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Theory of the quantum paraelectric-ferroelectric transition
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A realistic theory of the quantum paraelectric-ferroelectric transition is presented, involving parameters
determined from band calculations and a renormalization group treatment of critical fluctuations. The effects of
reduced dimensionality and deviations from cubic symmetry are determined. Expressions for the pressure
dependence ofTc as well asp andT dependence of the specific heat are derived, and evaluated for realistic
materials parameters for the systems BaTiO3 and PbTiO3. In these materials the ferroelectric soft mode
dispersion apparently exhibits a very strong cubic anisotropy, which affects results in an important, albeit
quantitative, manner. A change in order parameter orientation from~100! to ~111! is predicted as quantum
criticality is approached.
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I. INTRODUCTION

Ferroelectrics and the closely related high dielectric c
stant materials are important in many areas of modern te
nology, including memory, sensor, and electronic appli
tions, and are of fundamental scientific interest.1 The
ferroelectric phase change belongs to a class of struc
transitions, generally termedferrodistortive, triggered by
zone-center soft modes of lattice motion. Characteristic
the ferroelectric transition involves the condensation of
optically active lattice mode which causes the appearanc
long-range polar order and the breaking of the invers
symmetry of the ‘‘high-temperature’’ prototype lattice. On
important issue is the ferroelectric quantum critical poi
i.e., the physics occurring when, by varying a control para
eterr ~applied pressure or change of chemical compositio!,
the transition temperature of a ferroelectric is driven to ze
Although a quantum critical point occurs atT50, the fluc-
tuations associated with the critical point may control beh
ior over a range of temperature and pressure. For exam
Müller and Burkard2 coined the term ‘‘quantum paraelectric
to describe materials in which ferroelectric ordering is p
vented by quantal fluctuations. A material just on the dis
dered side of theT50 ferroparaelectric transition is there
fore an example of a ‘‘quantum paraelectric.’’ The importa
feature of quantal (T50) phase transitions is that tempor
fluctuations must be treated on the same footing as the
ones.3,4 This raises the effective dimensionality and mak
the critical behavior more mean-field-like, but with a tem
perature dependence controlled by ‘‘dangerous irrelev
operators.’’5

Ferroelectric transitions may be described by boso
field theories with undamped dynamics~if the effect of free
carriers may be neglected! and complicated dispersions ari
ing from the long range of the dipolar interaction. Quantu
critical phenomena associated with undamped bosonic
theories with short-ranged interactions have been extensi
studied.4 The effect of long-range~dipole! forces was studied
by Rechester6 and by Khmel’nitskii and Shneerson7 within
an approximation equivalent to the self-consistent one-l
approximation of Moriya.8 Aharony and Fisher9 studied the
0163-1829/2003/67~1!/014105~9!/$20.00 67 0141
-
h-
-

ral

ly
n
of
n

,
-

.

-
le,

-
-

t

al
s

nt

ic

ld
ly

p

classical ferroelectric transition, and found that anisotrop
associated with the dipolar interaction led to a universa
class. In this paper we reexamine the issue in light of rec
developments in the theory of quantum critical phenome
We formulate a realistic action for the ferroelectric so
modes, show how estimates of the parameters may be
tained fromab initio calculations, and study quantitativel
the consequences of the dipolar-induced anisotropies.
results agree in essentials with those of Rechester
Khmel’nitskii and Shneerson, but we obtain a more detai
and quantitative picture of the phase boundary, of the ef
of anisotropy, and of the logarithmic corrections arising
the marginal dimensionality, which lead to an evolution
the anisotropy as the ordered phase is approached.

II. ORDER PARAMETER AND ACTION

The order parameter of our theory is the local polarizat
f. Taking into account the effective dipole chargesei* of the
soft modes,f can be formally written

f~x,t !5(
i 51

5

ei* r i~x,t !. ~1!

Here the indexi runs through the atoms of the unit cell of th
prototype perovskite lattice with stoichiometry ABO3; r i are
the vector displacements of each atom.

We now write a Ginsburg-Landau action describing qua
tal and thermal fluctuations off(x,t). The crucial point is
that becausef corresponds to a dipole fluctuation it gene
ates electric fields which lead to a long-range interaction.
have~in space and imaginary time!

S@fa~x,t!#5E ddx

ad E
0

\/T

dtE0Fa2

c2 „]tfa~x,t!…2

1a2
„¹fa~x,t!…21fa~x,t!r abfb~x,t!

1E ddx8

ad
fa~x,t!Fab~x2x8!fb~x8,t!

1(
ab

~u1vadab!fa
2~x,t!fb

2~x,t!G1••• .

~2!
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Herea is the lattice constant,c is the speed of the phonons
the softest direction, andE05\c(p/a) is the typical energy
scale of ferroelectric fluctuations in the~100! direction; our
choice of units is such that the field, mass and coupling c
stants are dimensionless. The term proportional toFab(x)
5(d22)(x2dab2dxaxb)/xd12 represents the dipole inter
action. In momentum space9

Fab~q!5E ddxFab~x!ei
q
a•x5~r 0a1 f aqa

2 !dab

1~gab2q2hab!
qaqb

q2 1O~q4!, ~3!

wherer 0a , f a , gab , andhab depend on details of the un
derlying lattice. We assume that the non-local quadra
terms represented bygab andhab obey the same symmetr
as the local quartic interaction termsu1vadab . Thus, in
general, we will havegab5g1gIdab ; gI.0 lowers the
symmetry to Ising. The termr 0a combined withlocal bare
mass terms makes upr ab in Eq. ~2!. We shall consider cubic
and tetragonal symmetry, sor ab5r adab . In Eq. ~3! and in
all of the following we use dimensionless momentaqa
P@2p,p#.

The action we have written down is most straightfo
wardly interpreted as arising from a ‘‘soft mode’’ instabilit
in which an optic phonon softens, eventually to zero, a
indeed this is what is found in local-density-approximati
band calculations which we use to fix parameters. Howe
an action of the same form would arise from a transition
the order-disorder type; only numerical values of parame
would change, as shown, e.g., in Ref. 10.

Diagonalization of the quadratic part of the action yiel
the phonon modes, and the paraelectric-ferroelectric tra
tion occurs when the lowest zone center mode freque
vanishes. The gradient term in Eq.~2!, along with f a andh,
controls the dispersion of modes. Note thatf aÞ0 implies an
anisotropic derivative(a(¹afa)2; in a spherically symmet-
ric system f a50. For simplicity we refer to the casegI
50, f a.0 as Heisenberg also, because the order param
exhibits a continuous rotational symmetry. Previo
renormalization-group studies of the classical paraelec
ferroelectric transition have treated thef a terms as a smal
perturbation.9,7 Khmel’nitskii and Shneerson7 argue that al-
though f a in typical materials~e.g., BaTiO3) is of the same
order of magnitude asgab and hab , the anisotropy of ob-
servable quantities is usually weak. Because band theory
culations indicate that in many ferroelectric systemsf a.1
are quite large, here we present a treatment valid for anf.

The u and va terms represent local anharmonic intera
tions. The materials of main interest here have cubic sym
try in which caseva5v. The quartic interaction in Eq.~2!
~dropping momentum and energy integrals for simplici!
becomes

S(4)@f#5uS (
a

fa
2 D 2

1v(
a

fa
4 . ~4!

The term proportional tou is rotationally invariant and in-
sensitive to the polarization orientation, and the sign of
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secondterm determines the polarization orientation in t
ordered phase. At the mean-field level the action@Eq. ~2!# is
minimized by the polarization of magnitude:

P25(
b

fb
252

dr

2~du1v !
. ~5!

When v,0 Eq. ~2! is minimized by a polarization along
~111! with fx5fy5fz5P/d, whereas forv.0 the polar-
ization is along~100! with fx5fy50, fz5P. The values
of the quartic interaction are, in each case,

S(4)@f#5
~dr !2

4~du1v !2 3H ~u1v/d!, v,0

~u1v !, v.0.
~6!

The condensation energy is of orderr 2/u and asv→0 the
energy barrier separating different symmetry-allowed po
ization directions is a factor of orderv/u smaller than the
condensation energy. The condition for the stability of
quartic interaction is the positive definiteness of Eq.~4!
which ~in cubic symmetry, dimensionalityd and at the mean
field level! translates into

u1v.0, ~7a!

du1v.0. ~7b!

If these conditions fail, sixth order terms inf have to be
included and the transition may be first-order.

III. PROPAGATOR AND MODES

Equations~2! and~3! define a model for the phase trans
tion in a ferroelectric near a quantum critical point. In th
absence of nonlinearities, the Heisenberg order-param
correlation functionGab

0 5^fafb&0 is9

Gab
0 5

1

r a1Ã21q21 f aqa
2

3S dab2
~g2hq2!qaqb

@q21~g2hq2!Q#@r b1Ã21q21 f bqb
2 # D ,

~8a!

Q5(
g

qg
2

r g1Ã21q21 f gqg
2 . ~8b!

HereÃ52np(T/E0) is a dimensionless bosonic Matsuba
frequency, and in our conventionsG is dimensionless.

The nature of the modes defined by the poles of Eq.~8a!
can be best understood by considering the polarization of
ferroelectric fluctuation vectorf. For everyq there ared
21 transverse and one longitudinal polarizations, all
thogonal to each other. The longitudinal mode is always s
with Ã i5O(g), andh only enters the dispersion of the lon
gitudinal mode; bothg and h are irrelevant to the critica
behavior. The remainingd21 modes are soft and in the cas
of cubic symmetry have the general dispersion

Ãl
2~q!5r l1q2@11 f Al~Vq!#, ~9!
5-2
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THEORY OF THE QUANTUM . . . PHYSICAL REVIEW B67, 014105 ~2003!
whereVq is the set of angles defining the direction ofq and
Al are lengthy expressions derived from Eq.~8a!. Equation 9
includes all modes with the conventionsr'5r and r i5r
1g. For allq such that the polarization of a transverse mo
points along a crystal axis the respective dispersion sof
additionally (Al(Vq)50) if f .0. The effect off is most
easily seen by settingqz50 and considering only theXY
block. The resulting transverse mode propagator

G~Ã,q!5S r 1Ã21qx
21qy

212 f
qx

2qy
2

qx
21qy

2D 21

~10!

is shown in Fig. 1. The dipolar anisotropy~f! leads to ridges
suggestive of quasi-one-dimensional behavior.

We obtain the parametersc, r a , f a , g andh in Eq. ~2! by
fitting the poles of Eq.~8a! to first-principles phonon disper
sion curves such as those in Ref. 11. We fit the numeric
calculated mode frequencies near the zone center to
modes predicted by Eq.~8a! along crystal symmetry direc
tions. The soft modes’ speedc and massr (T50) at the
lattice constants used in Ref. 11~ambient pressure! are
readily obtained by fitting the dispersions along~100! to v
5cAr /a21(1/2)cAr /a2(q/a)21O(q4). The anisotropy pa-
rameterf is obtained from direct ratios of the curvature of t
dispersion along~110! and ~111!.

The size of the interaction constantsu andv can be esti-
mated from first-principles variational studies of a Land
free energy of the system12 E(w)5kw21a8w4

1g8(a.bwa
2wb

2 , where E(w) is the free energy per uni
cell andw is a soft mode lattice displacement. The para

TABLE I. Numerical values of the parameters used in the act
Eq. ~2!. The values foru and v are initial conditions for the RG
flow of the two interaction constants in Eq.~2!.

\c ~meV Å! E0 ~meV! f u v

BaTiO3 6.36 5.00 4.7 1.25 0.68
PbTiO3 6.79 5.37 1.1 0.26 20.09

FIG. 1. Generic ferroelectric propagator@Eq. ~10!# in the static
limit Ã50 with cubic symmetry and large anisotropy;qz50, r
50, f 55.0, andL5p.
01410
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etersa8 andg8 ~Table V in Ref. 12! studied by these author
are related tou and va5v in Eq. ~2! by u5(a81g8/2)
3(r /k)2E0 and v52(g8/2)(r /k)2E0. For BaTiO3 and
PbTiO3 ~which have cubic symmetry sova5v and f a5 f )
we find the results listed in Table I.

We now study the relevance of quartic interactions in
vicinity of the critical point. The one-loop correction tou and
v is given generically by the diagram in Fig. 2~a!, and the
respective renormalization equation13 is given by

(
ab

uab
l 11fafafbfb5z l

4b23(d1z)F(
ab

uab
l fafafbfb

24 (
abgd

uag
l ubd

l ~wgdgdfafafbfb

14wgbgdfafafbfd

14wabgdfafbfgfd!G , ~11!

whereuab5u1vdab , the external momentum integration
are omitted for brevity, andwabgd are the one-loop integral
over fast modes:

wabgd5T(
Ãn

E ddq

~2p!d
Gab

0 ~Ã,q!Ggd
0 ~Ã,q!. ~12!

In Eq. ~11! z l5b11d/2 is the field renormalization when th
fast modes in the shellL/b,q,L are integrated out. The
diagrammatic version of Eq.~11! is shown in Fig. 3. Ind
53 the system is in its marginal dimension and the prefac
in Eq. ~11! is z l

4b23(d1z), so that the leading interactio
renormalization is quadratic. The generic form of the ren
malization equations is

n

FIG. 2. One loop diagrams for the renormalization of~a! the
quartic interactionu and ~b! the massesr a .

FIG. 3. Renormalization diagrams to tree and one-loop order
the anisotropic interaction parameteruab5u1vdab in Eq. ~2!. This
is the diagrammatic representation of Eq.~11!.
5-3
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R. ROUSSEV AND A. J. MILLIS PHYSICAL REVIEW B67, 014105 ~2003!
2du;u2E
2`

` dÃ

2p Ep ddq

~2p!d
G2~Ã,q!coth

Ã

2T
, ~13!

where G is a soft eigenmode of the Gaussian ferroelec
propagator. We first consider the simplest case of isotro
interactions (va50) in an isotropic medium (f a50, r a

5r ) in the low-temperature limit, and we also leth50 for
simplicity. As explained above, the correlation function@Eq.
~8a!# then has a Heisenberg-like rotationally invariant fo
with d21 soft eigenmodesG215r 1Ã21q25r 1Q2 and
one stiff ~noncritical! eigenmodeG215r 1Q21g. Includ-
ing only the soft eigenmodes in Eq.~13! the recursion rela-
tion for u is, respectively,

2du;Ep u2Qd

~r 1Q2!2 dQ;u2H log1/r , d53

1/Ar , d52

1/r , d51.

~14!

Equation ~14! shows that upper critical dimension of
Heisenberg isotropic quantum critical ferroelectric system
dc53.

For a uniaxial~Ising-like! ferroelectric there is a preferre
‘‘easy axis’’ for the orientation off which brings about a
further increase in effective dimensionality.9 The respective
correlation function has the formG(Ã,q)5(r 1Ã21q2

1gIqz
2/q2)21, which gives, fordu,

2du;u2E dÃE dqE qd21dcosu

~r 1Ã21q21gIcos2u!2

;
u2

gI
1/2Ep Qd11dQ

~r 1Q2!2
;

u2

gI
1/2H r 1/2, d53

log1/r , d52.
~15!

Thus the upper critical dimension of an Ising isotropic qua
tum critical ferroelectric system is reduced todc52. In the
case of a preferred easy plane of polarization the propag
has the two eigenmodesG5(r 1Ã21q2)21 and G5(r
1Ã21q21g sin2u)21 so that theXY model and Heisenberg
ferroelectrics have identical coupling renormalization
which is due to the existence of the same soft mode in b
cases.

IV. INTERACTION RENORMALIZATION

We now study the possibility that the quasi-on
dimensional behavior associated withf @1 may modify the
criticality. We illustrate the issues using the notationally si
pler d52, g→` case, and have verified that our results ho
in d53 also. From Fig. 2~a! and Eq.~10! we obtain, after
integration overÃ and the magnitude ofq,
01410
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2du5S u

4p D 2E
0

2p dw

11~ f /2!sin22w

3F 1

Ar
2

1

Ar 1L2~11~ f /2!sin22w!
G

'
u2

8p2A2 f r
Fp22 tan21A r

LG
;H r 21/2, r ,L2

L/r , r .L2.
~16!

In the second, approximate, equality we have taken the la
f limit. We see from this that the quasi-one-dimension
structure does not affect the degree of divergence asr→0;
indeed, f only affects prefactors and not the scaleL2 to
which r should be compared. To summarize, a mean-fi
treatment of the model@Eq. ~2!# should be qualitatively cor-
rect except in the case of ad52XY ferroelectric, and we
exclude this case henceforth.

We further study the fixed points of Eq.~11! in its full
anisotropic form. The Gaussian propagator@Eq. ~8a!# in the
strong dipole interaction limitg→` is

Gab
0 ~Ã,q!5

1

r 1Ã21q21 f qa
2

3S dab2
qaqb

Q~r 1Ã21q21 f qb
2 !

D , ~17!

whereQ is defined in Eq.~8b!. With the use of cubic sym-
metry, the possible combinations ofwabgd are reduced to

wabgd5@~A12A2!dag1A2#dabdgd

1A3~12dab!~dagdbd1daddbg!. ~18!

The f- andT-dependent integralsA1,2,3 are calculated in the
Appendix. Substituting Eq.~18! into Eq. ~11! yields coupled
nonlinear renormalization equations foru and v, similar to
those written by Aharony and Fisher13 for the classical case
~but note that Aharony and Fisher expanded the coefficie
Ai about the limit of small anisotropy, whereas we reta
their full f dependence!. The stability of the Gaussian fixe
point u5v50 is most transparently analyzed using po
coordinates in the (u,v) plane: u5r cosu and v5r sinu.
The renormalization equations foru andv then become

dr

dlnL
52A~u,T!r2, ~19a!

du

dlnL
52B~u,T!r. ~19b!

Theu- andT-dependent coefficientsA andB are given in the
Appendix @Eq. ~A7!#, and theirT50 limit is plotted in Fig.
4. These coefficients are to be evaluated at the running t
peratureT(L)5Tphyse

ln L and are derived on the assumptio
that the physics is dominated by the~Gaussian! quantum
5-4
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THEORY OF THE QUANTUM . . . PHYSICAL REVIEW B67, 014105 ~2003!
critical point; in other words, on the assumption that cont
parameterr, interaction amplituder and temperature are no
too large. In particular, the model exhibits a phase transi
at a temperatureTc(r ) discussed in detail below. At tempera
tures sufficiently near toTc(r ) a crossover to physics con
trolled by a classical, non-Gaussian critical point will occ
and the theory used here ceases to apply. To estimate
region of applicability of the equations presented here
follow,5 noting first that the breakdown of the quantum cri
cal theory will occur in the classical regionT(L).L. In this
regime the relevant dimensionless interaction amplitude
rclassical5T(L)r(L)/L, and Eq.~19a! predicts the classica
fixed point rclassical

! 5 limT→`T/„LA(u,T)…. We find rclassical
!

5$1.25318,1.47604% for the two fixed linesu1
!, u2

!, respec-
tively, shown in Fig. 5, and forf 51.1. Thef dependence o
rclassical

! can be be summarized by the linear fitsrclassicl
!

'1.1610.11f for the u1
! fixed line, and rclassicl

! '0.48
10.77f for the u2

! fixed line. As an estimate of the range
validity of the scaling equations, we argue they apply
rclassical&(1/2)rclassical

! , which corresponds to the three
dimensional Ginzburg criterionrclassical/r classical

1/2 ;1.
We wish to study the stability of the fixed pointr50 in

Eq. ~19!. The solutions of Eq.~19! asymptotically approach
the fixed point along ‘‘invariant lines’’u̇50 given by the
stable rootsu! of B(u,T) ~Eq. ~A7b!!. Respectively, Eq.~19!
has a stable fixed pointr→0 if A(u!,T).0. The functions
A(u) andB(u) are shown in Fig. 4 for several values of th
anisotropyf. It is seen that there are three invariant lines
which u3

! ~the middle in Fig. 4! is unstable (A(u3
!),0). The

two stable solutions areu1
!&0 corresponding to a nearl

Heisenberg fixed pointuuu@v; u,0, and u2
!*p/2 corre-

sponding to an Ising-like fixed pointv@uuu, u,0. The de-
pendence ofu1,2

! on f is weak and does not change the qua
tative behavior. The nature of the ‘‘fixed line’’ solutions
most clearly seen in Fig. 5 which shows the phase portra
Eq. ~19!. The stable fixed linesu1,2

! are shown by heavy

FIG. 4. Coefficients of the angular and radial part of the int
action renormalization coefficient@Eq. ~19!# at T50. The stable
roots of B(u) which determine the nature of the fixed points a
marked by vertical dotted lines.
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dashed lines. Above and to the right of the light dashed li
the flows are stable (r→0); below and to the left, unstabl
(r→`). The region of stability found in the RG analysis
wider than that found in the mean-field approximation@Eq.
~7!, shown in Fig. 5 as light dotted lines#. The physical con-
tent of the two fixed linesu1,2

! is different:u1
! corresponds to

a nearly isotropic system with polarization along~111!, but a
relatively weak barrier against polarization reorientati
(v/uuu;0.15, but weaklyf dependent!, whereasu2

! corre-
sponds to a strongly anisotropic system with polarizat
along~100! and a barrier of relative order unity. It is seen
Fig. 5 that there exists a range of initial conditions in t
shaded wedge between thev50 axis and the separatrix in
the first quadrant, which start with initial valuesv0.0 fa-
voring Ising symmetry but eventually flow to theu1

! fixed
line with v,0 and Heisenberg polarization symmetry.

We see that the ratio and even the sign ofu/v may change
under renormalization. In particular, for initialu.0, v.0
andu/v less than an (f -dependent! critical value of the order
of unity, thesignof v changes under renormalization, corr
sponding to a predicted change in the polarization direct
as criticality is approached. Unfortunately, the logarithm
nature of the scaling, combined with the numerically sm
value ofB(u,T) and the factor ofr in Eq. ~19b! means that
at T50 one must approach criticality extraordinarily close
to observe the effect. The scaling turns out to be more ra
in the classical regimeT(L).L, but as noted above ou
analysis cannot be extended too far into this regime be
the equations break down.

To further illustrate this point and to study how ‘‘soon’’ i
renormalization group time this change of ordered state

-
FIG. 5. Phase portrait for Eq.~19! with f 51.1. The heavy

dashed lines indicate theu/v ratios corresponding to stable fixe
points of Eq.~19!; their continuations~light dashed lines! mark the
boundaries of the unstable region wherer flows to large values.
The dotted lines mark the mean-field stability boundaries Eq.~7!.
The shaded region indicates initial conditions (u0 ,v0) which start
with Ising-like polarization orientation but eventually flow to th
fixed line u1

! with nearly Heisenberg polarization orientation alon
~111!.
5-5
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R. ROUSSEV AND A. J. MILLIS PHYSICAL REVIEW B67, 014105 ~2003!
entation occurs, and each fixed line is reached, we show
Fig. 6 the evolution of the ratio of the two interaction co
stants along typical trajectories in Fig. 5. It is seen that
trajectories reach their fixed line regime relatively late w
long temperature-dependent transients sensitive to in
conditions. Trajectories that start with Ising symmetryv0
.0 and ultimately flow to a Heisenberg fixed line withv
,0 are marked with filled symbols. For example, the init
conditions for BaTiO3 are within the shaded range in Fig.
and the sign reversal is expected to occur forT50.0001E0 at
ln L;15.

The phase portrait Fig. 5 changes only quantitatively w
increased anisotropy, e.g.f 55: the closed loop trajectorie
shrink towards the origin as higher anisotropy reduces b
interactionsu and v @Eq. ~A3!#, and the slope of the fixed
lines changes according to theu-roots shown in Fig. 4.14,15

V. FREE ENERGY, SPECIFIC HEAT, AND MASS
RENORMALIZATION

Within the Gaussian approximation the free energy
unit cell of the system is given by

F5(
l
E

q
F1

2
E0Ãl~q!1T ln~12e2Ãl(q)E0 /T!G , ~20!

whereÃl are the poles of Eq.~8a!. The specific heat can b
obtained directly from this expression as

FIG. 6. The solutions of Eq.~19! for f 51.1 plotted for several
different initial conditions. Selected trajectories are shown for s
eral temperatures. The trajectories converge into one of two ‘‘fi
lines’’ also seen in Fig. 5. The top and bottom panels show tra
tories converging tou2

! and u2
! respectively. The two panels ar

shown with inverted interaction constant ratios relative to e
other to capture the significant features of the fixed line approac
each case. The arrows mark the quantum-classical cross
rclassical;rclassical

! . Trajectories that undergo polarization reorien
tion are marked with filled symbols.
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C52T
]2F

]T2 5(
l
E ddq

~2p!d

@Ãl~q!E0 /2T#2

sinh2@Ãl~q!E0 /2T#
.

~21!

Using the general form of the eigenmodes in a cubic Heis
berg system with anisotropy Eq.~9! and the isotropic Ising
mode Ã2(q)5r 1q21gIcos2u the asymptotic low-
temperature behavior of the specific heat is

CH5 (
l51

2 E dVq

p3

~T/E0!3

@11 f Al~Vq!#3/2E0

`x2~k1x2!dx

sinh2Ak1x2

~22!

CI5
3

pAgI
S T

E0
D 4E

0

` t~k1t !

sinh2Ak1t
dt,

whereH andI refer to Heisenberg and Ising respectively a
k5(E0/2T)2r . As seen from Eq.~22! in the low-temperature
limit the anisotropyf enters only as a multiplicative factor i
a f 50 expression for the specific heat. The specific heat
a d53 Heisenberg model are shown in Fig. 7 forr 50 ~main
figure! and away from the critical point~inset!. We see that
except in the unrealistically strong (f .100) case the only
crossover visible is from the quantal (C;T3) to classical
(C; const) behavior asT is increased through the large
zone boundary phonon frequency~shown by arrows in Fig.
7. The crossover from Heisenberg to Ising symmetry
shown in inset~b! of Fig. 7 for a set of Ising interaction
strengthsgI .

Finally we study the pressure dependence of the transi
temperature. The mass flow equation is given by

dr 52r ~L!d lnL1dR~L! ~23!

-
d
c-

h
in
er

FIG. 7. Main figure: critical point specific heat per unit cell
Gaussian order in units ofkB for a d53 Heisenberg model for a se
of anisotropy parametersf. The vertical arrows mark the pointst
5A21 f for each respective curve. Inset:~a! the r dependence of
C(t) for f 55; ~b! Heisenberg to Ising crossover in specific he
for f 50.
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THEORY OF THE QUANTUM . . . PHYSICAL REVIEW B67, 014105 ~2003!
where dR(L) represents the one loop mass correction F
2~b!. It is possible to express this diagram in terms of
invariant of Eq.~8a!

dR~L!5
4

d
@~d12!u~L!13v~L!#T(

Ãn

8 E 8 ddq

~2p!d
Tr G0,

~24!

where theq integration and Matsubara frequency summat
are performed in narrow shells of width dL for each variable
while the other one is held fixed at the bandwidth cutoff, e
ÃnP@L,L1dL# while q5L, and qP@L,L1dL# while
Ãn5L. The trace in Eq.~24! is over the propagator eigen
values Eq.~A1b!. Using the identity

T(
Ãn

1

Ãn
21vl

2~q!
5E

0

` dv

2v
coth

v

2T
d@v2vl~q!#,

we obtain the solution of Eq.~23! for d53 in explicit form

r ~L!5e2 ln LH r 01E
0

ln L

d lnL8e22 ln L84

3F5

3
u~L8!1v~L8!G L2

16p3 (
l
E dV

1

A11 f Al~V!

3Fcoth
LA11 f Al~V!

2Teln L8
1

cothL/2Teln L8

11 f Al~V! G J . ~25!

Herer 0 is the initial condition for the mass;u(L) andv(L)
are the solutions to Eq.~19!; Al(V) are the angular depen
dent anisotropic factors of the dispersion from Eq.~9!, and
T(L)5Teln L is the flowing temperature whileT is the real
physical temperature. We findTc from the requirement tha
at the critical temperature the mass flows to zero:r (L
→`). The quantum critical control parameter~which in ex-
perimental realizations corresponds to e.g., hydrostatic p
sure, doping, etc.! is r 2r c5r 0(T)2r 0(T50). We point out
that since a three-dimensional ferroelectric is above its up
critical dimension we obtain a qualitatively identical pha
boundary if we simply use the initial conditionsu0 and v0
for the interaction constants in Eq.~25!. In that caseTc(r
2r c) can be obtain from the simpler expression

ur 2r cu5(
l
Ep ddq

~2p!d

4

d
@~d12!u013v0#

Ãl~q!FexpS E0

Tc
ÃlD21G .

~26!

The phase boundaryTc(r 2r c) obtained from Eq.~26! is
shown in Fig. 8 for four representative sets of paramet
All curves in Fig. 8 except Ising behave asTc;ur 2r cu1/2

nearr c ; the Ising behavior isTc;ur 2r cu1/3. All curves cross
over toTc;ur 2r cu asT is increased through the softest zo
boundary phonon frequencyE0.
01410
.
n

n

.,

s-

er

s.

Experimental work on ferroelectric quantum criticality
not extensive. Itoh and Wang showed that substitution of18O
for 16O in SrTiO3 leads to ferroelectricity,16 and that hydro-
static pressure drives SrTi18O3 from a paraelectric state to
ferroelectric state.17 The data~of e.g. Fig. 3 of Ref. 17! bear
a qualitative similarity to our results shown in Fig. 8, b
insufficient information is presently available~especially
near the critical pressure! to allow a precise comparison.

We briefly consider the effect of a small density of fre
carriers characterized by an intercarrier spacingLF and a
diffusion constantDF . At length scales longer thanLF and
frequency scales lower thanvF5DF /LF

2 , these carriers will
screen the interaction on the scaleLF and overdamp the dy
namics. The details of the crossover depend on the r
DF /cLF . If DF /cLF@1, then there is a two-stage cros
over: as the scale is decreased, first the dynamics beco
overdamped and then subsequently the characteristic le
scale passes through the screening length and the intera
becomes effectively short ranged. On the other hand
DF /cLF!1, then screening and overdamping occur at
same scale. Further studies of this crossover will be p
sented elsewhere.

All cases except for two-dimensionalXY symmetry are
above the upper critical dimension enabling a control
treatment. Lattice-induced anisotropies arising from the
polar interaction are not small in real materials, and le
e.g., to strong ‘‘quasi-one-dimensional’’ effects in the phon
spectrum~cf. Fig. 1!. However, we showed that for system
above the upper critical dimension the effect on the criti
behavior is unimportant; only for unrealistically stron
anisotropies f .100 is an intermediate quasi-one
dimensional regime visible in the specific heat. A change
polarization direction under scaling is suggested for BaT3
nearTc(p), and forp sufficiently close to the critical pres
sure at whichTc→0 ~although the scaling equations brea
down at approximately the scale of the anisotropy chang!.

FIG. 8. Pressure dependence of the ferroelectric critical te
perature for the following cases: an Ising model withgI510 and
v051; PbTiO3 and BaTiO3 with parameters in Table I; an isotropi
model with f 50 andu052.
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We have presented exact results, in physical units, for
phase boundary and specific heat. For PbTiO3 and BaTiO3
quantum critical effects are dominant forT,50 K if the ma-
terials are tuned by pressure to the quantum critical poin
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APPENDIX

We calculate the one-loop diagrams@Eq. ~12!# by using a
diagonal representation for the Gaussian propagator achi
01410
e

ed

through the rotation matrixR,

Gab
0 5Rasgs~Ãn ,q!Rsb

21 , ~A1a!

where

gs~Ãn ,q!5
1

Ãn
21vs

2~q!
5

1

Ãn
21r s1q2@11 f As~u,w!#

.

~A1b!

The one-loop integrals then become
we
wabgd5T(
Ãn

E ddq

~2p!d (
mn

Ram

1

Ãn
21vm

2 ~q!
Rmb

21Rgn

1

Ãn
21vn

2~q!
Rnd

21

5 i E
0

` dv

2pE ddq

~2p!d (
mn

RamRmb
21RgnRnd

21I
1

@v21vm
2 ~q!#@v21vn

2~q!#
coth

v

2T
. ~A2!

We perform the integration over the magnitude ofq in d53 and obtain the remaining integrals over angles only, which
then calculate numerically:

wabgd5

¦

1

16p3

dL

L (
mn

E dVqRamRmb
21RgnRnd

21 1

f @An~Vq!2Am~Vq!#

3S coth
LA11 f Am

2T
1coth

L

2T

A11 f Am

2

coth
LA11 f An

2T
1coth

L

2T

A11 f An

D for Am~Vq!ÞAn~Vq!

1

16p3

dL

L (
mn

E dVqRamRmb
21RgnRnd

21 1

2@11 f Am~Vq!#3/2

3F coth
LA11 f Am

2T S 11

L

T
A11 f Am~Vq!

sinh
L

T
A11 f Am~Vq!

D 1coth
L

2TG for Am~Vq!5An~Vq!.

~A3!

The isotropic casef 50 is described by the second expression in Eq.~A3!. For numerical calculations Eq.~A3! is more
conveniently written as

wabgd5

¦

L

16p3dL(
mn

E dVqRamRbmRgnRdn

gmgn

Agm1Agn

3S AgmcothL/~2TAgm!2AgncothL/~2TAgn!

Agm2Agn

1coth
L

2TD for gmÞgn

L

16p3dL(
mn

E dVqRamRbmRgnRdnS 1

2
gm

3/2D
3Fcoth

L

2TAgm
S 11

L/~TAgm!

sinhL/~TAgm!
D 1coth

L

2TG for gm5gn .

~A4!
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HereRam is a matrix whose columns are them-th eigenvec-
tor andgm5L2@11 f Am(Vq)# is them-th eigenvalue of Eq.
~17! both evaluated atÃ50; r 50; q5L, and both having
an implicit angular dependence. At low temperaturesT,L
Eq. ~A4! reduces to

wabgd5
L

8p3dL(
mn

E dVqRamRbmRgnRdn

gmgn

Agm1Agn

.

~A5!

The cubic-symmetric integralsA1,2,3 appearing in Eq.~18!
are defined as

A1~b!5T(
Ãn

E ddq

~2p!d
~Gzz!25wzzzz, ~A6a!

A2~b!5T(
Ãn

E ddq

~2p!d
GxxGyy5wxxyy, ~A6b!

A3~b!5T(
Ãn

E ddq

~2p!d
~Gxy!25wxyxy, ~A6c!
s

01410
and are calculated from Eq.~A4! numerically.
The angle-dependence of ther and u derivatives in Eq.

~19! is given by

A~u,T!5a1cos3u1c2sin3u1sinu cosu@~b11a2!cosu

1~c11b2!sinu#, ~A7a!

B~u,T!5a2cos3u2c1sin3u1sinu cosu@~b22a1!cosu

1~c22b1!sinu#, ~A7b!

where

a154~3A114A2114A3!, a2516~A12A222A3!,

b158~5A1116A3!, b2548~A12A3!,

c1536A3 , c2536~A12A3!.
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