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Two-dimensional plasmon in a metallic monolayer on a semiconductor surface:
Exchange-correlation effects
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Taking account of exchange-correlation~XC! effects, we investigate two-dimensional~2D! plasmons~PL’s!
in a metallic monolayer on a semiconductor surface. The energy dispersion and the energy-loss intensity of the
2D PL are calculated in close relation to a recent experiment by high-resolution electron energy-loss spectros-
copy. We evaluate the XC effects by using the local-field-correction theory and by comparing the calculated
results among~i! the random-phase approximation,~ii ! the Hartree-Fock approximation, and~iii ! the approxi-
mation originally formulated by Singwi, Tosi, Land, and Sjo¨lander. We determine the electron densityn0 and
the electron effective massm* so that the results in~iii ! accord with the experimental ones. Our calculations
give a good description of the energy dispersion and the energy-loss intensity of the 2D PL and the PL decay
due to single-particle excitations in the experiment. With an increase in wave numberq, the exchange and
correlation begin to lower the dispersion curve and make the 2D PL decay at a smallerq value. Our electron
system has a high effective density, because it lies on a semi-infinite dielectric medium. However, owing to low
dimensionality, the XC effects start to appear remarkably in the 2D PL with an increase inq.

DOI: 10.1103/PhysRevB.66.245320 PACS number~s!: 73.20.Mf, 71.45.Gm, 79.20.Uv
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I. INTRODUCTION

The Si(111)-()3))-Ag surface can be formed by de
positing one monolayer~ML ! of Ag atoms on a Si(111)-(7
37) surface at temperatures higher than 250 °C~for compre-
hensive reviews, see Refs. 1–3!. Here, 1 ML denotes an
atom density equal to that of the topmost layer of the Si~111!
face, namely, 7.8331014 atoms/cm2. There are still some
dangling-bond states on the clean Si(111)-(737) surface,
though the reconstruction from an ideally truncated surf
into a (737) surface decreases the number of dangl
bonds remarkably. When Ag atoms are adsorbed to creat
()3))-Ag surface, the Ag atoms make covalent bon
with surface Si atoms, leaving no dangling bonds on
surface. The ()3))-Ag surface is known to have thre
surface states,S1 , S2 , andS3 .4,5 TheS1 state with the high-
est energy arises mostly from Ag 5p orbitals oriented to-
wards the surface-parallel direction.6 The S1 state is local-
ized virtually in the topmost layer of Ag and Si atoms, and
band possesses a parabolic energy dispersion crossin
Fermi levelEF .4,5 The S1-state band provides an ideal two
dimensional ~2D! system of conduction electrons. Th
conduction-electron character of theS1 states can be visual
ized in low-temperature scanning-tunneling-microsco
~STM! images from a ()3))-Ag domain surrounded by
atomic steps or out-of-phase boundaries.7 One can clearly
observe the standing waves that result from interferenc
electronic waves impinging on and reflected from the st
or boundaries.

Here, we mention electron doping into theS1-state band
induced by additional Ag adsorption onto the ()3))-Ag
surface. This suggests controllability of the electron den
0163-1829/2002/66~24!/245320~8!/$20.00 66 2453
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by the extra Ag adsorption. The additional Ag atoms a
adsorbed as monomers and constitute a so-called 2D ada
gas phase, when additional Ag coverage is not high eno
to start nucleating into three-dimensional~3D! islands.8,9 The
critical additional coverage for this nucleation is about 0.
ML at room temperature. A tiny quantity of Ag adatoms
0.01 ML or so causes a substantial downward shift of
S1-state band relative toEF , and consequently a significan
increase in the electron density in this band.10 As is observed
by angle-resolved ultraviolet photoelectron spectrosco
~ARUPS!, a minute amount of extra Ag atoms of 0.022 M
gives rise to a downward band shift of about 0.15 eV, wh
entails an electron-density increase from 1.631013 to 3.5
31013 cm22.2,10 This implies that the electron density
quite sensitive to a small quantity of extra Ag atoms and t
the Ag deposition must be controlled very carefully to a
quire an electron system inherent in the ()3))-Ag sur-
face. The above increase in the electron density can
clearly observed as an enhancement of surface electron
ductivity through theS1-state band.8,10

Quite recently, we have clearly observed 2D plasmo
~PL’s! due to theS1-state band by means of high-resolutio
electron energy-loss spectroscopy~HREELS!.11,12 The en-
ergy dispersion and the energy-loss intensity of the 2D
have been obtained in a broad wave-number~q! region, until
the 2D PL enters a single-particle-excitation~SPE! con-
tinuum, namely, an electron-hole–pair excitation continuu
and decays immediately. The wavelength of each occup
conduction-electron state and that of each PL mode are
much longer than the lattice constants, because the F
wavelength of our electron system is several tens of a˚ng-
stroms long. Accordingly, the background lattice exerts
substantial influence on the 2D PL’s. There is no essen
difference in theq dependence of the PL energy and the
©2002 The American Physical Society20-1
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loss-peak intensity between theGK8 direction and theGM 8
direction in the surface Brillouin zone. This implies an is
tropic nature of the 2D PL. By a quick drop in the PL los
peak intensity, we can definitely locate aq value where the
above PL decay occurs.

Since theS1 state with a conduction-electron character
localized virtually in the topmost layer of Ag and Si atom
the thickness of the 2D electron system of several a˚ngstroms
is much smaller than the wavelength of each PL mo
Therefore, the finite thickness of the 2D electron system
no significant effect on the 2D PL. In addition, interba
transitions make no substantial contribution to the 2D P
because the small thickness of surface states involves a
energy separation between theS1-state band and anothe
surface-state band. We have only to consider transition
theS1-state band. The plasmon composed of these transit
can be recognized to be an ideal 2D PL. As for doping of
Si substrate, it has negligible influence on the energy dis
sion of the 2D PL whether the substrate isn type or p
type.11,12This clarifies that the 2D PL observed originates n
from a surface space-charge layer but theS1-state band.

In light of the fact that our electron system is an ideal 2
one, it is a good approximation to assume that electrons
restricted to a uniform plane positively charged, namely
jellium plane. As shown in Refs. 11 and 12, the rando
phase approximation13 ~RPA! gives a reasonable explanatio
of the observed energy dispersion and decay of the 2D
because this approximation can represent both the 2D PL
the SPE continuum adequately. However, the RPA is equ
lent to a dynamical Hartree approximation, and it takes
account of the exchange-correlation~XC! effects. Our elec-
tron system lies on a semi-infinite dielectric medium, whi
leads to a long effective Bohr radius and consequently a h
effective density. It is well known that the exchange a
correlation play no significant role in excitations in a 3
electron system with a high effective density. In 2D ele
tronic excitations, however, the XC effects may continue
be important up to higher effective densities, because
electrons’ freedom of movement is restricted to a plane.
cause of the XC effects, the electrons steer clear of one
other, and this behavior can be described by exchange
correlation holes. Using the local-field correction~LFC!, we
can incorporate these XC effects into the RPA scheme.
the wavelength of each PL mode becomes comparabl
radii of the exchange and correlation holes, the presenc
the exchange and correlation holes begin to operate
weaken the effective Coulomb potential. Singwi, Tosi, Lan
and Sjölander~STLS! formulated a LFC theory for 3D elec
tronic excitations where the LFC and the static structure f
tor are determined self-consistently.14,15 Jonson reformulated
this theory to examine 2D electronic excitations.16 Gold pro-
posed parameterized forms of the LFC for both unpolari
and polarized electron systems in two and th
dimensions.17 The LFC theory, often including a generaliz
tion to finite temperatures, has been widely employed to
amine interacting electrons in an inversion layer,16 a single
quantum well,18 and two neighboring quantum wells.19–24

In the present work, taking account of the XC effects,
investigate the 2D PL due to theS1-state band, in close re
24532
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lation to our recent experiment by HREELS in Refs. 11 a
12. By means of the LFC, we calculate the energy dispers
and the energy-loss intensity of the 2D PL, and compare
results among~i! the RPA, ~ii ! the Hartree-Fock~HF! ap-
proximation, and~iii ! the self-consistent STLS approxima
tion. In ~ii !, the LFC is calculated by integrating the stat
structure factor in the HF approximation with respect to t
wave vector. We determine the electron densityn0 and the
electron effective massm* so that the calculated results i
~iii ! agree with the experimental results. The above comp
tive analysis elucidates the XC effects on the 2D PL. F
thermore, we examine theq dependence of the integrate
intensity of the PL loss peak in the EEL spectrum that clea
shows the PL decay due to SPE’s. Though our electron
tem has a high effective density, with an increase inq, the
XC effects start to emerge conspicuously in the 2D PL ow
to low dimensionality.

II. THEORY

In this section, we describe a theoretical framework
our analysis. We examine excitations of a 2D conductio
electron system in the surface-state band. We assume tha
conduction electrons are confined on a uniform plane tha
positively charged due to additional Ag adatoms ionized
extra donor-type surface states and that lies on a semi-infi
dielectric medium described by a dielectric constant«s . The
positive charges due to ionized Ag adatoms or surface st
could be spread out into a uniform distribution of positi
charges, because our electron system has a high effe
density. This is similar to a degenerate semiconductor wh
each carrier ‘‘sees’’ an ionized impurity screened well
other carriers. We employ the 2D version16 of the STLS
approximation14,15 in order to take account of the XC effec
in electronic excitations. Our calculations are concerned w
such a low-temperature experiment11,12 ~temperature T
590 K) that we can neglect temperature effects involved
the Fermi-Dirac~FD! distribution function. Accordingly, we
use a zero-temperature scheme where the FD distribu
function becomes a step function.

We focus our attention on the dynamical response of
electron system to a periodic and oscillatory external pot
tial with wave vectorq and angular frequencyv. The in-
duced electron density can be expressed as

dn~q,v!5x0~q,v!V~q,v!, ~1!

in terms of a susceptibilityx0 of a noninteracting electron
system and an effective potentialV due to the response. Th
susceptibilityx0 is written in the form

x0~q,v!52E d2k

~2p!2

f ~k1q!2 f ~k!

E~k1q!2E~k!1\v1 ih
, ~2!

where E(k), f (k), and h denote the energy dispersion o
electrons given byE(k)5\2k2/2m* with wave vectork, the
FD distribution function for electron statek, and an infini-
tesimal positive constant, respectively. Thek integration in
0-2
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TWO-DIMENSIONAL PLASMON IN A METALLI C . . . PHYSICAL REVIEW B 66, 245320 ~2002!
Eq. ~2! can be carried out analytically atT50.13 The effec-
tive potentialV(q,v) is given as a Fourier component of th
following V(r ,v):

« tV~r ,v!5U~r ,v!1E d2r 8K~r2r 8!dn~r 8,v!. ~3!

The dielectric constant« t defined by« t5(«s11)/2 describes
the polarization of the semi-infinite dielectric medium. T
potential U(r ,v) signifies an oscillating external potentia
and the second term on the right-hand side~r.h.s.! of Eq. ~3!
divided by« t indicates an induced potential. The gradient
the kernelK is expressed as

¹K~r !5g~r !¹~e2/r !. ~4!

The static pair-correlation functiong(r ) in equilibrium rep-
resents many-body effects, namely, the exchange and c
lation holes that result from the fact that electrons try to s
away from a near neighborhood of one another within a
dius ;kF

21. Here, the symbolkF designates the Fermi wav
number. The functiong(r ) can be related to the static stru
ture factorS(k) by

g~r !511
1

n0
E d2k

~2p!2 $S~k!21%exp~ ik•r !, ~5!

wheren0 stands for the uniform electron density in the a
sence of the external potential. With the aid of Eqs.~4! and
~5!, we can obtain the following equation from Eq.~3!:

« tV~q,v!5U~q,v!1v~q!$12G~q!%dn~q,v!. ~6!

The potentialv(q) is expressed asv(q)52pe2/q. This is a
2D Fourier transform of the Coulomb potentiale2/r . The
LFC G(q) is written as

G~q!5
1

n0
E d2k

~2p!2

q•k

qk
$12S~q2k!%. ~7!

The effects of the exchange and correlation holes are in
porated inG(q) throughS(k). The susceptibilityx(q,v) of
an interacting electron system is defined by

dn~q,v!5x~q,v!U~q,v!, ~8!

and it involves the XC effects. Combining Eqs.~1!, ~6!, and
~8! yields the relation betweenx0(q,v) andx(q,v):

x~q,v!5
x0~q,v!

« t2v~q!$12G~q!%x0~q,v!
. ~9!

At T50, the static structure factorS(q) can be exactly ex-
pressed as the following integration ofx(q,v):25

S~q!52
« t\

pn0
ImF E

0

`

dv x~q,v!G , ~10!

where Im denotes the imaginary part. We can obtain thq
dependence ofG(q) andS(q) by solving Eqs.~7!, ~9!, and
~10! self-consistently. These equations constitute a fram
work of the STLS approximation.
24532
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We regain the RPA by settingG(q) to be identically zero
in the above scheme. The RPA takes no account of the
effects. There is also a LFC based on the H
approximation.16 In this scheme, we calculateG(q) by sub-
stituting into Eq. ~7! the static structure factor in the H
approximation given by Eq.~8! in Ref. 16. OnceG(q) is
known, we can obtainx(q,v) by Eq. ~9!. This correction
takes only account of theX effect.

For convenience of numerical integration in Eq.~10!, we
make analytical continuation ofx(q,v) to the complexv
plane, and convert the integral in realv in Eq. ~10! into that
in imaginaryv.21 This so-called Wick rotation allows us t
avoid calculational difficulties due to plasmon poles on t
real v axis.

The dielectric function«(q,v) is defined by

VH~q,v!5U~q,v!/«~q,v!, ~11!

where the Hartree potentialVH(q,v) is given by

« tVH~q,v!5U~q,v!1v~q!dn~q,v!. ~12!

In Eq. ~11!, we employ notV(q,v) in Eq. ~6! but VH(q,v)
in Eq. ~12!, because we assume that external charges ge
atingU do not have XC interactions with the electrons. Fro
Eqs.~8!, ~11!, and~12!, we can express«(q,v) as

« t /«~q,v!511v~q!x~q,v!. ~13!

Electronic excitations in our system involve the energy lo
that is equivalent to the work performed by external char
against the induced Coulomb potential. The energy loss
unit time and per unit area is written as

W5
« t

pe2 qvuU~q,v!u2 ImF2
1

«~q,v!G . ~14!

In view of this expression, we define the energy-loss funct
FL(q,v) by

FL~q,v!5Im@21/«~q,v!#. ~15!

The functionFL plays a central role in calculating the los
intensity in the HREELS, as shown below.

Next, we turn our attention to the loss intensity in th
HREELS ~see Ref. 26 as a comprehensive reference!. An
incident electron produces an external Coulomb potentiaU
at the surface, which gives rise to electronic excitations
volving the energy loss. The probability of the probing ele
tron undergoing an energy loss\v ~single loss! and entering
an analyzer aperture can be written as

P~v!5$11nPK~v!%E
D

d2q FK~q,v!FL~q,v!, ~16!

where the kinematic factorFK(q,v) and the Planck distribu-
tion functionnPK(v) are expressed as

FK~q,v!5~q/8p4e2\2!uU~q,v!u2 ~17!

and

nPK~v!51/$exp~\v/kBT!21%, ~18!
0-3
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respectively. The factorFK depends upon the scattering pr
cess of the probing electron. The symbolkB in Eq. ~18!
stands for the Boltzmann constant. The integrated regioD
on the q plane in Eq.~16! is the one that corresponds
scattering into the analyzer aperture. We take a coordin
frame where thez axis is in the surface-normal direction wit
its origin at the surface plane, and thex axis is the intersec-
tion of the surface plane with the specular-scattering plan
the sense thatO-x points toward the analyzer. We defin
anglew by qx5q cosw andqy5q sinw. When the function
FL(q,v) is isotropic with respect toq, Eq. ~16! can be con-
verted into

P~v!5$11nPK~v!%E dq GK~q,v!FL~q,v!, ~19!

where the functionGK(q,v) is defined by

GK~q,v!5qE
R~q!

FK~q,v!dw. ~20!

In Eq. ~19!, the functionFL(q,v) is expressed merely a
FL(q,v), to stress that it depends not on the direction oq
but only on the magnitude ofq. The integration in Eq.~19! is
performed in aq range whenq moves in the above regionD.
The integrated rangeR(q) in Eq. ~20! designates aw range
that corresponds to the intersection of a circle of radiuq
with the regionD on theq plane.

In the so-called dipole scattering mentioned above, it
good approximation to assume that the incident electron
lows a classical trajectory.27 The scattered direction i
sharply concentrated about the specular-reflection direct
and usually the energy loss\v in the scattering is much
smaller than the incident energyE0 . Accordingly, we em-
ploy a specular-reflection trajectory where the position of
probing electron at timet has its surface-parallel compone
Vt and its surface-normal onevzutu. Here, the symbolsV and
vz are a constant velocity vector and a positive constant
locity, respectively. In this treatment, the external potentia
written as

U~q,v!5
4pe2vz

~v2q•V!21~qvz!
2 . ~21!

The probability P(v) in Eq. ~19! obtained from Eq.~21!
indicates the energy-loss probability when a probing elect
travels along the~00! beam.

The analyzer aperture is located right at the center of
so-called dipole lobe, when it is adjusted to the specu
reflection direction. As the position of the aperture devia
from the specular-reflection direction, the aperture begin
collect intensity halfway down the dipole lobe, and t
probed dispersion region shifts, as exhibited below. We t
this off-specular, namely, angle-resolved geometry.

III. RESULTS AND DISCUSSION

By means of the theoretical framework in Sec. II, w
investigate 2D PL’s at the Si(111)-()3))-Ag surface in
close relation to our recent HREELS experiment in Ref.
We compare our calculated results in three cases, namel~i!
24532
te

in

a
l-

n,

e

e-
s

n

e
r-
s
to

at

.

the RPA that takes no account of the XC effects,13 ~ii ! the HF
approximation that considers only the exchange effect,16 and
~iii ! the STLS approximation that takes both the exchan
and correlation effects into consideration.16 We determine the
electron densityn0 and the effective electron massm* by
fitting our calculated results in~iii ! with the experimental
results. With these parameter values determined, we ca
late the other two cases~i! and ~ii ! as well for comparison.

Figure 1 shows the energy dispersion of the 2D PL cal
lated by the STLS approximation in comparison with th
obtained by HREELS. The dispersion is given by zeros
the denominator in Eq.~9!. A solid curve and a dash-dotte
curve are the dispersion calculated forn053.831013 cm22

and m* /m050.41 and that forn052.631013 cm22 and
m* /m050.33, respectively. A dotted curve marks a boun
ary of the SPE continuum forn053.831013 cm22 and
m* /m050.41, and the continuum extends on the right s
of the dotted curve. Atn052.631013 cm,22, the 2D PL
reaches the SPE continuum atq'0.10 Å21 where the dash-
dotted curve terminates, though the boundary of the c
tinuum is not displayed in this figure. The 2D PL deca
immediately, when it enters the SPE continuum. Several
ries of dots of various shapes exhibit the experimental res
at a low temperatureT590 K for some different incident-
energy valuesE0 and for twoq directions along theGK8 and
GM 8 lines. As mentioned in Ref. 11, there is no substan
difference in energy dispersion among theseE0 values and
between the twoq directions. The effective massm* has
been adjusted by the method of least squares for each o
two n0 values. The energy of the 2D PL is not so sensitive

FIG. 1. Energy dispersion of the two-dimensional plasmon
the Si(111)-()3))-Ag surface. The solid curve and the das
dotted one show the calculated results in the STLS approxima
for the electron densityn053.831013 cm22 and the electron
effective-mass ratiom* /m050.41 and forn052.631013 cm22 and
m* /m050.33, respectively. The SPE continuum for the former
of n0 and m* /m0 extends on the right side of the dotted curv
Several series of points of various shapes exhibit the experime
results obtained by the HREELS with different incident energiesE0

along theGK8 and GM 8 lines in the surface Brillouin zone~Ref.
11!.
0-4



a
-
fo

um

ig

i

ib

ec
a

u-
er
r,
ho
o
th

n
ng

in

a
a

n
is
as

all

y at
the

an
tes
ela-

oss
rea

S.
c

ig. 3
e.

dif-
en-

the
dary
ity

sly
ts
n

ifi-

n

in

n
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the choice ofn0 . However, it is evident that, at a largern0
value, n053.831013 cm22, the 2D PL decays away at
higherq value around 0.125 Å21. As shown below, the loss
peak intensity due to the 2D PL in the EEL spectrum
n053.831013 cm22 declines quickly around the sameq
value, in good agreement with the experiment.

Here, we mention the effective density parameterr s* de-
fined byp(r s* aB* )2n051 with the effective Bohr radiusaB*
5« t\

2/m* e2. The radiusaB* and the parameterr s* take val-
ues of aB* 510.0 Å and r s* 51.10, when n052.6
31013 cm22 and m* /m050.33, and those ofaB* 58.07 Å
and r s* 51.13, when n053.831013 cm22 and m* /m0

50.41. The presence of the semi-infinite dielectric medi
with «s511.5 ~Ref. 28! is responsible for a largeaB* value,
and consequently a smallr s* value. The abover s* values
close to unity indicate that our electron system has a h
effective density.

From now on, we employ the values ofn053.8
31013 cm22 and m* /m050.41, which leads to the Ferm
wave numberkF50.155 Å21 and the Fermi energyEF
5222 meV measured from the band bottom. Figure 2 exh
its the q dependence ofG(q) in the STLS approximation
~solid curve! and in the HF approximation~dash-dotted
curve!. With an increase inq, theG value rises from zero and
increases monotonically. Owing to the XC effects, the el
trons move clear of the close vicinity of one another within
radius;kF

21. The XC effects make no substantial contrib
tion to V(q,v) at q'0 where the wavelength is much long
than radii of the exchange and correlation holes. Howeve
the wavelength begins to become comparable to the
radii with an increase inq, the XC effects start to operate t
weaken the effective Coulomb interaction represented by
second term on the r.h.s. of Eq.~6!. TheG value in the STLS
approximation is larger than that in the HF approximatio
because the HF approximation includes only the excha
effect.

Figure 3 displays the energy dispersion of the 2D PL
the STLS approximation~solid curve!, the HF approximation
~dash-dotted curve!, and the RPA~broken curve! for n0
53.831013 cm22 and m* /m050.41. The SPE continuum
extends on the right side of the dotted curve. The PL dec
quickly when it goes into the SPE continuum. This PL dec

FIG. 2. q dependence of the local-field correctionG in the STLS
approximation~solid curve! and the Hartree-Fock approximatio
~dash-dotted curve! for n053.831013 cm22 andm* /m050.41.
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occurs at a smallerq value in the STLS approximation tha
in the HF approximation, though it is not so obvious in th
figure. This difference becomes quite evident in Fig. 4,
shown below.

The PL energy rises from zero asAq nearq50, and there
is no difference among the three approximations in this sm
q range. With an increase inq, however, the XC effects begin
to operate to lower the PL energy and make the PL deca
a smallerq value, because the XC effects start to weaken
effective Coulomb interaction@see Eq.~6!#. We find a greater
difference between the HF approximation and the RPA th
between the STLS and HF approximations. This indica
that the exchange effect is more significant than the corr
tion effect.

Here, we focus our attention on the integrated energy-l
intensity I PL of the 2D PL, namely, the resonance-peak a
of the 2D PL in thev dependence ofFL at eachq value. This
quantity is related to the loss-peak intensity in the HREEL
The above resonance peak is represented by the Dirad
function in our calculational scheme. Figure 4 shows theq
dependence of the integrated energy-loss intensityI PL in the
STLS approximation~solid curve!, the HF approximation
~dash-dotted curve!, and the RPA~broken curve!. Each of the
three curves corresponds to one of the three curves in F
according to the specification of its approximation nam
With an increase inq, the intensity I PL rises from zero,
passes its maximum, and decreases to zero. There is no
ference among the three approximations at the initial int
sity rise where the PL energy exhibits theAq dispersion. The
q value where the intensity drops to zero corresponds to
one where the energy-dispersion curve reaches the boun
of the SPE continuum. The XC effects make the intens
decline more rapidly and fall to zero at a conspicuou
smallerq value. Figures 3 and 4 imply that the XC effec
play a significant role in the 2D PL, though our electro
system possesses a high effective density ofr s* '1. This is in
clear contrast to the fact that the XC effects have no sign

FIG. 3. Energy dispersion of the two-dimensional plasmon
the STLS approximation~solid curve!, the Hartree-Fock approxi-
mation ~dash-dotted curve!, and the random-phase approximatio
~broken curve! for n053.831013 cm22 and m* /m050.41. The
SPE continuum extends on the right side of the dotted curve.
0-5
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cant influence on excitations in a 3D electron system wit
high effective density. The XC effects originate from the fa
that the electrons steer clear of the immediate proximity
each other. These effects are considered to appear mor
markably in a 2D system where electrons are constraine
a plane than in a 3D system.

Here, we turn our attention to the loss-peak intensity
the 2D PL in the EEL spectrum. In the experiment, initia
we adjust the analyzer aperture to the specular-reflection
rection, namely, to the center of the so-called dipole lobe.
we rotate the surface plane gradually, the center of the dip
lobe deviates from the analyzer aperture increasingly,
equivalently the aperture shifts down the tail of the dipo
lobe. This shift of the aperture position entails that of t
probed dispersion region.

The kinematic factorGK in Eq. ~19! involves the scatter-
ing process of the probing electron and depends upon
incident anglea0 , the incident energyE0 , and the analyzer
position. The anglea0 is measured from the surface norm
of the initial surface plane before rotation. The probed d
persion region is defined by a region on theq-v plane where
GK takes substantial values. At eachv value, theq depen-
dence ofGK displays a one-peak structure, and we evalu
the probedq range by the full width at half maximum of th
peak. By repeating this evaluation with change inv, we can
obtain the probed dispersion region on the (q,v) plane. As a
typical case, we rotate the surface plane by angleb by tilting
the surface normal to a direction perpendicular to the s
tering plane in the initial specular-reflection geometry. W
assume a circular analyzer aperture with half angleua , and
treat this angle as an adjustable parameter in the ana
below of the loss-peak intensity. Figure 5 shows theb de-
pendence of the probed dispersion region fora056° and

FIG. 4. q dependence of the integrated energy-loss intensityI PL

of the two-dimensional plasmon in the STLS approximation~solid
curve!, the Hartree-Fock approximation~dash-dotted curve!, and
the random-phase approximation~broken curve! for n053.8
31013 cm22 andm* /m050.41. The integrated intensityI PL is de-
fined by the resonance-peak area of the plasmon inv dependence of
the energy-loss function at eachq value.
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E0512.4 eV corresponding to the experiment. As forua , we
have used the value ofua50.58° adjusted below. Eac
hatched region withb specified indicates a probed dispersi
region for thisb value. There is a solid line passing insid
each region. At eachv value, the factorGK reaches its maxi-
mum at a point where the horizontal line for thisv value
intersects with the above-noted passing line. The solid cu
and the dotted curve, both starting from the origin, exhi
the energy dispersion of the 2D PL in the STLS approxim
tion and the boundary of the SPE continuum, respectiv
These two curves are the same as those in Fig. 3. With
increase in angleb, the probed dispersion region shifts to th
higher q side. Each probed region extends in a directi
nearly parallel to thev axis, whena0 (56°) is small. At
eachb value, we can substantially observe a specific par
the dispersion curve that crosses the probed region. In
EEL spectrum, the loss peak emerges around anv value
where the dispersion curve intersects with the above-st
passing line. With an increase inb, we can scan the energ
dispersion, till the 2D PL decays away owing to SPE’s.

The q dependence ofFL is constituted of a PL resonanc
peak in thed-function form, if present, and a weak and e
tending intensity distribution due to SPE’s. We can derive
PL component inP(v) by making theq integration for the
PL resonance peak in Eq.~19!. By integrating the PL com-
ponent inP(v) with respect tov, we can obtain the prob
ability PPL that a probing electron traveling along the~00!
beam creates 2D PL’s and becomes scattered into the
lyzer aperture. When the incident direction is nearly norm
(a056°), theprobing electron interacts with the polarize
surface in a short time, which leads to a smallPPL value
much lower than unity. In view of this, in Fig. 6, we compa

FIG. 5. Rotated-angle~b! dependence of the probed dispersi
region for the incident anglea056°, the incident energyE0

512.4 eV, and the half-angle of the circular analyzer apertureua

50.58°. Each probed dispersion region is defined as a region on
(q,v) plane where the kinematic factorGK in Eq. ~19! takes sub-
stantial values. The surface plane of the material is rotated by
angleb by tilting the surface normal to a direction perpendicular
the scattering plane in the initial specular-reflection geometry. T
solid curve and the dotted curve running from the origin are
same as those in Fig. 3.
0-6
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the calculated probabilityPPL with the integrated loss-pea
intensity of the 2D PL normalized by the integrated elas
peak intensity in the HREELS. The aperture angleua has
been determined by fitting the calculated result to the exp
mental one. A series of solid circles connected by lines
hibits the q dependence of the calculated probabilityPPL
with ua50.58°. The ordinate is indicated in a logarithm
scale. Theq value for each solid circle has been obtain
from the intersection of the dispersion curve and the l
passing inside the probed dispersion region, as displaye
Fig. 5. The open squares and the open circles represen
observedq dependence of the integrated PL-loss intens
normalized by the integrated elastic-peak intensity along
GK8 line and theGM 8 line, respectively. As mentioned i
Ref. 11, the experimental results imply that the 2D PL dec
away aroundqc'0.13 Å21. Our calculation can reproduc
quite well the experimental result, namely, the monoto
intensity decline with an increase inq and the rapid intensity
drop aroundqc due to the PL decay.

A decrease inua narrows the width of each probed di
persion region in Fig. 5, and brings about a nearly para
downward shift and a sharper intensity drop aroundqc in the
PPL curve in Fig. 6. However, the change inua has no sub-
stantial influence on theqc value. The shape of the analyz
aperture in the experiment is not a circle but a rectangle,
the above value ofua50.58° is close to a value of 0.48
estimated by the longer side of the rectangle.

The PPL value declines with an increase inq even in a
smallerq range of 0.02 Å21&q&0.07 Å21 where the inte-
grated PL intensityI PL increases withq ~see Fig. 4!. To un-
derstand this decline, we recall that the probabilityP(v) can

FIG. 6. q dependence of the calculated probabilityPPL that an
incident electron with a056°, E0512.4 eV produces two-
dimensional plasmons and enters a circular analyzer aperture
half-angleua50.58° ~solid circles connected by lines!, in compari-
son with theq dependence of the integrated intensity of the plasm
loss peak in the HREELS normalized by the integrated elastic-p
intensity along theGK8 line ~open squares! and theGM 8 line ~open
circles!. The two-dimensional plasmon decays aroundqc

'0.13 Å21 due to single-particle excitations.
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be obtained by integrating the product ofGK and FL with
respect toq, as seen from Eq.~19!. As the analyzer aperture
shifts down the tail of the dipole lobe with an increase inb,
the probed dispersion region transfers to the largerq side,
and simultaneously the peak intensity in theq dependence of
GK in the probed region drops quite quickly. This quick dro
in GK is responsible for the above decline inPPL , because it
is more influential than the enhancement ofI PL obtained
from FL .

We have determined the values ofn0 and m* by fitting
the calculated results in the STLS approximation with t
experimental results of the HREELS. On the other ha
ARUPS measurements of the ()3))-Ag surface are pro-
viding various values, namely,n05(1.660.3)31013 cm22

and m* /m050.2960.05 in Ref. 10, and n050.9
31013 cm22 andm* /m050.07 in Ref. 29. These values ar
smaller than ours. There are even ARUPS data that im
that the bottom of theS1-state band lies aboveEF at the
complete ()3))-Ag surface without any extra Ag
adatoms.30 As stated in Sec. I, a minute quantity of addition
Ag adatoms leads to a great increase inn0 . In addition, the
electron densityn0 may be sensitive to other impurities o
surface states. Further experimental studies will be requ
to identify theS1-state band for the complete ()3))-Ag
surface. Discrepancies inn0 andm* among different experi-
ments could be ascribed to different levels of electron dop
into theS1-state band by extra Ag adatoms, dopant impu
ties or donor-type surface states. Varying an amount of a
tional Ag adatoms carefully makes a significant difference
n0 .30 This suggests that we could controln0 by careful depo-
sition and temperature treatment. Irrespective of varia
electron doping, at least, we can assert that an ideal
conduction-electron system with a high effective density c
be realized at the ()3))-Ag surface, and that, with an
increase inq, the XC effects begin to appear in the 2D P
remarkably due to low dimensionality, in spite of the hig
effective density.

IV. SUMMARY

The S1-state band at the Si(111)-()3))-Ag surface
provides an ideal two-dimensional conduction-electron s
tem. Taking XC effects into consideration, we have exa
ined the energy dispersion and the energy-loss intensity
the 2D PL due to theS1-state band, in connection with ou
recent experiment by HREELS. We have employed the loc
field-correction theory, and have evaluated the XC effects
the 2D PL by comparing the calculated results among
random-phase approximation, the Hartree-Fock approxi
tion, and the STLS approximation. Our results can be su
marized as follows:

~1! By choosing adequate values of the electron den
n0 and the electron effective massm* , our calculations in
the STLS approximation can reproduce quite well the ene
dispersion and the loss-peak intensity of the 2D PL, and
PL decay owing to SPEs in the HREELS.

~2! At eachn0 value chosen, the calculated dispersion h
been adjusted to the observed one by varyingm* . The criti-
cal wave numberqc where the PL decay occurs depen

ith

n
ak
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uponn0 significantly, though the PL energy is not so sen
tive to n0 . Accordingly, we can determinen0 definitely by
fitting the calculatedqc value to the observed one.

~3! As the wavelength of the 2D PL begins to becom
comparable to radii of exchange and correlation holes w
an increase in wave numberq, the XC effects start to lowe
the dispersion curve, and make the 2D PL decay away du
SPE’s at a smallerq value.

~4! Our electron system has a high effective density of
effective density parameterr s* '1, because it lies on a sem
infinite dielectric medium. However, because of low dime
sionality, the XC effects emerge in the 2D PL conspicuou
with an increase inq.

A significant variation inn0 andm* among different ex-
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