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Ground state of graphite ribbons with zigzag edges
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We study the interaction effects on the ground state of nanographite ribbons with zigzag edges. Within the
mean-field approximation, we find that there are two possible phases: the singlet superconducting~SS! phase
and the excitonic insulator~EI! phase. The two phases are separated by a first-order transition point. After
taking into account the low-lying fluctuations around the mean-field solutions, the SS phase becomes a spin
liquid phase with one gapless charge mode. On the other hand, all excitations in the EI phase, especially the
spin excitations, are gapped.

DOI: 10.1103/PhysRevB.66.245402 PACS number~s!: 73.22.Gk, 73.22.2f, 73.22.Lp, 71.35.2y
a

a
nt
ng
da

a
r-

s

ea
t t
a

a

r
ce

i

ri
te
d

in
xis
in

n
t

ic
ce
d
to

ng

za-
ith
is
in
uct-
a

un-
y

sity
-

the
ders
true

with
to an
the

II,
tion
sent

he
rect-
I. INTRODUCTION

After the discovery of low-dimensional materials such
fullerenes and carbon nanotubes, the research onsp2 net-
work systems has been attracting much attention. The n
ographite ribbon is one of the most simple and fundame
fragments of thesp2 network, and represents an interesti
class of mesoscopic systems. In this system the boun
regions play an important role, so that the edge effects m
influence strongly thep-electron states near the Fermi su
face.

There are two basic shapes of regular graphite edge
zigzag and armchair edges~see Fig. 1!. The study of elec-
tronic states of hydrogen-terminated graphite ribbons rev
that ribbons with zigzag edges possess partly flat bands a
Fermi level, which correspond to the electronic states loc
ized in the near vicinity of the edges.1–3 In particular the
highest valence band and the lowest conduction band
always degenerate atka05p, with the lattice spacinga0
'2.46 Å. ~Hereafter we will seta051.! The localized edge
states are of special interest because of their relatively la
contribution to the density of states at the Fermi surfa
which results in the Curie-like temperature dependence
the Pauli susceptibility2 and zero-conductance resonances
the nanographite ribbon junctions.4 It was reported that zig-
zag ribbons do not undergo bond alternations along the
bon axis for a reasonable strength of electron-phonon in
actions, because of the nonbonding character of the e
states.5 In other words, the partly flat bands are stable aga
the Peierls instability. In addition, the flat edge states e
not only in the single-layered zigzag ribbons but also
stacked layers of zigzag ribbons in a manner of theAB
stacking,3 in which half of the carbon atoms of one ribbo
are located directly above the center of each hexagon on
neighboring ribbons.

In this paper, we are interested in the low-energy phys
of graphite ribbons with zigzag edges. In this case, it suffi
to consider edge states only. A simple power counting in
cates that all four-fermion interactions are relevant opera
around the free-fermion fixed point~see Sec. III!. Therefore,
we expect that the electron-electron interactions will cha
0163-1829/2002/66~24!/245402~6!/$20.00 66 2454
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the free-fermion picture drastically. Based on a renormali
tion group analysis, we propose a model Hamiltonian w
an O~4! symmetry to describe the low energy physics of th
system. A mean-field treatment of this Hamiltonian results
two possible zero temperature phases—singlet supercond
ing ~SS! and excitonic insulator~EI! phases separated by
first-order transition point. For the EI phase,6 the singlet and
triplet excitonic order parameters can coexist due to the
derlying O(4) symmetry.7 As a result, there is a degenerac
for the onset of the charge density wave and spin den
wave ordering within the mean-field approximation. How
ever, in one dimension, the low-lying fluctuations around
mean-field solutions are so strong that the long range or
obtained by the mean-field theory are destroyed and the
ground states exhibit algebraic~SS! or short-ranged~EI! or-
ders. Consequently, the SS phase becomes a spin liquid
one gapless charge mode, whereas the EI phase turns in
insulating phase in which all excitations are gapped and
brokenO(4) symmetry is restored.

The rest of the paper is organized as follows: In Sec.
we give a description of the system and discuss the ac
describing the dynamics of the flat edge states. We pre

FIG. 1. The structure of graphite ribbons with zigzag edges. T
carbon atoms are located at the corners of each hexagons. The
angle with the dashed line is the unit cell.
©2002 The American Physical Society02-1
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the renormalization group~RG! analysis of the action in Sec
III, and propose an effective Hamiltonian which describ
the low energy physics. The mean-field theory and the d
vation of low-energy effective actions are given in Secs.
and V, respectively. Section VI is devoted to discussions
conclusions.

II. MODEL SYSTEM

The structure of the graphite ribbon with zigzag edges
the schematic figure of its energy band dispersion neaE
50 are shown in Figs. 1 and 2, respectively. The almost
bands appear within the region 2p/3<uku<p. For an
H-terminated single-layered zigzag ribbon, the dispersion
lations of the two lowest bands close tok5p obtained from
the tight-binding model has the approximate form1,2

E1(2)k562tNDk
N21S 12

Dk

2 D , ~1!

whereDk52 cos(k/2), t is the hopping matrix element, an
N is the number of zigzag lines~see Fig. 1!. Equation~1!
indicates that the two lowest bands are degenerate at
Fermi pointk5k05p. Around that point,E1(2)k'62Ntuk
2k0uN21. The energy gap to the next bandDz , as shown in
Fig. 2, is given by1,2

Dz54t cosF ~N21!p

2N11 G . ~2!

Since the energy scale we are considering is much lower
Dz , only these two lowest bands are involved and the e
tron operator can be expanded around the Fermi pointk0,

Ca~xW !'eik0x@c1a~x!u1~y!1eabc2b
† ~x!u2~y!#, ~3!

such thatcaau0&50, wherea51,2 is the band index, an
a561 corresponds to spin up and down, respectively.~We
assume that thex axis is parallel to the ribbon axis.! The c

FIG. 2. The schematic figure of the energy band dispersion n
E50. Dz is given by Eq.~2!. The band indices 1 and 2 indicate th
two lowest bands.
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fermions describe the low-energy degrees of freedo
u1,2(y) are real functions which satisfy the orthonormal co
dition: *dyua(y)ub(y)5dab . Under the operation of reflec
tion about the line along the ribbon axis at the middle of t
ribbon, denoted by a unitary operatorR, we haveRu1

5u2. ~Note that this results inu1
25u2

2.!
Up to the four-fermion interactions, the most general fo

of the action describing the dynamics ofc fermions in the
imaginary-time formulation is given by

I 5I 01E dtdxL1 ,

where

I 05E dv

2pE2L

L dk

2p
c̃aa

† ~2 iv1vukum!c̃aa , ~4!

L15
g1

2
~r1

21r2
2!1g2r1r214g3J1•J21g4~N1N21H.c.!.

~5!

Here c̃aa(kW )[*dxe2 ikW•xWcaa(xW ), m.1 (m5N21 for the
single-layered graphite ribbons!, v52Nt, L is an UV cutoff
for the momentum, and

ra5caa
† caa ,

Ja5
1

2
caa

† ~s!abcab , ~6!

Na5
i

2
eabcaacab .

In Eq. ~4!, we have replacedk2k0 by k. ra , Ja , andNa ,
defined above, are, respectively, the charge density, the
density, and the singlet Cooper pair in the banda. g1 is the
intraband interaction, and the interband interactions are
scribed by the density-density interactiong2, the exchange
interaction g3, and the singlet Cooper-pair tunnelingg4.
~Note that the triplet Cooper-pair tunneling term vanishes
the present case because of the Fermi statistics.! We have to
emphasize that, regardless of the graphite ribbons bein
terminated, not H terminated, single layered, or stack l
ered, Eqs.~4! and~5! describe the dynamics of the flat edg
states as long as they exist. The short distance structure
affects the values of the parametersgi ( i 51, . . . ,4),v, and
m, which will ultimately determine in which phase the sy
tem is located.

To obtain the values of the couplingsgi ( i 51, . . .,4), we
consider the short-ranged electron-electron interactions
scribed by the interacting Hamiltonian

Hint5
1

2E d2x1d2x2 :Ca
†~xW1!Cb

†~xW2!

3V~xW12xW2!Cb~xW2!Ca~xW1!:. ~7!

By inserting Eq.~3! into Eq. ~7!, we obtain

ar
2-2
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GROUND STATE OF GRAPHITE RIBBONS WITH . . . PHYSICAL REVIEW B66, 245402 ~2002!
g15U1~0!, g252U1~0!1
U2~0!

2
,

22g35U2~0!5g4 , ~8!

whereUi(q)5*dxe2 iqxVi(x) ( i 51,2), and

V1~x12x2!5E dy1dy2u1
2~y1!V~xW12xW2!u1

2~y2!,

V2~x12x2!5E dy1dy2u1~y1!u2~y1!

3V~xW12xW2!u1~y2!u2~y2!.

Especially for a Hubbard-like interactionV(xW12xW2)
5V0d(xW12xW2), we haveg15U522g2522g35g4 where
U5V0*dyu1

4(y). We see thatg1 ,g4.0 andg2 ,g3,0 when
the interactions between electrons are repulsive.

The symmetries of the actionI are the charge U~1! @de-
noted by Uc(1)] where thec fermions transform asc1a
→eiuc1a andc2a→e2 iuc2a ; the spin SU~2!; andZ2 ~par-
ticle hole!, where thec fermions transform asc1a↔c2a . In
this paper, we restrict ourselves to the undoped case.
chemical potential term breaks theZ2 symmetry and thus
will not be generated by renormalization.

III. RENORMALIZATION GROUP ANALYSIS

We first show thatL1 is a relevant perturbation to th
free-fermion actionI 0. By integrating out the fast mode
with L/s,uku,L, we find thatI 0 is a fixed point of the RG
transformation

k→k/s, v→vs2m, c̃aa→jc̃aa , ~9!

with j5sm21/2. Under the RG transformation@Eq. ~9!#, the
couplings inL1 transform asgi85sm21gi ( i 51, . . . ,4). We
see that in one dimension all couplings are relevant and h
the same scaling dimension around the free-fermion fi
point I 0. To tell which terms dominate the low energy phy
ics, a controllable approximation to organize the quant
fluctuations is necessary. Here we adopt thee expansion.8

That is, we extend the spatial dimension from 1 tod and then
usee5du2d as the expansion parameter to compute the
functions, wheredu5m is the upper-critical dimension. Fo
smallN ~and thus smallm), thee expansion may be reliable
For largerN, it is hoped that there is no qualitative differen
in physical properties from smallN to largeN as long asN is
finite.

Next we would like to examine the quantum fluctuatio
up to the one-loop order. Defining the dimensionless c
plings l i5L2ecgi /v ( i 51, . . .,4), where c
5SN21 /@2(2p)N21# and Sd is the area of ad-dimensional
sphere, and calculating the one-loop corrections to the c
pling constantsgi8 ( i 51, . . . ,4), weobtain the one-loop RG
equations within thee expansion:

dl1

dl
5el12l1

22l4
2 ,
24540
he
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dl2

dl
5el22l2

223l3
22l4

2 ,

dl3

dl
5el322l3~l22l3!, ~10!

dl4

dl
5el422l4~l112l2!.

Equation ~10! is solved numerically up to a scalel * , at
which point the largest couplinglmax5max$li(l* )% satisfies
Ũ!lmax!1, whereŨ[L2ecU/v. This allows us to ignore
the higher-order terms@O(l i

3)# in the RG equations. AsŨ
→0, l * →`, and we need only analyze the asymptotic lar
l behaviors of Eq.~10!. We find that fore.0, l2 and l4
become divergent first while the value ofl1 approaches zero
and that ofl3 remains small whenl2,45O(1).

Based on this analysis, we propose that the low-ene
physics of the graphite ribbons with zigzag edges is
scribed by the model Hamiltonian

H5E dk

2p
ekc̃aa

† ~k!c̃aa~k!1E dx@g~N1N21H.c.!

2g̃r1r2#, ~11!

whereg,g̃.0 andek5vukum. The symmetry of H is Uc(1)
3SU(2)3SU(2)3Z2 where the SU(2)3SU(2) symmetry
corresponds to the independent spin rotations in each b
The enlarged symmetry@SU(2)→ SU(2)3SU(2)] arises
from the suppression of theg3 term under the RG transfor
mation. The values ofg and g̃ depend onv and the initial
values ofgi ’s ( i 51, . . .,4). Sec. IV, we shall treat the cou
pling constantsg and g̃ as free parameters and study t
possible phases of Hamiltonian~11!.

IV. MEAN-FIELD THEORY

The g term in Hamiltonian~11! describes the process o
singlet Cooper-pair tunneling between two bands and fav
the singlet superconductor when it becomes diverge
whereas a strongg̃ term enhances the fluctuations
electron-hole pairs or excitonic ordering between band 1
band 2.9 The latter can be represented by the singlet or trip
excitonic order parameters according to the angular mom
tum it carries. Motivated by this observation, we define t
following order parameters:

Ôsa~x!5gca↑~x!ca↓~x!,

F̂s~x!5 i
g̃

2
eabc1a~x!c2b~x!, ~12!

F̂t~x!5
g̃

2
ealc2l~x!~s!abc1b~x!.
2-3
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With the help of the Hubbard-Stratonovich transformatio
the corresponding action of the Hamiltonian~11! in the
imaginary-time formulation can be written as

S5E dv

2p

dk

2p
c̃aa

† ~2 iv1ek!c̃aa1E dtdx~L11L21L3!,

~13!

where

L15
1

g
Ôs1Ôs22Ôs1c2↑c2↓2Ôs2c1↑c1↓1H.c.,

L25
2

g̃
uF̂su22~ i F̂s

†eabc1ac2b1H.c.!,

L35
2

g̃
uF̂tu22~F̂t

†
•ealc2l~s!abc1b1H.c.!.

The mean-field treatment of the actionS @Eq. ~13!# is to
assume the presence of bosonic mean fields, neglect the
tuations of order parameters, and finally, integrate out
fermionic degrees of freedom to derive the effective pot
tial. Now we consider the mean-field ansatzOsa5^Ôsa&,
Fs5^F̂s&, andFt5^F̂t&. The effective potential is given by

V5
1

g
~Os1Os21C.c.!1

2

g̃
~ uFsu21uFtu2!

2E dv

2p

dk

2p
lnF F~v,k!

F0~v,k!G , ~14!

whereF0(v,k)5(v21ek
2)2, and

F~v,k!5~v21ek
2!21uOs1* Os2* 1DTDu21~v21ek

2!~ uOs1u2

1uOs2u212D†D!.

Here D5(Fs ,Ft)
T is the excitonic order parameter. In E

~14!, we have setV50 for free fermions.
The ground state is determined by the minimum of

effective potentialV and the solutions of the mean-fie
equations are given by

Os15Os2* 5Dse
if0, D50, ~15!

where Ds5Cmv21/(m21)gm/(m21) with Cm5am
m/(m21) and

am5B@(1/2m,(1/2)2(1/2m)#/(4mp), and

D5D0eiu0, Os1505Os2 , ~16!

where D0 is a real vector with the fixed length:De

5AD0
T D05Cmv21/(m21)g̃m/(m21). HereB(x,y) is the beta

function. Solutions~15! and~16! correspond to the SS and E
phases, respectively. Especially in the EI phase,FsÞ0 can
coexist withFtÞ0. It is well known9,10 that the singlet (Fs)
and triplet (Ft) excitonic orders are accompanied by t
appearance of charge and spin density waves. In our case
onset of both ordering is degenerate on account of theO(4)
or SU(2)3SU(2) symmetry of action~13!. The weak inter-
24540
,
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actions which are neglected in Hamiltonian~11! will lift this
degeneracy. A residual Coulomb interaction like theg3 term
favors the triplet excitonic order, while the electron-phon
interactions favor the singlet excitonic order.10 Note that na-
ively the hidden symmetry of the EI phase is Uf(1)
3O(4), where the Uf(1) symmetry corresponds to th
transformation:caa→ei ũcaa . However, it is not a symme
try of Hamiltonian~11! and we will see later that after takin
into account the fluctuations the value ofu0 cannot be arbi-
trary.

The pointg5g̃ corresponds to the first-order phase tra
sition because at that point the ground-state energies of
SS and EI phases are equal and the corresponding orde
rameters do not vanish. Thus the values of the order par
eters change discontinuously from the SS to EI phases
vice versa. This is consistent with the RG flow obtained fro
thee-expansion. Since the RG equation~10! does not exhibit
any IR stable fixed point, the phase transition cannot be
second-order one. To sum up, the zero-temperature p
diagram within the mean-field approximation is shown
Fig. 3.

V. LOW-ENERGY EFFECTIVE ACTION

To examine the stability of the mean-field solutions o
tained above, we have to consider the fluctuations around
mean-field ground state. In the SS phase,Ôs1 andÔs2 can be
parametrized asÔs15Dse

if1 and Ôs25Dse
2 if2. On the

other hand, the excitonic order parameterD becomes the
ordinary bosonic field. Inserting these into action~13! and
integrating out the fermionic fields andD, we obtain the
low-energy effective theory in the SS phase,

Ls5
K0

2 F 1

vs
~]tf1!21vs~]xf1!2G1

K̄0

2 F 1

v̄s

~]tf2!2

1 v̄s~]xf2!2G1m0cosf2 , ~17!

where f65f16f2 , K05K̄05@(m21)/2#Aambm, and vs

5 v̄s5mAbm /amv1/mDs
12(1/m) , and bm}(Dz /Ds)

12(1/m)@1
is a nonuniversal constant. Thef1-field carries charge two
and spin zero while the quantum numbers off2 are Q50
and S50. The cosine term inLs opens a gap in thef2

sector becauseK̄0.(8p)21. The charge U~1! symmetry for-
bids the terms like cos(bf1) or sin(bf1). Therefore, thef1

sector remains gapless. After taking into account the fluct
tions, the mean-field gapDs becomes the spin gap and the S
phase is, in fact, a spin liquid phase with one gapless cha
mode, which is similar to theC1S0 phase in the two-leg

FIG. 3. The mean-field phase diagram. Region I is the EI ph

and region II is the SS phase. The pointA (g5g̃) is a first-order
transition point.
2-4
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Hubbard ladder.11 In addition, the long range SS order turn
into an algebraic one due to the gaplessf1-field, and the SS
fluctuations are enhanced compared with the free fermio

In the EI phase, the excitonic order parameterD can be
written as:D5DeFeiu whereF is a real vector satisfying
FTF51 and transforms with the fundamental representa
of O(4), whereasÔs1 and Ôs2 are ordinary bosonic fields
The quantum numbers of theu field areQ50 andS50 and
the ones carried by theF sector consist of (Q,S)5(0,0) and
~0,1!. The low-energy effective theory in this case can
obtained by inserting the above parametrization into ac
~13! and integrating out the fermionic fieldsÔs1 and Ôs2,
and then we have

SEI5E dtdx~Lu1LF!,

where

Lu5
K

2 F 1

ve
~]tu!21ve~]xu!2G1l cos~2u!, ~18!

LF5
ro

2 F 1

vo
~]tF!21vo~]xF!2G . ~19!

Here K5ro52(m21)Aamb̄m, ve5vo

5mAb̄m /amv1/mDe
12(1/m) , and b̄m}(Dz /De)

12(1/m)@1 is a
nonuniversal constant. In Eq.~18!, we keep the leading co
sine term only. BecauseK.(2p)21, the cosine term inLu is
a relevant operator and theu sector acquires a gap. In add
tion, ^u& is pinned at some valueu0 which depends on the
short distance physics. The dynamics of theF sector is de-
scribed by theO(4) nonlinears model. In general, there ca
be two sources to change the low-energy behavior of
nonlinears model. The first one is the existence of a te
linear in ]tF, which follows from the analysis of the equa
tions of motion~EOM! and Ward identities.12As discussed in
Ref. 12, the existence of this term relies on the nonvanish
expectation values of the corresponding conserved cha
i.e., ^Ja&Þ0 in the present case. But^Ja&Þ0 implies the
long range ferromagnetic order and it is forbidden in 111
dimensions by the Mermin-Wagner-Coleman theorem.13 The
second one is the appearance of theu-term, which results
from the topological consideration and has no effects on
EOM. In our case,LF does not contain such a term becau
the homotopy groupP2@O(4)#50. As a result, in the long
wavelength limit,LF starts from the second derivatives
space and time as shown in Eq.~19!. Therefore, the broken
O(4) symmetry is restored and the spectrum correspond
to theF sector is organized as theO(4) multiplets. In addi-
tion, the corresponding excitations acquire an energy
which is given by

D̄s5cDee
2pr0, ~20!

where c5O(1) is a non-universal constant. Because
charge excitations in this phase are associated with the
mion fields andD̄s!De , the mean-field gapDe can be iden-
tified as the charge gap and the spin gap is determined
24540
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D̄s . Although the charge gap is not equivalent to the s
gap, there is no spin-charge separation in this phase. In
clusion, the long range excitonic order becomes a sh
ranged one and all excitations are gapped.

A residual Coulomb interaction like theg3 term in Eq.~5!
leads to the breaking of theO(4) symmetry and the mean
field theory favorsFtÞ0. Following a similar procedure, th
Lagrangian which describes the corresponding low-ly
fluctuations now consists ofLu as shown in Eq.~18! and the
O~3! nonlinears model. We have no arguments to exclu
the possibility of the appearance of theu term in the O~3!
nonlinear s model as the case of the spin-1

2 Heisenberg
chain. If au term exists, then the ground state will exhibit a
algebraic long range triplet excitonic~spin density wave! or-
der and the spin gap will vanish. On the other hand, if theu
term vanishes as the two-leg spin ladder, then the spin e
tations still have a finite gap.

VI. CONCLUSIONS AND DISCUSSIONS

In the present paper, we study the low energy physics
the undoped nanographite ribbons with zigzag edges by
glecting the electron-phonon interactions. We show that
interactions between electrons substantially change the p
ics of the partly flat bands. According to the above analy
there are two possible phases: a metallic phase with a
gap ~spin liquid! and enhanced SS correlations~region II in
Fig. 3!, and an insulating phase with a gapped spectrum~re-
gion I in Fig. 3!. Our results that there are two possib
phases are valid for both the cases of the single layer andAB

stacking.14 In the latter case, the values ofv, g, g̃, and the
exponentm in Eq. ~11! will be different from those in the
single layer. Through these parametersv, g, g̃, and m, the
material properties of the graphite ribbon determine in wh
phase this system is truly located.

To determine which one, the EI, the spin liquid, or th
gapless edge states predicted by the band theory, is
ground state of the graphite ribbon with zigzag edges,
suggest two types of experiments:~i! the measurement of th
single-particle density of states~DOS! by scanning tunneling
microscopy, and~ii ! the measurement of the uniform ma
netic susceptibility. For the EI and spin liquid, the singl
particle DOS vanishes when the energy is smaller than
spectral gap, which is distinguished from the gapless e
states predicted by the band theory, where the single-par
DOS still has a finite value at low energy. One of the distin
tions between the spin liquid phase and the gapless e
states is the temperature dependence of the uniform mag
susceptibility. At low temperature, it will exhibit an activate
behavior in the spin liquid phase due to the spin g
whereas the Curie-like behavior is expected for the gap
edge states.2

The enhanced SS fluctuations arise from the sing
Cooper-pair tunneling between two bands. It is also the
gin of the spin liquid phase with strong SS correlations
many one-dimensional two-band models as emphasize
Ref. 15. In contrast, the excitonic fluctuations are suppres
after taking into account the quantum fluctuations. This
2-5
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sults from a special feature of the broken non-Abelian sy
metry in 111 dimensions, where the corresponding nonl
ear sigma model becomes IR unstable due to the lack of
topological term.

In the usual one-dimensional two-band electron syst
the competing order of the singlet superconductor is the
terchannel charge density wave~CDW!,16 which also results
from the same interaction as theg̃ term in our Hamiltonian
~11!. The onset of the interchannel CDW requires the nea
equal electron density in the two bands. This is impossible
our case because, here, one band is empty and the oth
completely filled.

Finally, we discuss the effects of electron or hole dopi
For finite doping, the system may be described by the o
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band Luttinger liquid with a very small Fermi velocity. Fo
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