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Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal

Hiroshi Ajiki, Tetsuya Tsuji, Kiyohiko Kawano, and Kikuo Cho
Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, J
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The structures of optical spectra of a semiconducting sphere are studied over a wide range of radius. The
calculation is based on a ‘‘microscopic nonlocal theory’’ and we reformulate the theory to simplify the proce-
dure. The nonlocal theory enables us to analyze correspondences between spectral peaks and exciton states
directly, decompose a scattered field into an exciton contribution and the Mie scattering, and provide complex
eigenenergies of the exciton-light coupled modes. The imaginary part of the eigenenergy gives the radiative
decay width of the mode, and for each mode there exists an optimal radius to enhance the width. When the Mie
scattering becomes comparable to the scattering by exciton, there appears a dip structure in the optical spectra
around the energy of the exciton-light coupled mode.
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I. INTRODUCTION

Recent progress in fabrication techniques makes it p
sible to design both material excitations and radiation fie
Through the microscopic designing of materials, one c
control the energy level scheme and the corresponding w
functions of the excited states. At the same time, the ra
tion field in the matter acquires different spatial structure
typical case of which is the formation of cavity modes due
the arrangement of materials. These aspects lead us to e
the controllability of radiation-matter interaction at a micr
scopic level. Thus the interaction of light with the excitatio
in various nanostructures, particularly excitons in semic
ductors, has attracted considerable attention.

In order to understand the energy level scheme and
corresponding wave functions of a confined exciton, we n
to consider the confining potential, the electron-hole (e-h)
exchange interaction, and the effect of background polar
tion which leads to the bulklike screening of the Coulom
interaction and the mirror image effect due to surface cha
density. These features should exist in any confined sys
but it is not easy to take all of them into theoretical acco
for a general shape of confinement. An exception is the c
of spherical confinement treated by us.1,2 The detailed energy
scheme with the assignment of longitudinal (L), transverse
(T), andL-T mixed characters is now available for arbitra
size of weak confinement. With such a precise knowledg
hand, we are now able to accurately study the radiati
matter interaction for spherical confinement, such as co
spondences between quantized energy levels and spe
resonances, theT andL characters of each spectral peaks,
radiative shifts and widths of the exciton levels, the interf
ence between the Mie scattering due to the background
larization and the exciton scattering, and so on.

So far, the optical spectra of an exciton in a spheri
nanocrystal were calculated according to the macrosc
scheme with the assumption of additional boundary con
tion ~ABC! as well as the Maxwell boundary conditions.3,4

The effect of thee-h exchange interaction is taken into a
count in terms of the coupling of induced polarization w
depolarization field. The adopted ABC is the Pekar type
which the exciton polarization arising from the superposit
0163-1829/2003/66~24!/245322~12!/$20.00 66 2453
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of bulk polaritons vanishes at the spherical boundary.5 In
these calculations, the size dependence of the spectral p
was studied for small radius, where the long wavelength
proximation ~LWA ! was valid, and they clarified a certai
experimental feature. However, this method does not al
to make detailed correspondences between the calcu
peaks and the exciton levels with respect to theL, T, and/or
L-T mixed characters, and the radiative shifts and widths
the levels.

In order to overcome these difficulties, we can use a
croscopic nonlocal response theory6 based on the calculation
of the energy level scheme mentioned above. In this fram
work, we determine the matter polarization and electrom
netic ~EM! field self-consistently from the microscopi
knowledge of the system such as the matter energy le
and the accompanying matrix elements of induced dip
density~or polarization!. The scattered EM field is calculate
by convoluting the radiation Green’s function with the se
consistently determined polarization, which enables us
study explicitly the correspondences between the spec
peaks and the exciton states.

Since the nonlocal theory gives the exciton scattering,
method is suitable to decompose the total scattered field
the contributions of exciton~or resonant! and background~or
nonresonant! polarizations. The latter of which is the wel
known Mie scattering from a dielectric sphere,7 if the non-
resonant polarization is assumed to be described by a
stant background susceptibility. In the total scattering cr
section, these two contributions are expected to make in
ference between them. For a small radius sphere, the exc
scattering dominates and the Mie scattering is weak, so
the interference is not remarkable. As the radius becom
larger, the contribution of the Mie scattering gets strong
which results in the interference with the exciton scatteri

In the original version of the nonlocal theory, we use theT
component of the Maxwell Green’s function. Although th
extraction of theT component from the full Green’s functio
is simple in some cases, it becomes a tedious task in m
geometries with surfaces and/or interfaces including the c
of a sphere. In this work, we exploit a revised form of t
nonlocal theory, where the full Green’s function can be us
without splitting it intoT andL components.
©2003 The American Physical Society22-1
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In terms of this revised scheme, we study the linear o
cal spectra for a wider range of size than that studied bef
The spectral resonances can be precisely analyzed in t
of the complex eigenenergiesV j5v j1 iv j8 ( j 51,2, . . . ) of
the exciton-light coupled modes, which are obtained fr
the roots of the equation detuSu50, where

Smn5~Em02\v!dmn1Ãm0,0n~v!. ~1!

In this expression,Em0 is the excitation energy of the matte
and Ãm0,0n(v) is the interaction energy between the tw
components of the induced polarization accompanying
excitations 0→m and 0→n.

The original and revised frameworks of the nonloc
theory provide the same results. The energy termsEm0dmn

1Ãm0,0n contain bothe-h exchange interaction and radiativ
correction~the radiative shift and width!. The difference be-
tween the two frameworks is the term taking care of thee-h
exchange interaction, which is included inÃm0,0n in the new,
and inEm0 in the original version. A different type of analy
sis of the exciton-light coupled modes was made in Ref. 3
terms of the scattering phase, which however is restricte
the case of small radius satisfying the LWA. In contrast,
merit of the nonlocal theory is the absence of a restriction
sample size.

This paper is organized as follows. In Sec. II we reform
late the nonlocal theory. The reformulation makes the ca
lation much simpler in the present case. In Sec. III exci
states confined in a spherical semiconductor are briefly s
marized. Including thee-h exchange interaction, we ca
classify exciton states into theL, T, andL-T mixed modes.
The oscillator strength of each classified level is found.
Sec. IV the scattering cross section is calculated based o
reformulated nonlocal theory. We decompose the cross
tion into scattering by exciton, Mie scattering, and their cro
term, and discuss the contribution of exciton to the to
cross section. The exciton-light coupled modes are stud
comprehensively by solving the secular equations in Sec
A summary is given in Sec. VI.

II. REFORMULATION OF NONLOCAL RESPONSE
THEORY

In the study of the radiation-matter interaction, there
two approaches with respect to the choice of matter Ham
tonian and the EM field interacting with material excitatio
in the other part of the Hamiltonian.8 In one case~A!, one
takes the matter HamiltonianHA with full Coulomb interac-
tion and the transverse~T! components of the Maxwell field
In the other case~B!, the matter HamiltonianHA2HPP ,
whereHPP is the Coulomb interaction among the induc
charge densities, and the full Maxwell field. The full Ma
well field contains the longitudinal~L! as well as theT com-
ponents.

The original formulation of the nonlocal response theo6

is made according to the scheme~A!, which is also appli-
cable to the nonlinear response.9 The central factors deter
mining the response are the excitation energies of matter
the radiative corrections. The latter is the interaction ene
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among the induced polarizations via transverse, i.e., vacu
EM field, the Green’s function for which is known in
simple form. In this framework, all the transitions of th
matter system can be formally included as dynamical v
ables. However it is usual to treat only the resonant com
nents explicitly and to regard the nonresonant part as
background polarization to be described in terms of a c
stant background susceptibility.

The effect of the background polarization can be ren
malized into the EM Green’s function, by which one ca
evaluate the scattered field via the radiative shifts and wid
of matter excitation energies.10 This procedure works well in
a simple case such as a slab geometry with normal incide
where only theT components of EM field is relevant. How
ever, it becomes complicated when the background polar
tion contains bothT and L components, which makes
rather tedious to extract theT component of the EM Green’s
function to calculate the radiative correction. A simpler w
to circumvent this situation is to adopt the scheme~B! men-
tioned above.

In the scheme~B!, the interaction energyHPP can be
paraphrased as the interaction between matter polariza
and the depolarization field due to induced polarizatio
Since the full EM Green’s function describes the propagat
of both theL andT fields, the interaction among the induce
polarizations via EM field represents both the radiative c
rection~via theT field! andHPP ~via theL field!. For semi-
conductors,HPP has another interpretation, i.e., the electro
hole exchange interaction.

Thus, the two schemes~A! and~B! provide different ways
to look at matter and EM field, either as a sum ofHA plus the
radiative correction viaT modes EM field, or as a sum o
HA2HPP plus the interaction among the induced polariz
tions via full Maxwell field ~with T and L components!.
Their equivalence can be explicitly shown only for line
response,8 but it is enough for the present purpose.

In the electric dipole representation, the interaction of e
citon and EM field is written as

H int52E drP̂~r !•E~r !, ~2!

whereP̂ is the polarization operator of the matter andE is
the Maxwell electric field including bothT and L compo-
nents.

In the linear response theory, the induced exciton po
ization is given by

Pex~r ,v!5E dr 8x~r,r 8;v!•E~r 8!, ~3!

wherex(r,r 8;v) is the susceptibility tensor

x~r,r 8!5(
j

^0uP̂~r !uj&^juP̂~r 8!u0&
Ej2\v2 ig

, ~4!

with g being a phenomenological damping constant. Theu0&
denotes the ground state of electron system, anduj& repre-
sents the exciton states obtained without thee-h exchange
2-2
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interaction. The non-resonant term of the susceptibility
assumed to be described by the background dielectric
stant inside a sample.

From the Maxwell equations we get

“3“3E~r !2q2ebg~r !E~r !54pq2Pex~r !, ~5!

where ebg is the background dielectric constant andq
5v/c. The solution of this equation is given by

E~r !5E0~r !1E dr 8G~r,r 8!•Pex~r 8!, ~6!

whereE0 is the solution of Eq.~5! for Pex(r )50, and the
dyadic Green’s functionG(r,r 8) satisfies the equation

“3“3G~r,r 8!2q2ebg~r !G~r,r 8!54pq2Id~rÀr 8!,
~7!

with I being the identity tensor. The Green’s functions
simple inhomogeneous media such as single or multila
structures of slabs, cylinders, and spheres, are given in
11. The fieldE0 can be written as the sum of an incident fie
Ei and the fieldEbg scattered by the background dielectr
ebg(r ).

Combining Eqs.~3! and ~6!, we have a self-consisten
equation for the total fieldE as follows:

E~r !5Ei1Ebg1E dr 8E dr 9G~r,r 8!•x~r 8,r 9!•E~r 9!

~8!

The inner products of Eq.~8! with ^juP̂(r )u0& integrated
over r lead to the linear algebraic equations for the n
variablesFj as

~Ej2\v2 ig!Fj1(
j8

Ãjj8Fj85Fj
(0) , ~9!

with

Fj5
1

Ej2\v2 igE dr ^juP̂~r !u0&•E~r !, ~10!

Fj
(0)5E dr ^juP̂~r !u0&•@Ei~r !1Ebg~r !#, ~11!

Ãjj852E drE dr 8^juP̂~r !u0&•G~r ,r 8!•^0uP̂~r 8!uj8&,

~12!

where Eq.~4! is used.
The factorÃjj8 represents the interaction between the

duced polarizationŝ0uP̂(r )uj& and ^0uP̂(r )uj8& via the EM
field, which contains both radiative correction and thee-h
exchange interaction. Thee-h exchange interaction, which i
excluded fromEj , enters inÃjj8 via the longitudinal part of
the Green’s function in Eq.~12!. The interaction via trans
verse EM field contributes to the radiative correction, i.
radiative shift and width of each spectral peak.

Using the solutionFj of Eq. ~9!, the scattered field by
excitonEex is obtained from
24532
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Eex~r !5(
j

FjE dr 8G~r,r 8!•^juP̂~r 8!u0&. ~13!

For the case of three-dimensional confinement, the scatte
cross sections is given by

s5 lim
r→`

E r 2dV
uEbg~r !1Eex~r !u2

uEi~r !u2
, ~14!

whereV is the solid angle.

III. EXCITON STATES

We consider the exciton states confined in a spher
semiconductor with radiusa in the weak confinement re
gime. We give the background dielectric constants

ebg~r !5H e1 for ur u,a,

e2 for ur u.a.
~15!

The difference of the background dielectric constants le
to the interface~surface! charge density which acts as th
image potential in thee-h Coulomb and exchange interac
tions. In the weak confinement regime, the relative motion
exciton is approximated by that in a bulk crystal. The ima
potential affects thee-h Coulomb attraction term in the re
gion from the interface to the depth of the effective Bo
radius.12 This leads to the distortion of the exciton relativ
motion near the surface, which is reflected on the form of
ABC to be used.12 For the excitons in CuCl to be considere
later for numerical calculation, this effect is safely neglect
However, the image potential on thee-h exchange term pro-
vides comparable matrix elements to the bulk case beca
the e-h exchange interaction has long-range character e
in the weak confinement regime as shown in Eq.~19!.

The e-h exchange interaction can be rewritten as t
dipole-dipole interaction of exciton polarizations13–15 or as
the Coulomb interaction between induced charge densiti8

It is the part of Eq.~12! which contains theL-component of
EM Green’s function. Its explicit form appears later, i.e., E
~19!. It gives the polarization-dependent energy of the lon
tudinal (L), transverse (T), and/orL-T mixed modes.

For the description of the induced polarization, we choo
the following bases as eigenfunctions of the confined cen
of-mass~c.m.! motion, which are given by1,2

QnJlM~r !5A 2

a3

j l~knlr !

j l 11~knl!
YJlM~V!, ~16!

where j l(x) is the spherical Bessel function of orderl and
knl5knla is the nth zero of j l(x). The bases satisfy the
boundary condition that the amplitude becomes zero at
spherical boundary. The induced polarization associated w
this basis is given byPj5mQj , wherej5(n,J,l ,M ). The
intensitym of the polarization relates to the longitudinal an
transverse splitting energyDLT of a bulk exciton asm2

5e1DLT/4p.
The functionsYJlM are the vector spherical harmonics.16

They are the eigenfunctions of the sum of the angular m
2-3
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mental and l8 (u l8u51), the latter of which (l8) is related
with the unit polarization vector. Thus the functionsYJlM are
written as

YJlM~V!5 (
m52 l

l

(
s521

1

^ lm1su l1JM&Ylm~V!es , ~17!

where ^ lm1su l1JM& is the Clebsch-Gordan coefficien
Ylm(V) the spherical harmonics, and$es% the spherical unit
vectors

e6157
1

A2
~ex6 iey!, e05ez . ~18!

The quantum numbersJ andM are the total angular momen
tum and its projection, respectively. ForJ>1, l runs from
J21 to J11 and forJ50 the allowed value ofl is only 1.

In terms of the bases setQj , the matrix elements of the
Hamiltonian are given by

Hjj85
\2knl

2

2Mex
djj81E drE dr 8@2“•Pj~r !#* F 1

«1

1

urÀr 8u

1V im~r,r 8!G @2“•Pj8~r 8!#, ~19!

whereMex is a translational mass of exciton. The first ter
denotes the kinetic energy of the c.m. motion, and the sec
term represents thee-h exchange interaction. TheVim in the
square bracket gives the image-potential effect.

The Hamiltonian of Eq.~19! has a block-diagonal form
with respect toJ andM because of the spherical symmetr
The resulting exciton energy is independent of the projec
M, i.e., each level has (2M11)-fold degeneracy. The exci
ton states are classified into theT, L, and L-T mixed
modes.1,2 The exciton states withJ5 l>1 are theT modes
whose energies are\2knJ

2 /2Mex while the states with (J
50,l 51) are the L modes with energies\2kn1

2 /2Mex

1DLT . All the other states constituted from$ l 5J61% sub-
space belong to theL-T mixed modes whose energies a
obtained from the numerical diagonalization of Eq.~19!.

Figure 1 shows the energy levels of exciton as a funct
of radius. Solid lines represent theL-T mixed modes with
J51. Dotted and dashed lines correspond to theT and L
modes, respectively. The relative dielectric constante1 /e2
55.6 corresponds to the situation that exciton is confined
a spherical CuCl crystal and its surrounding is vacuum. T
parameters for CuCl are chosen asDLT55.7 meV andMex
52.3me with me being the electron mass. With increasin
the radius, theL-T mixed modes approachL or T modes,
which was confirmed by calculating the divergence and
tation of polarization of each level.1,2

Oscillator strengths calculated from a formula in Ref.
are also indicated by solid circles whose sizes are pro
tional to the oscillator strengths. Although the lowest lev
has the largest oscillator strength for small radius, the os
lator strengths are concentrated at the levels around a spe
24532
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energy for large sphere. The specific energy coincides w
that of the surface mode in the infinite mass limit, which
given by

EJ
surf5E01

J

J1~J11!~e2 /e1!
DLT . ~20!

This feature was first reported by Ekimovet al., using the
phase analysis of scattered fields.3 It is noted that the oscil-
lator strength becomes zero for theT-mode andL-mode
states.1,2

IV. SCATTERING CROSS SECTION

From Eq. ~14! it is seen that the total scattering cro
section consists of the exciton contributionsex, Mie scatter-
ing sMie , and their cross termsex-Mie . They are defined as

sex5 lim
r→`

E r 2dV
uEex~r !u2

uEi~r !u2
, ~21!

sMie5 lim
r→`

E r 2dV
uEbg~r !u2

uEi~r !u2
, ~22!

sex-Mie5 lim
r→`

E r 2dV
2Re@Eex~r !Ebg* ~r !#

uEi~r !u2
. ~23!

SincesMie is given in some textbooks~for example, see Ref
17!, we derive the expressions ofsex andsex-Mie , and show
numerical results of the present method.

FIG. 1. Energy levels~lines! and oscillator strengths~solid
circles! of exciton confined in a spherical CuCl nanocrystal as
function of radius. Solid, dotted, and dashed lines represent theL-T
mixed (J51), T (J5 l 51), and L (J50,l 51) modes, respec-
tively. The oscillator strengths per volume are proportional to
size of closed circles. The vertical dotted lines denote the s
where scattering cross sections are calculated in Fig. 2. The ene
of L, T, and the surface modes in the infinite-mass limit, are in
cated byEL , ET(5E0), andE1

surf , respectively.
2-4
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A. Expressions ofsex and sex-Mie

Let us consider elastic light scattering by exciton us
the reformulated nonlocal theory. Since the exciton polari
tion exists in the sphere, the required Green’s function sa
fying Eq. ~7! with the background dielectric constant E
~15!, is given by

G~r,r 8!5
4p i

e1
k1

3(
l 51

`
1

l ~ l 11!
@ml~r,r 8!1nl~r,r 8!#

2
4p

e1
r̂ r̂ 8d~r2r 8!, ~24!

where r̂ is the unit vector in the radial direction.11

In the Green’s function,ml(r,r 8) provides the TE mode o
EM field, while nl(r,r 8) and the last term relate to the TM
mode. Theml(r,r 8) andnl(r,r 8) are given by

ml~r,r 8!5~“3r !~“83r 8!Fl
TE~r,r 8!Al~V,V8!, ~25!

nl~r,r 8!5
1

ki
2 ~“3“3r !~“83“83r 8!

3Fl
TM~r,r 8!Al~V,V8!, ~26!

where ki ( i 51,2) is the wave number for inside (k1) or
outside (k2) of the sphere. Ifr appears inside~outside! of the
sphere, the wave numberki indicatesk1 (k2). The functions
Al(V,V8) andFl

TE(TM)(r,r 8) are defined as

Al~V,V8!5 (
m52 l

l

Yl
m~V!Yl

m* ~V8!, ~27!

Fl
TE(TM)~r,r 8!

5H gl
TE(TM)~k1r .! j l~k1r ,! ~ ur u,ur 8u,a!,

T12,l
TE(TM)hl

(1)~k2r ! j l~k1r 8! ~ ur u.a,ur 8u,a!,

~28!

wherer , is the smaller ofr andr 8, and conversely forr . .
The functiongl

TE(TM)(x) is defined as

gl
TE(TM)~x!5@hl

(1)~x!1R12,l
TE(TM) j l~x!#, ~29!
24532
-
s-

wherehl
(1)(x) is thel th spherical Hankel function of the firs

kind. The R12,l
TE(TM) and T12,l

TE(TM) represent the reflection an
transmission coefficients for light propagating from the
side to the outside of the sphere, respectively, and are g
by

R12,l
TE 5

Ae1j l~k2!j l8~k1!2Ae2j l8~k2!j l~k1!

Ae2c l~k1!j l8~k2!2Ae1c l8~k1!j l~k2!
, ~30!

R12,l
TM 5

Ae2j l~k2!j l8~k1!2Ae1j l8~k2!j l~k1!

Ae1c l~k1!j l8~k2!2Ae2c l8~k1!j l~k2!
, ~31!

T12,l
TE 5

iAe2

Ae2c l~k1!j l8~k2!2Ae1j l~k2!c l8~k1!
, ~32!

T12,l
TM 5

i e2 /Ae1

Ae1c l~k1!j l8~k2!2Ae2j l~k2!c l8~k1!
, ~33!

with c l(x)5x j l(x), j l(x)5xhl
(1)(x) being the Riccati-

Bessel functions andk1,25k1,2a.
The vector functions in Eqs.~25! and ~26! have the form

of “3@rzl(kr)Ylm# and “3“3@rzl(kr)Ylm#, where
zl(kr) represents spherical Bessel functionsj l(kr) or
hl

(1)(kr). These vector functions can be transformed into
different forms proportional to the vector spherical harmo
ics YJlM . The transformations, which are discussed in A
pendix A, are useful to calculate theÃjj8 of Eq. ~12! in the
bases of Eq.~16! because of the orthonormal relation for th
vector spherical harmonics.

Using the transformation we find immediately that t
T-mode exciton (J5 l ) couples with the TE mode of the EM
field. On the other hand, theLT-mixed mode of exciton
couples with the TM mode of the EM field. Thus we ca
discuss the exciton-light interaction for TE and TM mod
independently. TheL-mode exciton does not couple with th
transverse EM field.

We denote the interaction among the exciton polarizati
via EM field Ãjj8 as ÃnJlM;n8Jl8M

TE(TM) for the TE ~TM! modes.

The calculated results ofÃjj8 are summarized as follows:
ÃnJJM;n8JJM
TE

52DLT@2ik1
3a~nJ!a~n8J! j J~k1!gJ

TE~k1!1b~nJ!dnn8#, ~34!

ÃnJ,J11,M ;n8J,J11,M
TM

52DLTH 2ik1
3 J

2J11
a~n,J11!a~n8,J11! j J11~k1!gJ11

TM ~k1!1F2~J11!1
J

2J11
b~n,J11!Gdnn8J ,

~35!

ÃnJ,J21,M ;n8J,J21,M
TM

52DLTH 2ik1
3 J11

2J11
a~n,J21!a~n8,J21! j J21~k1!gJ21

TM ~k1!1F2J1
J11

2J11
b~n,J21!Gdnn8J ,

~36!
2-5
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ÃnJ,J11,M ;n8J,J21,M
TM

5DLTH 2ik1
3
AJ~J11!

2J11
a~n,J11!a~n8,J21! j J11~k1!gJ21

TM ~k1!12AJ~J11!

3a~n8,J21!
knJ11

knJ11
2 2kn8J21

2 J , ~37!

ÃnJ,J21,M ;n8J,J11,M
TM

5DLTH 2ik1
3
AJ~J11!

2J11
a~n,J21!a~n8,J11! j J21~k1!gJ11

TM ~k1!22AJ~J11!

3a~n8,J11!
knJ21

knJ21
2 2kn8J11

2 J , ~38!
p

f
h

th
he

tic

o

with

a~nJ!5
knJ

knJ
2 2k1

2
, ~39!

b~nJ!5
k1

2

knJ
2 2k1

2
. ~40!

In the calculation we use the formulas of integration in A
pendix B.

Next, we proceed to the calculation ofFj
(0) in Eq. ~11!.

The electric fieldEi1Ebg corresponds to the field inside o
the dielectric sphere in the absence of the exciton, whic
obtained from the Mie scattering theory.17 If an incident field
is a linear polarized plane wave with its intensityEi , the
internal field is given by

Ei1Ebg5Ei(
l 51

`

i l
2l 11

l ~ l 11!
FT21,l

TE M o1l2 iAe2

e1
T21,l

TMNe1l G ,
~41!

with

M omn5“3~rcomn!, ~42!

Nemn5
1

k1
“3“3~rcemn!, ~43!

comn5sinmfPn
m~cosu! j n~k1r !, ~44!

cemn5cosmfPn
m~cosu! j n~k1r !, ~45!

wherePn
m(cosu) is the associated Legendre function, and

z axis is chosen in the direction of the incident light. T
T21,l

TE(TM) is the transmission coefficients of TE~TM! waves
propagating from the outside to the inside of the sphere

T21,l
TE 5

iAe1

Ae2c l~k1!j l8~k2!2Ae1c l8~k1!j l~k2!
, ~46!
24532
-

is

e

T21,l
TM 5

i e1 /Ae2

Ae1c l~k1!j l8~k2!2Ae2c l8~k1!j l~k2!
. ~47!

In order to calculateFj
(0) , it is useful to transformM omn

andNemn into the vector spherical harmonicsYJlM , and the
transformations are given in Appendix A. Then the analy
expressions ofFj

(0) are summarized as follows:

FnJJM
(0)TE5EimAa3A2p i JA2J11T21,J

TE

3a~nJ! j J~k1!~dM ,11dM ,21!, ~48!

FnJ,J11,M
(0)TM 52EimAa3A2p i J11AJAe2 /e1T21,J

TM

3a~n,J11! j J11~k1!~dM ,12dM ,21!, ~49!

FnJ,J21,M
(0)TM 52EimAa3A2p i J21AJ11Ae2 /e1T21,J

TM

3a~n,J21! j J21~k1!~dM ,12dM ,21!. ~50!

If the incident field is a linearly polarized plane wave,Fj
(0) is

finite only for M561. Thus we may restrict ourselves t
the subspaceM51 and21 to get the solutionFj of Eq. ~9!.

The scattered TE and TM fields by exciton in Eq.~13! are
calculated as

Eex
TE5hk1

3m

e1
(
nJ

(
M561

UnJMhJ
(1)~k2r !YJJM , ~51!

Eex
TM5hk1

3m

e1
(
nJ

(
M561

VnJM@AJhJ11
(1) ~k2r !YJ,J11,M

2AJ11hJ21
(1) ~k2r !YJ,J21,M#, ~52!

with

h54A2p iAa3 ~53!

and

UnJM5T12,J
TE FnJJM

TE a~nJ! j J~k1!, ~54!
2-6
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FIG. 2. Calculated total scat
tering cross sections of spherica
CuCl nanocrystal with radii~a! 7
nm, ~b! 20 nm,~c! 40 nm, and~d!
60 nm as a function of incident
light energy. The solid and dotted
lines correspond to the TM and
TE modes, respectively. The vert
cal dotted lines in~a! and ~b! in-
dicate the confined exciton levels
which are calculated including the
e-h exchange interaction. Eac
vertical dotted line in~c! and ~d!
indicates the exciton energy at th
band edge.
f
n

or
re

qs.

in
m.

tive

ing
l

is
gher
he
sec-
ss

s

. 1.
s
he
VnJM5
1

2J11
Ae1

e2
T12,J

TM @AJFnJ,J11,M
TM a~nJ11! j J11~k1!

2AJ11FnJ,J21,M
TM a~nJ21! j J21~k1!#. ~55!

Substituting Eq.~51! or ~52! into Eq. ~21!, we get the
scattering cross section due to exciton

sex
TE5

8p

Ei
2

DLT

ae2
k1

4(
J

(
M561

(
nn8

UnJM* Un8JM , ~56!

sex
TM5

8p

Ei
2

DLT

ae2
k1

4(
J

(
M561

(
nn8

~2J11!VnJM* Vn8JM .

~57!

The sex-Mie is calculated from Eqs.~51! and ~52! and
standard Mie scattering fieldEbg. The transformations o
Eqs. ~C1! and ~C2! are useful to calculate the integratio
with respect to the solid angle. Then we have

sex-Mie
TE 528pk1

A2e1aDLT

e2Ei

3(
nJ

A2J11Re@~2 i !J11R21,J
TE * UnJ1#, ~58!

sex-Mie
TM 58pk1

A2e1aDLT

e2Ei

3(
nJ

~2J11!Re@~2 i !J11R21,J
TM * VnJ1#, ~59!

where theR21,l
TE(TM) represents the reflection coefficients f

light propagating from the outside to inside of the sphe
and given by
24532
,

R21,l
TE 5

Ae1c l8~k1!c l~k2!2Ae2c l8~k2!c l~k1!

Ae2c l~k1!j l8~k2!2Ae1c l8~k1!j l~k2!
, ~60!

R21,l
TM 5

Ae2c l~k2!c l8~k1!2Ae1c l8~k2!c l~k1!

Ae1c l~k1!j l8~k2!2Ae2c l8~k1!j l~k2!
. ~61!

In the following, scattering spectra are calculated from E
~56!–~59! and the standard Mie theory forsMie .

B. Numerical results

We apply the present framework to an exciton confined
a spherical CuCl crystal, which is surrounded by vacuu
The energy of bulk exciton for CuCl isE053.2022 eV at the
band edge. We choose the phenomenological nonradia
damping constantg520 meV, which is the best value for a
thin bulk film.18 The scattered fieldsEbg are evaluated by the
ordinary Mie scattering theory.17

Figure 2 shows calculated examples of the scatter
cross sections ofJ51 component for spherical CuCl crysta
with radii a57, 20, 40, and 60 nm. The incident field
assumed to be a plane wave. For these small radii, the hi
J components of the incident field are not scattered. T
cross sections are normalized by the geometrical cross
tion pa2. The solid and dotted lines correspond to the cro
sections by TM and TE modes, respectively.

The vertical dotted lines in Figs. 2~a! and 2~b! denote the
energy levels of the confined exciton including thee-h ex-
change interaction. For small particles with radiia57 nm
~a! and 20 nm~b!, the scattering cross section well follow
the oscillator strength. The largest scattering fora57 nm
comes from the lowest exciton, which is aL-T mixed mode,
and has the maximum oscillator strength as shown in Fig
The second lowest level has theT-mode character and doe
not couple with light. This is consistent with the fact that t
oscillator strength is zero forT-mode exciton. Fora
2-7
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AJIKI, TSUJI, KAWANO, AND CHO PHYSICAL REVIEW B66, 245322 ~2002!
520 nm, the largest scattering occurs for the level near
surface mode in the infinite-mass limit, which is calculat
asE1

surf53.2064 eV from Eq.~20!. The results are well de
scribed in terms of the oscillator strength also. The conc
of the oscillator strength is meaningful if the confineme
size of exciton is much smaller than the wavelength of lig
The deviation of the cross section from the oscillator stren
is seen for the case of radiia540 and 60 nm, where the
T-mode exciton, which has zero oscillator strength, scat
the TE-mode light significantly.

In Figs. 2~c! and~d!, energy levels of the lowestT-mode
exciton are indicated by the vertical dotted lines, and
scattering peak due to this exciton shifts to the lower ene
side, the amount of which becomes larger fora560 nm than
a540 nm. In addition, the peak width becomes larger w
increasing radius. The peak shifts and widths originate fr
the radiative correction, i.e., the interaction between indu
polarizations via transverse EM field. The radiative corr
tion will be discussed in the next section.

One of the advantages of using the present formulatio
that the cross section can be decomposed into those du
the exciton and the background dielectric as shown in E
~21!–~23!. The resonance scatteringsex is dominant for
small radius such as the examples in Fig. 2. However,sMie
and sex-Mie give significant contribution to the total cros
section for larger radius.

For instance, these three contributions are depicted in
3 for the TE mode in a CuCl particle witha590 nm. We
choose the nonradiative damping constantg as 0.2 meV. In
the calculation we take the angular momenta up toJ53
because the scattering into the higher angular momen
negligibly small for the present size. From the total scat
ing cross section, we extractsex ~dotted line!, sMie ~dashed
line!, and sex-Mie ~dashed-dotted line!. Although sex and
sMie have positive values,sex-Mie can take negative values

FIG. 3. A total scattering cross section~solid line! and its de-
composition into exciton contribution~dotted line!, Mie scattering
~dashed line!, and their cross terms~dashed-dotted line!.
24532
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Because of the interference effect, some total scattering
dip structures near peak energies ofsex.

To study the spectral structures more precisely, let us
cus on the sharp peak at 3.192 eV and the broad pea
3.216 eV ofsex. Although thes near 3.192 eV shows pea
structure as well as thesex, thes near 3.216 eV exhibits dip
structure that is different from the shape of thesex. In such
a large sphere, thesMie , which is dominated by theJ51
component, is comparable to thesex. Therefore the interfer-
ence termsex-Mie gives large contribution to theJ51 com-
ponent of thes. Since the peak ofsex at 3.216 eV originates
from the exciton states withJ51, the correspondings be-
comes quite different fromsex due to the term ofsex-Mie .
Thus thes exhibits the dip structure near 3.216 eV. On t
other hand, theJ52 component of thes is almost deter-
mined by sex, and we have the peak structure ofs near
3.192 eV.

Before closing this section, we compare the results by t
different approaches, i.e., the microscopic nonlocal the
and the macroscopic calculation using the Pekar type ABC
Fig. 4. The solid and dotted lines represent the scatte
cross section of the TM modes calculated from the nonlo
theory and macroscopic calculation with the ABC, resp
tively. We find the two approaches to be in good agreem
with each other. Slight difference around 3.209 eV com
from the insufficiency of the basis functions used for t
nonlocal calculation corresponding to the quantum numben
of QnJlM . We also confirmed a similar agreement for t
cross section for TE modes. The agreement is to be expe
because the Pekar type ABC corresponds to the hard-
boundary condition for the c.m. wave function of excito
Thus we may use the both approaches in the calculatio
scattering field. However, the nonlocal theory gives mo
detailed information about theT and L characters, the de

FIG. 4. Comparison between the cross section for TM mo
obtained from the microscopic nonlocal theory~solid line! and the
macroscopic calculation with the Pekar type ABC~dotted line!.
2-8
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FIG. 5. Calculated real~a! and imaginary~b! parts of eigenenergy for exciton-light coupled modes withJ51 as a function of radius.
Exciton is confined in a spherical CuCl nanocrystal. The solid and dotted lines represent the TM and TE modes, respectively. The
gives the energy of spectral peak, and imaginary part relates to the spectral width. The solid~TM mode! and dotted~TE mode! arrows
indicate the radii given by approximated conditions Eqs.~63! and ~64!.
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composition of the exciton scattering and the Mie scatteri
and the energies of the exciton-light coupled modes.

V. EXCITON-LIGHT COUPLED MODE

The spectral peaks due to exciton are characterized by
eigenenergies of the exciton-light coupled modes. TheEex is
proportional toFj as shown in Eq.~13!, andFj is the solu-
tion of Eq. ~9!. Thus the solutions of the secular equation

det@~Ej2\v!djj81Ãjj8~v!#50, ~62!

provide the shapes of the spectral peaks, namely, the rea
imaginary parts of a solution give a peak energy and a p
width. We ignore the nonradiative damping constantg to
study the radiative correction. Since the peak width ori
nates from the coupling of exciton and light, it represents
radiative decay width. The radiative width indicates t
strength of exciton-light coupling. The solution of Eq.~62!
can be considered as the complex eigenenergy of
exciton-light coupled mode. In the case of bulk crystals,
exciton-light coupled mode becomes bulk polariton, and
eigenenergy is real. However, the coupled mode has lifet
in a finite crystal because of the leakage of light to the o
side, and thus the eigenenergy has an imaginary part in
eral.

It is noted that Eq.~62! is not limited to the case of exci
tons, i.e., it has the same form independent of the origin
the induced polarization. This fact leads to a unified desc
tion of the dispersion equations for bulk polariton and x-r
scattering from Eq.~62!.19

In the spherical case, the exciton-light coupled modes
classified into TE and TM modes. The TE eigenenergy
calculated by substituting Eq.~34! into Eq.~62!, and the TM
eigenenergy is calculated using Eqs.~35!–~38!. The radiative
correction Ãjj8 is v dependent, which becomes importa
for large radius. If thev dependence can be neglected E
~62! is a polynomial equation of theNth order, whereN is
the number of the basis functions$uj&%. In this case, the
solutions correspond to the excitons modified by the rad
24532
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tive shifts and widths. If, however, thev dependence ofÃjj8
is not negligible, Eq.~62! is no more a polynomial equatio
of the Nth order, and the interpretation of the solution is
more simple. The results in Fig. 5 correspond to the cas
simple interpretation.

Figure 5 shows calculated results of the real~a! and the
imaginary~b! parts of the eigenenergies of the exciton-lig
coupled modes as a function of radius. Solid and dotted li
correspond to the TM and TE modes, respectively. We ag
consider a spherical CuCl in vacuum. For small radius up
;50 nm, the real parts coincide with the peak energies
the exciton states including thee-h exchange interaction, an
the imaginary parts~or peak widths! are almost zero. In othe
words, the coupling of confined exciton and light is qu
small.

With increasing radius the real part of the lowest TE mo
deviates from the level of exciton toward the lower ener
side, and after a rapid increase it approaches the energE0

1DLT . The corresponding imaginary part shows peak str
ture at the size where the real part increases rapidly. I
noted that the magnitude of this imaginary part becom
quite small for large radius. This means that the light co
pling with the lowest exciton decreases with increasing
confinement size. In this region, the second lowest exc
begins to couple with light strongly. This alternating beha
ior of the exciton-light coupling with the increase in radiu
continues for higher members of the exciton states, and t
maximum strengths become larger. It is found that the ma
mum strengths reach several tens meV. The similar beha
has also been calculated for the exciton confined in a qu
tum well.20,21

The characteristic size dependence of the radiative w
can be understood roughly from the spatial patterns of
wave function of exciton and the light intensity. Around th
size where the radiative width becomes maximum, the wa
lengths of confined exciton and light are almost in agreem
with each other. However, the sizes satisfying above con
tion do not coincide with the sizes giving maximum radiati
widths. The crucial point is that the retarded interactionÃjj8
2-9
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AJIKI, TSUJI, KAWANO, AND CHO PHYSICAL REVIEW B66, 245322 ~2002!
in Eqs.~34!–~38! contains the reflection coefficientsR12,l
TE(TM)

appearing ingl
TE(TM)(z). TheR12,l

TE(TM) depends on radius, an
the radii giving maximum radiative widths are determined
the condition ofR12,l

TE(TM) being maximum, in which the de
nominator becomes minimum. This condition is the same
that of the Mie resonance. Using the asymptotic expans
for large argument of spherical Bessel functions, we have
radii an

TE(TM) which provide maximumR12,l
TE(TM) as

an
TE(TM)5

np

k1
for odd~even! J, ~63!

an
TE(TM)5S n1

1

2D p

k1
for even~odd!J, ~64!

where n is an integer. The conditions depend on only t
wavelength inside of a sphere. In Fig. 5 vertical arrows
dicate the radii represented by Eqs.~63! and~64!. It is found
that these simple expressions describe the radii with m
mum radiative width quite well in the present case, thou
the above conditions hold better for large confinement
dius. This indicates that the size enhancement of the exci
light interaction is dominated by the cavity effect of M
resonance. It should be noted that the enhancement cond
is invalid for smalle1 /e2, where the cavity effect become
small. In this case, the enhancement size would depen
theL-T splitting energyDLT characterizing the magnitude o
the exciton-light interaction.

The resonant energies and widths of the spectral peak
Fig. 2 are in agreement with the eigenenergies of the co
sponding exciton-light coupled modes. The spectral struc
of sex with 90 nm in radius~see Fig. 3! is also described by
the eigenmodes, but in such large radius the total cross
tion is different fromsex due to the interference with the Mi
scattering as shown in the previous section.

It seems that the maximum spectral or radiative wid
increase monotonically toward infinity, however, the coup
mode in infinite crystals,i.e, bulk polariton, should have zer
radiative width. Therefore it is difficult to image how th
coupled mode confined in large crystal approaches bulk
lariton. The missing link has been studied and reported
one of the authors in Ref. 22. The point is that the ene
dependence ofÃjj8 ~the interaction between polarization
via EM field! plays an important role in spectral shapes.

VI. SUMMARY

For an exciton weakly confined in a spherical nanocrys
we have studied the scattering cross sections and exc
light coupled modes comprehensively by using a reform
lated microscopic nonlocal theory. In our calculation, w
consider the situation where the c.m. motion of the excito
confined in an infinite hard wall potential. This correspon
to the boundary condition that the induced polarization a
superposition of the bulk exciton states becomes zero a
surface. Therefore our calculations coincide with the res
of the macroscopic theory with the Pekar type ABC. For
calculation of scattering spectrum alone, the macroscopic
proach with an assumed form of the ABC is simpler than
24532
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reformulated nonlocal theory. However, the present pro
dure allows a detailed analysis in terms of the radiative sh
and widths, and the decomposition of the response field
the exciton and Mie scatterings.

Because of this advantage, we can discuss how the e
ton scattering appears in the total cross section. In so
cases a dip structure is found around the energy where
exciton scattering occurs. This can be seen when the Mie
exciton scatterings withJ become comparable.

Another merit to adopt the present scheme is that we
calculate the energies of the exciton-light coupled mod
The real and imaginary parts of the energies correspon
the spectral peak energies and radiative widths of spec
respectively. We have revealed the cavity effect on the ra
tive width. Namely, the radiative width of each peak show
local maximum as a function of radius, at which the coupli
becomes maximum. We have derived an analytic expres
for this condition approximately.

Finally, we remark the extinction cross section and a
sorption spectra, which are observed experimentally m
easier than the scattering cross section. The extinction
absorption spectra can be calculated in the microscopic n
local theory as is demonstrated in Appendix C. We confin
ourselves to present numerical calculations of scatte
cross section since we have the same results on the radi
peak shift and radiative widths for extinction and absorpt
spectra. This comes from the fact that these radiative cor
tions relate to the exciton-light interaction, which is indepe
dent of observation methods. It is noted that the dip struct
in the scattering cross section does not appear in the ex
tion spectra because the extinction spectra are proportion
the real part of the coefficient of scattered field, i.e., there
no interference term of exciton and Mie scatterings.
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APPENDIX A: RELATIONSHIP OF DIFFERENT KINDS
OF VECTOR FUNCTIONS

In this appendix, we present the relations of some vec
functions used in this paper. First, we consider the relati
between spherical vector functionYnJlM and vector func-
tions $“3rzl(kr)Ylm , “3“3rzl(kr)Ylm%, where zl(kr)
represents the spherical Bessel functionsj l(kr) or hl

(1)(kr).
The vector spherical harmonics relate to the spherical h
monics multiplied by the unit vectorr̂ as follows:

r̂Ylm52A l 11

2l 11
Y l ,l 11,m1A l

2l 11
Y l ,l 21,m . ~A1!

Furthermore, we need the operations of curl to the ty
of $F(r )Y l lm ,F(r )Y l ,l 61,m% with F(r ) being an arbitrary
radial functions, and the results are given by
2-10
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“3@F~r !Y l ,l 11,m#5 i S d

dr
1

l 12

r DFA l

2l 11
Y l lm ,

~A2!

“3@F~r !Y l lm#5 i S d

dr
2

l

r DFA l

2l 11
Y l ,l 11,m

1 i S d

dr
1

l 11

r DFA l 11

2l 11
Y l ,l 21,m ,

~A3!

“3@F~r !Y l ,l 21,m#5 i S d

dr
2

l 21

r DFA l 11

2l 11
Y l lm .

~A4!

After straightforward calculations using the above form
las, we get the relations

“3@rzl~kr !Ylm#52 iAl ~ l 11!zl~kr !Y l lm , ~A5!

1

k
“3“3@rzl~kr !Ylm#5Al ~ l 11!

2l 11

3@2Alzl 11~kr !Y l ,l 11,m

1Al 11zl 21~kr !Y l ,l 21,m#.

~A6!

There exist another type of vector functionsM oml and
Neml defined in Eqs.~42! and ~43!. From the relation of the
spherical harmonics and the associated Legendre func
we have

M oml5a lm$“3@rzl~kr !Ylm#2“3@rzl~kr !Ylm* #%,
~A7!

Neml5 ia lm

1

k
$“3“3@rzl~kr !Ylm#1“3“

3@rzl~kr !Ylm* #%, ~A8!

with

a lm5
~21!m

2i
A 4p

2l 11

~ l 1m!!

~ l 2m!!
. ~A9!

Thus the vector functions$M oml ,Neml% can be represented i
terms of the vector spherical harmonics by using Eqs.~A5!
and ~A6!.

Finally, we give the transformation ofr̂ r̂ 8d(rÀr 8), which
appear in the last term of Eq.~24!. The delta function can be
expanded as

d~r2r 8!5
1

r 2
d~r 2r 8!d~V2V8!

5
1

r 2
d~r 2r 8!(

lm
Ylm~V!Ylm* ~V8!. ~A10!
24532
-

n,

If we use the relation in Eq.~A1!, the dyadic function
r̂ r̂ 8d(r2r 8) can be rewritten in terms of the vector spheric
harmonics.

APPENDIX B: FORMULAS FOR INTEGRATION

We summarize the useful integral formulas for the calc
lations of Eqs.~34!–~38!:

E
0

x

dx8x82 j l~ax8! j l~bx8!

55
x2

a22b2
[a j l 11(ax) j l(bx)2b j l(ax) j l 11(bx)]

(aÞb)

x2

2a
$ax[ j l

2(ax)1 j l 11
2 (ax)]

2(2l 11) j l(ax) j l 11(ax)% ~a5b!

and

E
0

1

dxE
0

1

dx8x2x82 j l~ax! j l~bx8! j l~gx,!hl
(1)~gx.!

5

¦

a j l 11~a! j l~g!2g j l~a! j l 11~g!

a22g2

3
b j l 11~b!hl

(1)~g!2g j l~b!hl 11
(1) ~g!

b22g2

2 i
a j l 11~a! j l~b!2b j l~a! j l 11~b!

g~a22b2!~b22g2!
~aÞb!

a j l 11~a! j l~g!2g j l~a! j l 11~g!

a22g2

3
a j l 11~a!hl

(1)~g!2g j l~a!hl 11
(1) ~g!

a22g2

2 i
a@ j l

2~a!1 j l 11
2 ~a!#2~2l 11! j l~a! j l 11~a!

2ag~a22g2!

~a5b!.

APPENDIX C: EXTINCTION AND ABSORPTION CROSS
SECTIONS

The present approach using the microscopic nonlo
theory can provide the extinction and absorption cross s
tions also. Since the expression of the extinction cross s
tion is given in Ref. 17 for Mie scattering, we focus on th
contribution of exciton. In Ref. 17, the extinction cross se
tion is represented in terms of the coefficients of the ba
M oml

(3) and Neml
(3) for a scattered field, whereM oml

(3) and Neml
(3)

denote the vector functions defined by Eqs.~A7! and ~A8!
with zl(kr)5hl

(1)(kr). Thus we obtain the extinction cros
section due to exciton by changing the basis of scattered
2-11
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in Eqs.~51! and~52! from YJlM to M oml
(3) andNeml

(3) and com-
paring the results to the expression of extinction in Ref.
Note that the absorption cross section is given by subtrac
the scattering cross section from the extinction cross sec

Using the transformations in Appendix A, we get the r
lations

Mo1l
(3)5Ap

l ~ l 11!

A2l 11
hl

(1)~kr !~Y l l 11Y l l ,21!, ~C1!

Ne1l
(3)5Ap

l ~ l 11!

2l 11
@Alhl 11

~1! ~kr !~Y l ,l 11,12Y l ,l 11,21!

2Al 11hl 21
(1) ~kr !~Y l ,l 21,12Y l ,l 21,21!#, ~C2!

where we use the relationYJlM* 5(21)J1M1 l 11YJl,2M .
It is noted thatM dependence of the constantsUnJM and

VnJM appears inFnJlM determined from Eq.~9!. The
M-dependent elements in the equation are contained on
Fj

(0) expressed in Eqs.~48!–~50!, from which it is found that
the valueM determines just the sign ofUnJM and VnJM .
Then we have the relations
l

v.

d

24532
.
g
n.
-

in

UnJ,215UnJ1 , VnJ,2152VnJ1 . ~C3!

Therefore the sum of theM51 and 21 components of
Eex

TE(TM) is proportional to the basisM o1l , (Ne1l), and we get

Eex
TE5

hk1
3

Ap

m

e1
(
nJ

A2J11

J~J11!
UnJ1M o1J

(3) , ~C4!

Eex
TM5

hk1
3

Ap

m

e1
(
nJ

2J11

J~J11!
VnJ1Ne1J

(3) . ~C5!

From the expansion coefficients ofM o1J
(3) andNe1J

(3) , we have

the extinction cross sections by excitons̄ex
TE(TM) as follows:

s̄ex
TM5

4A2p

Ei

Ae1

e2
k1ADLTa(

nJ
A2J11Re@~2 i !J11UnJ1#.

~C6!

s̄ex
TE5

4A2p

Ei

Ae1

e2
k1ADLTa(

nJ
~2J11!Re@~2 i !JVnJ1#,

~C7!
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