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Floquet states and persistent-current transitions in a mesoscopic ring

M. Moskalets1 and M. Büttiker2
1Department of Metal and Semiconductor Physics, National Technical University ‘‘Kharkov Polytechnical Institute,’’ Kharkov, Ukr
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We consider the effect of an oscillating potential on the single-particle spectrum and the time-averaged
persistent current of a one-dimensional phase-coherent mesoscopic ring with a magnetic flux. We show that in
a ring with an even number of spinless electrons the oscillating potential has a strong effect on the persistent
current when the excited side bands are close to the eigenlevels of a pure ring. Resonant enhancement of side
bands of the Floquet state generates a sign change of the persistent current.

DOI: 10.1103/PhysRevB.66.245321 PACS number~s!: 73.23.Ra, 72.10.2d
rn
s
,

s
u
rn
f

op
n

to

pi

e
ta
u

ng
in
,

of
g
en
n

on
O
s
s
cu
ux

is

as
dic
t
tions

c-

-

lta
-

uet

a
f an
ch
Mesoscopic systems subject to a periodic in time, exte
driving force are now of considerable interest. This is illu
trated by work concerning low frequency ac-transport1,2

photon-assisted tunneling,3–6 and quantum pumping.7,8 This
list could easily be extended. Electrons interacting with
time-dependent potential9 can gain or loss energy and thu
the electron system has no stationary states and, in partic
there is no stationary ground state. However, if the exte
potential is periodic in time we can describe the state o
system using the Floquet function,10–12 which is a superpo-
sition of wave functions with energies shifted byn\v ~here
n is an integer;v is the frequency of the driving potential!.
The existence of many components~side bands! of a wave
function has a strong effect on the properties of a mesosc
system. For instance, side bands open up additional chan
for transmission through the mesoscopic system–pho
assisted transmission~see, e.g., Refs. 11 and 12!. The exis-
tence of side bands is also a necessary condition for pum
charge through an unbiased mesoscopic sample.13

The aim of the present paper is to investigate the prop
ties of a phase-coherent mesoscopic ring in the Floquet s
We are interested in the coherent properties of the Floq
state of a ring structure with an oscillating potential. In a ri
structure the wave functions must not only be periodic
time but also periodic in space. As a consequence, a ring
the presence of an Aharonov-Bohm flux14 F, exhibits a per-
sistent current.15–19 The persistent current is a signature
the coherence of the ground state of a mesoscopic rin20

Therefore, it is intersting to investigate how the persist
current is affected by a time-dependent potential. We fi
that under certain conditions the system exhibits transiti
between the different components of the Floquet state.
analysis shows that the absolute value of the amplitude
the side bands of the Floquet states are strong function
frequency and of flux. As a consequence, the persistent
rent displays transitions as a function of frequency and fl

Let us consider the time-dependent Schro¨dinger equation
for an electron wave functionC(x,t) on a circle of circum-
ferenceL threaded by an Aharonov-Bohm magnetic fluxF
with an oscillatingd-function potential

i\
]C~x,t !

]t
5Ĥ~x,t !C~x,t !,
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Ĥ~x,t !52
\2

2m S ]

]x
2 i

2p

L

F

F0
D 2

1V~ t !d~x!,

V~ t !52LV cos~vt !. ~1!

Here F05h/e is the magnetic flux quantum. To solve th
equation we will use the method of Floquet functions.11,12

Because the HamiltonianĤ depends on time, the system h
no stationary eigenstates. Since the Hamiltonian is perio
in time, the states of Eq.~1! can, according to the Floque
theorem, be represented as a superposition of wave func
with energies shifted byn\v:

CE~x,t !5e2 iEt/\ (
n52`

`

cn~x!e2 invt. ~2!

By analogy with a pure ring problem we choose the fun
tions cn(x) in the following form:

cn~x!5e2p i (F/F0)(x/L)~aneiknx1bne2 iknx!. ~3!

Herekn5A2mEn /\2 andEn5E1n\v. The coordinatex is
directed along the ring 0<x,L. Note, that for the evanes
cent modes (En,0) we set kn5 ikn with kn

5A2muEnu/\2.
On a ring the Floquet eigenfunctionCE must be periodic

in x. In addition its derivative is discontinuous at the de
function barrier. ThusCE is subject to the following bound
ary conditions:

CE~x,t !5CE~x1L,t !,

]CE~x,t !

]x U
x510

2
]CE~x,t !

]x U
x5L20

5
2m

\2
V~ t !CE~0,t !.

~4!

These boundary conditions define the discrete set of Floq
eigenenergiesE( l ) ~wherel is an integer! and corresponding
Floquet eigenfunctionsCE( l ) which are characteristic for the
ring problem. The quantization of the Floquet energy in
finite-size system is quite analogous to the quantization o
energy in the time-independent problem. In addition, ea
©2002 The American Physical Society21-1
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Floquet state can be occupied by only one electron~because
of the Pauli principle! and thus the wave functionCE must
be normalized

1

TE0

T

dtE
0

L

dxuCEu2[(
n
E

0

L

dxucnu251. ~5!

Here T52p/v. Furthermore, note that usually the Floqu
energyE is determined within the interval 0<E,\v. How-
ever, in our problem it is convenient not to reduce the d
crete set ofE( l ) to this interval.

Substituting Eqs.~2! and ~3! into Eqs.~4! we obtain the
following relations between coefficientsan and bn of the
Floquet functionCE corresponding to the Floquet energyE:

anAn1bnBn50,

anAn2bnBn

52 i
2y

kn
e22p iF/F0~an211bn211an111bn11!.

~6!

Here we have introduced

An5e22p iF/F02eiknL,

Bn5e22p iF/F02e2 iknL,

y5
mLV

\2
. ~7!

Equations~6! couple amplitudes of different indexn. As a
consequence we obtain an infinite system of uniform lin
equations for the coefficientsan and bn (n50,61,
62, . . . ). To have a nontrivial solution the correspondin
~infinite range! determinant must be equal to zero. This co
dition defines the allowed values of the Floquet energy
the corresponding set of coefficientsan andbn .

Using the method of continued fractions21 the calculation
of an infinite range determinant can be greatly simplified.
this end we rewrite the first equation of Eqs.~6! as follows:

bn52an

An

Bn
. ~8!

Substituting the above relation into the second equation
Eqs. ~6! we obtain a recursive equation for the coefficien
an . It is convenient to introduce new quantitiesxn (nÞ0)

xn5
1

y

an

an71

sin~knL !

sin~kn71L !

Bn71

Bn
. ~9!

Here and hereafter the upper~lower! sign is for n>1 (n<
21). In terms of thexn the recursive equation reads

xn5
sin~knL !

knDn2y2 sin~knL !xn61

, ~10!

where
24532
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Dn5cosS 2p
F

F0
D2cos~knL !. ~11!

We can write the solution of Eq.~10! in the form of a con-
tinued fraction

xn5
sin~knL !

knDn2
y2hn61

kn61Dn612
y2hn62

kn62Dn622
y2hn63

�

. ~12!

Herehn615sin(knL)sin(kn61L).
Note that from the numerical calculations it follows th

in each particular case we need to take into account only
limited numberunu,nmax of side bands. Therefore we ca
put x6(nmax11)50 @see Eq.~10!# and, thus, cut the continue
fraction Eq.~12!.

Using the quantitiesxn and Eq.~9! we can express anyan
through thea0

an5a0y unu Bn

B0

sin~k0L !

sin~knL ! )
j 561

n

xj , nÞ0. ~13!

The corresponding relation betweenbn andb0 can be easily
obtained from the above equation and Eq.~8!.

Now we can write down the equations containing onlya0
andb0. Using Eqs.~6! for n50 and expressinga61 andb61
in terms ofa0 andb0, respectively, we get

a0A01b0B050,

a0A02b0B052 i
2y2

k0
e22p iF/F0~x211x11!~a01b0!.

~14!

This system of equations has a nontrivial solution if its d
terminant equals zero

k0FcosS 2p
F

F0
D2cos~k0L !G2y2~x211x11!sin~k0L !50.

~15!

The solutionsk0
( l ) ( l 50,61,62, . . . ) of this ~dispersion!

equation gives us a set of allowed Floquet eigenener
E( l )5(\k0

( l ))2/(2m) and corresponding side bandsEn
( l )

5E( l )1n\v.
Note that in the absence of an oscillating barrier (y50)

we obtain the well-known spectrum of a perfect ring with
magnetic flux

E( l )~F!5
h2

2mL2 S l 1
F

F0
D 2

. ~16!

For a weak potential (y→0) the Floquet energies are close
those given by Eq.~16!.

The main component~corresponding to the energyE( l ))
of the Floquet wave function has a large amplitude:a0

( l )

and/orb0
( l );1. This is due to constructive interference in th
1-2
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ring. In the general case, the amplitudes of side bands~cor-
responding to energiesEn

( l ) , nÞ0) are small due to destruc
tive interference. Mathematically the effect of interference
a ring is described by Eq.~15! ~for the main component! and
by the denominator in Eq.~10! ~for the side bands!. How-
ever, there is a special~resonant! case when the amplitude o
a particular side band with an energyEnr

( l ) is comparable with

the amplitudes of the main component~corresponding to the
energyE( l )). This is the case when the energyEnr

( l ) of the

side band is close to another Floquet eigenenergyE( l 8). Note

that at the same time the corresponding side bandE2nr

( l 8) is

close toE( l ).
To determine the Floquet wave functionCE( l ) we need to

know a0
( l ) @then the coefficientsb0

( l ) , an
( l ) and bn

( l ) can be
found from Eqs.~8! and ~13!#. We find this coefficient from
the normalization condition Eq.~5!. Substituting Eqs.~2!,
~3!, ~8!, and~13! into Eq. ~5! we obtain

ua0
( l )u25

1

L

sin2~k0
( l )L/22pF/F0!

Z( l )sin2~k0
( l )L !

, ~17!

where

Z( l )5
j0

( l )

sin2~k0
( l )L !

1 (
nÞ0

y2unu
jn

( l )

sin2~kn
( l )L !

)
j 561

n

uxj
( l )u2

~18!

and

jn
( l )512cos~kn

( l )L !cosS 2p
F

F0
D

1
sin~kn

( l )L !

kn
( l )L

FcosS 2p
F

F0
D2cos~kn

( l )L !G . ~19!

Next we consider the current carried by the Floquet s
CE( l ). We will concentrate on the time-averaged~dc! current
I dc. To this end we integrate the quantum mechanical cur

I @C#5 i
e\

2m S C
]C*

]x
2C*

]C

]x D2
e2

m
ACC* ~20!

~whereA5F/L is a vector potential! over the time period
T52p/v

I dc
( l )5

1

TE0

T

dtI@CE( l )~x,t !#, ~21!

and obtain

I dc
( l )5

e\

m (
En

( l )
.0

kn
( l )~ uan

( l )u22ubn
( l )u2!. ~22!

Note that the evanescent modes do not contribute to the
rent; therefore we sum over the propagating modes o
(En

( l ).0).
Now we can analyze the effect of an oscillating poten

on the electron wave function and the corresponding qu
24532
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tum mechanical current. From the discussion given abov
follows that the oscillating potential has in general a we
effect on the wave function, which is mainly determined
interference due to the ring geometry. But as we alrea
mentioned this is not the case at resonance when the di
ence between two Floquet eigenenergies is an integer n
ber of the energy quantum\v.

The resonant frequencies are determined by the le
spacing. In the perfect ring investigated here the spect
has special features. Especially at zero flux~or multiples of
F0/2) we have levels crossing each other. Consequently
small flux there are two energy scales which determine
resonant frequencies. The first scale is the~large! level spac-
ing D ( l )5E( l 11)2E( l ) that is a common feature of all finite
size systems. For a small enough sampleL→0 the corre-
sponding resonant frequency is largevD5D ( l )/\;L22

→`. The second scale is determined by the magnetic
dependent separationd ( l )(F)5E( l )(F)2E(2 l )(F) between
levels which are degenerate~in pairs! at zero flux~or at mul-
tiples of F0/2) given byE( l )(0)5E(2 l )(0) @see Eq.~16!#.
This energy scale is a specific feature of ballistic, perfe
ringlike structures. Thenth resonanced ( l )(F)5n\v occurs
~in the case of a weak potential! at

v5
2D ( l )

n\

F

F0
. ~23!

Note that at this condition thenth side bandEn
(2 l ) is in

resonance withE( l ) and vice versa: the2nth side bandE2n
( l )

is in resonance withE(2 l ).
From Eq.~23! we can see that at small magnetic fluxF

→0 the resonant frequency is small even for a small ri
Thus we conclude that even a slowly~adiabatically!

v!D/\, ~24!

oscillating potential can essentially influence electronic pr
erties of a ring at smallF→0 ~or at F→F0/2) magnetic
fluxes. This regime is of interest in the present paper. In w
follows we describe numerical results concerning the Floq
states in a ring with a small magnetic flux.

Let us consider a ring at zero magnetic flux with a del
function potential oscillating with a fixed frequencyv. In
this case the Floquet eigenenergiesE( l )5(\k0

( l ))2/(2m)
@wherek0

( l ) is a solution of Eq.~15!# are the same as for
pure ring, Eq.~16!. This is because the time-averaged pote
tial is zero.

Further, we choose some pair of degenerate~at F50)
Floquet energiesE( l ) andE(2 l ). Because of interference th
main componentc0 of the Floquet wave function has a con
siderable amplitude:b0

( l );1/L, a0
(2 l );1/L ~all other coeffi-

cients are close to zero!. Now we increase the magnetic flu
which causes the levelsE( l )(F) andE(2 l )(F) first to follow
the energies of a pure ring, Eq.~16!. However, close to the
first resonanceF;F0\v/(2D ( l )) they ‘‘interact’’ with the
corresponding side bands (E11

(2 l ) andE21
( l ) , respectively! and

show an avoided crossing behavior.
Close to resonance, because of constructive interfere

on the ring, the amplitude of the wave function correspon
1-3
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ing to the first side band considerably increases:22 a21
( l )

;1/L and b11
(2 l );1/L. The same occurs at the higher res

nances. Thus we can say that at the resonance the Flo
state corresponds to an electron equally distributed betw
two states with energies shifted byn\v ~for the nth reso-
nance!. This is evident from Fig. 1 where we depict the d
pendence of the Floquet energyE( l ) and some side bands o
the magnetic flux. The width of the solid lines is proportion
to the square of the absolute value of the amplitude~ the
probability of occupation! of the side band of the Floque
state.

We see that with increasing magnetic flux the parti
belonging to some Floquet eigenstate undergoes a trans
between states with an opposite direction of movement.
instance, let us assume that at zero magnetic fluxF50 the
particle is in stateE0

( l ) with a0
( l )50 andb0

( l )51/L and thus it
carries a diamagnetic currentI dc

( l ),0 @see Eq.~22!#. Then
after the first resonance~see Fig. 1! it passes into the stat
E21

( l ) with a21
( l ) 51/L and b21

( l ) 50. In this case the particle
carries a paramagnetic currentI dc

( l ).0. Correspondingly, af-
ter the second resonance (F;F0\v/D ( l )) the particle un-
dergoes a transition into the stateE11

( l ) with a11
( l ) 50 and

b11
( l ) 51/L and it again carries a diamagnetic current, and

on. Such a behavior has a strong effect on the persis
current carried by the~spinless! electrons on the ring.

Surprisingly, the pair of electrons occupying two Floqu
satesE( l ) andE(2 l ) carry exactly the same current as in t
case of a pure ring:

I dc
( l )1I dc

(2 l )522I 0

F

F0
, ~25!

where I 05eh/(mL2). Therefore the oscillating delta
function potential has no effect on the persistent current

FIG. 1. The dependence of the Floquet eigenenergyE05E( l )

and some side bandsEn5E( l )1n\v ~solid lines;n522, 21, 0,
11) on the magnetic fluxF. The width of the solid lines is pro-
portional to the probability of occupation of the corresponding s
band. The energy and magnetic flux are given in units ofe0

54p2\2/(2mL2) and F05h/e, respectively. The parameters a
l 52, \v50.1e0 , y50.05. In addition the Floquet eigenenerg
E(2 l ) with side bands (n521;0;11;12) are also depicted by thin
dotted lines. For comparison the eigenenergiese0( l 6F/F0)2 of a
pure ring are depicted by thin dashed lines.
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ring with an odd numberNe of ~spinless! electrons

I odd52NeI 0

F

F0
, uFu,F0/2. ~26!

However, this is not the case for a ring with an ev
number of electrons. In this case the currentI even is mainly
determined by the ‘‘unpaired’’ electron in the highest occ
pied Floquet state. As we discussed above the current ca
by this electron oscillates with a large amplitude. In the lo
frequency limit @see Eq.~24!# of interest here the period
dF;F0\v/(2D ( l )) of these oscillations is much smalle
than the magnetic flux quantumF0.

In Fig. 2 we depict the dependence of the persistent c
rent on the magnetic flux in a ring with four (I even) and five
(I odd) electrons.

We would like to emphasize that the behavior of the p
sistent current in a ring with an even number of electrons
due to an interplay between the interference in a ring and
excitation of side bands by an oscillating potential. The p
sistent current reflects the behavior of a single Floquet st
The interaction with an oscillating potential cannot lead
transitions between the different Floquet states. As a con
quence the particle stays in the same Floquet state when
magnetic flux changes. Because of interference the par
losses or gains some energy quanta\v, which brings it into
the appropriate substate of the Floquet state when the m
netic flux goes through the resonant value.

However, the interaction with an environment can lead
transitions between different Floquet states. In this case
particle will relax to the lowest unoccupied Floquet sta
corresponding to a given value of a magnetic flux and
peculiarities ofI even will be diminished. This effect will be
considered elsewhere.

We remark on an essential difference between the osc
tions of the persistent current investigated here and the
cillations of a persistent current with a period ofF0. In the
ballistic case the energy is quadratic in the magnetic flux
~16! and the properties of a ring~in particular, the persisten

e

FIG. 2. Persistent current in a ring with an evenI even (Ne54;
solid line! and an oddI odd (Ne55; dashed line! number of elec-
trons. The current is given in units ofI 05eh/(mL2). The param-
eters are the same as in Fig. 1.
1-4
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current! become periodic inF ~with a period ofF0) only
because of the relaxation to the state with a minimum ene
~for a more detailed discussion see Ref. 23!. In contrast, the
oscillations of interest here~see Fig. 2! occur if only the
system stays at the same Floquet state~when the magnetic
flux changes!.

In the present paper we have considered a perfect r
But the effect under consideration is quite general becau
is due to a competition between the quantum mechan
interference and the excitation of side bands by an oscilla
scatterer. In particular, in the presence of disorder there i
level degeneracy.16 However, the oscillating scatterer ca
still generate transitions between the different component
the Floquet state~and thus can affect the persistent current! if
only an appropriate resonant condition is fulfilled:n\v
5E( l )(F)2E( l 11)(F) @hereE( l )(F) are energy levels in a
.

,

,

rd

24532
y

g.
it

al
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of

ring with disorder#. The only difference from the perfect rin
case is that~in the low frequency limit! the transitions are
due to many photon processes:n@1.

In conclusion, within the framework of the Floquet stat
approach we have considered the effect of an oscilla
d-function potential on the persistent current in a ring
noninteracting spinless electrons threaded by a magn
flux. We have found an unusual strong parity effect in a we
magnetic flux. The current in a ring with an odd number
electrons is diamagnetic and exactly the same as in a
ring. In contrast the current in a ring with an even number
electrons oscillates in sign with a large amplitude and wit
small ~compared withF0) period.

This work was supported by the Swiss National Science
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