Magnetic moment formation at dilute Cd impurities in $RNi₂$ **and** $RCo₂$ **intermetallic compounds**

A. L. de Oliveira

Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro 22290-180, Brazil

N. A. de Oliveira

Instituto de Fı´sica, Universidade do Estado do Rio de Janeiro, Rua Sa˜o Francisco Xavier, 524, Rio de Janeiro 20550-013, Brazil

A. Troper

Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro 22290-180, Brazil and Instituto de Fı´sica, Universidade do Estado do Rio de Janeiro, Rua Sa˜o Francisco Xavier, 524, Rio de Janeiro 20550-013, Brazil (Received 26 September 2002; published 31 January 2003)

In this work, we study the local magnetic-moment formation and the systematics of the magnetic hyperfine fields at a Cd impurity diluted on the *R* site of the Laves phase intermetallic compounds RN_{12} and RC_{22} (*R* $=$ rare earth). In the case of *RNi*₂ intermetallic hosts, we use a Daniel-Friedel-like model in which the *RNi*₂ intermetallics are considered as effective ferromagnetic rare-earth hosts. In the case of *RCo*₂ intermetallic hosts, we also consider the contribution arising from the neighboring Co magnetic moments. The calculated total magnetic hyperfine fields are in good agreement with the available experimental data.

DOI: 10.1103/PhysRevB.67.012411 PACS number(s): 75.20.Hr, 71.20.Lp, 76.30.Kg

I. INTRODUCTION

The Laves phase intermetallic compounds of formula RT_2 (*R* stands for rare-earth elements and *T* for transition elements) crystallize either in the cubic *C*15 or hexagonal *C*14 structure. They exhibit an interesting variety of behaviors related to the changes in their magnetic, electronic, and lattice structures. For instance, in the intermetallic compounds $RNi₂$ the magnetic order is sustained only by the indirect interaction between the localized spins of the rare-earth ions and Ni is always nonmagnetic.^{1,2} Moreover, experimental data³ show that the magnetization of the $RNi₂$ intermetallic compounds is somewhat larger than the contribution from the local magnetic moments of the rare-earth ions as estimated by Hund's rule. Electronic structure calculations³ show that this excess of magnetization comes from the polarization of the *d* and *s*-*p* bands at the rare-earth sites. On the other hand, in the heavy RCo_2 ($R=Gd$, Tb, Dy, Ho, Er) intermetallic compounds, a magnetic moment of the order of $1\mu_B$ at the Co site is induced antiparallel to the spin magnetic moments of the rare-earth ions,⁴ whereas for light $RCo₂$ ($R = Pr$, Nd, Pm, Sm) compounds one finds almost always small magnetic moments at the Co site. $²$ </sup>

The calculation of the magnetic moments and hyperfine fields at the impurity site have been developed using either *ab initio* calculations^{5,6} or model approaches.^{7–14} In the early 1990's, a formulation including the change in the hopping energy applied to the case of Pd based alloys, suggested a connection between first-principles calculations and the model approaches for the impurity problem.^{15–17} We have extended that formulation for a ferromagnetic 3*d* host in order to discuss the problem of transition element impurities diluted in Fe host. 18 In the present work, we study the localmoment formation and the systematics of the magnetic hyperfine fields at the nonmagnetic *s*-*p* Cd impurity diluted on the *R* site of the Laves phase intermetallic compounds $RCo₂$ and $RNi₂$. In order to calculate the local magnetic moment at a Cd impurity diluted in *RNi₂*, we use a Daniel-Friedel-like model,¹⁹ in which $RNi₂$, compounds are considered as effective ferromagnetic rare-earth hosts.²⁰ In the case of the $RCO₂$ hosts, we include in the model an extra magnetic term, located at a distance \tilde{R}_0 from the impurity site, to account for the contribution arising from the Co magnetic moments. We have in this case a two-center Blandin-Campbell-like model,²¹⁻²³ where a magnetic 3*d*-element located at a distance \vec{R}_0 from the Cd impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. $15-17$

In Sec. II, we formulate the general problem, in order to describe a Cd impurity diluted in both *RNi*₂ and *RCo*₂ hosts. In Sec. III, we exhibit the self-consistent numerical calculations, comparing our results to available experimental data. We also make some predictions arising from our model.

II. FORMULATION OF THE PROBLEM

We start the description of a Cd impurity diluted in RT_2 $(T=Ni, Co)$ intermetallic hosts, by considering that the local magnetic moments and the total magnetic hyperfine fields have two important contributions, namely: (i) the contribution from R ions; (ii) the contribution from the coupling with the induced magnetic moments at the Co sites. $\frac{2}{3}$ In order to account for both contributions to the formation of the local magnetic moments, we consider the RT_2 intermetallic compounds as being effective ferromagnetic rare-earth hosts,²⁰ with an extra term to account for the polarization arising from the magnetic moments of the transition elements surrounding the impurity site. 23 In the framework of our model, the Hamiltonian to describe the formation of the local *s*-*p* magnetic moment and hyperfine field at Cd impurity embedded in RT_2 intermetallic hosts is

$$
H = \sum_{i\sigma} \varepsilon_{0\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} + \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + V_{0\sigma} c_{0\sigma}^{\dagger} c_{0\sigma}
$$

$$
+ \tau \sum_{i \neq 0\sigma} t_{0i} (c_{0\sigma}^{\dagger} c_{i\sigma} + c_{i\sigma}^{\dagger} c_{0\sigma}) + \sum_{n \neq 0} V_{n\sigma} c_{n\sigma}^{\dagger} c_{n\sigma}. \quad (1)
$$

In this Hamiltonian, $\varepsilon_{0\sigma}$ is the center of the energy band, which depends on the $4f$ polarization from the effective rareearth host and on the 5*d* polarized conduction electrons. The term t_{ij} is the electron hopping energy and $c_{i\sigma}^{\dagger}(c_{i\sigma})$ is the creation (annihilation) operator of conduction electrons at site *i* with spin σ . τ is a parameter which takes into account the nondiagonal term in the energy hopping due to the translational invariance breaking associated with the presence of the impurity.^{15–18} $V_{0\sigma}$ is the local potential and $V_{n\sigma}$, is the potential due to a magnetic moment of the transition element surrounding the impurity site, i.e.,

$$
V_{n\sigma} = -\sigma J^{sd} \langle S^T \rangle, \tag{2}
$$

where $\langle S^T \rangle$ is the magnetic moment at the transition 3*d* element. J^{sd} is an exchange parameter of the model. Notice that in case of Cd impurity diluted in $RNi₂$ intermetallic hosts, $V_{n\sigma} = -\sigma J^{sd} \langle S^{Ni} \rangle = 0$, since in these intermetallics, Ni is nonmagnetic. Therefore, for $RNi₂$ hosts one has an extended Daniel-Friedel problem.¹⁹

Let us first solve the problem defined by Eq. (1) considering only the charge perturbation, i.e., $V_{n\sigma} = 0$. Using the Dyson equation, one has

$$
\widetilde{g}_{ij\sigma}(z) = g_{ij\sigma}(z) + g_{i0\sigma}(z) V_{0\sigma} \widetilde{g}_{0j\sigma}(z) \n+ \tau \left[\sum_{p \neq 0} g_{ip\sigma}(z) t_{p0}^{\text{hh}} \right] \widetilde{g}_{0j\sigma}(z) \n+ \tau g_{i0\sigma}(z) \left[\sum_{p \neq 0} t_{0p}^{\text{hh}} \widetilde{g}_{pj\sigma}(z) \right].
$$
\n(3)

 t_{0p}^{hh} is the host hopping term, $g_{ij\sigma}(z)$ is the Green function for the pure host system with $z = \varepsilon + i0$, and $\tilde{g}_{ij\sigma}(z)$ is the modified Green function due to the charge perturbation at the origin. After some algebra, the Green function $\tilde{g}_{ij\sigma}(z)$ can be written in the form

$$
\tilde{g}_{ij\sigma}(z) = g_{ij\sigma}(z) + g_{i0\sigma}(z) \frac{V_{\sigma}^{\text{eff}}(z)}{\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)} g_{0j\sigma}(z) + (\alpha - 1) \frac{(\alpha - 1)g_{00\sigma}(z)\delta_{i0}\delta_{0j} - \alpha[g_{i0\sigma}(z)\delta_{0j} + \delta_{i0}g_{0j\sigma}(z)]}{\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)}.
$$
\n(4)

Here, the effective potential $V_{\sigma}^{\text{eff}}(z)$ is given by

$$
V_{\sigma}^{\text{eff}}(z) = V_{0\sigma} + (\alpha^2 - 1)(z - \varepsilon_c),
$$
 (5)

with $\alpha = \tau + 1$ and ε_c being the center of the energy band. Once $\tilde{g}_{00\sigma}(z)$ is obtained, one gets the occupation number with spin σ , and then the local magnetic moment $\tilde{m}_R(0)$ due to the *R* ions [see below, Eq. (12)]. Now we solve the general problem, defined by Eq. (1) considering the potential $V_{n\sigma}$.
Using the Dyson equation $G_{ij\sigma}(z) = \tilde{g}_{ij}(z)$ $G_{ij\sigma}(z) = \tilde{g}_{ij}(z)$ $+ \sum_{n \neq 0} \widetilde{g}_{in}(z) V_{n\sigma} G_{nj}(z)$, the perturbed Green function $G_{ij\sigma}(z)$ for the total Hamiltonian (1) is given by

$$
G_{ij\sigma}(z) = \tilde{g}_{ij}(z) + \sum_{n \neq 0} \tilde{g}_{in}(z) T_{n\sigma} \tilde{g}_{nj}(z),
$$
 (6)

with

$$
T_{n\sigma} = \frac{V_{n\sigma}}{1 - \tilde{g}_{nn\sigma}(z)V_{n\sigma}}.\tag{7}
$$

After some algebra, the local Green function $G_{00\sigma}(z)$ can be written in the form

$$
G_{00\sigma}(z) = \frac{g_{00\sigma}(z)}{\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)} + \frac{\alpha^2 \sum_{n \neq 0} g_{0n\sigma}(z) T_{n\sigma} g_{n0\sigma}(z)}{[\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)]^2}.
$$
\n(8)

Since the spin potential $V_{n\sigma}$ is small as compared to the strong charge perturbation V_0 , we take the Born approximation $(T_{n\sigma} \approx V_{n\sigma})$. So one has

$$
G_{00\sigma}(z) = \frac{g_{00\sigma}(z)}{\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)} - \frac{\sigma \alpha^2 J^{sd} \langle S^T \rangle}{\left[\alpha^2 - g_{00\sigma}(z)V_{\sigma}^{\text{eff}}(z)\right]^2}
$$

$$
\times \left[Z_n \frac{\partial g_{00\sigma}(z)}{\partial z} + g_{00\sigma}^2(z) \right],
$$
(9)

where Z_n is the number of the first next neighbors of *T* ions surrounding the Cd impurity. The local potential $V_{0\sigma}$ is selfconsistently determined using the Friedel screening condition^{18,20} for the total charge difference between impurity and host atoms ΔZ , i.e., $\Delta Z = \Delta Z$ _↑ + ΔZ _↓, where

$$
\Delta Z_{\sigma} = -\frac{1}{\pi} \text{Im} \ln[\,\alpha^2 - g_{00\sigma}(\,\epsilon_{\text{F}}) \, V_{\sigma}^{\text{eff}}(\,\epsilon_{\text{F}})],\tag{10}
$$

where ϵ_F is the Fermi energy. The local density of states per spin direction at the impurity site is given by $\rho_{0\sigma}(\varepsilon)$

 $\overline{F}(-1/\pi)$ Im $G_{00\sigma}(z)$. The local electron occupation number $(n_{0\sigma})$ is obtained by integrating the local density of states up to the Fermi level, $n_{0\sigma} = \int_{-\infty}^{\epsilon_F} \rho_{0\sigma}(\varepsilon) d\varepsilon$. The local magnetic moment $\tilde{m}(0) = \sum_{\sigma} \sigma n_{0\sigma}$, at a Cd impurity is then

$$
\widetilde{m}(0) = \widetilde{m}_R(0) + \widetilde{m}_{\text{ind}}(0),\tag{11}
$$

where

$$
\widetilde{m}_R(0) = -\frac{1}{\pi} \sum_{\sigma} \int_{-\infty}^{\epsilon_F} \text{Im} \frac{g_{00\sigma}(z)}{\alpha^2 - g_{00\sigma}(z) V_{\sigma}^{\text{eff}}(z)} dz \quad (12)
$$

and

$$
\widetilde{m}_{\text{ind}}(0) = -\frac{1}{\pi} \sum_{\sigma} \int_{-\infty}^{\epsilon_{\text{F}}} \text{Im} \frac{\sigma \alpha^2 J^{sd} \langle S^T \rangle}{\left[\alpha^2 - g_{00\sigma}(z) V^{\text{eff}}_{\sigma}(z)\right]^2} \times \left[Z_n \frac{\partial g_{00\sigma}(z)}{\partial z} + g_{00\sigma}^2(z) \right] dz.
$$
\n(13)

The term $m_R(0)$ gives the contribution from the *R* ions and $\tilde{m}_{ind}(0)$ gives the contribution from the Co 3*d* ions. Note again that in the case of $RNi₂$ intermetallic hosts, $\langle S^{Ni} \rangle$ $=0$, so that one has only the contribution to the local magnetic moment at a Cd impurity arising from the rare-earth ions. The total magnetic hyperfine field at a Cd impurity site is given by

$$
B_{hf} = A(Z_{\text{imp}})[\widetilde{m}_R(0) + \widetilde{m}_{\text{ind}}(0)],\tag{14}
$$

where $A(Z_{\text{imp}})$ is the Fermi-Segre` contact coupling parameter.¹²

III. RESULTS AND DISCUSSION

In order to calculate the local moments and the magnetic hyperfine fields at a Cd impurity diluted in the *RNi*₂ and $RCo₂$ intermetallic hosts, we have to fix some model parameters. Here, we adopt a standard paramagnetic *s*-*p* density of states extracted from first-principles calculations.⁴ The exchange splitting in the *s*-*p* energy bands induced by the local moments of the rare-earth ions, was properly chosen to yield the $s-p$ magnetic moment at the R sites of the host, which is assumed to be of the order of 0.1 of the *d* magnetization at the *R* sites. The parameter α which renormalizes the hopping energy involving the impurity site, was chosen by taking the ratio between the extension of the host and impurity *s*-*p* wave functions. In the case of $RNi₂$, we assumed $J^{sd}\langle S^{Ni}\rangle$ $=0$. In the case of *RCo*₂ intermetallics, we adopted J^{sd} $=0.4\times10^{-3}$ for heavy rare-earth ions and $J^{sd}=0.5\times10^{-3}$ for light rare-earth ions in units of the *s*-*p* bandwidth of $RCo₂$ hosts. The magnetic moments at the Co site in $RCo₂$ intermetallic compounds $\langle S^{Co} \rangle$ were estimated from Ref. 2. Keeping fixed these parameters, we self-consistently determined the local magnetic moment and the corresponding magnetic hyperfine field at the Cd impurity.

In Fig. 1, we plot the rare-earth contribution to the local magnetic moment $\left[\tilde{m}_R(0)\right]$ as well as the contribution to the local magnetic moment, originated from the Co neighboring

FIG. 1. Calculated magnetic moments at Cd impurity diluted in $RCo₂$ intermetallic hosts. The dotted line corresponds to the contribution from the rare earth $\tilde{m}_R(0)$, whereas the dashed line corresponds to the contribution from the Co ions $\tilde{m}_{ind}(0)$. The solid line represents the total magnetic moments $\tilde{m}(0)$. The term $\tilde{m}_R(0)$ stands for the total magnetic moment in the case of $RNi₂$ hosts (see text).

ions $\left[\tilde{m}_{ind}(0)\right]$. First of all, notice that in the case of *RNi*₂, one has only a $\tilde{m}_R(0)$ contribution, which is a Daniel-Friedel-like one. In the case of RCo_2 , one has $\tilde{m}(0)$ $= \widetilde{m}_R(0) + \widetilde{m}_{ind}(0)$. We assumed that the contribution arising from the rare-earth ions, is the same in $RCo₂$ and in $RNi₂$, i.e., $\widetilde{m}_R(0:RN_i) = \widetilde{m}_R(0:RCo_2)$. The self-consistent calculations show that the Blandin-Campbell-like term^{21,22} $\tilde{m}_{ind}(0)$ dominates over $\tilde{m}_R(0)$, both for heavy and light rare earths. From Fig. 1 one can see that the contribution to the magnetic hyperfine field arising from the Co neighboring

FIG. 2. Calculated total magnetic hyperfine fields at Cd impurity diluted in $RNi₂$ (dotted line) and $RCo₂$ (solid line) intermetallic hosts. Circles and squares represent experimental data collected from Ref. 2.

ions $[B_{hf}^{ind} = A(Z_{imp})\tilde{m}_{ind}(0)]$ is larger than the contribution originated from the rare-earth ions $[B_{hf}^R = A(Z_{imp})\tilde{m}_R(0)].$ Moreover, for heavy rare-earths $|B_{hf}^{ind} = A(Z_{imp})\tilde{m}_{ind}(0)|$ decreases monotonically, being, however, always greater than $|B_{hf}^R = A(Z_{imp})\tilde{m}_R(0)|$, i.e., one has again a dominance arising from the contribution from the Co ions.

Figure 2 exhibits the self-consistently calculated magnetic hyperfine fields at a Cd impurity site, diluted in *RNi₂* (dotted line) and $RCo₂$ (solid line). This figure shows that our theoretical model *predicts* that as we go from Gd to Er, (heavy rare earths) $|B_{hf}|$ *decreases*, whereas when we go from Gd to Pr, (light rare earths) $|B_{hf}|$ *increases*. The total selfconsistently calculated magnetic hyperfine fields for *RCo*₂ hosts, plotted in full line exhibit an excellent agreement with available experimental data.² It should be useful to calculate the local magnetic moments and the magnetic hyperfine fields of systems like $T:R\text{Co}_2$ and $T:R\text{Ni}_2$ ($T=nd$ transition element, $n=3, 4, 5$, in order to check our model in the more complex cases, where one has contact as well as core polarization contributions to the magnetic hyperfine field.

ACKNOWLEDGMENTS

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for financial support. This work was partially performed under the frame of PRONEX – Project No. 66201998-9.

- 1 A. Troper and A.A. Gomes, Phys. Rev. 34, 6487 (1986).
- ${}^{2}P$. de la Presa, S. Müller, A.F. Pasquevich, and M. Forker, J. Phys.: Condens. Matter 12, 3423 (2000).
- ³ K.H.J. Buschow, Rep. Prog. Phys. **40**, 1179 (1977).
- 4H. Yamada, J. Inoue, K. Terao, S. Kanda, and M. Shimizu, J. Phys. F: Met. Phys. **14**, 1943 (1984).
- ⁵H. Akai, M. Akai, S. Blugel, and B. Dederich, Prog. Theor. Phys. Suppl. 101, 261 (1990).
- ⁶P.H. Dederichs, R. Zeller, H. Akai, and H. Herbert, J. Magn. Magn. Mater. **100**, 261 (1991).
- $⁷$ J. Friedel, Nuovo Cimento, Suppl. **7**, 287 (1958).</sup>
- 8 P.A. Wolff, Phys. Rev. **124**, 1030 (1961).
- ⁹A.M. Clogston, B.T. Matthias, N. Peter, H.J. Williams, E. Orenzwit, and R.J. Sherwood, Phys. Rev. 125, 541 (1962).
- ¹⁰ J. Kanamori, J. Appl. Phys. **16**, 929 (1965).
- ¹¹ I.A. Campbell and A.A. Gomes, Proc. R. Soc. (London) 91, 319 $(1967).$
- ¹² I.A. Campbell, J. Phys. C **12**, 1338 (1969).
- ¹³ I.A. Campbell, J. Phys. F: Met. Phys. **2**, L47 (1972).
- ¹⁴ I.A. Campbell, W.D. Brewer, J. Flouquet, A. Benoit, B.W. Mardsen, and N.J. Stone, Solid State Commun. **15**, 711 (1974).
- 15W. Speier, J.F. van Acker, and R. Zeller, Phys. Rev. B **41**, 2753 $(1990).$
- ¹⁶ J.F. van Acker, W. Speier, and R. Zeller, Phys. Rev. B **43**, 9558 $(1991).$
- ¹⁷ J.F. van Acker, W. Speier, J.C. Fuggle, and R. Zeller, Phys. Rev. B 43, 13 916 (1991).
- 18N.A. de Oliveira, A.A. Gomes, and A. Troper, Phys. Rev. B **52**, 9137 (1995).
- 19A.L. de Oliveira, M.V. Tovar Costa, N.A. de Oliveira, and A. Troper, J. Appl. Phys. **81**, 4215 (1997).
- 20A.L. de Oliveira, M.V. Tovar Costa, N.A. de Oliveira, and A. Troper, J. Magn. Magn. Mater. 177-181, 1091 (1998).
- 21 A. Blandin and I.A. Campbell, Phys. Rev. Lett. 31, 51 (1973).
- ²² I.A. Campbell and A. Blandin, J. Magn. Magn. Mater. **1**, 1 $(1975).$
- 23A.L. de Oliveira, V.P. Ramunni, M.V. Tovar Costa, N.A. de Oliveira, and A. Troper, J. Appl. Phys. 83, 6971 (1998).