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A realistic theory of the quantum paraelectric-ferroelectric transition is presented, involving parameters
determined from band calculations and a renormalization group treatment of critical fluctuations. The effects of
reduced dimensionality and deviations from cubic symmetry are determined. Expressions for the pressure
dependence of . as well asp and T dependence of the specific heat are derived, and evaluated for realistic
materials parameters for the systems BaT#hd PbTiQ. In these materials the ferroelectric soft mode
dispersion apparently exhibits a very strong cubic anisotropy, which affects results in an important, albeit
guantitative, manner. A change in order parameter orientation fd@® to (111) is predicted as quantum
criticality is approached.
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[. INTRODUCTION classical ferroelectric transition, and found that anisotropies
associated with the dipolar interaction led to a universality
Ferroelectrics and the closely related high dielectric conclass. In this paper we reexamine the issue in light of recent

stant materials are important in many areas of modern tecfiévelopments in the theory of quantum critical phenomena.

nology, including memory, sensor, and electronic applica—We formulate a realistic action for the ferroelectric soft

tions, and are of fundamental scientific interesthe modes, show how estimates of the parameters may be ob-

ferroelectric phase change belongs to a class of structur%ﬁmed fromab initio calculations, and study quantitatively

transitions, generally termegerrodistortive triggered by e consequences of the dipolar-induced anisotropies. Our

. . -2 results agree in essentials with those of Rechester and
zone-center soft modes of lattice motion. Characterlstlcall)khmel.nitskii and Shneerson. but we obtain a more detailed

the ferroelectric transition involves the condensation of an, g quantitative picture of the phase boundary, of the effect
optically active lattice mode which causes the appearance Qj¢ anisotropy, and of the logarithmic corrections arising at
long-range polar “order and the br“eaklng of the inversionhe marginal dimensionality, which lead to an evolution of
symmetry of the “high-temperature” prototype lattice. One the anisotropy as the ordered phase is approached.
important issue is the ferroelectric quantum critical point,

i.e., the physics occurring when, by varying a control param- Il. ORDER PARAMETER AND ACTION
eterr (applied pressure or change of chemical composition
the transition temperatu.r.e of a ferroelectric is driven to zero.¢_ Taking into account the effective dipole chargdsof the
Although a quantum critical point occurs @t0, the fluc- -

: . : - ) soft modes can be formally written
tuations associated with the critical point may control behav-
ior over a range of temperature and pressure. For example, 5
Mliller and Burkard coined the term “quantum paraelectric” d(x,H)= 2, efri(xt). 1)
to describe materials in which ferroelectric ordering is pre- =1
vented by quantal fluctuations. A material just on the disorHere the index runs through the atoms of the unit cell of the
dered side of th& =0 ferroparaelectric transition is there- Prototype perovskite lattice with stoichiometry ABOr; are
fore an example of a “gquantum paraelectric.” The importantthe vector displacements of each atom. -
feature of quantalT=0) phase transitions is that temporal e now write a Ginsburg-Landau action describing quan-
fluctuations must be treated on the same footing as therm&¢! @nd thermal fluctuations ah(x,t). The crucial point is

ones®* This raises the effective dimensionality and makesthat becausep corresponds to a dipole fluctuation it gener-

the critical behavior more mean-field-like. but with a tem- &t€s electric fields which lead to a long-range interaction. We
perature dependence controlled by “dangerous irrelevanl?ave(m space and imaginary time

operators.® 4% T
Ferroelectric transitions may be described by bosonic S[¢a(x,r)]=f—d— drE,
field theories with undamped dynami@éthe effect of free aJo

The order parameter of our theory is the local polarization

2
CT((yrd)a(X- T))Z

carriers may be neglectednd complicated dispersions aris- +a%(V (X, 7))+ DX, TN o5 p(X,T)
ing from the long range of the dipolar interaction. Quantum dos
critical phenomena associated with undamped bosonic field +f —— ha(X, IIF g (X=X ) (X', 7)
theories with short-ranged interactions have been extensively d

studied? The effect of long-rangédipole) forces was studied

by Rechestérand by Khmel'nitskii and Shneersbmithin +Z (U+va5a;a)¢§(X,T)¢f;(X,7) +ooen,
an approximation equivalent to the self-consistent one-loop ap

approximation of Moriyd Aharony and Fishérstudied the 2
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Herea is the lattice constant is the speed of the phonons in secondterm determines the polarization orientation in the
the softest direction, anfl,=7%c(7/a) is the typical energy ordered phase. At the mean-field level the acfigg. (2)] is
scale of ferroelectric fluctuations in tH&00 direction; our  minimized by the polarization of magnitude:

choice of units is such that the field, mass and coupling con-

stants are dimensionless. The term proportionaF ta(x) P2=E L dr 5

= (d—2)(x?8,5— dx,Xg)/x*"2 represents the dipole inter- 7 A 2(dutv)’

action. In momentum spate
P When v <0 Eg. (2) is minimized by a polarization along

J a 5 (111 with ¢y= ¢,=¢,=P/d, whereas fow>0 the polar-
FaB(Q)Zf dxFp(x)€'a7=(ro,+f,05) Oap ization is along(100) with ¢,=¢,=0, ¢,=P. The values
of the quartic interaction are, in each case,
qaqﬁ
q2
whererg,, f,, 9.5, andh,;z depend on details of the un-
derlying lattice. We assume that the non-local quadraticThe condensation energy is of ordevu and asv—0 the
terms represented by, ; andh,; obey the same symmetry energy barrier separating different symmetry-allowed polar-
as the local quartic interaction termstv,d,5. Thus, in ization directions is a factor of order/u smaller than the
general, we will haveg,;=g+9,6,5; 9,>0 lowers the condensation energy. The condition for the stability of a
symmetry to Ising. The termgy, combined withlocal bare  quartic interaction is the positive definiteness of HE4)
mass terms makes up in Eq. (2). We shall consider cubic  which (in cubic symmetry, dimensionality and at the mean
and tetragonal symmetry, $Q5=r,8,5-. In Eq.(3) and in  field leve) translates into
all of the following we use dimensionless momerdg

+(Gap— 97 Nap)— 2~ +0(q"), 3 (dr)? (u+v/d), v<0
SO el= 5,

du+v)? (u+wv), v>0. ©

e[—m,]. u+v>0, (79
The action we have written down is most straightfor-
wardly interpreted as arising from a “soft mode” instability du+v>0. (7b)

in which an optic phonon softens, eventually to zero, and these conditions fail, sixth order terms i have to be
indeed this is what is found in local-density-approximation;,.juded and the transition may be first-order.

band calculations which we use to fix parameters. However,

an action of the same form would arise from a transition of

the order-disorder type; only numerical values of parameters

would change, as shown, e.g., in Ref. 10. Equations(2) and(3) define a model for the phase transi-
Diagonalization of the quadratic part of the action yieldstion in a ferroelectric near a quantum critical point. In the

the phonon modes, and the paraelectric-ferroelectric transiabsence of nonlinearities, the Heisenberg order-parameter

tion occurs when the lowest zone center mode frequencygorrelation funCtiOI’Ggﬁ=<¢a¢)B>0 is?

vanishes. The gradient term in E@), along withf, andh,

controls the dispersion of modes. Note tig# 0 implies an 0o _ 1

anisotropic derivative& ,(V,¢,)?%; in a spherically symmet- By +witgit faqi

ric systemf,=0. For simplicity we refer to the casg,

=0, f,>0 as Heisenberg also, because the order parameter (g—hqz)qaqﬁ

exhibits a continuous rotational symmetry. Previous Oup™ [q2+(g_hq2)Q][rB+m2+ q2+fﬁqé] '

renormalization-group studies of the classical paraelectric-

ferroelectric transition have treated tlig terms as a small (83

perturbatior?”’ Khmel'nitskii and Shneersdrargue that al- 5

thoughf, in typical materialge.g., BaTiQ) is of the same Q=> 9 . (8b)

order of magnitude ag,z andh,z, the anisotropy of ob- y Iyt w+ q2+fyq,/

servable quantities is usually weak. Because band theory cql_i

culations indicate that in many ferroelectric systefps-1

are quite large, here we present a treatment valid forfany
The u and v, terms represent local anharmonic interac-

tions. The materials of main interest here have cubic symm

try in which casev,=v. The quartic interaction in Eq2)

(dropping momentum and energy integrals for simplicity

becomes

IIl. PROPAGATOR AND MODES

erew =2nm(T/Ey) is a dimensionless bosonic Matsubara
frequency, and in our conventioisis dimensionless.

The nature of the modes defined by the poles of (Bg).
can be best understood by considering the polarization of the
Serroelectric fluctuation vectoep. For everyq there ared

—1 transverse and one longitudinal polarizations, all or-
thogonal to each other. The longitudinal mode is always stiff
with == 0(g), andh only enters the dispersion of the lon-
2 gitudinal mode; bothg and h are irrelevant to the critical
+v2 d’i- (4) behavior. The remaining— 1 modes are soft and in the case
“ of cubic symmetry have the general dispersion

s<4>[¢]=u(2 ®?

The term proportional ta is rotationally invariant and in- ) )
sensitive to the polarization orientation, and the sign of the o () =r\+qTL+fA(Qg)], 9
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a b

FIG. 2. One loop diagrams for the renormalization(af the
quartic interactioru and (b) the masses,, .

etersa’ andy’ (Table V in Ref. 12 studied by these authors
are related tou andv,=v in Eq. (2) by u=(a’'+vy'/2)
X(r/k)?Eq and v=—(y'/2)(r/k)?Eo. For BaTiQ; and
PbTiO; (which have cubic symmetry so,=v andf,=f)
we find the results listed in Table I.

We now study the relevance of quartic interactions in the
FIG. 1. Generic ferroelectric propagafdgq. (10)] in the static vicinity of the critical point. The one-loop correction tcand

limit w=0 with cubic symmetry and large anisotropy;=0, r U IS given generically by the diagram in Fig(a and the
=0, f=5.0, andA = . respective renormalization equat’rans given by

where(}, is the set of angles defining the directiongpénd

a . . . 141 ya ya 1B 4B— #hpm—3(d+2)
A, are lengthy expressions derived from Egg). Equation 9 > Upg @ P* " d"={'b
includes all modes with the conventions=r and r=r “p
+g. For allq such that the polarization of a transverse mode

> UL h PP
ap

points along a crystal axis the respective dispersion softens —4 23 Ul U oW, 5,50 % P P
additionally (A\(Q4)=0) if f>0. The effect off is most e
easily seen by setting,=0 and considering only th&Y +4W7M§¢a¢a¢ﬁ¢5
block. The resulting transverse mode propagator
22 | ! +4Waﬁy§¢a¢ﬁ¢7¢5)} (11
G(w,q)=| r+w2+g2+q+2f 5 — (10
q OxtQy q)2(+q§

whereu,z=uU+vd,g4, the external momentum integrations

is shown in Fig. 1. The dipolar anisotrof) leads to ridges  are omitted for brevity, and, . s are the one-loop integrals
suggestive of quasi-one-dimensional behavior. over fast modes:

We obtain the parametecsr,, f,, gandhin Eq.(2) by
fitting the poles of Eq(8a) to first-principles phonon disper-
sion curves such as those in Ref. 11. We fit the numerically S f d'q
calculated mode frequencies near the zone center to the — WaB7o™ o ) (2m)
modes predicted by Eq8a) along crystal symmetry direc-
tions. The soft modes’ speed and massr(T=0) at the
lattice constants used in Ref. 1(lambient pressujeare

readily obtained by fitting the dispersions alofid0 to w . . . . > =

=c\/r)//_a2+(1/2)c\/¥/_az(q(‘/;a)2+(9(cp14). The aniggropy pa- diagrammatic version of Ec(ll) is shown in Fig. 3. Ind

rameterf is obtained from direct ratios of the curvature of the ._ 3 the system 'f n ;}i@}afg'”a' dimension ?‘”d Fhe pref.actor

dispersion along110) and (111) in Eq. (1) is ¢/'b , So that the leading interaction
The size of the interaction éonstamtsandv can be esti- renormalization is quadratic. The generic form of the renor-

mated from first-principles variational studies of a Landaumahz"Jltlon equations is

free energy of the systdfh E(w)=xw?+a’'w

+9'S = pWaW5, where E(w) is the free energy per unit
cell andw is a soft mode lattice displacement. The param- == = - —4 O_

TABLE |. Numerical values of the parameters used in the action

G(w.9)G)y(w,q). (12

In Eq. (11) {,=b*"92 s the field renormalization when the
fast modes in the shelh\/b<q<A are integrated out. The

Eq. (2). The values foru andv areinitial conditions for the RG | \_/
flow of the two interaction constants in E®). _ 18 _ I _16 : :
1
fic (meV A)  Ey (meV) f u v /_'\
BaTiO, 6.36 5.00 47 1.25 0.68 FIG. 3. Renormalization diagrams to tree and one-loop order for
PbTiO; 6.79 5.37 1.1  0.26 —0.09 the anisotropic interaction parametgfz=u-+uv d,5 in Eq. (2). This

is the diagrammatic representation of Efyl).
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» dw (7 dig w u
—5u~u2J' — Gz(m,q)cothz—_l_, (13 —du=

ZJ‘ZW ng
—22m) (247)¢ 4w Jo 1+ (f/2)sirf2¢

X

1 1
where G is a soft eigenmode of the Gaussian ferroelectric = 2 -
propagator. We first consider the simplest case of isotropic o ATEA (1+(t72)sin2e)
interactions ¢,=0) in an isotropic medium f(,=0, r, u? r
=r) in the low-temperature limit, and we also let=0 for ~ o ==| 72 tan‘l\/ﬂ
simplicity. As explained above, the correlation functidy. 8mey2ifr
(8a)] then has a Heisenberg-like rotationally invariant form {rl/Z r<A?

with d—1 soft eigenmode$ *=r+w?+qg’=r+Q? and A/ ’ S A2 (16)
one stiff (noncritica) eigenmodeG~'=r+Q?+g. Includ- LT '
ing only the soft eigenmodes in E@L3) the recursion rela- In the second, approximate, equality we have taken the large-
tion for u is, respectively, f limit. We see from this that the quasi-one-dimensional
structure does not affect the degree of divergence-a$;

indeed, f only affects prefactors and not the scalé to

. loglk, d=3 which r should be compared. To summarize, a mean-field
7 u°Q ) B treatment of the modgEqg. (2)] should be qualitatively cor-
—5u~f (r+Q2)2dQ~u WNr, d=2 (14 rect except in the case of &=2XY ferroelectric, and we
1/, d=1. exclude this case henceforth.

We further study the fixed points of E¢Ll) in its full

anisotropic form. The Gaussian propagdtég. (8a)] in the
Equation (14) shows that upper critical dimension of a strong dipole interaction limig— o is

Heisenberg isotropic quantum critical ferroelectric system is

dC:3' 0 _ 1
For a uniaxial(Ising-like) ferroelectric there is a preferred Cap(®.a)= r+w?+qg°+fq?
“easy axis” for the orientation of¢p which brings about a
further increase in effective dimensionalfftflhe respective 4.4
correlation function has the forn®(w,q)=(r+w?+q? X| Sap™ Q(r+m2+q2+fq:§.) . (17

+0,92/g%) ~*, which gives, foréu, _ - _ .
whereQ is defined in Eq(8b). With the use of cubic sym-

metry, the possible combinations wf,;, s are reduced to

d-1
—5u~u2f dmf dqf q_cos? Wapys=[(A1=A2) Say T A2]0updys
2 2 2
(r+w”+9°+gcos0) +Ag(1= 80p)(8aySpot 8asdpy).  (18)
B u? 7 QUdQ B u? rt? d=3 15 The f- and T-dependent integrald, , 5 are calculated in the
glll2 (r+Q?)7? glll2 loglk, d=2. Appendix. Substituting Eq18) into Eg. (11) yields coupled

nonlinear renormalization equations forandv, similar to

those written by Aharony and FisHéffor the classical case
Thus the upper critical dimension of an Ising isotropic quan-(but note that Aharony and Fisher expanded the coefficients
tum critical ferroelectric system is reduceddg=2. In the ~ A; about the limit of small anisotropy, whereas we retain
case of a preferred easy plane of polarization the propagatéf€ir full f dependende The stability of the Gaussian fixed
has the two eigenmode&=(r+w?+q?) ! and G=(r point u=v=0 is most transparently analyzed using polar
+w?+g?+gsirf6) ! so that theXY model and Heisenberg coordinates in theuv) plane:u=p cos# and v =p siné.
ferroelectrics have identical coupling renormalizations,The renormalization equations farandv then become
which is due to the existence of the same soft mode in both

dp
cases. — 2
dnA = ~AWGTp, (199
6
IV. INTERACTION RENORMALIZATION =—B(6,T)p. (19b)

We now study the possibility that the quasi-one- dinA

dimensional behavior associated wite1 may modify the  The #- andT-dependent coefficien#s andB are given in the
criticality. We illustrate the issues using the notationally sim-Appendix[Eq. (A7)], and theirT=0 limit is plotted in Fig.
plerd=2, g—o case, and have verified that our results hold4. These coefficients are to be evaluated at the running tem-
in d=3 also. From Fig. @) and Eq.(10) we obtain, after peratureT(A)=Tphyse'nA and are derived on the assumption
integration overs and the magnitude di, that the physics is dominated by tli€&aussiah quantum
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0.2

0.1

B(6) o

~0
o—o0 f=v

o—o f=2
+— f=4

0.5

A®) o

-1 ‘ ‘ ‘ ‘ / ’ &Y -
n/2 n 3n/2 2n 04 . L . L\ .

8 204 -0.2 0 02 0.4

e,

o

FIG. 4. Coefficients of the angular and radial part of the inter-

action renormalization coefficiefEq. (19)] at T=0. The stable FIG. 5. Phase portrait for Eq19) with f=1.1. The heavy
roots of B(#) which determine the nature of the fixed points are dashed lines indicate the/v ratios corresponding to stable fixed
marked by vertical dotted lines. points of Eq.(19); their continuationglight dashed linesmark the

boundaries of the unstable region wherdlows to large values.
critical point; in other words, on the assumption that controlThe dotted lines mark the mean-field stability boundaries (#g.
parameter, interaction amplitude and temperature are not The shaded region indicates initial conditiong, (vo) which start
too large. In particular, the model exhibits a phase transitionyvith Ising-like polarization orientation but eventually flow to the
at a temperaturg,(r) discussed in detail below. At tempera- fixed line 6] with nearly Heisenberg polarization orientation along
tures sufficiently near t@.(r) a crossover to physics con- (11D).
trolled by a classical, non-Gaussian critical point will occur,
and the theory used here ceases to apply. To estimate tid@shed lines. Above and to the right of the light dashed lines
region of applicability of the equations presented here wdhe flows are stablep(—0); below and to the left, unstable
follow,® noting first that the breakdown of the quantum criti- (p— ). The region of stability found in the RG analysis is
cal theory will occur in the classical regid{A)>A. Inthis  wider than that found in the mean-field approximat|&y.
regime the relevant dimensionless interaction amplitude i$7), shown in Fig. 5 as light dotted lingsThe physical con-
Pelassica= T(A)p(A)/A, and Eq.(199 predicts the classical tent of the two fixed line®] , is different: 67 corresponds to
fixed point passica= 1M1 T/(AA(H,T)). We find pleicas @ NeATrly isotropic system with polarization alofig 1), but a
={1.25318,1.47604for the two fixed liness?, 65, respec- relatively weak barrier against polarization reorientation
tively, shown in Fig. 5, and fof = 1.1. Thef dependence of (v/|u[~0.15, but weaklyf dependent whereas# corre-
Prassical AN be be summarized by the linear fji g sponds to a strongly. anisotropic system v_vith p'olarizati.on
~1.16+0.11f for the ¢} fixed line, and p.c..~0.48 a[ong(lOO) and a barrier of relative order unity. It is seen in
+0.77 for the 85 fixed line. As an estimate of the range of F19- 5 that there exists a range of initial conditions in the
validity of the scaling equations, we argue they apply forShaded wedge between the-0 axis and the separatrix in
passica (1/2)pYacsics WhiCh corresponds to the three- the first quadrant, which start with initial valueg>0 fa-

dimensional Ginzburg criteriopassicaf t esicar= 1. \./oring. Ising symmetry but eventual[y ﬂ_ow to the fixed
We wish to study the stability of the fixed poipt=0 in line with v <0 and Heisenberg polarization symmetry.

. : We see that the ratio and even the sigmaf may change
Eqg. (19). Th lut f Eq(l toticall h L .
; (. 9 gso ! |ons“_o q( 9 f':lsyr?p © |ca_ Y approach - der renormalization. In particular, for initiai>0, v>0
the fixed point along “invariant lines’¥=0 given by the

> andu/v less than anf(-dependentcritical value of the order
stable root” of B(6,T) (Eq. (A7b)). Respectively, Eq19) of unity, thesignof v changes under renormalization, corre-
has a stable fixed point— 0 if A(6*,T)>0. The functions -l 9 ! ges u 1zaton,

R sponding to a predicted change in the polarization direction
A(0) andB(#) are shown in Fig. 4 for several values of the P d P J P

. It hat th h _ e fas criticality is approached. Unfortunately, the logarithmic
anisotropyf. It is seen that there are three invariant lines ofy ¢ e of the scaling, combined with the numerically small

which 65 (the middle in F'?- 4is unstable A.(0§)<O). The  yalue ofB(6,T) and the factor of in Eq. (19 means that
two stable solutions ar@; <0 corresponding to a nearly 4tT=0 one must approach criticality extraordinarily closely
Heisenberg fixed poinfu|>v; u<0, and §;=m/2 corre-  to observe the effect. The scaling turns out to be more rapid
sponding to an Ising-like fixed point>|u|, u<0. The de- in the classical regimd(A)>A, but as noted above our
pendence ob; , onf is weak and does not change the quali-analysis cannot be extended too far into this regime before
tative behavior. The nature of the “fixed line” solutions is the equations break down.

most clearly seen in Fig. 5 which shows the phase portrait of To further illustrate this point and to study how “soon” in
Eq. (19). The stable fixed lineg)] , are shown by heavy renormalization group time this change of ordered state ori-
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0-0(0.20,0.20)
5-0(0.01,0.02)
©=>(~0.10,0.10)
~~~~~~ T=0

| — T=0.0001E,
-~ T=0.001E,

—- T=0.01E,

1.00

0.10
C(t)

0= (0.25,-0.23)
|00 (0.02,-0.01)
¢ (1.25,0.68)
e T=0

— T=0.0001E,
-~ T=0.001E,

| —- T=0.01E,

0.01

t=TE,

FIG. 7. Main figure: critical point specific heat per unit cell to
FIG. 6. The solutions of Eq19) for f=1.1 plotted for several Gaussian order in units & for ad=3 Heisenberg model for a set

different initial conditions. Selected trajectories are shown for sevOf anisotropy parameterfs The vertical arrows mark the points

eral temperatures. The trajectories converge into one of two “fixed™ V2+T for each respective curve. Ins¢t) the r dependence of

lines” also seen in Fig. 5. The top and bottom panels show trajecE(t) for f=5; (b) Heisenberg to Ising crossover in specific heat,

tories converging tod; and 6 respectively. The two panels are for f=0.

shown with inverted interaction constant ratios relative to each

other to capture the significant features of the fixed line approach in = ddq [w,(q) E0/2T]2

each cas:a. The arrows mark the quantum-t_:las_sncal crossover C= _Tﬁ = 2;, f (27T)d Sinhz[m)\(q)EO/ZT] .

Pelassical™ Polassicar 17ajectories that undergo polarization reorienta-

tion are marked with filled symbols. (21)

i . o ‘Using the general form of the eigenmodes in a cubic Heisen-
entation occurs, and each fixed line is reached, we show igerg system with anisotropy E¢9) and the isotropic Ising
Fig. 6 the evolution of the ratio of the two interaction con- mode ~ w2(q)=r+q2+g,codd the asymptotic low-

stants along typical trajectories in Fig. 5. It is seen that thgemperature behavior of the specific heat is
trajectories reach their fixed line regime relatively late with

long _t_emperatqre—de_pendent transignts _sensitive to initial 2 d0 (TIEy)? ox?( k4 X2) X
conditions. Trajectories that start with Ising symmetry Cy= "} f .

>0 and ultimately flow to a Heisenberg fixed line with A=1 7 [1+A(Q) 132 o sink? |k +x?
<0 are marked with filled symbols. For example, the initial (22
conditions for BaTiQ are within the shaded range in Fig. 5, c 3 ( T )4fw t(k+t) "
ﬁ\ﬂﬁihf;lgn reversal is expected to occurTer0.000E, at [ g Eol Jo sinmtyert

_ The phase_ portrait Fig. 5 changes only quantlta_tlvely_WIthwhereH and| refer to Heisenberg and Ising respectively and
mcreased anlsotropy,.e..g.=5: .the closgd loop trajectories = (Eo/2T)?r. As seen from Eq(22) in the low-temperature
shrink towards the origin as higher anisotropy reduces botf) it the anisotropyf enters only as a multiplicative factor in
interactionsu andv [Eq. (A3)], and the slope of theﬂéed af=0 expression for the specific heat. The specific heats of
lines changes according to tiferoots shown in Fig. 4% ad=3 Heisenberg model are shown in Fig. 7 fe¢ 0 (main
figure) and away from the critical poin(inse). We see that
V. FREE ENERGY, SPECIFIC HEAT, AND MASS except in the unrealistically strond % 100) case the only
RENORMALIZATION crossover visible is from the quantaCT2) to classical
(C~ const) behavior a¥ is increased through the largest

Within the Gaussian approximation the free energy petqne poundary phonon frequentshown by arrows in Fig.
unit cell of the system is given by 7. The crossover from Heisenberg to Ising symmetry is

. shown in inset(b) of Fig. 7 for a set of Ising interaction

= . _ oo (q)Eo /T strengthsy, .
F 2}\: fq ZEOWA(Q)JF-I—IH(l e TR, (20 Finally we study the pressure dependence of the transition
temperature. The mass flow equation is given by

wherew, are the poles of Eq8a). The specific heat can be
obtained directly from this expression as dr=2r(A)dInA+dR(A) (23
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where dR(A) represents the one loop mass correction Fig. 2 - . T~ .
2(b). It is possible to express this diagram in terms of an N .
invariant of Eq.(8a ol ) |
> AN
L w N J
4 ’ , ddq 18 \\\ E 0+ \\\\\ 1”3
dR(A)==[(d+2)u(A)+3v(A)]T, TrG°, S g
d “n Tr)d T/E, \\\ L;/\\\
(29 N 2r NN
R ~ , , ) |
~ -5 0 5 10
where theg integration and Matsubara frequency summation TN Zlog(r.—r)
are performed in narrow shells of widtiAdfor each variable _ N
while the other one is held fixed at the bandwidth cutoff, e.g., T T N —— lsing
whoe[A,A+dA] while g=A, andqe[A,A+dA] while 0.5 ¢ Tl N o E‘;l;gs |
w,=A. The trace in Eq(24) is over the propagator eigen- ‘\\\"’nf\ —-— Isotroplc
values Eq.(Alb). Using the identity \\\
1 “dw ® -1 05 0 05
T2 STt o 2l

FIG. 8. Pressure dependence of the ferroelectric critical tem-
we obtain the solution of Eq23) for d=3 in explicit form  perature for the following cases: an Ising model w10 and
vo=1; PbTiO; and BaTiO; with parameters in Table I; an isotropic
nA model withf=0 anduy=2.
r(A)=e2'“A[ro+J dinA’e 2InA'4
0 Experimental work on ferroelectric quantum criticality is
A2 1 not extensive. ltoh and Wang showed that substitutioffof
i f 40 for 10 in SITiO; leads to ferroelectricity® and that hydro-
167 X VI+TA(Q) static pressure drives SFD; from a paraelectric state to a
ferroelectric staté’ The dataof e.g. Fig. 3 of Ref. 1¥bear
AVI+TA,(Q) cothA/2TenA a qualitative similarity to our results shown in Fig. 8, but
coth TenA’ + 1+fA,(Q) . (29 insufficient information is presently availabl@especially
near the critical pressur¢o allow a precise comparison.
We briefly consider the effect of a small density of free

X

5 ! !
FUA)+o(A)

X

Herer is the initial condition for the massi(A) andv(A) i > - - )
are the solutions to Eq19); A, () are the angular depen- carriers characterized by an intercarrier spadingand a

dent anisotropic factors of the dispersion from &9, and  diffusion constanD. At length scalezs longer thaln and
T(A)=Te" is the flowing temperature whilg is the real frequency s_cales Iqwer than-=Dr/Lg, these carriers will
physical temperature. We firifl, from the requirement that Screen the interaction on the scéle and overdamp the dy-
at the critical temperature the mass flows to zerpA namics. The details of the crossover depend on the ratio
—). The quantum critical control parametgvhich in ex- De/cLe. If Dp/cLF>1, then ther_e is a two-stage cross-
perimental realizations corresponds to e.g., hydrostatic pre§Vver: as the scale is decreased, first the dynamics becomes
sure, doping, etdisr —r.=rq(T) —ro(T=0). We point out overdamped and then subseque_ntly the character|§t|c Iength
that since a three-dimensional ferroelectric is above its uppetc@le passes through the screening length and the interaction
critical dimension we obtain a qualitatively identical phasePecomes effectively short ranged. On the other hand, if
boundary if we simply use the initial conditions, andv, ~ Dr/CLr<1, then screening and overdamping occur at the
for the interaction constants in E¢R5). In that caseT(r same scale. Further studies of this crossover will be pre-

—r.) can be obtain from the simpler expression sented elsewhere. , ,
All cases except for two-dimensionalY symmetry are

above the upper critical dimension enabling a controlled

g f[(d+2)uo+ 3vo] treatment. Lattice-induced anisotropies arising from the di-

r—r=3 f" dq d polar interaction are not small in real materials, and lead,
R (2m)¢ Eq ' e.g., to strong “quasi-one-dimensional” effects in the phonon

@ \(q)| ex T, o™ -1 spectrum(cf. Fig. 1). However, we showed that for systems

(26)  above the upper critical dimension the effect on the critical

behavior is unimportant; only for unrealistically strong

The phase boundary.(r—r.) obtained from Eq.(26) is anisotropies f>100 is an intermediate quasi-one-
shown in Fig. 8 for four representative sets of parametersdimensional regime visible in the specific heat. A change of
All curves in Fig. 8 except Ising behave @s~|r—r Y2  polarization direction under scaling is suggested for BaTiO

nearr; the Ising behavior ig .~ |r —r |3 All curves cross nearT,(p), and forp sufficiently close to the critical pres-
over toT.~|r—r| asTis increased through the softest zone sure at whichT.—0 (although the scaling equations break
boundary phonon frequendy. down at approximately the scale of the anisotropy change
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We have presented exact results, in physical units, for théhrough the rotation matriR,

phase boundary and specific heat. For PRTétd BaTiQ

guantum critical effects are dominant fox<50 K if the ma-

terials are tuned by pressure to the quantum critical point. G s=Ruol,(wn, AR, 5, (Ala)
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APPENDIX (Alb)

We calculate the one-loop diagrafizq. (12)] by using a
diagonal representation for the Gaussian propagator achievddhe one-loop integrals then become

1
Wog.5=T f R, RIR , R,
pre ; (zw)d% “wpton(q) M witel(a) "

=iJ f R,IR R, 23 ! cothos (A2)
027) (2my 2 R R R T W T

We perform the integration over the magnitudegoh d=3 and obtain the remaining integrals over angles only, which we
then calculate numerically:

r ! dAZ dQ¢R,,.R,5R,.R;, !
16m° A % wuRuR RS fLAL(Qg) —AL(Qg)]
A\/l-i—f A A\/l +fA A
coth————— +c0th2— coth——=——"+cot -
X for A (Qq)#A,(Q
\/1+fAM \/1+fAV w7 A o)
Waﬁy6:< 1 dA 1 (A3)
dQ4R,.R.5R,,R, 5
16’7T3 2 w B 2[1+ fAM(Qq)]alz
A
AVI+TA, TV TALY
X coh— 1+ A +cothz—_|_ for A,(Qq)=A,(Qq).
K sinh=1+ fA,(Qg)

The isotropic casd =0 is described by the second expression in &8). For numerical calculations EGA3) is more
conveniently written as

9.9,
dA> | dQ R, Rs,R.,, Ry, ——e
_g o v 14
167 e atap T Buyrite \/_"‘\/E
cothA/(2T — cothA/(2T A
(@ (2TVg,)— Vg, (2TVg,) reotis| for g, %0,
_ Ch @ T
Waﬁyﬁ (A4)
A dAZ dQ, 312
1677 3 R RB,u.RyVR(?V g,u,
A A(TNg,) A
X | coth 1+ B | +cot for g,=g,.
2T\g, | = sinhA/(TVg,) T 9.~9
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HereR,, is a matrix whose columns are theth eigenvec-
tor andg#=A2[1+ fA,(Qg)] is the u-th eigenvalue of Eq.
(17) both evaluated ats=0; r=0; q=A, and both having
an implicit angular dependence. At low temperatufesA
Eqg. (A4) reduces to

A 9.9,
W, 5.5=5—0A >, | dQR,,Rs,R,,Rs ——"—.
Byé™ g3 < qraut N Buty 5@+gv
(A5)

The cubic-symmetric integrals, , s appearing in Eq(18)
are defined as

d

dq
A(b)=T G?9)2= : A6
1(b) ; i )2=Wzzn (A6
diq
Ao(b)=T2 2myi CTC” " Wayy,  (AGD
_ 2 ddq Xy\2
Ag(b)—Tmn (27T)d(G )= Wyyxy (A6c)

PHYSICAL REVIEW B67, 014105 (2003

and are calculated from E¢A4) numerically.
The angle-dependence of theand 6 derivatives in Eq.
(19 is given by

A(60,T)=a,cos 0+ c,sin 6+ sin d cosd[ (b, +a,)coss

+(c1+by)sing], (A7a)

B(6,T)=a,cos 60— c;sin* 6+ sind cosd[ (b,—a;)cosd

+(cy,—by)sing], (A7b)

where

al=4(3A1+4A2+ 14A3), a2=16(A1—A2—2A3),

b;=8(5A;+16A3), b,=48A;—A;),

C1:36A3, 02:36(A1_A3).
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