8 min - gcyvin ion ofk-space points possible.

on the T3E machind450-MHz alpha processgrsising 8 Many rearrangements of edges are performed by swap-

Processors. The_ largest grid we use far@ 5x5x 15 (188 ping TM atom pairs and the different structure energies are
independenk point) takes 4.8 h on 64 processors. Tha-B .
. calculated. Most of these are done for the large approximants
structure has 132 atoms per unit cell. The smallestll . ) .
because they give more configurational freedom. In general,

X1 grid takes 2 h on 8processors. The largest grid of 2 . : )
x2x 10 (20 independenk pointsy takes aboti6 h on 64 PU'® 72° angle interaction parameteE{) can be deduced
if the bond to be swapped has an equal number of 144°

processors. : PeC
For a fixed number of processors, calculation time growsonnections on each sidsince we can arrange for 144°
linearly with the number of independekipoints. Calculation ~ interaction to cancgland either a single 72° connection that
time decreases linearly with increasing number of processof€an be attached to any side or two 72° connections attached
only up to about 16 processors. Beyond that, the total chargo the same side. An example is outlined by a dashed rect-
ing time (number of processors multiplied by elapsed time angle in Fig. 2a). The bond is surrounded by a single 144°
increases notably. Large structures and legpace grids re- 0On each side. Both point towards the middle bond, making
quire large numbers of processors because they need mdras,0n one side, ani?,,on the other. One extra 72° on one
memory. side makesES,. If the middle pair is swapped, the 144°
Note from Tables Ill and IV that the more isotropic the angle interactions will be conserved. The swap merely

TABLE V. Energies of approximant B, [Fig. 2(b) and one of its single-swap variahts

k-point grid Independent k-points Eg,h, Eg‘;VHZ AE= Eg‘;VHz— Es,H,
1X1X1 1 —606.30421 —606.22773 0.07648
1X1X2 1 —704.05048 —703.77620 0.27428
1X1X4 2 —700.48922 —700.24548 0.24374
2X2X2 4 —704.02670 —703.77286 0.25384
1X2X%X8 8 —700.38011 —700.12094 0.25917
2X2X4 8 —700.73700 —700.49654 0.24046
1x2x10 10 —700.42044 —700.15409 0.26635
2X2X8 16 —700.44533 —700.18672 0.25861
2X2X10* 20 —700.45159 —700.19033 0.26126
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TABLE V. Fitting our data with different number of parameters. Units are eV. The standard deviation for
each set is reported in the last row. Including 72° the 144° angle interactions improved the fits as shown.

Parameters N7o=N144=0 N7o=1N144=0 No=Nas=1
= —-133.17 —-133.15 —-133.15
EP —216.42 —216.76 —216.77
EP —298.32 —300.08 —300.15
2EP—EM-E? -1.35 -0.29 -0.24
El, 0.55 0.55
ET, 0.23 0.22
ES, 0 0

Elas 0.037
ETw -0.003
ES., -0.034
Standard deviation 0.37 0.0026 0.0013

switches their sides, while tHe9, become<sE7,. The differ-  finds the values of our parameters that minimize the root-
ence in energy between the swapped and the basic structuneean square of the difference between the calcul&gd
yields the differenceEl,— E9,= Eatter— Epefore=0.26 €V.  and modeH values for an ensemble of tilings with different
Reversing the 72° outer bond and then making the swapngle orientations. The fitted valu@B,EH, and EtS are
again can giveE,,—E7,=0.35 eV. For pure 144° interac- shown in the second column of Table V. The fitting is shown
tions, we use a middle bond surrounded by two 144° anglén Fig. 7. The graph shows clearly that the three-parameter fit
on one side and a single 144° angle on the other side. W8 not adequate because there is a significant variations of
arrange for any 72° angles to cancel. The pair surrounded b, ., among different approximants. The main source of this
a dashed circle in Fig.(8) is one example that yield8Y,, variation is angle interactions that contributelg, (as cal-
—E,,=0.06 eV. culated by VASP but not to our model when we sat;,

We compute energies for an over-complete set of struc=x,,,=0 in Eq.(1).
tures and use a least-square fit to determine average param-Note that the values of H, B, and S are individually mean-
eter values. First, we fit with,,=X 14,=0 in Eq.(1), leaving  ingless unless compared with pure elemental energies. For
only three adjustable parameteEE, EE, and Ets. The fit  example, the data quoted does not include arbitrary offsets

-5.24
A
A
g -5.26 |
S A
©
~ +
% 5 sl e} $ | FIG. 7. Plots of calculated structure energies
~ 8 vs our model expectations using only tile energies
O A (turning off angle interactionsThe spread of en-
:t % ergies vertically is due to angle interactions not
& accounted for in the model energy when,
o 53 x =N\14,=0. The diagonal line indicatad =E,,.
3
3]
-5.32+ X
X
Hi By Hy Hy' Bz B:;Hy BpHp' SiH3E o =H
o a8 & X v + O ¥ —
—5.I32 —5I.3 —5.‘28 —5.‘26 —5;24

H/N (eV/atom)
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TABLE VI. The energy costs of significant parameters in our model obtained from eight-parameter fit

Parameters EnergiWwASP) Energy(mGPT) Energy(mock-T)
eV (eV) (eV)

2EP—EN-E? -0.24 -0.59 -0.13

E, 0.55 0.60 0.12

ET 0.23 0.31 0.05

E?, 0 0 0

Elu 0.037 —0.042 —0.0079

ET. —0.003 0.010 0.0001

ESus —0.034 0.032 0.0080

EATOM?®® of each chemical species. However, the differenceThe remaining deviation from the/=x line (standard
2EE—E}'— EP= —1.35 eVis meaningful because the offsets deviation=0.0013 eV is due to other effects not included in
cancel out(since §H; has the same number of atoms of our modelH [Eq. 1], as well as incomplete convergence or
each type as B1,). Thus a pair of boats is favored over a other calculational inaccuracies.
hexagon-star pair.

The five-parameter fit values are shown in the third col-
umn of Table V, where we sét;,=1 to includeE5, and set IV. PAIR POTENTIALS

M144=0 to excludeE?,,. The 72° angles are all internal to The ground-state total energy of a system can be ex-
the tiles so their energies can not be separated from the t”ﬁanded in terms of a volume energy and potentials describ-
energies. Only differences in energies can be calculated, suq‘ﬁlg n-body (n=2,3,4, etq. interactionst® The volume en-
asEy,— E7, andE7,— E7,, so we set the lowest-energy ori- ergy is the dominant contribution to cohesive energy. It
entationE?, equal to zero without any loss of generality. The depends on the composition and density, but not the specific
fourth column of Table VI shows the eight-parameter fitstructure. The-body interactions distinguish between differ-
when we seh,,=MN144=1. In contrast to the number of 72° ent crystal structures at the same composition and density. It
angles, the number of which is determined entirely by thds customary to truncate thisbody series at the pair poten-
number of tiles, the number of 144° angles depends on theals (n=2), because they are much easier to calculate and
arrangements of tiles. As a result, we may calculate all threase, and because higher-order interactions are often weak.
energies:Ef44 independently. The fitting is shown in Fig. 8. Even for transition metals, with their localizetiband, the

-5.24

—_

E -5.26
O
P
©
~
=
Q -5.28}
FIG. 8. Including the angle interactioriset-
ting A7,=N144=1) greatly improves the fitting.
Z4
~ -5.3
8
3]

-5.32

H, By Hy Hy' Bz BpHy BpHy' S)H3Ec=H

o A & X v + O ¥ —

-5.32 -5.3 -5.28 -5.286 -5.24

H/N (eV/atom)
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truncation at pair potentials proved to be practi"@&ﬂ The is VCUCqQr,)— 2[VCCqr)+VCYr))]. Similar identities
pair potentials are functiong“?(r) of pair separatiom and  hold at the separations, andr,,. In mock-ternary pair po-
atom typesa and 3. tentials, these differences of potentials are defined to be zero,
Different pair potentials have been used to study this anduggestinge}'= %(EL,#L EY) should hold exactly. The small
other quasicrystals. Cockayne and Widopnoposed mock-  deviations from this identity in the fourth column of Table VI
ternary potentials extracted from Al-Co pair potentials. Not-are due to the fitting procedure. The potential differences are
ing that, in Al-Co-Cu, Cu substitutes for an equal combina-again close to zero for mGPT pair potentials as discussed
tion of Al and Co, they approximated Cu interactions by theabove, and the small deviations from the energy identity in
average interactions of Al and Co. In addition, the Co-Cuthe third column of Table VI are also due to the fitting. In
interaction was defined as the average of the Co-Co an¥ASP, energies are calculated accurately, considering all
Cu-Cu interactions in order to obtain ternary potentials fromn-body interactions. An averaging of interactions is not as-
the AITM binaries. They adopted Al-Co pair potentials cal- SUmeda priori, but our calculations confirm that averagiisg
culated by Phillipset al?* Their discovery of alternation of & 900d approximation, as shown in the second column of

CoCu pairs atoms on tile edges, and many other details, arable V. . . . .
all consistent with our VASP results. Another interesting near-degeneracy occurs in a zigzag of

; ; : ; 72° angles. Such a zigzag runs vertically across Fig. 3. Con-
iz elaa:)es,gurgg;%tga?igl)ﬁ e%?(ly; g%evr\}g?és dde?/ré\llgg ezyf é:]regtla_ral sider three consecutive bonds in a zigzag. If both outer bonds
Co-Ni and Al-Co-CU? The original GPT pair potentials point in towards, or both point out from, the middle bond, a

suffered from TM over-binding which is an unphysical at- swap of the middle bond leaves unchanged the total number

. ) of i, o, or minteractions. If one of the outer bonds point in
traction between TM atoms at small separations. The strong vards the middle bond and the other points out from it,

gest over-binding appears in Co-Co pair potentials. We[h th f th iddle bond ch th b
modified the CoCo and NiNi pair potentials at short dis—ZEe;rqlz _ i;wéz OBec:u;néIE?ziesvgrr; clf)saent?)ii e a?/eerggng y

tances by adding a repulsive term using VASP to get the; o . . .
energy and length scald.The resulting potentials behave egé;i?]ngeiﬁy(zsegéﬁ‘é'g::ly showpnthese configurations are

really well in simulation€? The Co-Cu pair potentials were
defined as equal to the Ni-Ni pair potential6~°“Yr)

=VNNI( " These, in turn, were close to the average of V. OTHER EFFECTS
Co-Co and Cu-Cu potentials because Ni resides between Co

and golé In thceucpe”Od'(_: table. Specificallyy™™(r) arrowing in our model. We study chemical ordering here
=3[V 2HAr) + VAN ], with biggest error of 0.002 eV at - qing ourH,, approximantthe orthorhombic unit cell in Fig.
3.12 A which is about 15% error. The other AICOCU pair 3)'\hich contains two horizontal tile edges. When a Cu atom
potentials were found to be well behaved up to large Cuyom one horizontal edge is swapped with the Co atom on
compositior” _ _ _ he other, the resulting edges contain pairs of similar species
We calculated the energies of the approximants using botfy o coco and one CuCuThe process raises the energy by
mock-ternary and modified GPT pair potentials, to checky gg ev/cell. The same swap was studied béforgith

how pair potential results compare to VASP. Results of thq g5 and gave 0.17 eVicell. Using the pair potentials, TM
fitting are summarized in Table VI for all the methods used.,;oms favor alternation on the tile edges by 0.022 eV/cell for

Besides a difference in energy scale between the modified,spT and 0.079 ev/cell for mock ternary. Although the

GPT and the mock-ternary pair potential calculations, theyy,,nitde is not certain, the sign consistently favors Co/Cu
are qualitatively close to each other and to VASP. The Ordef)rdering.

of 144° angle interaction is reversed compared to VASP, but |, Al.co-Ni. CoCo. and NiNi pairs are slightly preferred

these interactions are very We%k' Lo . over CoNi pairs. As a result Al-Co-Ni has no arrow decora-
n iTabIe OVL we see thakz~3(E7,+E7) and Eisy  tions at low temperatures. Cu and Ni are adjacent in the
~3(El44+Ej4) for all three calculation method6VASP,  periodic table, but they are notably different in their proper-
mMGPT, and mock ternayy To understand this, note that ties. In an isolated Ni atom, thed3shell has six electrons and
when two tile edges meet at a vertex, the TM bonds on thenthe 4s shell is filled. The partial filling of thel band strongly
are at three different separations from each other. One sepgifluences atomic interactions. Thel Bhell in Cu is filled
ration lengthr; is between the TM positions close to the wijth electrons and thesthas one electron which makes Cu
vertex,r, is between the far positions, angl is the separa- act more like a simple metal. Theband of Cu is buried and
tion between mixed positions. Take the smallest ofrallas  does not participate strongly in interactions. This is why
an example and consider pair interactions. In bonds with thghemical ordering is strong for CoCu pairs but not for CoNi
i configuration, two Co atoms are distance from each  pairs,
other. The energy contribution due to this paiMs®“{r;). An important issue is the position of the symmetry-
The same positions are occupied by two Cu atoms irhreaking Al atom inside a hexagon we mentioned in Sec. Il.
theoconfiguration with energy contributioi®““4(r;), and by ~ There are two symmetrically related positions between the
one Co and one Cu atom in the m configuration with energytwo internal Co atoms, and we force the Al atom to take one
VEUEqr;). The contribution to the energy differend€],  of these positions as shown in Fighbl (left). If the horizon-
—3(E},+ES,) calculated from these pairs at separations tal edge arrows are parallel to each other, the Al atom prefers

Chemical ordering of TM atoms on tile edges define edge
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to reside in the side closest to the Co atoms by about 0.03 e¥quilibrium temperatures of 1000 K. To fully describe a
With the off-center Al, we define the decomposition of the three-dimensional tile Hamiltonian we must also determine
hexagon into rhombi such that the symmetry-breaking Al isthe energy of phason stacking defects

placed as in Fig. 1. The position of the internal Al atom

inside a hexagon, together with the horizontal tile edge ar- VI. DISCUSSION

rows, define a “direction” for the hexagon. We noticed that ) o o

generally hexagons prefer to align parallel to each other in \We discuss here the implications of our findings on the
our H, structure by about 0.01 eV. These effects are Ver);tructure of decagonal AICoCu. The main result is that now

small but are enough to account for some of the discreparﬁnergy can be calc;ulated quickly and aC(_:urater_ for the.se
cies betweerE... andH in our calculations compounds by adding the relevant terms in the tile Hamil-
tot .

" : L tonianH [Eq. (1)] using parameters obtained in Table VI. For
The decomposition of the hexagon into rhombi is lost by . . :
placing the Al atom exactly at the center of the hexagonexample‘ consider the cohesive energy of each tile type. We

X L. . define a tie-line energi;;c.ine to be the energy per atom of
However, this position is '°"Yer n ent_argy_by 0.2 eV as cal'the pure element: fcc Al, fcc Cu, and spin-polarized hcp Co.
culated by VASP. In the pair potential picture, the centralrys gy cture energies lie below the tie line and the differ-

position for the Al atom is .preferred by 0.11 eV/ce_II using ance is the cohesive energy per at@y,,. We calculate
mGP_T and 0.01 eV/cell using mock—tgrnary potentials. DeEtot[Al]: —4.17 eV/atom,E,.{ Cu]= — 4.72 eV/atom, and
pending on the edge decoration, this Al may relax Veryg rcol=—8.07 eV/atom, all at the experimental lattice
slightly from th(_e cgptral positions, but this effect is minimal constants. The tile cohesive energies af.qH]
and_d(_)es not s!gnlflc_antly influence the energy. Thus amore- — 775 ey, E. [B]=-12.4¢eV, and E.. S]=
reallspc model in which the Al atoms are _centereq sh_ould be_16.81 eV (using data from our eight-parameter) fiThe
described even more accurately by our.tlle Hamiltonian.  gjfference between two boats and a hexagon-star pair is
One more osmall effect appears in “h|dde_n” 144° angles’ZEcoh[B]_Ecoh[H]_Ecoh[S]: —0.24 eV. We can add up
where two 72° angles share one edge making an extra 144fe cohesive energies of the tiles to obtain a quick estimate
(Fig. 4 has two hidden 1449sThe shared edge orientation of the cohesive energy of the quasicrystal. For HBS tilings,
affects the angle interactidﬁf44 of the outer edges. We cal- the “golden” ratio H:B:S= J57:1/5:1 can be obtained, for
culate the differenc&?,,— E7,, with the shared edge point- example, by removing double-arrow edges from a Penrose
ing outward and again with it pointing inward. With the tiling.>?* For such a tiling the cohesive energy is
shared edge outward pointing, the differenc§,fET,,  —0.3035 eV/atom. Our results show that stars are disfa-
=—0.075 eV. An inward-pointing middle edge raises thevored, and a tiling with hexagon and boats is lower in en-
difference by 0.015 eV, so th&f,,—E7,,=—0.060 eV. ergy. The ratio of H:B in HB tilings is 1z and the cohesive
This effective three-arrow interaction can account for moreenergy is—.3045 eV/atom.
of the remaining small discrepancies betwégg, and H. Most bonds participate in combinations of 144° and 72°
So far we have examined interactions within the quasipangles. The stronger interactions determine bond arrowing.
eriodic plane. Now consider perpendicular interactions. Pair§Vhen a bond is surrounded by a total of four 144° angles
of TM atoms on the tile edges are 1.51 A apart within theand no 72° angles, the middle bond is a part of 144° zigzag
quasiperiodic plane and 2.07 A apart along the perpendicland its decoration does not matter. An example of this is
lar, periodic direction. The net bond length is 2.56 A. Thecircled in Fig. 6. There is only one configuration where a
lines connecting them make a zigzag of alternating TM atbond orientatioris determined by 144° interactions. This is
oms extending along the periodic axes. We turn our attentiothe configuration we used to get pure 144° angle effesee
to atomic order in this direction. The approximantB [Fig.  Sec. lll). These configurations occur occasiondibye is in
2(a)] has a horizontal glide plane parallel to the long side ofFig. 2(b)], but usually bond orientations are determined pri-
its unit cell that can be exploited for this purpose. We swapmarily by 72° interactions.
one CoCu pair on a horizontal edgzll this paira) and call Quasicrystals are observed to be stable mainly at high
the structure A. Another structure B is made fronHB by  temperature&’ This can be due to a variety of entropic con-
swapping instead the glide-equivalent image of @aicall  tributions. Transitions from crystal to quasicrystal phases are
this pairb). These two structures have equal energies byeported® at aboutT~1000 K or aboutkgT=0.1 eV. At
symmetry. Further, we build a 264-atom unit cell by stackingsuch temperatures the 144° angle interactions are irrelevant
two 132-atom unit cells. It is built once by stacking An  because they are small compared to energy fluctuations, and
layer over anA layer and another time by stackingBdayer  the structure is determined primarily by its tile types and by
over anA layer. In theAA stacking, TM alternation along the the 72° angle interactions.
vertical zigzag is conserved. IAB the zigzag sequence is Our model expectations are in reasonable agreement with
violated along paila and along paib. Along each pair the calculated energies, suggesting that we have captured the
alternation defect includes a CoCo pair and a CuCu pair. Thenost important energetic effects. The worst deviation is
AA and AB structure energies are calculated withk-point ~ about 0.1 eV. Out of that we account for 0.03-0.05 eV from
mesh of 2<2Xx 5. The differenceE,g— EAp=0.392 eV per the internal Al atom effects on tile edges. The rest can be a
264-atom cell. We thus find an energy cost of about 0.1 e\tollection of long-range interactions. We do see these long-
per alternation defect, which is sufficiently weak that werange effects in some instances. For example, when calculat-
may anticipate alternation stacking disorder at characteristitng pure 72° angle interactions using the bond surrounded by
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a rectangle in Fig. @) in two different approximants (B4,  from the fact that such arrowing exist not only on tile edges
and SH3). The environments are identical up to about 7 A, but also inside the tiles. Phason disorder along the periodic
but a difference of about 0.02 eV inME-ES, between the —axes is impo.rtapt. S.o far we §tud!ed only Co/Cu disorder
two cases shows up. glong the perlodlg axis but not tile flips. The system’s .behav_—

The pair potential calculations show that they are capabléor under relaxation and the preferred relaxed atomic posi-
of catching qualitatively the dominant 72° interactions welions are wide areas to explore. Relaxation may alter the

are investigating with a much less calculation time.
In our preceding papét,we reported several results re-

quantitative values of our tile Hamiltonian parameters. Fi-
nally, the biggest unresolved questidris: what type of

multiple-scattering methédknown as LSMS. The approxi-
mants H and H, were used, with internal Al atoms centered.
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