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Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal
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The structures of optical spectra of a semiconducting sphere are studied over a wide range of radius. The
calculation is based on a “microscopic nonlocal theory” and we reformulate the theory to simplify the proce-
dure. The nonlocal theory enables us to analyze correspondences between spectral peaks and exciton states
directly, decompose a scattered field into an exciton contribution and the Mie scattering, and provide complex
eigenenergies of the exciton-light coupled modes. The imaginary part of the eigenenergy gives the radiative
decay width of the mode, and for each mode there exists an optimal radius to enhance the width. When the Mie
scattering becomes comparable to the scattering by exciton, there appears a dip structure in the optical spectra
around the energy of the exciton-light coupled mode.
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[. INTRODUCTION of bulk polaritons vanishes at the spherical boundaly.
these calculations, the size dependence of the spectral peaks
Recent progress in fabrication techniques makes it poswas studied for small radius, where the long wavelength ap-
sible to design both material excitations and radiation fieldproximation (LWA) was valid, and they clarified a certain
Through the microscopic designing of materials, one carexperimental feature. However, this method does not allow
control the energy level scheme and the corresponding wawe make detailed correspondences between the calculated
functions of the excited states. At the same time, the radiapeaks and the exciton levels with respect to lth&, and/or
tion field in the matter acquires different spatial structure, a_-T mixed characters, and the radiative shifts and widths of
typical case of which is the formation of cavity modes due tothe levels.
the arrangement of materials. These aspects lead us to expectin order to overcome these difficulties, we can use a mi-
the controllability of radiation-matter interaction at a micro- croscopic nonlocal response thedbased on the calculation
scopic level. Thus the interaction of light with the excitationsof the energy level scheme mentioned above. In this frame-
in various nanostructures, particularly excitons in semiconwork, we determine the matter polarization and electromag-
ductors, has attracted considerable attention. netic (EM) field self-consistently from the microscopic
In order to understand the energy level scheme and thknowledge of the system such as the matter energy levels
corresponding wave functions of a confined exciton, we neednd the accompanying matrix elements of induced dipole
to consider the confining potential, the electron-hateh] density(or polarization. The scattered EM field is calculated
exchange interaction, and the effect of background polarizaby convoluting the radiation Green’s function with the self-
tion which leads to the bulklike screening of the Coulombconsistently determined polarization, which enables us to
interaction and the mirror image effect due to surface chargstudy explicitly the correspondences between the spectral
density. These features should exist in any confined systempeaks and the exciton states.
but it is not easy to take all of them into theoretical account Since the nonlocal theory gives the exciton scattering, the
for a general shape of confinement. An exception is the casaethod is suitable to decompose the total scattered field into
of spherical confinement treated by't&The detailed energy the contributions of excitofor resonantand backgroundor
scheme with the assignment of longitudin&l) ( transverse nonresonantpolarizations. The latter of which is the well-
(T), andL-T mixed characters is now available for arbitrary known Mie scattering from a dielectric sphéré, the non-
size of weak confinement. With such a precise knowledge atesonant polarization is assumed to be described by a con-
hand, we are now able to accurately study the radiationstant background susceptibility. In the total scattering cross
matter interaction for spherical confinement, such as corresection, these two contributions are expected to make inter-
spondences between quantized energy levels and spectfatence between them. For a small radius sphere, the exciton
resonances, thEandL characters of each spectral peaks, thescattering dominates and the Mie scattering is weak, so that
radiative shifts and widths of the exciton levels, the interfer-the interference is not remarkable. As the radius becomes
ence between the Mie scattering due to the background pdarger, the contribution of the Mie scattering gets stronger,
larization and the exciton scattering, and so on. which results in the interference with the exciton scattering.
So far, the optical spectra of an exciton in a spherical In the original version of the nonlocal theory, we useThe
nanocrystal were calculated according to the macroscopicomponent of the Maxwell Green’s function. Although the
scheme with the assumption of additional boundary condiextraction of thel component from the full Green’s function
tion (ABC) as well as the Maxwell boundary conditioh®. is simple in some cases, it becomes a tedious task in many
The effect of thee-h exchange interaction is taken into ac- geometries with surfaces and/or interfaces including the case
count in terms of the coupling of induced polarization with of a sphere. In this work, we exploit a revised form of the
depolarization field. The adopted ABC is the Pekar type, imonlocal theory, where the full Green’s function can be used
which the exciton polarization arising from the superpositionwithout splitting it intoT andL components.
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In terms of this revised scheme, we study the linear optiamong the induced polarizations via transverse, i.e., vacuum
cal spectra for a wider range of size than that studied beforeeM field, the Green’s function for which is known in a
The spectral resonances can be precisely analyzed in terrsgmple form. In this framework, all the transitions of the
of the complex eigenenergiés = w;+iw] (j=1,2,...) of matter system can be formally included as dynamical vari-
the exciton-light coupled modes, which are obtained fromables. However it is usual to treat only the resonant compo-

the roots of the equation d&=0, where nents explicitly and to regard the nonresonant part as the
background polarization to be described in terms of a con-
S, =(Eo=fw)8,,+A 00, ). (1) stant background susceptibility.

. . ) o The effect of the background polarization can be renor-

In thzs expressionk ,, is the excitation energy of the matter mjjized into the EM Green’s function, by which one can
and Ao 0,(w) is the interaction energy between the two evaluate the scattered field via the radiative shifts and widths
components of the induced polarization accompanying thef matter excitation energie¢€ This procedure works well in
excitations 60— and 0—v. a simple case such as a slab geometry with normal incidence,

The original and revised frameworks of the nonlocalwhere only thel components of EM field is relevant. How-
theory provide the same results. The energy teipgé,,  ever, it becomes complicated when the background polariza-
+A 0,0, CONtain bothe-h exchange interaction and radiative tion contains bothT and L components, which makes it
correction(the radiative shift and width The difference be- rather tedious to extract tfiecomponent of the EM Green’s
tween the two frameworks is the term taking care ofeke  function to calculate the radiative correction. A simpler way
exchange interaction, which is includedﬁl;;o,oy in the new, to circumvent this situation is to adopt the schefBg& men-

. . - . : tioned above.
and inE , in the original version. A different type of analy- . .
o
sis of the exciton-light coupled modes was made in Ref. 3 in In the schemeB), the interaction energHipp can be

terms of the scattering phase, which however is restricted tBaraphrased as the interaction between matter polarization

the case of small radius satisfying the LWA. In contrast, theand the depolarization field due to induced polarization.

merit of the nonlocal theory is the absence of a restriction 0r§|nce the full EM G_reen’s fun_ctlon dgscnbes the pro_pagatlon
sample size. of both theL andT fields, the interaction among the induced

This paper is organized as follows. In Sec. Il we reformu-Polarizations via EM field represents both the radiative cor-

late the nonlocal theory. The reformulation makes the Calcu[ectlon(wa theT field) andHF.’F’ (via the_L f|e_ld). For semi-
lation much simpler in the present case. In Sec. Il excito conductorsHpp has another interpretation, i.e., the electron-

states confined in a spherical semiconductor are briefly su _olehexchﬁmge mterr]actlon. g e diff
marized. Including thee-h exchange interaction, we can IT llis't e two Scdeénl\;f?‘)lzn (i) provide i erer|1t Wiys
classify exciton states into the T, andL-T mixed modes, 'O 00K at matter an leld, either as a surHf plus the

The oscillator strength of each classified level is found. Inradlatlve correcuoq viar m.odes EM field, or as a sum .Of
Sec. IV the scattering cross section is calculated based on tﬁ__éA_ HF_’P plus the Interaction among the induced polariza-
reformulated nonlocal theory. We decompose the cross sef9NS Via fuII Maxwell field (W't.h N and L component_)s
tion into scattering by exciton, Mie scattering, and their cross heir equwalgnpe can be explicitly shown only for linear
term, and discuss the contribution of exciton to the total€SPONSE.but it is enough for the present purpose.
cross section. The exciton-light coupled modes are studied. In the electrlic d|pole representation, the interaction of ex-
comprehensively by solving the secular equations in Sec. \¢iton and EM field is written as
A summary is given in Sec. VI.

Hint:_f drP(r)-E(r), 2

Il. REFORMULATION OF NONLOCAL RESPONSE

THEORY whereP is the polarization operator of the matter ads

In the study of the radiation-matter interaction, there ar¢he Maxwell electric field including bot and L compo-
two approaches with respect to the choice of matter Hamilhents.
tonian and the EM field interacting with material excitation  In the linear response theory, the induced exciton polar-
in the other part of the Hamiltonighin one casgA), one  ization is given by
takes the matter Hamiltoniad , with full Coulomb interac-
tion and the transverdd) components of the Maxwell field.
In the other cas€B), the matter HamiltoniarH,—Hpp,
whereHpp is the Coulomb interaction among the induced
charge densities, and the full Maxwell field. The full Max-
well field contains the longitudindlL) as well as thél com- . .
ponents. HS (O[P(r)|€)(&[P(r")[0)
The original formulation of the nonlocal response th&ory x(nr’)= z Ei~ho—iy '
is made according to the scheri®), which is also appli-
cable to the nonlinear respors@&he central factors deter- with y being a phenomenological damping constant. [The
mining the response are the excitation energies of matter argenotes the ground state of electron system, |ghdepre-
the radiative corrections. The latter is the interaction energgents the exciton states obtained without &le exchange

Pex(r,w)=f dr'x(rr’;m)-E(r'), 3)

wherex(r,r '; ) is the susceptibility tensor

4
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interaction. The non-resonant term of the susceptibility is .
assumed to be described by the background dielectric con- Eed1)=2> FgJ' dr'G(rr’)-(¢|P(r")|0). (13
stant inside a sample. ¢

From the Maxwell equations we get For the case of three-dimensional confinement, the scattering

) 5 cross sectionr is given by
VXV XE(r)— g€y E(r) =4mq-Pey(r), (5)

where e, is the background dielectric constant ang i 2dQ|Ebg(r)+Eex(r)|2 (14

=wl/c. The solution of this equation is given by U_rm r Ei(r)2 '
E(F)ZEo(r)Jrf dr'G(rr')-Polr'), 6) where() is the solid angle.

where E, is the solution of Eq(5) for Pe,(r)=0, and the IIl. EXCITON STATES

dyadic Green's functios(rr ) satisfies the equation We consider the exciton states confined in a spherical

YV X 1 o2 "= Ama2l S(r—r’ sgmiconduc;tor with radiug in th.e Weqk confinement re-
VXVXGr) ~Q engr)G(nr ) =4mgil (r=r"), 7y 9ime. We give the background dielectric constants

with | being the identity tensor. The Green’s functions of e, for|r|<a,
simple inhomogeneous media such as single or multilayer €pg(l) =
structures of slabs, cylinders, and spheres, are given in Ref.

11. The fieldgy can be written as the sum of an incident field The difference of the background dielectric constants leads
E; and the fieldE,, scattered by the background dielectric to the interface(surface charge density which acts as the

e, for|r|>a. 9

€pg(r)- image potential in thee-h Coulomb and exchange interac-
Combining Egs.(3) and (6), we have a self-consistent tions. In the weak confinement regime, the relative motion of
equation for the total field as follows: exciton is approximated by that in a bulk crystal. The image
potential affects the-h Coulomb attraction term in the re-
E(r)=E. + E. + r G- v’ - E(r” gion from t.he interface to t_he dgpth of the effecnve Bphr
(N=Ei+Epq Jd Jd Grr™)- x(r',r")-B(r") radius?? This leads to the distortion of the exciton relative

8 motion near the 2surface, which is reflected on the form of the
The inner products of Eq8) with (§|I5(r)|0> integrated ABC to be usegl. For the excitons in CuC_I to be considered
. ) . later for numerical calculation, this effect is safely neglected.
over r lead to the linear algebraic equations for the new . )
i However, the image potential on tieeh exchange term pro-
variablesF ; as . )
vides comparable matrix elements to the bulk case because
_ o the e-h exchange interaction has long-range character even
(E;~hw—iy)Fe+ X AgFp=FO, (9 in the weak confinement regime as shown in E).
¢ The e-h exchange interaction can be rewritten as the
with dipole-dipole interaction of exciton polarizatidis®® or as
the Coulomb interaction between induced charge denSities.
1 A It is the part of Eq(12) which contains thé.-component of
Fe= Eg—ﬁw—iyf dr(€|P(r)[0)- E(r), (10 EM Green’s function. Its explicit form appears later, i.e., Eq.
(19). It gives the polarization-dependent energy of the longi-
) N tudinal (L), transverseT), and/orL-T mixed modes.
Fe'=| dr(¢|P(r)[0)-[Ei(r)+Epgr)], (1) For the description of the induced polarization, we choose
the following bases as eigenfunctions of the confined center-
of-mass(c.m. moation, which are given t}f

R§§,=—Jdrfdr'<g|ﬁ>(r)|o>-G(r,r’)-<o|ﬁ>(r’)|g'>,
12 Quunlr)= \EW—”'”YJ.M(QL 16)

where Eq.(4) is used. adJi+1(knn)

The factorA, reprgsents the |nte[act|on between the 'n'wherej,(x) is the spherical Bessel function of ordeand
duced polarizationg0|P(r)|£) and(0[P(r)[¢") via the EM =k, is the nth zero of j,(x). The bases satisfy the
field, which contains both radiative correction and ##&  houndary condition that the amplitude becomes zero at the
exchange interaction. Theeh exchange interaction, which is  spherical boundary. The induced polarization associated with
excluded fromE,, enters in"Ach, via the longitudinal part of this basis is given by,=uQ,, where{=(n,J,I,M). The
the Green’s function in Eq(12). The interaction via trans- intensity u of the polarization relates to the longitudinal and
verse EM field contributes to the radiative correction, i.e.transverse splitting energy,  of a bulk exciton asu?

radiative shift and width of each spectral peak. =¢e1A /4.
Using the solutionF, of Eq. (9), the scattered field by The functionsYy,,, are the vector spherical harmoniés.
excitonE,, is obtained from They are the eigenfunctions of the sum of the angular mo-
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mental andl’ (|I’|=1), the latter of which I() is related 3214 e AR TR R
with the unit polarization vector. Thus the functiovig,, are A NN LN — LT Mixed Modes
written as 3212 LR AR AWY - T Modes
- ] ---- L Modes
[ 1 i : x
3210
Yau(@)= 2 X (Imis|LM)Yin(Q)e, (17) =57
sohs=T )
: - 2 3.208
where (Im1s[I1JM) is the Clebsch-Gordan coefficient, 2
Y m(Q) the spherical harmonics, afé} the spherical unit S [
vectors 3206 - it
3 E1surf
1 . s204 [ |
eﬂ=+ﬁ(extley), €=€;. (18 [T
3.202 Lz I B s
The quantum numbersandM are the total angular momen- 1020 30 40 50 6 70 80
tum and its projection, respectively. Fée1, | runs from Radius (nm)

J—1toJ+1 and forJ=0 the allowed value of is only 1.
In terms of the bases s, the matrix elements of the
Hamiltonian are given by

FIG. 1. Energy levels(lines and oscillator strengthgsolid
circles of exciton confined in a spherical CuCl nanocrystal as a

function of radius. Solid, dotted, and dashed lines represent-{he
mixed J=1), T (J=I=1), andL (J=0/=1) modes, respec-
tively. The oscillator strengths per volume are proportional to the
size of closed circles. The vertical dotted lines denote the sizes
where scattering cross sections are calculated in Fig. 2. The energies
of L, T, and the surface modes in the infinite-mass limit, are indi-
cated byE, , Er(=E,), andES"™, respectively.

o= ke +fdfd' VP =
T 2Mg, r) L=V Pdn] &1 [r—r'|

+Vim(f,r')1[—V'ng(r’)], (19

) ) ] _ energy for large sphere. The specific energy coincides with
whereM,, is a translational mass of exciton. The first termhat of the surface mode in the infinite mass limit, which is
denotes the kinetic energy of the c.m. motion, and the secongiyen py

term represents the-h exchange interaction. Thé,, in the
square bracket gives the image-potential effect.

The Hamiltonian of Eq(19) has a block-diagonal form
with respect taJ and M because of the spherical symmetry.
The resulting exciton energy is independent of the projectiorThis feature was first reported by Ekimet al., using the
M, i.e., each level has (2 +1)-fold degeneracy. The exci- phase analysis of scattered fiefdi.is noted that the oscil-
ton states are classified into thE L, and L-T mixed lator strength becomes zero for tifemode andL-mode
modes'? The exciton states witd=1=1 are theT modes states-?
whose energies arézkﬁJIZMex while the states with J
=0/=1) are theL modes with energieshzkﬁlIZMex
+A_ 1. All the other states constituted frofh=J+1} sub-
space belong to the-T mixed modes whose energies are From Eq.(14) it is seen that the total scattering cross
obtained from the numerical diagonalization of E&9). section consists of the exciton contributiog,, Mie scatter-

Figure 1 shows the energy levels of exciton as a functioinNd owie, and their cross termre, e . They are defined as
of radius. Solid lines represent theT mixed modes with

ESU=E,+ (20)

J+(J+1)(62/61)ALT'

IV. SCATTERING CROSS SECTION

J=1. Dotted and dashed lines correspond to Thand L ) 5 |Eed(r)|?

modes, respectively. The relative dielectric constapte, Tex= lim fr dQW, (21)

=5.6 corresponds to the situation that exciton is confined in e :

a spherical CuCl crystal and its surrounding is vacuum. The )

parameters for CuCl are chosen &s;=5.7 meV andM, im f 240 |Epg(1)] (22

=2.3m, with m, being the electron mass. With increasing T mie - IE/(n)[2"

the radius, theL-T mixed modes approach or T modes,

which was confirmed by calculating the divergence and ro- "

tation of polarization of each levéf o —lim f r2d0) 2RE Eed1)Epy(1)] (23
Oscillator strengths calculated from a formula in Ref. 2 exMie |Ei(r)|? ’

r—o

are also indicated by solid circles whose sizes are propor-

tional to the oscillator strengths. Although the lowest levelSinceo ;. is given in some textbook$or example, see Ref.
has the largest oscillator strength for small radius, the oscil17), we derive the expressions af, andoe,ie, and show
lator strengths are concentrated at the levels around a specifitmerical results of the present method.
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whereh(}(x) is thelth spherical Hankel function of the first

Let us consider elastic light scattering by exciton usingkind. The Ri5™ and T{5(™ represent the reflection and

the reformulated nonlocal theory. Since the exciton polarizatransmission coefficients for light propagating from the in-
tion exists in the sphere, the required Green'’s function satisside to the outside of the sphere, respectively, and are given

fying Eq. (7) with the background dielectric constant Eq. by

A. Expressions ofoe, and o gy mie

(15), is given by

47i

G(r’r/):6_1k3|2 [ml(r,r’)+n|(r,r’)]

1
1= [(1+1)
4. .
——1r'8(r—r"), (24
€1
wherer is the unit vector in the radial directidn.
In the Green'’s functionn,(r,r ') provides the TE mode of

EM field, while n/(r,r') and the last term relate to the TM
mode. Them(r,r ") andn,(r,r ") are given by

my(rr)=(VXr) (V' Xr" ) FErr)A(Q,Q"), (25
1
n(rr’)= P(Vxer)(V’xV’Xr’)
XFEM(rrHA(Q,Q"), (26)

wherek; (i=1,2) is the wave number for insidek) or
outside k,) of the sphere. If appears insidéoutside of the
sphere, the wave numbky indicatesk; (k,). The functions
A(Q,Q") andFE™)(rr ') are defined as

AQ,00)= 2 QY™ (@), (27)
FITE(TM)(I,,r r)
9= ™ (kr jiker2)  (Ir]r'<a),
T WP (kor)ji(ker ")
(28)

wherer _ is the smaller of andr’, and conversely for- .
The functiong5(™)(x) is defined as

gl "™ (x) =[h{P(x) +Ri5™ji(x)], (29

Veré(ka) & (k1) —er&] (i) & (ky)

I’i = ! (30)
U Ve (k1) € (k) — Ver ] (k1) & (k)
_ Veabi(r2) & (k1) — Verd (ko) &i( k1) a1
B Jertn (k) & (k) —Veath] (k1) & (1)
iVe,
TTE _ . (32
B Jean(k1) € (k2) —Ver&(12) ¥ (K1)
T_jl:g/l‘l _ 1€y / \/E—l (33)

Ver (k1) & (ko) — et (k) P (k1)

with o, (x)=xj,(x), &(x)=xhP(x) being the Riccati-
Bessel functions and; ,=k; ,a.

The vector functions in Eq$25) and (26) have the form
of VX[rz(kr)Y,,] and VXVX[rz(kr)Y,,], where
z(kr) represents spherical Bessel functiopgkr) or
h{Y(kr). These vector functions can be transformed into the
different forms proportional to the vector spherical harmon-
ics Y jm - The transformations, which are discussed in Ap-

pendix A, are useful to calculate tﬁ!egg, of Eq. (12) in the
bases of Eq(16) because of the orthonormal relation for the
vector spherical harmonics.

Using the transformation we find immediately that the
T-mode exciton J=1) couples with the TE mode of the EM
field. On the other hand, theT-mixed mode of exciton
couples with the TM mode of the EM field. Thus we can
discuss the exciton-light interaction for TE and TM modes
independently. Thé&-mode exciton does not couple with the
transverse EM field.

We denote the interaction among the exciton polarizations

via EM field A, asAIfl(M norw for the TE(TM) modes.

The calculated results dig,f, are summarized as follows:

A nenraam=— Al 2i k() a(n' )] 5(k1) 9] (k1) + B(NI) Sy ], (34)
~ J
A:g{lJJrl‘M;n,J‘JJrlYM:—ALT( 2IK12J+1a’(n J+1L)a(n’ J+1)JJ+1(K1)gJ+1(Kl)+ —(J+D+ 2J+1,8(H,J+ 1) |6t
(35
™ _ . g dt1 , ; ™ +1
Ansi—iminraa—1im= "ALT 2IK12J+1a(n,J—1)a(n WJ—1)jy-1(k1)95 (k1) +| — 2J+1,3(n J—=1)|0nn (>

(36)
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(. D
Angasiminiag—im=ALTy 2 K1 2311 a(n,J+

~TM _ s WUI+D)
Ana—iminrag+im = ALt 2ik g 2J+1 a(n,J—

Xa(n',d+1)——3

nJ-1

with

(39

B(nJ)= (40)

In the calculation we use the formulas of integration in Ap-
pendix B.

Next, we proceed to the calculation Bf” in Eq. (11).
The electric fieldE; + Epy corresponds to the field inside of

the dielectric sphere in the absence of the exciton, which is

obtained from the Mie scattering thediif an incident field
is a linear polarized plane wave with its intensEy, the
internal field is given by

21+1
Ei+ Epg= EE i ) TIMo1— \/\T21|Ne1|}
(41
with

M ymn=V X(r #omn) s (42

1
Nemn=17— VXV X (I femp), (43

Ky
Yomn= Sinm¢an(COSG)jn(k1r), (44)
Yemn= cosm¢an(cosa)jn(klr), (45)

i

Knj+1
! — —_—
Xa(n',J—1) > 5
Kni+1 13-1

- ]
2 _ 1
Kni—17 Knrg+a

PHYSICAL REVIEW B 66, 245322 (2002

Dya(n',3-1)j5:1(k) g5V (k1) +2yI(I+1)

(37)
Dea(n',I+1)j;-1(k1) gt (k1) — 243 +1)
(38)
[
- ie /e, an

Ver (k1) & (ko) — e (k1) & (k)

In order to calculaté\), it is useful to transformM .y,
and N, into the vector spherical harmoni¥s,, , and the
transformations are given in Appendix A. Then the analytic
expressions oFgo) are summarized as follows:

Xa(nd)j(k)(Syat ou,-1), (48)
FOYm=—EipVa®V2mi? 3 e /e T

a(n,J+1)j541(k1)(S1— 6w, —1), (49
FO™, u=—EuVad\ 27 1+ 1Ve, /e, T,

Xa(n,J—1)j;-1(k1)(dm 1~ 6u,-1). (50)

If the incident field is a linearly polarized plane WaFé?) is
finite only for M==1. Thus we may restrict ourselves to
the subspac# =1 and—1 to get the solutiof ; of Eq. (9).

The scattered TE and TM fields by exciton in E§3) are
calculated as

whereP|'(cos#) is the associated Legendre function, and the
z axis is chosen in the direction of the incident light. The With

T35 is the transmission coefficients of TEM) waves
propagating from the outside to the inside of the sphere

iVe,
Veath (k) € (ko) = erdf (k1) E(x2)

TE _
T21] -

(46)

o
Eoy= nkf—E > Unamh$P(kor) Y gom, (59
€1 1 MTE1
n
El§”=nk§—2 2 VnJM[\/jh\(]];r)l(er)YJ,JJrl,M
€1 T M==1
—VyJ+1 h(l)l(er)YJJ imls (52
n=4\2mi a3 (53)
and
Unu=T1 2,JF sSama(nd)j (), (54
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FIG. 2. Calculated total scat-
tering cross sections of spherical
CuCl nanocrystal with radi{a) 7
nm, (b) 20 nm,(c) 40 nm, and(d)
60 nm as a function of incident-
light energy. The solid and dotted
lines correspond to the TM and
TE modes, respectively. The verti-
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—VJ+1 FnJJ ima(NI—1)j5-1(k1)].

(59

Substituting Eq.(51) or (52) into Eq. (21), we get the
scattering cross section due to exciton

87 A
TE SLT 4
v €42 2, & Unwlvow,  (56)
87 A
™ SLT 4
= + ’ .
Oex = E2 aez 2 Zl%" 23+ 1)VimVaau
(57

The oeymie IS calculated from Eqgs(51) and (52) and

standard Mie scattering fiel&,

with respect to the solid angle. Then we have

TE \261aALT
UexMie:_SWKlﬁ
x% V2J+ 1R (—i) T IRIE ¥
™ \ZflaALT
Uex—MieZBWKl?
x2(23+1)Re[( iITIR*

Unal,

Vial,

g- The transformations of
Egs. (C1) and (C2) are useful to calculate the integration

(58)

(59

cal dotted lines in(a@) and (b) in-
dicate the confined exciton levels,
which are calculated including the
e-h exchange interaction. Each
vertical dotted line in(c) and (d)
indicates the exciton energy at the
band edge.

Energy (eV)
e Ver | (k1) (ko) = e (k2) (k1) ©0
T (kD) €l (k9)— e (kD) & (x3)
Ve (k) —Ver] (k) (k1)
21)= (62)

Ver (k1) & (ko) — ey (k1) &(Ky)

In the following, scattering spectra are calculated from Egs.
(56)—(59) and the standard Mie theory fory;e .

B. Numerical results

We apply the present framework to an exciton confined in
a spherical CuCl crystal, which is surrounded by vacuum.
The energy of bulk exciton for CuCl ;= 3.2022 eV at the
band edge. We choose the phenomenological nonradiative
damping constany=20 peV, which is the best value for a
thin bulk film.*® The scattered field&, are evaluated by the
ordinary Mie scattering theory.

Figure 2 shows calculated examples of the scattering
cross sections of=1 component for spherical CuCl crystal
with radii a=7, 20, 40, and 60 nm. The incident field is
assumed to be a plane wave. For these small radii, the higher
J components of the incident field are not scattered. The
cross sections are normalized by the geometrical cross sec-
tion 7ra. The solid and dotted lines correspond to the cross
sections by TM and TE modes, respectively.

The vertical dotted lines in Figs(& and 2Zb) denote the
energy levels of the confined exciton including t ex-
change interaction. For small particles with radi=7 nm
(a) and 20 nm(b), the scattering cross section well follows
the oscillator strength. The largest scattering &+ 7 nm
comes from the lowest exciton, which id.al mixed mode,
and has the maximum oscillator strength as shown in Fig. 1.

where theR]T™ represents the reflection coefficients for The second lowest level has tfiemode character and does
light propagatlng from the outside to inside of the spherenot couple with light. This is consistent with the fact that the

and given by

oscillator strength is zero fofT-mode exciton. Fora
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FIG. 3. A total scattering cross sectigsolid line) and its de-
composition into exciton contributiofdotted ling, Mie scattering
(dashed ling and their cross term@ashed-dotted line

FIG. 4. Comparison between the cross section for TM modes
obtained from the microscopic nonlocal thedsplid line) and the
macroscopic calculation with the Pekar type ARdbtted ling.

=20 nm, the largest scattering occurs for the level near the

surface mode in the infinite-mass limit, which is calculatedBecause of the interference effect, some total scattering take
asE$""=3.2064 eV from Eq(20). The results are well de- dip structures near peak energiesoqf;.

scribed in terms of the oscillator strength also. The concept To study the spectral structures more precisely, let us fo-
of the oscillator strength is meaningful if the confinementcus on the sharp peak at 3.192 eV and the broad peak at
size of exciton is much smaller than the wavelength of light.3.216 eV ofoe,. Although theo near 3.192 eV shows peak
The deviation of the cross section from the oscillator strengttstructure as well as the,,, theo near 3.216 eV exhibits dip

is seen for the case of radii=40 and 60 nm, where the structure that is different from the shape of hg,. In such
T-mode exciton, which has zero oscillator strength, scattera large sphere, the;e, which is dominated by thd=1

the TE-mode light significantly. component, is comparable to thg,. Therefore the interfer-

In Figs. 2(c) and(d), energy levels of the lowedtmode  ence termoemie gives large contribution to thé=1 com-
exciton are indicated by the vertical dotted lines, and theponent of ther. Since the peak of, at 3.216 eV originates
scattering peak due to this exciton shifts to the lower energyrom the exciton states witd=1, the corresponding be-
side, the amount of which becomes largerde:60 nm than  comes quite different froner, due to the term obrgyyie -
a=40 nm. In addition, the peak width becomes larger withThus theo exhibits the dip structure near 3.216 eV. On the
increasing radius. The peak shifts and widths originate fronother hand, thel=2 component of ther is almost deter-
the radiative correction, i.e., the interaction between inducethined by o,, and we have the peak structure @fnear
polarizations via transverse EM field. The radiative correc-3.192 eV.
tion will be discussed in the next section. Before closing this section, we compare the results by two

One of the advantages of using the present formulation iglifferent approaches, i.e., the microscopic nonlocal theory
that the cross section can be decomposed into those due &d the macroscopic calculation using the Pekar type ABC in
the exciton and the background dielectric as shown in EqsFig. 4. The solid and dotted lines represent the scattering
(21)—(23). The resonance scattering,, is dominant for cross section of the TM modes calculated from the nonlocal
small radius such as the examples in Fig. 2. Howewgf,  theory and macroscopic calculation with the ABC, respec-
and ogmie give significant contribution to the total cross tively. We find the two approaches to be in good agreement
section for larger radius. with each other. Slight difference around 3.209 eV comes

For instance, these three contributions are depicted in Figrom the insufficiency of the basis functions used for the
3 for the TE mode in a CuCl particle wita=90 nm. We  nonlocal calculation corresponding to the quantum number
choose the nonradiative damping constards 0.2 meV. In  of Qv . We also confirmed a similar agreement for the
the calculation we take the angular momenta upJte3  cross section for TE modes. The agreement is to be expected
because the scattering into the higher angular momenta Isecause the Pekar type ABC corresponds to the hard-wall
negligibly small for the present size. From the total scatterboundary condition for the c.m. wave function of exciton.
ing cross section, we extraot,, (dotted ling, oy (dashed Thus we may use the both approaches in the calculation of
line), and ogymie (dashed-dotted line Although o, and  scattering field. However, the nonlocal theory gives more
omie have positive valuesrq,mie can take negative values. detailed information about th& and L characters, the de-
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FIG. 5. Calculated reala) and imaginary(b) parts of eigenenergy for exciton-light coupled modes Withl as a function of radius.
Exciton is confined in a spherical CuCl nanocrystal. The solid and dotted lines represent the TM and TE modes, respectively. The real part
gives the energy of spectral peak, and imaginary part relates to the spectral width. Thel'kbldode and dotted(TE mode arrows
indicate the radii given by approximated conditions E&S) and (64).

composition of the exciton scattering and the Mie scatteringijve shifts and widths. If, however, the dependence O}T\&,

and the energies of the exciton-light coupled modes. is not negligible, Eq(62) is no more a polynomial equation
of the Nth order, and the interpretation of the solution is no
V. EXCITON-LIGHT COUPLED MODE more simple. The results in Fig. 5 correspond to the case of

: . simple interpretation.
The spectral peaks due to exciton are characterized by the Figure 5 shows calculated results of the réland the

eigenenergies of the exciton-light coupled modes. EQes imaginary(b) parts of the eigenenergies of the exciton-light

proportional toF; as shown in Eq(13), andF; is the solu- ) . . )

. : : coupled modes as a function of radius. Solid and dotted lines
tion of Eq.(9). Thus the solutions of the secular equation correspond to the TM and TE modes, respectively, We again
~ _ consider a spherical CuCl in vacuum. For small radius up to
def(E;—hw) Sge + Ager(0)]=0, (62) ~50 nm, the real parts coincide with the peak energies of

provide the shapes of the spectral peaks, namely, the real aifef €xciton states including tieeh exchange interaction, and
imaginary parts of a solution give a peak energy and a peal'® imaginary partéor peak widthsare almost zero. In other
width. We ignore the nonradiative damping constanto words, the coupling of confined exciton and light is quite
study the radiative correction. Since the peak width origi-small.
nates from the coupling of exciton and light, it represents the With increasing radius the real part of the lowest TE mode
radiative decay width. The radiative width indicates thedeviates from the level of exciton toward the lower energy
strength of exciton-light coupling. The solution of E§2) side, and after a rapid increase it approaches the ergygy
can be considered as the complex eigenenergy of the-A ;. The corresponding imaginary part shows peak struc-
exciton-light coupled mode. In the case of bulk crystals, theure at the size where the real part increases rapidly. It is
exciton-light coupled mode becomes bulk polariton, and itsnoted that the magnitude of this imaginary part becomes
eigenenergy is real. However, the coupled mode has lifetimgquite small for large radius. This means that the light cou-
in a finite crystal because of the leakage of light to the outpling with the lowest exciton decreases with increasing the
side, and thus the eigenenergy has an imaginary part in gegenfinement size. In this region, the second lowest exciton
eral. begins to couple with light strongly. This alternating behav-
It is noted that Eq(62) is not limited to the case of exci- ior of the exciton-light coupling with the increase in radius
tons, i.e., it has the same form independent of the origin o€ontinues for higher members of the exciton states, and their
the induced polarization. This fact leads to a unified descripmaximum strengths become larger. It is found that the maxi-
tion of the dispersion equations for bulk polariton and x-raymum strengths reach several tens meV. The similar behavior
scattering from Eq(62).1° has also been calculated for the exciton confined in a quan-
In the spherical case, the exciton-light coupled modes areum well2°2
classified into TE and TM modes. The TE eigenenergy is The characteristic size dependence of the radiative width
calculated by substituting E34) into Eq.(62), and the TM  can be understood roughly from the spatial patterns of the
eigenenergy is calculated using E(35)—(38). The radiative  wave function of exciton and the light intensity. Around the
correction'A&», is w dependent, which becomes important Size€ where the radiative width becomes maximum, the wave-
for |arge radius. If thew dependence can be neg|ected quengths of confined exciton and I|ght are alm-OSt in agl’eemer_lt
(62) is a polynomial equation of theith order, whereN is ~ With each other. However, the sizes satisfying above condi-
the number of the basis functiof$£)}. In this case, the tion do not coincide with the sizes giving maximum r§d|at|ve
solutions correspond to the excitons modified by the radiawidths. The crucial point is that the retarded interactosp
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in Egs.(34)—(38) contains the reflection coeﬁicielﬂﬁgngM) reformulated nonlocal theory. However, the present proce-

appearing irngE(TM)(Z)_ TheRIZEJ(TM) depends on radius, and dure allows a detailed analysis in terms of the radiative shifts

the radii giving maximum radiative widths are determined by@nd widths, and the decomposition of the response field into
the condition ofRIE™ being maximum, in which the de- e exciton and Mie scatterings. . .
nominator becomes minimum. This condition is the same as Because_ of this advarjtage, we can discuss how the exci-
that of the Mie resonance. Using the asymptotic expansion‘éOn scattering appears in the total cross section. In some
for large argument of spherical Bessel functions, we have th&§2S€s @ dip structure is found around the energy where the

radii aIE(TM) which provide maximunRLEJ(TM) as exciton scattering occurs. This can be seen when the Mie and
exciton scatterings witd become comparable.
nar Another merit to adopt the present scheme is that we can
aIE(TM)zk— for odd (even J, (63 calculate the energies of the exciton-light coupled modes.
1

The real and imaginary parts of the energies correspond to
the spectral peak energies and radiative widths of spectra,
n+— for even(odd)J, (64) respectively. We have revealed the cavity effect on the radia-
2] kq tive width. Namely, the radiative width of each peak shows a
wheren is an integer. The conditions depend on only thelocal maximum as a function of ra(_jius, at which t_he couplin_g
wavelength inside of a sphere. In Fig. 5 vertical arrows in-P&comes maximum. We have derived an analytic expression
dicate the radii represented by E¢83) and(64). It is found  for this condition approximately. _
that these simple expressions describe the radii with maxi- Finally, we remark the extinction cross section and ab-
mum radiative width quite well in the present case, thoughsOrption spectra, which are observed experimentally much
the above conditions hold better for large confinement ra&asier t_han the scattering cross sect!on. The_ extlnctu_)n and
dius. This indicates that the size enhancement of the excitorPSOrption spectra can be calculated in the microscopic non-
light interaction is dominated by the cavity effect of Mie local theory as is demonstrated in Appendix C. We confined
resonance. It should be noted that the enhancement conditi@¥/rselves to present numerical calculations of scattering
is invalid for smalle, /e,, where the cavity effect becomes Cr0SS sepﬂon since we haye the same re_sults on the radllatlve
small. In this case, the enhancement size would depend deeak shift a_nd radiative widths for extinction ano_l a_bsorpt|on
theL-T splitting energyA 1 characterizing the magnitude of s_pectra. This comes f_rom t_he ffict that_these r_adlatl_ve correc-
the exciton-light interaction. tions relate to th(_a exciton-light |r_1teract|0n, which is indepen-

The resonant energies and widths of the spectral peaks ﬁi]ent of obseryatlon method;. It is noted that the Q|p structgre
Fig. 2 are in agreement with the eigenenergies of the corrdD the scattering cross section does not appear in the extinc-
sponding exciton-light coupled modes. The spectral structurlion Spectra because the extinction spectra are proportional to
of o With 90 nm in radiugsee Fig. 3is also described by the_real part of the coeff|C|e_nt of scattgred f|eld,_ i.e., there is
the eigenmodes, but in such large radius the total cross seB® interference term of exciton and Mie scatterings.
tion is different fromo, due to the interference with the Mie
scattering as shown in the previous section. ACKNOWLEDGMENTS
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APPENDIX A:  RELATIONSHIP OF DIFFERENT KINDS
OF VECTOR FUNCTIONS

In this appendix, we present the relations of some vector
VI. SUMMARY functions used in this paper. First, we consider the relations

F i K fined i herical ¢ Ibetween spherical vector function, ;y and vector func-
or an exciton weakly confined in a spherical nanocrystal,, ' (Vxrz(Kr)Yym, VXVXrz(kn)Y,, wherez(kr)

we have studied the scattering cross sections and exciton- ! . (1)
. . . represents the spherical Bessel functipri&r) or h;~’(kr).
light coupled modes comprehensively by using a reformu-

- . - The vector spherical harmonics relate to the spherical har-
lated microscopic nonlocal theory. In our calculation, we P P

consider the situation where the c.m. motion of the exciton ignonics multiplied by the unit vectar as follows:

confined in an infinite hard wall potential. This corresponds

to the boundary condition that the induced polarization as a VRN [1+1 v n / | v (A1)
superposition of the bulk exciton states becomes zero at the Im 2141 Irim 2141 M-

surface. Therefore our calculations coincide with the results

of the macroscopic theory with the Pekar type ABC. For the Furthermore, we need the operations of curl to the types

calculation of scattering spectrum alone, the macroscopic af {®(r)Y, ,P(r)Y, =1 mf With ®(r) being an arbitrary
proach with an assumed form of the ABC is simpler than theradial functions, and the results are given by
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[+2

VX[P()Y) 111ml=i .

dr

d | |
VX[CD(V)Ynm]:i(a_ F)q) Y, mYI,Hl,m

w12 ‘D\/mY
Tt SIr Y -1m
(A3)
(d 1-1 I+1
VX[(D(r)Y|,|1,m]:'(a_T)CD\/; Yiim -
(A4)

After straightforward calculations using the above formu-
las, we get the relations

VX[rZ|(kr)Y|m]:_i\I(I+1)Z|(kr)Y||m, (A5)
1 i+
EVXVx[rz|(kr)Y|m]— SI51

X[ =1z 41 (KDY 1 am
+VI+1z o (KN)Y) -1l
(A6)

There exist another type of vector functiohs,,, and
Nem defined in Egs(42) and (43). From the relation of the
spherical harmonics and the associated Legendre functio
we have

M omi= aimf V X[z, (Kr) Y|, 1= VX [rz,(kr) Y, ]}

(A7)
1
Nem|=ia|mE{V><V><[rz|(kr)Y,m]+V><V
X[rz(knYiLl}, (A8)
with
(=)™ [Ax (+m)!
m= o 21+1 (1—m)!" (A9)

Thus the vector functionfM ,,,;,Nem} Can be represented in
terms of the vector spherical harmonics by using E4%)
and(A6).

Finally, we give the transformation of ' 8(r—r'), which
appear in the last term of E(R4). The delta function can be
expanded as

1
o(r—r)=—
r2

S(r—r")o(Q1—Q")

1
o= )E Yim(Q) Y, Q).

(A10)

PHYSICAL REVIEW B6, 245322 (2002

If we use the relation in Eq(Al), the dyadic function
rr’8(r—r') can be rewritten in terms of the vector spherical

harmonics.
APPENDIX B: FORMULAS FOR INTEGRATION

We summarize the useful integral formulas for the calcu-
lations of Eqs(34)—(38):

f:dx' 2j,(ax)j1(BX')

( 2

%’Bz[aj|+1(aX)j|(,3X)—Bju(aX)J|+1(,3X)]
(a#pB)

X2
Sotax(if(ax) +jfi1(ax)]

\ — @+ D)ji(ax)ji+a(ax)}

B)

(a=

and

jdxj dx' 32 @)y (BX)]) (yx )P yx-)

[ aiiea(@)ii() — yi(@iia(y)
a2_,y2
Bir 1B (y) = i (B, (y)
X BZ_,yZ

n,
aJ|+1(C¥)J|(ﬁ) Bii(a)ji+1(B)
— 7& )
Y a2~ B (B2~ 7P) (e p
=\ ajiri()ji(yv)—yii(@)ji+1(y)
a,2_,)/2
aJHl(a)h( (y)—yii()h{Py(y)
a’=y°
- a[J|(a)+J|+1(a)] (214 1)1 (a)f 1 1(a)
2ay(a?=9?)

\ (a=p).

APPENDIX C: EXTINCTION AND ABSORPTION CROSS
SECTIONS

The present approach using the microscopic nonlocal
theory can provide the extinction and absorption cross sec-
tions also. Since the expression of the extinction cross sec-
tion is given in Ref. 17 for Mie scattering, we focus on the
contribution of exciton. In Ref. 17, the extinction cross sec-
tion is represented in terms of the coefficients of the basis
M3 and N3, for a scattered field, whers ) and N&),
denote the vector functions defined by E@7) and (A8)
with z(kr)=h("(kr). Thus we obtain the extinction cross
section due to exciton by changing the basis of scattered field

245322-11



AJIKI, TSUJI, KAWANO, AND CHO

in Egs.(51) and(52) from Y 5,y to M), andNE), and com-

paring the results to the expression of extinction in Ref. 17
Note that the absorption cross section is given by subtractin
the scattering cross section from the extinction cross sectio

Using the transformations in Appendix A, we get the re-

lations
I(1+1)
M) = [z hOkE) (Y1 + Yy —1), c1
oll \/—2I+1 RO (Y + Yy, 21) (Cy
NG = \/— 2|+1 [\/—h|+1 (kn)(Yyis1a=Yiie1,-1)

— T+ 1P (kDY 211 Yi-1-1)], (C2

where we use the relation};,,=(—1)> "My, .
It is noted thatM dependence of the constandg;y, and
Vv appears inF,jy determined from Eq.(9). The

M-dependent elements in the equation are contained only in

F( expressed in Eq$48)—(50), from which it is found that
the valueM determines just the sign df,,;» and V,ju -
Then we have the relations

PHYSICAL REVIEW B 66, 245322 (2002

Upg-1= Vins,-1= Vo (C3

Therefore the sum of thé1=1 and —1 components of
T2(™M) js proportional to the basM 1, (Ney;), and we get

UnJli

gre K p e V2L (C4)
ex \/— € 3 J(J+ 1) nJi olJ’
ex \/— 61 & J(J-I— 1) nJlNelJ (CS)
From the expansion coefficients BF(3; andN(3),, we have

the extinction cross sections by excitof=™ as follows:

?M::ﬂﬂklw%uaz V2J+1Rd (—i)? U 5]
(C6)
4
oh= \I/E—,WﬂKlvALT E (23+ DR (=i)Vnnl,

(C7)
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