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Ground state of graphite ribbons with zigzag edges
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We study the interaction effects on the ground state of nanographite ribbons with zigzag edges. Within the
mean-field approximation, we find that there are two possible phases: the singlet supercor@8tpimse
and the excitonic insulatofEl) phase. The two phases are separated by a first-order transition point. After
taking into account the low-lying fluctuations around the mean-field solutions, the SS phase becomes a spin
liquid phase with one gapless charge mode. On the other hand, all excitations in the El phase, especially the
spin excitations, are gapped.

DOI: 10.1103/PhysRevB.66.245402 PACS nuntder73.22.Gk, 73.22-f, 73.22.Lp, 71.35-y

[. INTRODUCTION the free-fermion picture drastically. Based on a renormaliza-
tion group analysis, we propose a model Hamiltonian with

After the discovery of low-dimensional materials such asan Q4) symmetry to describe the low energy physics of this
fullerenes and carbon nanotubes, the researcls Fﬁnnet- system. A mean-field treatment of this Hamiltonian results in
work systems has been attracting much attention. The nafwo possible zero temperature phases—singlet superconduct-
ographite ribbon is one of the most simple and fundamentdnd (SS and excitonic insulatofEl) phases separated by a
fragments of thesp? network, and represents an interesting first-order transition point. For the EI phalthe singlet and
class of mesoscopic systems. In this system the boundaffiPlet excitonic order parameters can coexist due to the un-
regions play an important role, so that the edge effects ma?erlying O(4) symmetry. As a result, there is a degeneracy
influence strongly ther-electron states near the Fermi sur-for the onset of the charge density wave and spin density
face. wave ordering within the mean-field approximation. How-

There are two basic Shapes of regu'ar graphite edges_ever, in one dimension, the IOW'Iying f|UCtuati0nS around the
zigzag and armchair edgésee Fig. 1 The study of elec- mean-field solutions are so strong that the long range orders
tronic states of hydrogen-terminated graphite ribbons reveabtained by the mean-field theory are destroyed and the true
that ribbons with zigzag edges possess partly flat bands at tiggound states exhibit algebrai§ or short-rangedEl) or-
Fermi level, which correspond to the electronic states localders. Consequently, the SS phase becomes a spin liquid with
ized in the near vicinity of the edgés® In particular the ©ne gapless charge mode, whereas the El phase turns into an
highest valence band and the lowest conduction band af@sulating phase in which all excitations are gapped and the
always degenerate &ta,=, with the lattice spacinga,  ProkenO(4) symmetry is restored.
~2.46 A. (Hereafter we will sefy=1.) The localized edge The rest of the paper is organized as follows: In Sec. II,
states are of special interest because of their relatively larg&€ give a description of the system and discuss the action
contribution to the density of states at the Fermi surfacedescribing the dynamics of the flat edge states. We present
which results in the Curie-like temperature dependence of
the Pauli susceptibilifyand zero-conductance resonances in
the nanographite ribbon junctioAst was reported that zig-
zag ribbons do not undergo bond alternations along the rib-
bon axis for a reasonable strength of electron-phonon inter-
actions, because of the nonbonding character of the edge
states’ In other words, the partly flat bands are stable against
the Peierls instability. In addition, the flat edge states exist
not only in the single-layered zigzag ribbons but also in
stacked layers of zigzag ribbons in a manner of &
stacking® in which half of the carbon atoms of one ribbon
are located directly above the center of each hexagon on the
neighboring ribbons.

In this paper, we are interested in the low-energy physics
of graphite ribbons with zigzag edges. In this case, it suffices
to consider edge states only. A simple power counting indi-
cates that all four-fermion interactions are relevant operators FIG. 1. The structure of graphite ribbons with zigzag edges. The
around the free-fermion fixed poifgee Sec. I)l. Therefore, carbon atoms are located at the corners of each hexagons. The rect-
we expect that the electron-electron interactions will changangle with the dashed line is the unit cell.
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&k fermions describe the low-energy degrees of freedom.
uy (y) are real functions which satisfy the orthonormal con-
dition: [dyu,(y)up(y) = 84,. Under the operation of reflec-
tion about the line along the ribbon axis at the middle of the
ribbon, denoted by a unitary operat®, we haveRu;
=u,. (Note that this results in3=u3.)

Up to the four-fermion interactions, the most general form
of the action describing the dynamics gffermions in the

Té’k =0 imaginary-time formulation is given by

I=I0+J'drde1,

where

B do (A dk ~1 . m\ 77
o= [ o] o Bl iw oMy, @

FIG. 2. The schematic figure of the energy band dispersion near 91 5,
E=0. A, is given by Eq(2). The band indices 1 and 2 indicate the |—1:7(P1+P2) +02p1p21T 403312+ ga(N1N2+H.C).
two lowest bands. (5)

the renormalization groufRG) analysis of the action in Sec. Here Va (E)Efdxe’i'z"zwa (X), m>1 (m=N—1 for the

[ll, and propose an effective Hamiltonian which describessingle-layered graphite ribbons = 2Nt, A is an UV cutoff
the low energy physics. The mean-field theory and the derity; the momentum, and ’

vation of low-energy effective actions are given in Secs. IV
and V, respectively. Section VI is devoted to discussions and pa=Ut W

. a aaraa?
conclusions.

1
Il. MODEL SYSTEM Ja=75 Pl () wptlap, (6)

The structure of the graphite ribbon with zigzag edges and
the schematic figure of its energy band dispersion rtear i
=0 are shown in Figs. 1 and 2, respectively. The almost flat Na:zfaﬁ‘ﬂaa‘ﬂaﬂ'
bands appear within the region#2<|k|<#. For an
H-terminated single-layered zigzag ribbon, the dispersion reln Eq. (4), we have replaced—k, by k. p,, J,, andN,,
lations of the two lowest bands closeke: 7+ obtained from defined above, are, respectively, the charge density, the spin
the tight-binding model has the approximate f&¥m density, and the singlet Cooper pair in the bandj, is the
intraband interaction, and the interband interactions are de-
scribed by the density-density interactign, the exchange
interaction g;, and the singlet Cooper-pair tunnelirgy.
. . . (Note that the triplet Cooper-pair tunneling term vanishes in
whereD, =2 cosk/2), tis the hopping matrix element, and e hresent case because of the Fermi statistigs.have to
.N IS the number of zigzag lineee Fig. 1 Equation(1) emphasize that, regardless of the graphite ribbons being H
indicates that the two lowest bands are degenerate at g minated, not H terminated, single layered, or stack lay-
Fermgliplomtkzkozw. Around that point &y o)~ iZNt“‘_ ered, Eqs(4) and(5) describe the dynamics of the flat edges
—kol ™. The energy gap to the next band, as shown in - giates as long as they exist. The short distance structure only
Fig. 2, is given by affects the values of the parametetyi=1, ... ,4),v, and

D
E12p= = 2tNDY 1—7" , (1)

(N—1)7 m, which will ultimately determine in which phase the sys-
A,=4t coz{— . (20 temis located.
2N+1 To obtain the values of the couplings(i=1, .. .,4), we

Since the energy scale we are considering is much lower thagpnsider the short-ranged electron-electron interactions de-
A,, only these two lowest bands are involved and the elecscribed by the interacting Hamiltonian
tron operator can be expanded around the Fermi pgint 1
. Tl [N IS e 7 s

W ()~ Y, (U (V) + €aptidp(UY)], (3) o= | i Wi
su_ch thaty,,|0)=0, Wher§a= 1,2 is the band mdgx, and ><V(>21—>22)‘1’5(>22)‘1’a(>21)3- @)
a==*1 corresponds to spin up and down, respectivéie
assume that thg axis is parallel to the ribbon axjsThe 4 By inserting Eq.(3) into Eq.(7), we obtain
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U,(0) d\
91=U1(0),  gp=—Us(0)+ —5—, S= e AE-anE-ad,
—293=U5(0)=ga, (8 A
whereU,(q) = fdxe '9V,(x) (i=1,2), and er)\3_2)\3()\2_)\3)’ (10)

V(X3 —X >=fdy dy,uZ(y)V(X;— X U3(ys), dn
1WAl 2 1 241\)1 1 2/Y1\Y2 —4=6)\4—27\4()\1+27\2).

dl
Vz(xl—x2)=f dy,dy,u (yq)us(yy) Equation (10) is solved numerically up to a scalé, at
which point the largest coupling,,=max\;(1*)} satisfies
X V(X1 X2)U3(Y2)Ua(Y2). U<Amax<1, whereU=A"“cU/v. This allows us to ignore

. 3 . . ~
Especiélly efor a Hubbard-like interactionV(x;—x5) T}eo b;grf;?rgﬁ; ﬁ;ﬁ?;?gg&g;g?y? e(;'thiq;gr%ﬁ(.)? :Jl arge
=V05(x1—>§12), we haveg,=U=—2g,=—20;=9gs Where | pehaviors of Eq(10). We find that fore>0, A, and A,
U=V,[dyuy(y). We see thagj;,g,>0 andg,,g3<0 when  pecome divergent first while the value of approaches zero
the interactions between electrons are repulsive. and that of\; remains small whei , ;= O(1).

The symmetries of the actiohare the charge (1) [de- Based on this analysis, we propose that the low-energy
noted by U(1)] where they fermions transform as/;,  physics of the graphite ribbons with zigzag edges is de-

—e'yy, and g, —e "y, ; the spin SW2); andZ, (par-  scribed by the model Hamiltonian
ticle hole, where they fermions transform ag; < ¢», . In

this paper, we restrict ourselves to the undoped case. The dk . _
chemical potential term breaks ti¥®, symmetry and thus H=Jﬁek¢;a(k) ¢aa(k)+J dx[g(N;N,+H.c)
will not be generated by renormalization.

—9p1pal, (11)
l1l. RENORMALIZATION GROUP ANALYSIS

whereg,g>0 ande,=v|k|™. The symmetry of H is (1)

X SU(2)X SU(2)XZ, where the SU(2X SU(2) symmetry
corresponds to the independent spin rotations in each band.
The enlarged symmetrySU(2)— SU(2)xXSU(2)] arises
from the suppression of thg; term under the RG transfor-

k—kis, @©—=wS™ Yan—Ean (9) mation. The values off andg depend orv and the initial

) e ) values ofg;’s (i=1, ...,4). Sec. IV, we shall treat the cou-
with g_—s N Under the R(% trar?fzormgthrEq. (9)], the pling constantsy and g as free parameters and study the
couplmgs L trgnsfor_m ay;i =S g (i=1,....4). We \Possible phases of Hamiltonidhl).

see that in one dimension all couplings are relevant and have

the same scaling dimension around the free-fermion fixed

point | 5. To tell which terms dominate the low energy phys- IV. MEAN-FIELD THEORY
ics, a controllable approximation to organize the quantum

fluctuations is necessary. Here we adopt thexpansiorf. singlet Cooper-pair tunneling between two bands and favors
That is, we extend the spatial dimension from Htnd then 4,4 singlet superconductor when it becomes divergent,

usee=d,—d as the expansion parameter to compute the RGwhereas a strongy term enhances the fluctuations of
functions, whered ,=m is the upper-critical dimension. For @

sl and s Sk he  xpansion may e el SIS ol pars o exctoric oderng e e 1
For largerN, it is hoped that there is no qualitative difference : P y 9 b

: . . : excitonic order parameters according to the angular momen-
:c?ni[i(r;ysmal properties from small to largeN as long a\ is tum it carries. Motivated by this observation, we define the

Next we would like to examine the quantum fluctuationst"OWIng order parameters:
up to the one-loop order. Defining the dimensionless cou- -
plings N=A"¢cg;/v (i=1,...,4), where c Osa(X) = gthat (X) ha (%),
=Sy_1/[2(2m)N"1] and Sy is the area of al-dimensional
sphere, and calculating the one-loop corrections to the cou- R g
pling constantg (i=1, . ..,4), weobtain the one-loop RG Ps(X) =15 €aptralX) P25(X), (12
equations within thes expansion:

We first show thatL, is a relevant perturbation to the
free-fermion actionly. By integrating out the fast modes
with A/s<|k|<A, we find thatl  is a fixed point of the RG
transformation

The g term in Hamiltonian(11) describes the process of

dng A A g
sz)\l_)\l_)\‘“ (I)t(x):Efa)\l/fZ)\(X)(o')a,B'r//lﬁ(x)-
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With the help of the Hubbard-Stratonovich transformation, I I 3
the corresponding action of the Hamiltonighl) in the A 9/9
imaginary-time formulation can be written as

FIG. 3. The mean-field phase diagram. Region | is the El phase

do dk. ; ; TN :
_ and region Il is the SS phase. The poiki{g=gq) is a first-order
27 27 l//a“( lot e l/fa“ f d7dX(Ly+ Lot La), transition point.
(13
where actions which are neglected in Hamiltonigki) will lift this

degeneracy. A residual Coulomb interaction like theterm
. . . favors the triplet excitonic order, while the electron-phonon
Elzaoslosz— Os14212, — Oty 4h1 tH.C., interactions favor the singlet excitonic ord@mote that na-
ively the hidden symmetry of the EI phase is;(lU)
5 X O(4), where the (1) symmetry corresponds to the
Lo==|D 2= (1D, p0h125+H.C), transformation,,— €'?i4,, . However, it is not a symme-
g try of Hamiltonian(11) and we will see later that after taking
into account the fluctuations the value @f cannot be arbi-
trary.

The pointg=g corresponds to the first-order phase tran-
sition because at that point the ground-state energies of the

The mean-field treatment of the acti®{Eq. (13)] isto  SS and El phases are equal and the corresponding order pa-
assume the presence of bosonic mean fields, neglect the flu@meters do not vanish. Thus the values of the order param-
tuations of order parameters, and finally, integrate out theters change discontinuously from the SS to El phases, or
fermionic degrees of freedom to derive the effective potenvice versa. This is consistent with the RG flow obtained from
tial. Now we consider the mean-field anSi@%a:<ésa), the e-expansion. Since the RG equatid®) does not exhibit

(Ps:(‘i)s), and(I)tz((i)t). The effective potential is given by 21 IR stable fixed point, the phase transition cannot be the
second-order one. To sum up, the zero-temperature phase

1 2 diagram within the mean-field approximation is shown in
V= a(osloser C.c.)+g(|<1>s|2+ |®|?) Fig. 3.
F(w,k)

do dk
[ o gk [Rek) oweneRer N
27 27 | Fo(w,k) To examine the stability of the mean-field solutions ob-
whereF o(w,k) = (w?+ €2)2, and tained gbove, we have to consider thefluctuatipns around the
mean-field ground state. In the SS pha3g, andOg, can be
F(0,k)=(0?+e)?+]|050%5+ATA|?+ (0?+ €0)(|0s1|>  parametrized ay =A% and O,=Ae %2, On the
+0,[2+ 24%A other hand, the excitonic order parameterbecomes the
s2 )- ordinary bosonic field. Inserting these into acti¢i8) and
Here A= (dg,d,)" is the excitonic order parameter. In Eq. integrating out the fermionic fields andl, we obtain the

2 . “
53:~§|‘I’t|2_(‘1’:' Entbor(0) optbiptH.C).

V. LOW-ENERGY EFFECTIVE ACTION

(14

(14), we have seV=0 for free fermions. low-energy effective theory in the SS phase,
The ground state is determined by the minimum of the -
effective potentialV and the solutions of the mean-field Ko 5 )
equations are given by (197¢+) tos(9xd )|+ 5 U:( b-)
Ogu=0%=Ag'%, A=0, (15
where AS:Cmvfll(mfl)gm/(mfl) with Cm:am/(m—l) and +vs((9x¢_)2 + uoCOoSeh_ (17
am=B[(1/2m,(1/2)—(1/2m)]/(4mr), and
. —+ =
A=Agel%, O,=0=0g,, (16) where b=p1x o, Kg= KO [(m—1)/2]Va,by,, andvg

=ve=myb/aw ™AL~ " and b (A, /AT (M1

where A, is a real vector with the fixed lengthA. is a nonuniversal constant. The, -field carries charge two

AgA0=Cmv‘1’(m‘1)§m/(m‘l). HereB(x,y) is the beta and spin zero while the quantum numbersdoaf are Q=0
function. Solutiong15) and(16) correspond to the SS and EI and §=0. The cosine term inCs opens a gap in thep_
phases, respectively. Especially in the El phaBg#0 can  sector becausé,>(87) 1. The charge (1) symmetry for-
coexist withd,#0. It is well knowr?"!°that the singlet®.)  bids the terms like co@.) or sin(3¢. ). Therefore, thep..
and triplet @) excitonic orders are accompanied by thesector remains gapless. After taking into account the fluctua-
appearance of charge and spin density waves. In our case, ttiens, the mean-field gap; becomes the spin gap and the SS
onset of both ordering is degenerate on account ofX(w) phase is, in fact, a spin liquid phase with one gapless charge
or SU(2)x SU(2) symmetry of actioril3). The weak inter- mode, which is similar to th&€1S0 phase in the two-leg
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Hubbard Iadde}‘l In addition, the |0ng range SS order turns KS' A|th0ugh the Charge gap is not equiva|ent to the Spin

into an algebraic one due to the gapless-field, and the SS  gap, there is no spin-charge separation in this phase. In con-
fluctuations are enhanced ComparEd with the free fermlonSdusion, the |0ng range excitonic order becomes a short-

In the EI phase, the excitonic order param&'kecan be ranged one and all excitations are gapped
written as:A=A de'’ where® is a real vector satisfying A residual Coulomb interaction like thg, term in Eq.(5)
®Td =1 and transforms with the fundamental representationeads to the breaking of th®(4) symmetry and the mean-
of O(4), whereasOy, and O, are ordinary bosonic fields. field theory favorsb,+ 0. Following a similar procedure, the
The gquantum numbers of thiefield areQ=0 andS=0 and Lagrangian which describes the corresponding low-lying
the ones carried by th& sector consist of@,S)=(0,0) and  fluctuations now consists @, as shown in Eq(18) and the
(0,2). The low-energy effective theory in this case can beO(3) nonlinearoc model. We have no arguments to exclude
obtained by inserting the above parametrization into actiorthe possibility of the appearance of tifeterm in the @3)
(13) and integrating out the fermionic fieldd, and O,  honlinearo model as the case of the spinHeisenberg
and then we have chain. If ad term exists, then the ground state will exhibit an
algebraic long range triplet excitonispin density waveor-
der and the spin gap will vanish. On the other hand, if ¢he
term vanishes as the two-leg spin ladder, then the spin exci-
tations still have a finite gap.

SE|: f deX(ﬁg"’ ;Cq,),

where
Ki1l
5625[_((979)2+ve((9xg)2 +Ncog26), (18 VI. CONCLUSIONS AND DISCUSSIONS
v
° In the present paper, we study the low energy physics of
pol 1 ) ) the undoped nanographite ribbons with zigzag edges by ne-
Lo=7| 5= (9:P)"+vo(0xP)7|. (19 glecting the electron-phonon interactions. We show that the
° interactions between electrons substantially change the phys-
Here K=po=2(m— 1)\/amEm, Ve=Uo ics of the partly flat bands. According to the above analysis,

— 1/m A 1— (Lim) Y 1-(Um)s 1 i there are two possible phases: a metallic phase with a spin
=MVbm/am A  andby(A,/A.) >11sa gap (spin liquid and enhanced SS correlatiofregion Il in

Fig. 3), and an insulating phase with a gapped specifian
gion | in Fig. 3. Our results that there are two possible
phases are valid for both the cases of the single layeAdhd

nonuniversal constant. In E¢L8), we keep the leading co-
sine term only. Becausé> (21) "1, the cosine term i, is

a relevant operator and théesector acquires a gap. In addi-
tion, () is pinned at some valué, which depends on the "y -
short distance physics. The dynamics of thesector is de- Stacking.” In the latter case, the values of g, g, and the
scribed by theéd(4) nonlinears model. In general, there can &xPonentm in Eq. (11) will be different from those in the

be two sources to change the low-energy behavior of theingle layer. Through these parametersg, g, andm, the
nonlinearo model. The first one is the existence of a termmaterial properties of the graphite ribbon determine in which
linear in 9,®, which follows from the analysis of the equa- phase this system is truly located.

tions of motion(EOM) and Ward identitie$? As discussed in To determine which one, the El, the spin liquid, or the
Ref. 12, the existence of this term relies on the nonvanishingapless edge states predicted by the band theory, is the
expectation values of the corresponding conserved chargegfound state of the graphite ribbon with zigzag edges, we
i.e., (J,)#0 in the present case. B¢f,)#0 implies the suggest two types of experimen(s:the measurement of the
long range ferromagnetic order and it is forbidden i1  single-particle density of stat¢®OS) by scanning tunneling
dimensions by the Mermin-Wagner-Coleman theoféfhe  microscopy, andii) the measurement of the uniform mag-
second one is the appearance of théerm, which results netic susceptibility. For the El and spin liquid, the single-
from the topological consideration and has no effects on th@article DOS vanishes when the energy is smaller than the
EOM. In our casefq does not contain such a term becausespectral gap, which is distinguished from the gapless edge
the homotopy groupl,[O(4)]=0. As a result, in the long States predicted by the band theory, where the single-particle
wavelength limit, L4 starts from the second derivatives of DOS still has a finite value at low energy. One of the distinc-
space and time as shown in EH49). Therefore, the broken tions between the spin liquid phase and the gapless edge
O(4) symmetry is restored and the spectrum correspondingtates is the temperature dependence of the uniform magnetic
to thed sector is organized as ti@(4) multiplets. In addi-  Susceptibility. At low temperature, it will exhibit an activated
tion, the corresponding excitations acquire an energy gapehavior in the spin liquid phase due to the spin gap,

which is given by whereas the Curie-like behavior is expected for the gapless
edge state$.
Ag=cA e ™o, (20) The enhanced SS fluctuations arise from the singlet

_ ) Cooper-pair tunneling between two bands. It is also the ori-
where c=0(1) is a non-universal constant. Because theyin of the spin liquid phase with strong SS correlations in
charge excitations in this phase are associated with the femany one-dimensional two-band models as emphasized in
mion fields andA;<A., the mean-field gap. can be iden- Ref. 15. In contrast, the excitonic fluctuations are suppressed
tified as the charge gap and the spin gap is determined bgfter taking into account the quantum fluctuations. This re-
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sults from a special feature of the broken non-Abelian symband Luttinger liquid with a very small Fermi velocity. For
metry in 1+ 1 dimensions, where the corresponding nonlin-lightly doping, the mean-field theory is supposed to be ro-
ear sigma model becomes IR unstable due to the lack of thigust. Therefore, our results are not affected qualitatively. Ac-
topological term. cording to the analysis of Ref. 17 on the doped El, there may
In the usual one-dimensional two-band electron systempe an inhomogeneous state between the El and the Luttinger
the Competlng order of the Slnglet Superconductor is the |nhqu|d upon |ncreas|ng the d0p|ng concentration.
terchannel charge density wa(@DW),'® which also results
from the same interaction as tigeterm in our Hamiltonian
(12). The onset of the interchannel CDW requires the nearly
equal electron density in the two bands. This is impossible in
our case because, here, one band is empty and the other isY.L.L. would like to thank M.F. Lin for discussions and
completely filled. Global fiberoptics, Inc. for financial support. The work of
Finally, we discuss the effects of electron or hole doping.Y.-W.L. was supported by the National Science Council of
For finite doping, the system may be described by the onefaiwan under grant NSC91-2112-M-029-012.
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