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Taking account of exchange-correlatiofC) effects, we investigate two-dimensiori@dD) plasmongPL's)
in a metallic monolayer on a semiconductor surface. The energy dispersion and the energy-loss intensity of the
2D PL are calculated in close relation to a recent experiment by high-resolution electron energy-loss spectros-
copy. We evaluate the XC effects by using the local-field-correction theory and by comparing the calculated
results amondi) the random-phase approximatidii) the Hartree-Fock approximation, afid) the approxi-
mation originally formulated by Singwi, Tosi, Land, and Bjoder. We determine the electron densityand
the electron effective mass* so that the results ifiii) accord with the experimental ones. Our calculations
give a good description of the energy dispersion and the energy-loss intensity of the 2D PL and the PL decay
due to single-particle excitations in the experiment. With an increase in wave nunter exchange and
correlation begin to lower the dispersion curve and make the 2D PL decay at a synadliere. Our electron
system has a high effective density, because it lies on a semi-infinite dielectric medium. However, owing to low
dimensionality, the XC effects start to appear remarkably in the 2D PL with an increagse in
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[. INTRODUCTION by the extra Ag adsorption. The additional Ag atoms are
adsorbed as monomers and constitute a so-called 2D adatom-
The Si(111)-¢3xv3)-Ag surface can be formed by de- gas phase, when additional Ag coverage is not high enough
positing one monolayefML) of Ag atoms on a Si(1D(7 to start nuc_lgatmg into three-d|mgn5|orﬁaD) |_slar_1ds.' The
X 7) surface at temperatures higher than 250f&€ compre- ('\:/::E'C"jtll addmtonal covterag('eo\ftc_)r this nut(':tleat;og IS gthUt 0'0f3
. . at room temperature. A tiny quantity of Ag adatoms o
hensn(/je reviews, Isee r?efi ]r,l).—CHere, L IML defnotes aN 0.01 ML or so causes a substantial downward shift of the
?tom en5|t?/ e%“ggfohatto t /erg)pq_]r?St ayer Ot_tﬁ(dﬂb Sy-state band relative t&¢, and consequently a significant
ace, namely, /. atoms/cm. There are sl SOME jncrease in the electron density in this bafids is observed
dangling-bond states on the clean Si(k{XxX7) surface, py angle-resolved ultraviolet photoelectron spectroscopy
though the reconstruction from an ideally truncated surfac¢ ARUPS), a minute amount of extra Ag atoms of 0.022 ML
into a (7xX7) surface decreases the number of danglingyives rise to a downward band shift of about 0.15 eV, which
bonds remarkably. When Ag atoms are adsorbed to create tietails an electron-density increase from 38" to 3.5
(V3xv3)-Ag surface, the Ag atoms make covalent bondsx 10** cm™2.2%° This implies that the electron density is
with surface Si atoms, leaving no dangling bonds on thejuite sensitive to a small quantity of extra Ag atoms and that
surface. The 3xv3)-Ag surface is known to have three the Ag deposition must be controlled very carefully to ac-
surface states;, S,, andS,.*5 The S, state with the high- quire an electron system inherent in th&&v3)-Ag sur-

est enerav arses mostly from AdbSorbitals oriented to- face. The above increase in the electron density can be
9y y P clearly observed as an enhancement of surface electron con-

wards the surface-parallel directibrithe S, state is local- ductivity through theS, -state band:°

ized virtually in the topmost layer of Ag and Si atoms, and its Quite recently, we have clearly observed 2D plasmons
band possesses a parabolic energy dispersion crossing 18 s) due to theS, -state band by means of high-resolution
Fermi |eVE|E|: A4S The Sl'state band prOVideS an ideal two- electron energy_|oss SpeCtrOSCOﬂ‘yREELS.lLl% The en-
dimensional (2D) system of conduction electrons. The ergy dispersion and the energy-loss intensity of the 2D PL
conduction-electron character of tBg states can be visual- have been obtained in a broad wave-nuniogregion, until
ized in low-temperature scanning-tunneling-microscopythe 2D PL enters a single-particle-excitatié8PB con-
(STM) images from a {3 Xv3)-Ag domain surrounded by tinuum, namely, an electron-hole—pair excitation continuum,
atomic steps or out-of-phase boundariedne can clearly and decays immediately. The wavelength of each occupied
observe the standing waves that result from interference afonduction-electron state and that of each PL mode are both
electronic waves impinging on and reflected from the stepsnuch longer than the lattice constants, because the Fermi
or boundaries. wavelength of our electron system is several tens raf-a
Here, we mention electron doping into tBg-state band  stroms long. Accordingly, the background lattice exerts no
induced by additional Ag adsorption onto theé3¢(<v3)-Ag substantial influence on the 2D PL's. There is no essential
surface. This suggests controllability of the electron densitylifference in theq dependence of the PL energy and the PL
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loss-peak intensity between th&’ direction and thd’M’ lation to our recent experiment by HREELS in Refs. 11 and
direction in the surface Brillouin zone. This implies an iso- 12. By means of the LFC, we calculate the energy dispersion
tropic nature of the 2D PL. By a quick drop in the PL loss- and the energy-loss intensity of the 2D PL, and compare the
peak intensity, we can definitely locategavalue where the results amondi) the RPA, (ii) the Hartree-FockHF) ap-
above PL decay occurs. proximation, and(iii) the self-consistent STLS approxima-
Since theS; state with a conduction-electron character istion. In (i), the LFC is calculated by integrating the static
localized virtually in the topmost layer of Ag and Si atoms, Structure factor in the HF approximation with respect to the
the thickness of the 2D electron system of sevéngiseroms ~ Wave vector. We determine the electron densigyand the
is much smaller than the wavelength of each PL mode€lectron effective masm* so that the calculated results in
Therefore, the finite thickness of the 2D electron system hadii) agree with the experimental results. The above compara-
no significant effect on the 2D PL. In addition, interband tive analysis elucidates the XC effects on the 2D PL. Fur-
transitions make no substantial contribution to the 2D PLthermore, we examine theg dependence of the integrated
because the small thickness of surface states involves a widgtensity of the PL loss peak in the EEL spectrum that clearly
energy separation between tiS-state band and another Shows the PL decay due to SPE's. Though our electron sys-
surface-state band. We have only to consider transitions if#M has a high effective density, with an increaseirthe
the S;-state band. The plasmon composed of these transition§C €ffects start to emerge conspicuously in the 2D PL owing
can be recognized to be an ideal 2D PL. As for doping of thd© low dimensionality.
Si substrate, it has negligible influence on the energy disper-

sion of the 2D PL whether the substrate ristype or p Il. THEORY
type 12 This clarifies that the 2D PL observed originates not
from a surface space-charge layer but $iestate band. In this section, we describe a theoretical framework for

In light of the fact that our electron system is an ideal 2Dour analysis. We examine excitations of a 2D conduction-
one, it is a good approximation to assume that electrons ar@lectron system in the surface-state band. We assume that the
restricted to a uniform plane positively charged, namely, sconduction electrons are confined on a uniform plane that is
jellium plane. As shown in Refs. 11 and 12, the random-positively charged due to additional Ag adatoms ionized or
phase approximatidﬁ(RPA) gives a reasonable explanation extra donor-type surface states and that lies on a semi-infinite
of the observed energy dispersion and decay of the 2D Pldielectric medium described by a dielectric constant The
because this approximation can represent both the 2D PL ambsitive charges due to ionized Ag adatoms or surface states
the SPE continuum adequately. However, the RPA is equivasould be spread out into a uniform distribution of positive
lent to a dynamical Hartree approximation, and it takes nccharges, because our electron system has a high effective
account of the exchange-correlatioiC) effects. Our elec- density. This is similar to a degenerate semiconductor where
tron system lies on a semi-infinite dielectric medium, whicheach carrier “sees” an ionized impurity screened well by
leads to a long effective Bohr radius and consequently a highther carriers. We employ the 2D verstfrof the STLS
effective density. It is well known that the exchange andapproximation™®in order to take account of the XC effects
correlation play no significant role in excitations in a 3D in electronic excitations. Our calculations are concerned with
electron system with a high effective density. In 2D elec-such a low-temperature experim&nt (temperature T
tronic excitations, however, the XC effects may continue to=90 K) that we can neglect temperature effects involved in
be important up to higher effective densities, because ththe Fermi-Dirac(FD) distribution function. Accordingly, we
electrons’ freedom of movement is restricted to a plane. Beuse a zero-temperature scheme where the FD distribution
cause of the XC effects, the electrons steer clear of one arftinction becomes a step function.
other, and this behavior can be described by exchange and We focus our attention on the dynamical response of our
correlation holes. Using the local-field correctitt=C), we  electron system to a periodic and oscillatory external poten-
can incorporate these XC effects into the RPA scheme. Agial with wave vectorq and angular frequency. The in-
the wavelength of each PL mode becomes comparable tduced electron density can be expressed as
radii of the exchange and correlation holes, the presence of
the exchange and correlation holes begin to operate to oNn(a, @)= xo(d, @) V(0 »), (1)
weaken the effective Coulomb potential. Singwi, Tosi, Land,
and Sjdander(STLS) formulated a LFC theory for 3D elec- i, terms of a susceptibility, of a noninteracting electron
tronic eXC|tat|0_ns where the _LFC an(SJI the static structure faC'system and an effective potentildue to the response. The
tor are determined _self—conssterﬁ& Jon_son reformulated susceptibility y, is written in the form
this theory to examine 2D electronic excitatidissold pro-
posed parameterized forms of the LFC for both unpolarized
and polarized electron systems in two and three (q “’)sz
dimensions.’ The LFC theory, often including a generaliza- Aot (
tion to finite temperatures, has been widely employed to ex-
amine interacting electrons in an inversion lalfes single  where E(k), f(k), and » denote the energy dispersion of
quantum welf® and two neighboring quantum weff$:24 electrons given b¥(k) =#2k?/2m* with wave vectok, the

In the present work, taking account of the XC effects, weFD distribution function for electron state, and an infini-
investigate the 2D PL due to tit§-state band, in close re- tesimal positive constant, respectively. Thentegration in

d?k f(k+q)—f(k)
2m)? E(k+q)—E(k)+ho+in’

@
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Eq. (2) can be carried out analytically @t=0.3 The effec- We regain the RPA by settinG(q) to be identically zero
tive potentialV(q,w) is given as a Fourier component of the in the above scheme. The RPA takes no account of the XC
following V(r,w): effects. There is also a LFC based on the HF

approximation'® In this scheme, we calculatg(q) by sub-
stituting into Eq.(7) the static structure factor in the HF
approximation given by Eq(8) in Ref. 16. OnceG(q) is
known, we can obtainy(q,w) by Eq. (9). This correction
takes only account of th¥ effect.

For convenience of numerical integration in E#0), we
' make analytical continuation of(q,w) to the complexw
plane, and convert the integral in realin Eq. (10) into that
in imaginary .?! This so-called Wick rotation allows us to
avoid calculational difficulties due to plasmon poles on the

_ 2 real w axis.
VK =g(n)V(er). @ The dielectric functiore(q,w) is defined by

stV(r,w)=U(r,w)+fdzr’K(r—r’)én(r’,w). (3

The dielectric constar; defined byes;= (es+1)/2 describes
the polarization of the semi-infinite dielectric medium. The
potential U(r,w) signifies an oscillating external potential
and the second term on the right-hand side.s) of Eq. (3)
divided bye; indicates an induced potential. The gradient of
the kernelK is expressed as

The static pair-correlation functiog(r) in equilibrium rep-
resents many-body effects, namely, the exchange and corre- Vi(q,0)=U(q,0)/e(q, ), (1Y
lation holes that result from the fact that electrons try to stay,here the Hartree potenti&l, (q, ) is given by

away from a near neighborhood of one another within a ra-

dius ~kg*. Here, the symbok; designates the Fermi wave &Vu(q,0)=U(g,w)+v(q)dn(q,). (12
number. The functiom(r) can be related to the static struc-

ture factorS(k) by In Eqg. (11), we employ notV(q,w) in Eq. (6) but V4(q, )

in Eq. (12), because we assume that external charges gener-
1 d2k atingU do not have XC interactions with the electrons. From

g(r)=1+ n—f W{S(k)—l}exp(ik-r), (5)  Egs.(8), (11), and(12), we can express(qg,w) as
0

wheren, stands for the uniform electron density in the ab- et/e(q,0)=1+v(q) x(q,®). (13
sence of the external potential. With the aid of E@8.and  Ejectronic excitations in our system involve the energy loss
(5), we can obtain the following equation from E@): that is equivalent to the work performed by external charges

B against the induced Coulomb potential. The energy loss per
eV(0,0)=U(q,0) +v(q{1-G(q)}én(d,@). (6) Lt time and per unit area is written as

The potentiab (q) is expressed as(q) =2me?/q. This is a

2D Fourier transform of the Coulomb potentied/r. The W=8—t2qw|U(q,w)|2Im 1 } (14)
LFC G(q) is written as me e(g,w)
1 4%k q-k In view of this expression, we define the energy-loss function
= — [ — — _ F , b
G(a) nof 2m?2 gk {1-S(g—Kk)}. (7 L(q,®) by
FL(d,@)=Im[—1/e(q,0)]. (15

The effects of the exchange and correlation holes are incor-
porated inG(q) throughS(k). The susceptibilityy(q,w) of  The functionF, plays a central role in calculating the loss

an interacting electron system is defined by intensity in the HREELS, as shown below.
Next, we turn our attention to the loss intensity in the
on(g,0) = x(q,0)U(q,»), (8)  HREELS (see Ref. 26 as a comprehensive refergnée

and it involves the XC effects. Combining Ed4), (6), and incident electron produces an external Coulomb potettial
(8) yields the relation betwee)éo(q ) and x(q w'): ’ at the surface, which gives rise to electronic excitations in-

volving the energy loss. The probability of the probing elec-
Yo(d, @) tron undergoing an energy loés (single losg and entering
x(d,w)= e 0(DIL-G(DIxo( Q@) (99 an analyzer aperture can be written as

At T=0, the static structure fact@®(q) can be exactly ex- Plw)=!1+ f d2a F F 16
pressed as the following integration gfq, w):° (@)={1F nex(w)} " 4 K(G@)F(d.). (16

et o where the kinematic factd¥«(q,w) and the Planck distribu-
S(g)=— W—nolm fo do x(q,w) |, (10)  tion functionnpk(w) are expressed as
where Im denotes the imaginary part. We can obtainghe F(d,0)=(a/8m"e’4?)|U(q,0)|* 17)
dependence o&(q) andS(q) by solving Eqgs.(7), (9), and  and
(10) self-consistently. These equations constitute a frame-
work of the STLS approximation. Npk(w)=1Kexphw/kgT)—1}, (18
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respectively. The factdf, depends upon the scattering pro-
cess of the probing electron. The symbq in Eq. (18)
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STLS

stands for the Boltzmann constant. The integrated reBion L
on theq plane in Eq.(16) is the one that corresponds to

scattering into the analyzer aperture. We take a coordinate -
frame where the axis is in the surface-normal direction with >
its origin at the surface plane, and theaxis is the intersec- GE’
tion of the surface plane with the specular-scattering plane in §
the sense thaD-x points toward the analyzer. We define <
angle ¢ by gq,=q cose andqgy,=(qsing. When the function

F_(g,w) is isotropic with respect tq, Eq. (16) can be con-

" n,=2.6X10" cm

verted into i
m*/ m, = 0.33
P(w)={1+npK(w)}f dq Gk(d,@)FL(q,0), (19 % 0.05 0.10
q(A™

where the functiorGk(q,w) is defined by

FIG. 1. Energy dispersion of the two-dimensional plasmon at
GK(q,w):qf Fr(g,w)de. the Si(111)-¢3Xxv3)-Ag surface. The solid curve and the dash-
R(a) dotted one show the calculated results in the STLS approximation

In Eq. (19), the functionF (q,w) is expressed merely as for the electron densityn,=3.8<10"cm™® and the electron
FL(q,), to stress that it depends not on the directiorgof ~ffective-mass ratien”/m,=0.41 and fomg=2.6x 10" cm™? and

but only on the magnitude @f. The integration in Eq(19) is m*/mqy=0.33, respectively. The SPE continuum for the former set
performed in & range wherg moves in the above regidd of ng and m*/m, extends on the right side of the dotted curve.
The integrated rangB(q) in Eq. (20) designates & rangé Several series of points of various shapes exhibit the experimental

. . . . results obtained by the HREELS with different incident energigs
that corresponds to the intersection of a circle of radjus — _— . -
. . along the'K’ andT’'M’ lines in the surface Brillouin zon€Ref.
with the regionD on theq plane.

In the so-called dipole scattering mentioned above, it is all)'

good approximation to assume that the incident electron fol-

lows a classical trajectoR). The scattered direction is the RPA that takes no account of the XC effectéi) the HF
sharply concentrated about the specular-reflection directio@pproximation that considers only the exchange effeand

and usually the energy logsw in the scattering is much (iii) the STLS approximation that takes both the exchange
smaller than the incident enerdg,. Accordingly, we em- and correlation effects into consideratifiVe determine the
ploy a specular-reflection trajectory where the position of theelectron densityng and the effective electron mass* by
probing electron at time has its surface-parallel component fitting our calculated results ifiii) with the experimental

Vt and its surface-normal ong|t|. Here, the symbol¥ and  results. With these parameter values determined, we calcu-
v, are a constant velocity vector and a positive constant velate the other two case$) and (ii) as well for comparison.
locity, respectively. In this treatment, the external potential is Figure 1 shows the energy dispersion of the 2D PL calcu-
written as lated by the STLS approximation in comparison with that
obtained by HREELS. The dispersion is given by zeros of
the denominator in Eq9). A solid curve and a dash-dotted
curve are the dispersion calculated foy=3.8x 10" cm ™2

and m*/my=0.41 and that forny=2.6x10"cm 2 and
m*/my=0.33, respectively. A dotted curve marks a bound-
Ury of the SPE continuum fon,=3.8x 10" cm 2 and

(20

471'e2vZ
(w_q.V)Z_’_(qu)Z-

The probability P(w) in Eq. (19) obtained from Eq.(21)
indicates the energy-loss probability when a probing electro

travels along the00) beam_. . m*/my=0.41, and the continuum extends on the right side
The analyzer aperture is located right at the center of th%]c the dotted curve. An.=2.6x 1083 cm -2 the 2D PL
. 0_ . L] 1

so-called dipole lobe, when it is adjusted to the specular- . )
reflection direction. As the position of the aperture deviatesreaCheS the SPE c_ontmuumca%o.lo A" where the dash
dotted curve terminates, though the boundary of the con-

from the specular-reflection direction, the aperture begins t(t)muum is not displayed in this figure. The 2D PL decays

collect intensity halfway down the dipole lobe, and the. . ; .
. ) ; . . |{‘nmed|ately, when it enters the SPE continuum. Several se-
probed dispersion region shifts, as exhibited below. We trea fd fvari h hibit th i | |
this off-specular, namely, angle-resolved geometry: ries of dots of various shapes exhibit the experimental results
’ ' ' at a low temperaturd =90 K for some different incident-
energy value&, and for twoq directions along thé'K’ and
I'M’ lines. As mentioned in Ref. 11, there is no substantial
By means of the theoretical framework in Sec. I, we difference in energy dispersion among thé&sgvalues and
investigate 2D PL’s at the Si(111WfXVv3)-Ag surface in  between the tway directions. The effective mass* has
close relation to our recent HREELS experiment in Ref. 11been adjusted by the method of least squares for each of the
We compare our calculated results in three cases, nafiely, two ny values. The energy of the 2D PL is not so sensitive to

U(q,w)= (21)

IIl. RESULTS AND DISCUSSION
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T T T T T T /
[ n,=38x10"cm? i " n =38x10%cm? A |
m*/ m_ = 0.41 o £
0.4} o= ] 600r m*/m, =0.41 A
T 7/
o 7 stts,” .7 | o
02l _ ~" HF | % HE /
' - £ 400 s .
N ] § RPA
~ S W sPE
%505 010 0.5 200 @
’ ) I STLS
q(A”) I |
FIG. 2. g dependence of the local-field correcti@rin the STLS . ' .
approximation(solid curvé and the Hartree-Fock approximation Od 0.05 0.10 0.15
(dash-dotted curyeor ng=3.8x 10'3 cm™2 andm* /my=0.41. Q(A'1)
the choice ofn,. However, it is evident that, at a largep FIG. 3. Energy dispersion of the two-dimensional plasmon in

value, np=3.8x10" cm 2, the 2D PL decays away at a the STLS approximatiorgsolid curve, the Hartree-Fock approxi-
higherq value around 0.125 AL, As shown below, the loss- mation (dash-dotted curye and the random-phase approximation
peak intensity due to the 2D PL in the EEL spectrum for(broken curvg for ny=3.8x10cm 2 and m*/my=0.41. The
no=3.8x10" cm 2 declines quickly around the samg  SPE continuum extends on the right side of the dotted curve.
value, in good agreement with the experiment. ) ) .

Here, we mention the effective density parameferde- occurs at a small_etq vglue in the S.T.LS approxmgtlon_than_
fined by 7(r¥a%)%n,=1 with the effective Bohr radiua}; :I‘ the I-|T|;_apg_rf(r)X|mat|orQ), though it is not .Sé) Ob\."m":.s |n4th|s
— e h2/m* €2, The radiusa and the paramete?® take val- igure. This difference becomes quite evident in Fig. 4, as

ues of af=10.0A and r*=1.10, when ny,=2.6 shown below.
B~ s T 0= The PL energy rises from zero nearq=0, and there
X 10" cm™2 and m*/m,=0.33, and those o&f=8.07 A v &g a

e - 3 o " is no difference among the three approximations in this small
and rg=1.13, when no=3.8x10"cm ? and m*/my  qrange. With an increase iy however, the XC effects begin
=0.41. The presence Of the Semi'inﬁnite die|eC'[I’iC mediumO Operate to lower the PL energy and make the PL decay at
with £,=11.5(Ref. 28 is responsible for a largag value,  a smaller value, because the XC effects start to weaken the
and consequently a smalf value. The above} values effective Coulomb interactiofsee Eq(6)]. We find a greater
close to unity indicate that our electron system has a highlifference between the HF approximation and the RPA than
effective density. between the STLS and HF approximations. This indicates
From now on, we employ the values afiy,=3.8 that the exchange effect is more significant than the correla-
X 10' cm™2 and m*/my=0.41, which leads to the Fermi tion effect.
wave numberke=0.155A"1 and the Fermi energyEr Here, we focus our attention on the integrated energy-loss
=222 meV measured from the band bottom. Figure 2 exhibintensitylp, of the 2D PL, namely, the resonance-peak area
its the g dependence o6(q) in the STLS approximation of the 2D PL in thew dependence d¥, at eaclg value. This
(solid curve and in the HF approximationdash-dotted quantity is related to the loss-peak intensity in the HREELS.
curve). With an increase i, the G value rises from zero and The above resonance peak is represented by the @irac
increases monotonically. Owing to the XC effects, the elecfunction in our calculational scheme. Figure 4 shows ghe
trons move clear of the close vicinity of one another within adependence of the integrated energy-loss interngjtyn the
radius~k;1. The XC effects make no substantial contribu- STLS approximation(solid curve, the HF approximation
tion to V(q,») atq~0 where the wavelength is much longer (dash-dotted curyeand the RPAbroken curvg Each of the
than radii of the exchange and correlation holes. However, aéiree curves corresponds to one of the three curves in Fig. 3
the wavelength begins to become comparable to the holaccording to the specification of its approximation name.
radii with an increase i, the XC effects start to operate to With an increase ing, the intensitylp_rises from zero,
weaken the effective Coulomb interaction represented by thpasses its maximum, and decreases to zero. There is no dif-
second term on the r.h.s. of E®). TheG value in the STLS ference among the three approximations at the initial inten-
approximation is larger than that in the HF approximation,sity rise where the PL energy exhibits tkig dispersion. The
because the HF approximation includes only the exchange value where the intensity drops to zero corresponds to the
effect. one where the energy-dispersion curve reaches the boundary
Figure 3 displays the energy dispersion of the 2D PL inof the SPE continuum. The XC effects make the intensity
the STLS approximatiofsolid curve, the HF approximation decline more rapidly and fall to zero at a conspicuously
(dash-dotted curye and the RPA(broken curve for n,  smallerq value. Figures 3 and 4 imply that the XC effects
=3.8x10" cm~? and m*/my=0.41. The SPE continuum play a significant role in the 2D PL, though our electron
extends on the right side of the dotted curve. The PL decaysystem possesses a high effective densityfef 1. This is in
quickly when it goes into the SPE continuum. This PL decayclear contrast to the fact that the XC effects have no signifi-
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80— — — T 800 . .
=38x10"% cm?2 | | Eo=12.4 eV, 0g= 6°, 6,= 0.58" |
| l::)*/nfs_xog_-l 600l B=06° 1.3° 2.0° 4
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VN 0 005 0.0 0.5
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05——0.05 0.10 0.5 q(A™)
Q(A'1) FIG. 5. Rotated-anglég) dependence of the probed dispersion

region for the incident anglaxg=6°, the incident energyg,
FIG. 4. g dependence of the integrated energy-loss interigjity =12.4 eV, and the half-angle of the circular analyzer apertire
of the two-dimensional plasmon in the STLS approximatisolid =0.58°. Each probed dispersion region is defined as a region on the
curve, the Hartree-Fock approximatiofdash-dotted curye and  (qg,w) plane where the kinematic fact@y in Eq. (19) takes sub-
the random-phase approximatiofbroken curve for ny=3.8 stantial values. The surface plane of the material is rotated by the
X 10" cm™2 andm*/my=0.41. The integrated intensity,_is de-  angleg by tilting the surface normal to a direction perpendicular to
fined by the resonance-peak area of the plasmendependence of the scattering plane in the initial specular-reflection geometry. The
the energy-loss function at eaghvalue. solid curve and the dotted curve running from the origin are the
same as those in Fig. 3.

cant influence on excitations in a 3D electron system with a
high effective density. The XC effects originate from the factEy=12.4 eV corresponding to the experiment. As fQr, we
that the electrons steer clear of the immediate proximity ohave used the value of,=0.58° adjusted below. Each
each other. These effects are considered to appear more teatched region witlB specified indicates a probed dispersion
markably in a 2D system where electrons are constrained tregion for thisg value. There is a solid line passing inside
a plane than in a 3D system. each region. At each value, the factoG reaches its maxi-

Here, we turn our attention to the loss-peak intensity ofmum at a point where the horizontal line for thisvalue
the 2D PL in the EEL spectrum. In the experiment, initially intersects with the above-noted passing line. The solid curve
we adjust the analyzer aperture to the specular-reflection dand the dotted curve, both starting from the origin, exhibit
rection, namely, to the center of the so-called dipole lobe. Ashe energy dispersion of the 2D PL in the STLS approxima-
we rotate the surface plane gradually, the center of the dipolgon and the boundary of the SPE continuum, respectively.
lobe deviates from the analyzer aperture increasingly, olfhese two curves are the same as those in Fig. 3. With an
equivalently the aperture shifts down the tail of the dipoleincrease in anglg, the probed dispersion region shifts to the
lobe. This shift of the aperture position entails that of thehigher q side. Each probed region extends in a direction
probed dispersion region. nearly parallel to thew axis, whenay (=6°) is small. At

The kinematic factoGy in Eq. (19) involves the scatter- eachg value, we can substantially observe a specific part of
ing process of the probing electron and depends upon thine dispersion curve that crosses the probed region. In the
incident anglex, the incident energ¥,, and the analyzer EEL spectrum, the loss peak emerges aroundwavalue
position. The angley, is measured from the surface normal where the dispersion curve intersects with the above-stated
of the initial surface plane before rotation. The probed dispassing line. With an increase ) we can scan the energy
persion region is defined by a region on thevs plane where dispersion, till the 2D PL decays away owing to SPE’s.
Gy takes substantial values. At eachvalue, theq depen- The g dependence df is constituted of a PL resonance
dence ofG displays a one-peak structure, and we evaluatgeak in thed-function form, if present, and a weak and ex-
the probedj range by the full width at half maximum of the tending intensity distribution due to SPE’s. We can derive the
peak. By repeating this evaluation with changevinwe can  PL component inP(w) by making theq integration for the
obtain the probed dispersion region on tige4) plane. Asa PL resonance peak in E¢L9). By integrating the PL com-
typical case, we rotate the surface plane by aggby tilting  ponent inP(w) with respect tow, we can obtain the prob-
the surface normal to a direction perpendicular to the scatability Pp_ that a probing electron traveling along tf@0)
tering plane in the initial specular-reflection geometry. Webeam creates 2D PL's and becomes scattered into the ana-
assume a circular analyzer aperture with half arfigleand  lyzer aperture. When the incident direction is nearly normal
treat this angle as an adjustable parameter in the analys{g;,=6°), the probing electron interacts with the polarized
below of the loss-peak intensity. Figure 5 shows pheéle-  surface in a short time, which leads to a smRj, value
pendence of the probed dispersion region dg=6° and much lower than unity. In view of this, in Fig. 6, we compare
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be obtained by integrating the product G and F, with
respect tag, as seen from Eq19). As the analyzer aperture
shifts down the tail of the dipole lobe with an increasesin
the probed dispersion region transfers to the lageide,
and simultaneously the peak intensity in thdependence of
Gk in the probed region drops quite quickly. This quick drop
in Gk is responsible for the above declineRp, , because it
is more influential than the enhancement lgf obtained
from F .

We have determined the values mf and m* by fitting
- ] the calculated results in the STLS approximation with the
r oM ] experimental results of the HREELS. On the other hand,
5| o TK' ] ARUPS measurements of the3(xv3)-Ag surface are pro-

10 3 viding various values, namely),=(1.6+0.3)x 103 cm™?
N 1] and m*/my=0.29+0.05 in Ref. 10, and ny=0.9
0 0.05 00-10 0.15 X 10* cm~2 andm*/my=0.07 in Ref. 29. These values are
q(A“) smaller than ours. There are even ARUPS data that imply
that the bottom of theS;-state band lies abovEg at the

FIG. 6. q dependence of the calculated probabilty, that an  complete ¢3Xv3)-Ag surface without any extra Ag
incident electron with ao=6°, Eo=12.4eV produces two- adatoms’As stated in Sec. |, a minute quantity of additional
dimensional plasmons and enters a circular analyzer aperture WitAg adatoms leads to a great increasann In addition, the
half-angled,=0.58° (solid circles connected by lingsn compari-  electron densityn, may be sensitive to other impurities or
son with theq dependence of the integrated intensity of the plasmonsrface states. Further experimental studies will be required
loss peak in the HREELS normalized by the integrated elastic-peaj identify the S,-state band for the complete’Ixv3)-Ag
intensity along thd'K' line (open squaresand thelM" line (open  g;rface. Discrepancies iy andm* among different experi-
circles. Ihe two-dimensional  plasmon decays aroum  ments could be ascribed to different levels of electron doping
~0.13A™" due to single-particle excitations. into the S;-state band by extra Ag adatoms, dopant impuri-

o . . ties or donor-type surface states. Varying an amount of addi-
the calculated probability’s with the integrated loss-peak tional Ag adatoms carefully makes a significant difference in
intensity of the 2D PL normalized by the integrated elastic—nol30-|-his suggests that we could contrg) by careful depo-
peak intensity in the HREELS. The aperture anglehas  sjtion and temperature treatment. Irrespective of variable
been determined by fitting the calculated result to the experig|ectron doping, at least, we can assert that an ideal 2D
mental one. A series of solid circles connected by lines eXconduction-electron system with a high effective density can
hibits the g dependence of the calculated probabilRy.  pe realized at thev3xv3)-Ag surface, and that, with an
with 6,=0.58°. The ordinate is indicated in a logarithmic jncrease ing, the XC effects begin to appear in the 2D PL

scale. Theq value for each solid circle has been obtainedremarkably due to low dimensionality, in spite of the high
from the intersection of the dispersion curve and the linegffective density.

passing inside the probed dispersion region, as displayed in
Fig. 5. The open squares and the open circles represent the
observedg dependence of the integrated PL-loss intensity
normalized by the integrated elastic-peak intensity along the The S;-state band at the Si(111)3xv3)-Ag surface
'K’ line and theI'M’ line, respectively. As mentioned in provides an ideal two-dimensional conduction-electron sys-
Ref. 11, the experimental results imply that the 2D PL decaysem. Taking XC effects into consideration, we have exam-
away aroundj,~0.13 A~1. Our calculation can reproduce ined the energy dispersion and the energy-loss intensity of
quite well the experimental result, namely, the monotonicthe 2D PL due to thé;-state band, in connection with our
intensity decline with an increase énand the rapid intensity recent experiment by HREELS. We have employed the local-
drop aroundg. due to the PL decay. field-correction theory, and have evaluated the XC effects on
A decrease ird, narrows the width of each probed dis- the 2D PL by comparing the calculated results among the
persion region in Fig. 5, and brings about a nearly paralletandom-phase approximation, the Hartree-Fock approxima-
downward shift and a sharper intensity drop arogpdéh the  tion, and the STLS approximation. Our results can be sum-
Pp. curve in Fig. 6. However, the change é3 has no sub- marized as follows:
stantial influence on thg, value. The shape of the analyzer (1) By choosing adequate values of the electron density
aperture in the experiment is not a circle but a rectangle, and, and the electron effective mass*, our calculations in
the above value 0h,=0.58° is close to a value of 0.48° the STLS approximation can reproduce quite well the energy

107 e
' Eo= 124 eV |

10-25‘

103
=

o
o

10'4;

IV. SUMMARY

estimated by the longer side of the rectangle. dispersion and the loss-peak intensity of the 2D PL, and the
The Pp, value declines with an increase ineven in a  PL decay owing to SPEs in the HREELS.
smallerq range of 0.02 A1<q=<0.07 A~! where the inte- (2) At eachng value chosen, the calculated dispersion has

grated PL intensitytp, increases withy (see Fig. 4 To un-  been adjusted to the observed one by varyirfg The criti-
derstand this decline, we recall that the probabl{yw) can  cal wave numberg. where the PL decay occurs depends
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uponng significantly, though the PL energy is not so sensi-periments could be attributed to different levels of electron
tive to ny. Accordingly, we can determine, definitely by  doping into theS;-state band by extra Ag adatoms, dopant
fitting the calculatedy. value to the observed one. impurities or donor-type surface states. This doping level

(3) As the wavelength of the 2D PL begins to becomecould be controlled by careful deposition and treatment.
comparable to radii of exchange and correlation holes with

an increase in wave numbgy the XC effects start to lower
the dispersion curve, and make the 2D PL decay away due to
SPE’s at a smalleg value.

(4) Our electron system has a high effective density of the This work was supported by a Grant-in-Aid for Scientific
effective density parametet ~ 1, because it lies on a semi- Research from the Ministry of Education, Science, Sport,
infinite dielectric medium. However, because of low dimen-and Culture under Grant No. 13640315. Numerical calcula-
sionality, the XC effects emerge in the 2D PL conspicuouslytions in the present work were performed at the Information
with an increase im. Synergy Center of Tohoku University and the lwate Univer-

A significant variation inn, andm* among different ex-  sity Super Computing and Information Sciences Center.
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