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Polarizability, correlation energy, and dielectric liquid phase of Bose-Einstein condensate
of two-dimensional excitons in a strong perpendicular magnetic field
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The coherent pairing of electrons and holes occupying only the lowest Landau level in a two-dimensional
~2D! system with a strong perpendicular magnetic field is studied using the Keldysh-Kozlov-Kopaev method
and generalized random phase approximation. Bose-Einstein condensation of the correlated pairs takes place in
a single particle state with an arbitrary wave vectork in a symmetric 2D model. We show that the ground state
energy per exciton and the chemical potential are nonmonotonic functions of the filling factor, so that meta-
stable dielectric liquid states with positive compressibility exist, consisting of Bose-Einstein condensate of
magnetoexcitons. It is shown that this dielectric liquid phase of the Bose condensed excitons is more stable
than the metallic electron-hole liquid phase. The polarizability of the Bose-condensed magnetoexcitons is
calculated using Anderson-type wave functions of the coherent excited states, which correspond to the appear-
ance of one out-of-condensate electron-hole (e-h) pair in the presence of the BCS-type ground state. The
polarizability is characterized by a coherent factor which depends onk and vanishes whenk tends to zero, as
well as by a resonance frequency equal to the ionization potential of a magnetoexciton, and differs consider-
ably from the polarizability of a noncondensed exciton gas. The condensate polarizability is used to determine
the correlation energy of the system and the correction to the chemical potential beyond the Hartree-Fock-
Bogoliubov approximation.
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I. INTRODUCTION

The observation of Bose-Einstein condensation~BEC! in
alkali atomic gases using a laser trapping1–3 has greatly ex-
panded the related research in recent years. The trans
temperature for BEC of alkali gases is extremely low, due
the heavy atomic mass and low gas density (Tc;n2/3/m).
The situation is quite different for a condensed phase of
citons in semiconductors due to much smaller mass of
excitons, which is often even smaller than the free elect
mass. As is well known, under certain conditions excito
i.e. bound states of electron-hole pairs in semiconduc
have bosonic properties~see, e.g., Ref. 4!. As neutral par-
ticles, excitons are weakly interacting, and therefore deph
ing process are much slower than free electrons and hole
the density is high enough, the Bose-Einstein statistics
come important, and ideally one expects a Bose-Eins
condensation to occur, similar to the BEC observed in c
trapped atomic gases. Due to the macroscopic populatio
a single state which occurs in BEC, a robust macrosco
coherent quantum mechanical wave results, which shoul
directly accessible to experiments. Although theoretica
recognized many years ago~for a review, see Ref. 4!, experi-
ments on BEC of excitons have made slow progress, bec
finite lifetime effects, strong interactions between excitons
0163-1829/2002/66~24!/245316~15!/$20.00 66 2453
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high density, crystal imperfections and phonons in the cry
all act to complicate the system.

An essential requirement for BEC of excitons is supr
sion of the electron-hole liquid~EHL! phase. In general, the
Coulomb interaction between electrons and holes usu
causes droplets of EHL to form at high carrier density
stead of a Bose condensate. To avoid this, repulsive inte
tions between the excitons are necessary. This can occur
bulk, three-dimensional~3D! semiconductor if the electron
and hole masses are nearly equal, as is the case in the s
conductor Cu2O ~Refs. 5,6! ~see also Ref. 4 for a review o
experiments!. Another way to have repulsive interactions
to engineer a quantum well structure with the right prop
ties. In recent years, the system of coupled quantum well
strong electric field has gained attention in bo
theoretical7–11and experimental12–20studies as a system wit
repulsive exciton-exciton interactions and long exciton li
time, ideal for BEC of excitons. Another advantage of the
system is a possibility of much faster cooling of hot pho
excited excitons compared with their bulk counterparts.21,22

Another approach is to use strong magnetic field. It h
been shown23 that the properties of atoms and excitons a
dramatically changed in a strong magnetic field such that
distance between Landau levelse\H/mec exceeds the Ryd-
berg energy. In this case the binding energy of an exci
©2002 The American Physical Society16-1
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becomes independent of the masses of its constituent
tron and hole, so that the exciton has universal properties
is known as a ‘‘diamagnetic exciton’’ in 3D samples and
‘‘magnetoexciton’’ in 2D structures. The diamagnetic ex
tons in bulk crystals were revealed in~Refs. 24,25!. In this
case the diamagnetic exciton gas may form a Bose-Eins
condensate at low temperature due to the substantial dec
of the exciton-exciton interaction and increase of the exci
binding energy.26–29Even more attractive and worth invest
gating is the electron-hole (e-h) system in two dimensions
~2D! in the presence of a strong perpendicular magnetic fi
In this case, the energy spectrum of thee-h system is com-
pletely discrete, and one may expect that the properties o
system differ considerably from those of a 3D system in
strong magnetic field, where the electron and hole kine
energies are functions of the momentum in one dimens
Unlike the 3D system, the kinetic energy in the 2D system
completely transformed into a discrete set of states by
magnetic field. The energy of electrons and holes in the
system in a strong magnetic field is simply characterized
the number of the Landau levels, which areN-fold degener-
ate, with N5S/2p l 2, where l is the magnetic length,l 2

5\c/eH, andS is the 2D sample dimension.
In the past two decades, a number of experimental12–20

and theoretical30–39 efforts have been dedicated to the stu
of 2D systems in a strong magnetic field. The problem
metallic electron-hole liquid formation using finite
temperature Green’s function and diagram techniques,
studied32,33 assuming that the electrons and holes are on
lowest Landau level~LLL ! and taking into account the influ
ence of the single-particle-excited states; the direct Coulo
interactions in the system are mutually compensated du
the electroneutrality condition. It was shown that the grou
state of thee-h system can be found asymptotically exac
within the Hartree-Fock approximation for an infinitely hig
magnetic fieldH. In this case the exchange energy increa
with the magnetic field strength asAH, whereas the correla
tion energy contains a small supplementary factorl /aex

;1/AH, whereaex is the exciton Bohr radius. In Refs. 34,3
the coherent pairing of electrons and holes resulting in
formation of the Bose-Einstein condensate of excitons i
single-particle state with wave vectork50 was investigated
In the Hartree-Fock approximation, when the coupling to
higher Landau levels and the correlation energy are
glected, the magnetoexcitons withk50 represent atT50 an
ideal excitonic gas, which has the same properties in
longwave approximation as an ideal 2D Bose gas. A surp
ing result was that the fermionice-h droplets of metallic
EHL, which corresponds to maximal local filling factorn
51 on the lowest Landau level~LLL !, can be considered a
an aggregate of excitons sticked together. Returning to
excited Landau levels and taking into account the correcti
of the first order inl /aex, the authors34,35 realized that the
correlation energy is the same for both EHL and for ex
tonic phase. It is determined by the single-ring polarizat
operator and only the transitions from the LLL to the excit
Landau level ~ELL! give considerable contributions. Th
contribution of the all excited Landau levels is about fo
times greater than that of the only first Landau level. It
24531
c-
nd

in
ase
n

d.

he
a
ic
n.
s
e

D
y

f

as
e

b
to
d

s

e
a

e
e-

e
s-

e
s

-
n

r

worth mentioning that the correlation energy calculated
this way does not contain any traces confirming existence
the Bose-Einstein condensate and is exclusively due to E
It is not surprising that it happened to be the same for b
phases. Although the correlation energy is the same for b
phases, it nevertheless makes the thermodynamic chara
istics of the excitonic phase and of the EHL droplets sligh
different. The inclusion of quantum transitions leads to we
nonideality; the low-energy spectrum becomes acoustic
the low-temperature behavior changes qualitatively.

Strictly speaking, it is known40,41 that the BEC of an idea
Bose gas with a quadratic dispersion law in a 2D struct
with infinite surface areaS is possible only atT50. Cou-
pling to higher Landau levels, however, makes the sys
weakly nonideal,34,35 which allows the Berezinskii-
Kosterlitz-Thouless topological phase transition42–44at finite
temperature.

The results of Refs. 34,35 were reproduced in Ref. 36
the basis of a more simple and transparent approach u
BCS-type wave functions of the BEC excitons and calcu
ing the ground state energy as the average of the Hamilto
of the Coulomb-interacting electrons and holes. T
authors36 used the Hartree-Fock-Bogoliubov approximati
taking into account only the ground state wave functions,
considered the case of nonzero wave vectors and the p
bility of coupling with higher Landau levels. They intro
duced the indirect interactions of the particles on the L
due their virtual excitation to the ELL. The indirect intera
tion leads to corrections to the exciton binding energy and
the energy per onee-h pair in the BCS ground state, whic
are equivalent to the correlation effect discussed in R
34,35. They also considered an asymmetric model, wh
takes into account the possibility that the electron and h
wave functions did not occupy the same region of space
quantum well with finite thickness and finite barrier heigh
Interestingly, in this case, the Coulomb interaction of ele
trons and holes makes BEC of magnetoexcitons withk50
unstable, but the possibility of the virtual transitions to t
excited Landau level stabilizes the BEC~see also Ref. 45!.

One of the aims of the present paper will be first to obt
the results of Refs. 33–36 from more simple arguments.
second aim is to investigate the properties of the system
yond the Hartree-Fock-Bogoliubov approximation, taki
into account the possibility of coherent excited states,
corresponding polarizability of the Bose-Einstein conde
sate, the screening effects and the correlation energy du
just this channel of polarizability. Contrary to Refs. 34,35 o
correlation energy is not related to excited Landau levels.
find that instead of coexistence of an excitonic condens
and electron-hole liquid, there is a single metastable die
tric phase formed by a Bose-Einstein condensate of mag
toexcitons withkÞ0.

In the present paper we will consider only the case o
symmetric 2D model with arbitrary wave vectors of magn
toexcitonskÞ0, which means that the excitons have no
zero dipole moments. An exciton with nonzero momentu
must have a dipole moment because the electron and the
are pulled in opposite directions by the magnetic field wh
they move together. As we will see, this effect leads to
6-2
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number of interesting properties. It will turn out that th
binding energy of the excitons decreases with increasink,
so that the magnetoexcitons have an energy term which
creases ask2, even though their kinetic energy is quantiz
in the Landau level spectrum.

Allowing a Bose-Einstein condensate of magnetoexcit
in a single particle state withkÞ0, and therefore having a
dipole moment, leads to novel and interesting properties
the system. We calculate the polarizability of the Bos
Einstein condensate, the screening effects, the correlation
ergy and the chemical potential of the metastable dielec
liquid phase in the range of filling factor far from the max
mal valuen251.

The paper is organized as follows. In Sec. II the wa
functions of electrons, holes, and magnetoexcitons and
Hamiltonian of the interacting quasiparticles are presente
a simple form. In Sec. III we use the Keldysh-Kozlo
Kopaev method to transform the initial Hamiltonian, intr
ducing the Bose-Einstein condensate of magnetoexcit
The chemical potential, the single particle energy spectr
and the ground state energy are calculated in the Hart
Fock-Bogoliubov approximation. In this approximation th
existence of the dipole moments results in an attractive
teraction between excitons. In Sec. IV we introduce the
herent excited states and calculate the polarizability of
Bose-Einstein condensate. This polarizability is charac
ized by the coherence factor and resonance frequency,
we show the difference between polarizability of nonco
densed and condensed magnetoexcitons. The screenin
fects, the correlation energy and the corrections to chem
potential are studied in Sec. V, using the generalized rand
phase approximation. We show that these corrections lea
the formation of metastable states of a Bose-Einstein c
densed dielectric liquid phase with positive compressibil
We also calculate the energy pere-h pair of the EHL and
compare it with that of this new dielectric liquid phase. F
nally, the obtained results are summarized and discusse
Sec. VI.

II. HAMILTONIAN OF 2D ELECTRON-HOLE SYSTEM
IN A STRONG MAGNETIC FIELD

We consider first a simple 2D model with a perpendicu
magnetic field, assuming that the Zeeman splitting of
Landau levels is large enough that the electrons and hole
restricted to the lowest Landau level and the typical elec
static energies are much smaller than the cyclotron energ
We choose the 2D layer plane as the (x,y) plane with thez
axis directed along the direction of the magnetic field, w
the Landau gauge for the vector potentialA5(2Hy,0,0). In
this case, the electron and exciton wave functions in a m
netic field are well known~see, e.g., Refs. 45–48!. The states
of an electron~hole! are characterized by two quantum num
bersn andpx (qx), corresponding to its two degrees of fre
dom. For the lowest Landau level,n50, which is considered
below, the envelope Bloch wave functions of the electr
and the hole are
24531
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Cn50,px

e ~x,y!5
1

ALxlAp
exp~ ipxx!exp@2~y2pxl

2!2/2l 2#,

Cn50,qx

h ~x,y!5
1

ALxlAp
exp~ iqxx!exp@2~y1qxl

2!2/2l 2#,

~1!

where l is the magnetic length andS5LxLy is the surface
area of the layer,px andqx are wave vectors of electron an
hole, respectively.

In the solution given by Eq.~1!, the electron moves in the
x direction with translational symmetry and are confined
the oscillator potentialH2y2 caused by the magnetic poten
tial in the y direction. This results in Landau quantizatio
with cyclotron frequencyvc

e5eH/mec, where me is the
mass of the conduction electron. The motion of the elect
in the x direction with the wave vectorpx corresponds to a
shift of the minimum of the oscillator potential from th
point y50 to the pointy05pxl

2, due to the Lorentz force.
Since the values of the wave vectorspx and qx are re-

stricted by the size of the layer surface in they direction
2Ly/2,pxl

2,qxl
2<Ly/2, the total number of possible state

is

N5
LxLy

2p l 2
5

S

2p l 2
, ~2!

and the lowest Landau levels of the electrons and holes
N-fold degenerate. We define the filling factorv25Ne /N,
which is the ratio of the number of occupied electron sta
Ne to the total numberN of electron states. The conditio
that the gaps between the Landau levels for electrons
holes are larger than the binding energy of the 2D exciton
the absence of the magnetic field, and that the magn
length l is smaller than the Bohr radius of 2D exciton, lea
to the following inequalities:

\vc
e'\vc

h.
2me4

\2«0
2

,

l ,aex
2D5

\2«0

2me2
, ~3!

wherem5memh /mex is the exciton reduced mass,mex5me
1mh is the translational exciton mass, and«0 is zero-
frequency dielectric constant of the layer. The magnetic fi
which corresponds to the binding energy of the exciton eq
to the cyclotron energy is

Hcr5
4ce3m2

\3«0
2

. ~4!

Typical values ofHcr , e.g., for GaAs, arem50.1me , «0

511, l 5aex
2D5100 Å, andHcr56.25 T.

The condition that only the lowest Landau levels are o
cupied means that the first excited Landau level is situa
6-3
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much higher on the energy scale, at least of order of
ionization potential of the exciton in the 2D structure. Sin
as we shall see, the ionization potential of the magnetoe
tons with large wave vectors is typically smaller than th
with k50, this condition is always satisfied forH.Hcr .

We consider the wave function of magnetoexciton in
spatial coordinate representation, following Ref. 36. In
strong magnetic field, the 2D exciton wave function in t
lowest Landau level (n50) can be written using the enve
lope functions~1!

Cex~xe ,ye ;xh ,yh!

5(
p,q

(
ne ,nh

Cne ,nh
~p,q!

eipxe

AL

eiqxh

AL
fne ,p~ye!fnh ,q~yh!

5(
p

(
q

C0,0~p,q!
eipxe

AL

eiqxh

AL

1

lAp

3exp@2~y2pl2!2/2l 2#

3exp@2~y1ql2!2/2l 2#. ~5!

We consider the particular caseme5mh5mex/2, and intro-
duce the coordinates of the center of mass of the electron
hole and their relative motion with the corresponding wa
vectorkx of the exciton translation motion, and wave vect
t of the relative motion

j5
1

2
~xe1xh!, h5

1

2
~ye1yh!,

x5xe2xh , y5ye2yh ,

kx5p1q, t5
1

2
~p2q!. ~6!

Then the coefficient in Eq.~5! takes the form

C0,0~p,q!5
1

AL
dp1q,kx

wky
~ t !;

wky
~ t !5

A2p l 2

AL
exp~ ikytl

2!. ~7!

After summation overp and q, the magnetoexciton wav
function in the coordinate representation takes the form

Cex~j,h,x,y!5
eikxj

AL

eikyh

AL
eixh/ l 2

3expF2
~x1kyl

2!2

4l 2
2

~y2kxl
2!2

4l 2 G .

~8!

The wave function~8! reflects the interaction between th
translational and relativee-h motion expressed by the plan
wave exp(ixh/l2). The radius of the relative electron-ho
motion is of the same order as the magnetic lengthl. We
24531
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define the exciton dipole momentr0, which arises perpen
dicular to the wave vectork whenkÞ0, as

r05@ ẑ3k#• l 25~2 iky1 jkx!• l 2. ~9!

The Hamiltonian of the 2D electron-hole system in
strong perpendicular magnetic field was derived in Ref. 36
the second quantization representation taking into acco
the electron-hole Coulomb interaction in the ideal symme
2D layer ~corresponding to the electrons and holes confin
to exactly the same region! and in a quantum well with finite
thickness~with different electron and hole wave functions
the z direction!, and also taking into account the electro
hole indirect interaction through virtually excited Landa
levels. We consider here only the case of an ideal symme
2D layer and introduce another representation of the C
lomb matrix elements, which allows us to demonstrate th
symmetry properties in a more simple way.

First, we introduce the chemical potentials for electro
and holesme and mh , respectively, which allow us to tak
into account the constancy of their average numbers du
phase transitions. The spin-oriented electrons and holes
assumed to be in the lowest Landau level, and therefore t
kinetic energy does not appear in the Hamiltonian. T
Hamiltonian describing the Coulomb interaction of electro
and holes is

H5Ĥ2meN̂e2mhN̂h

5
1

2 (
p,q,s

Fe-e~p,q;p2s,q1s!ap
1aq

1aq1sap-s

1
1

2 (
p,q,s

Fh-h~p,q;p2s,q1s!bp
1bq

1bq1sbp2s

2 (
p,q,s

Fe-h~p,q;p2s,q1s!ap
1bq

1bq1sap2s

2me(
p

ap
1ap2mh(

p
bp

1bp , ~10!

whereap
1 ,bp

1 andap ,bp are the electron and hole creatio
and annihilation operators, respectively. The operators
marked by the wave vectorsp,q,s, which are oriented in the
direction along thex axis. The translational symmetry an
momentum conservation law are provided by the cho
Landau gauge. For example, the matrix elements of
electron-electron Coulomb interaction are

Fe-e~p,q;p2s,q1s!5E E Cp
e!~r1!Cp2s

e ~r1!
e2

«0r12

3Cq
e!~r2!Cq1s

e ~r2!dr1dr2 ,

~11!

where only the envelope parts of the conduction elect
Bloch function are used. The periodic parts of the Blo
functions can be excluded by integration over the volume
the unit cell. This part of the calculations can be omitt
6-4
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when we are not interested in such matters as excha
electron-hole interaction, band-to-band transition dipole m
ments, etc.

Using the series expansion of 2D Coulomb interaction

e2

«0r
5(̧ V¸e2 i¸r,

V¸5V¸x ,¸y
5

2pe2

«0Su¸u
,

u¸u5A¸x
21¸y

2, ~12!

and the electron envelope function~1!, one can reduce Eq
~11! to

Fe-e~p,q;p2s,q1s!

5
1

l 2p
(̧ Vs,¸ exp@2s2l 22~q2p!sl2#

3E
2`

`

expF2
~y12pl2!2

l 2
2~s2 i¸!y1Gdy1

3E
2`

`

expF2
~y22ql2!2

l 2
1~s2 i¸!y2Gdy2 .

After integration, all other Coulomb matrix elements can
obtained in a similar way, and we have

Fe-e~p,q;p2s,q1s!5(̧ Vs,¸ expF2
~s21¸2!l 2

2

1 i¸~p2q2s!l 2G ,
Fh-h~p,q;p2s,q1s!5(̧ Vs,¸ expF2

~s21¸2!l 2

2

2 i¸~p2q2s!l 2G ,
Fe-h~p,q;p2s,q1s!5(̧ Vs,¸ expF2

~s21¸2!l 2

2

1 i¸~p1q!l 2G ~13!

with the following symmetry properties:

Fe-e~p,q;p2s,q1s!5Fe-e~q,p;q1s,p2s!

5Fh-h~p,q;p2s,q1s!

5Fh-h~2p,2q;2p1s,2q2s!,

Fe-e~p,2q2s;p2s,2q!5Fh-h~s2p,q;2p,q1s!

5Fe-h~p,q;p2s,q1s!. ~14!
24531
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We introduce the exciton creation operator following36

dk
15

1

AN
(

t
e2 ikytl 2akx/21t

1 bkx/22t
1 , ~15!

with the 2D vectorkÄ„kx , ky), with kx corresponding to the
exciton translational motion, andky being the quantum num
ber describing the internale-h motion. The magnetoexciton
wave function is obtained by acting on the vacuum stateu0&
with the operatordk

1 ,

uCex,k&5dk
1u0&, ^Cex,k8uCex,k&5dkr~k8,k!. ~16!

The energy of exciton formation can be obtained by act
on the exciton wave function with the HamiltonianĤ. Rela-
tive to the lowest Landau level it equals

ĤuCex,k&5Eex~k!uCex,k&, Eex~k!52I ex~k!, ~17!

where the exciton ionization potential is

I ex~k!5(
Q

VQ expF2
Q2l 2

2
1 i ~kxQy2kyQx!l

2G ~18!

andQ stands for the wave vector of the exciton excited sta
The ionization potential of the magnetoexciton is36

I ex~k!5
e2

«0l E0

`

e2x2/2J0~xkl!dx5I le
2k2l 2/4I 0S k2l 2

4 D ,

~19!

where

I l5
e2

«0
E

0

`

e2Q2l 2/2dQ5
e2

«0l
Ap

2
~20!

andI 0(k2l 2/4) is a modified Bessel function. The asympto
behavior of the modified Bessel function means that the i
ization potentialI ex(k) tends to zero as 1/kl when the dipole
momentr05kl2;k tends to infinity. Using the operator o
the electron-hole density fluctuation

r̂Q5(
t

eiQytl 2~at2Qx/2
1 at1Qx/22b2t2Qx/2

1 b2t1Qx/2!,

~21!

we can rewrite the Hamiltonian of Coulomb interaction
the form

Ĥ5
1

2 (
Q

WQ~ r̂Qr̂2Q2N̂e2N̂h!,

WQ5VQe2Q2l 2/2, VQ5
2pe2

«0SuQu
, (

Q
WQ5I l , ~22!

and the full HamiltonianĤ will be

Ĥ5
1

2 (
Q

WQr̂Qr̂2Q2
1

2 (
Q

WQ~N̂e1N̂h!2meN̂e

2mhN̂h , ~23!
6-5
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which will be used below to calculate the polarizability
magnetoexcitons.

III. COHERENT PAIRING OF ELECTRONS AND HOLES
IN A SINGLE-PARTICLE STATE WITH FINITE

WAVE VECTOR: THE KELDYSH-KOZLOV-KOPAEV
METHOD

The numbers of electrons and holes which occupy
lowest Landau levels are determined by the experime
conditions, e.g., the generation rate due to laser excita
and the exciton recombination rate. Assuming an quasi
manent population with an equal number of electrons
holes, their quasiequilibrium states are characterized by
chemical potentialsme andmh . The energy of electrons an
holes as well as their chemical potentials are measured
tive to their lowest Landau levels. The exciton formati
reactione1h↔ex implies the relation between the chemic
potentials

me1mh5mex. ~24!

Below, we assumeme5mh5mex/2 and denotemex[m. The
coherent macroscopic state corresponding to Bose-Eins
condensation of correlated electron-hole pairs in a sin
particle state with the wave vectork can be introduced fol-
lowing Keldysh-Kozlov-Kopaev method~KKK method!49

by applying the unitary transformation

D~ANex!5exp@ANex~dk
12dk!#

5)
t

exp@A2p l 2nex~e2 ikytl 2akx/21t
1 bkx/22t

1

2eikytl 2bkx/22takx/21t!#, ~25!

where

Nex

N
52p l 2nex, nex5

Nex

S
. ~26!

We introduce the BCS-type wave function of the new coh
ent macroscopic state acting on the electron-hole vacu
stateu0& by the unitary transformation operatorD(ANex)

uCg~k!&5D~ANex!u0&

5)
t

~u1ve2 ikytl 2akx/21t
1 bkx/22t

1 !u0&, ~27!

where the coefficientsu andv are

u5cosg, v5sing,

g5A2p l 2nex,

u21v251. ~28!

The transformed Hamiltonian is

H̃5D~ANex!HD1~ANex!. ~29!
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For this Hamiltonian, the new ground state wave functi
~27! plays the same role as the initial vacuum stateu0& for
the HamiltonianH,

H̃uCg~k!&5DHD1Du0&5DHu0&50.

The unitary transformation~29! of the HamiltonianH means
the unitary transformations of the operatorsap ,bp

DapD 15ap5uap2vS p2
kx

2 Dbkx2p
1 ,

DbpD 15bp5ubp1vS kx

2
2pDakx2p

1 , ~30!

where

v~ t !5ve2 ikytl 2,

v~ t !v~s!5v•v~ t1s!,

v!~ t !5v~2t !, ~31!

and the inverse transformation is

ap5uap1vS p2
kx

2 Dbkx2p
1 ,

bp5ubp2vS kx

2
2pDakx2p

1 . ~32!

The ground state~27! plays the role of vacuum state for th
new Fermi operatorsap andbp ,

apuCg~k!&50,

bpuCg~k!&50, ~33!

which can be verified directly,

apuCg~k!&5DapD 1Du0&5Dapu0&50.

The average numbers of the electrons and holes in the
ground state atT50 can be determined from equalities

^Cg~k!uap
1apuCg~k!&5^Cg~k!ubp

1bpuCg~k!&5v2.
~34!

This expression means that the total average number
electrons, holes and excitons are

Nex5(
p

^Cg~k!uap
1apuCg~k!&5Nv2,

nex5
v2

2p l 2
, ~35!

with the following restriction that is extracted from Eqs.~35!
and ~28!:

v25sin2~A2p l 2nex!5sin2v. ~36!
6-6
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The applicability of the theory is therefore restricted to v
ues of the filling factorv2 defined byv2'sin2v. This restric-
tion reflects the physical assumption that only the low
Landau level is occupied. When the filling factorv2 ap-
proaches unity, one must take into account the first exc
Landau level. Below we shall assumev2< 1

4 .
Following the KKK method, the transformed Hamiltonia

H̃5DHD1 must be expressed in terms of the new opera
ap

1 , ap , bp
1, and bp using Bogoliubov’su,v transforma-

tions ~32!. In this way the HamiltonianH̃ can be represente
in the form

H̃5U1H21H8. ~37!

The first termU does not contain operatorsap and bp and
plays the role of the new ground state energy. The sec
termH2 is quadratic in the operatorsap andbp and appears
as a result of transpositions of the new operators and t
normal ordering. In this transposition, the commutation re
tions of the Fermi operatorsap andbp transform terms with
four operators into quadratic terms. The termH8 contains the
remaining normal-ordered terms with four operators, wh
is treated as a perturbation. The termU can be represented a

U5Nex@Eex~k!2m#2Nexv
2@ I l2I ex~k!#

52Nex@ I ex~k!1m#2Nexv
2@ I l2I ex~k!#, ~38!

where

Nex5Nv2, Eex~k!52I ex~k!,

I ex~k!5I le
2k2l 2/4I 0S k2l 2

4 D .

The last term in Eq.~38!, containing the correction propor
tional to filling factor v2, is negative due to the inequalit
I ex(k)<I l . The termH2 contains diagonal quadratic term
as well as the terms describing the creation and annihila
of the newe-h pairs from the new vacuum stateuCg(k)&. It
has the form

H25(
p

E~k,v2,m!~ap
1ap1bp

1bp!

2(
p

FuvS kx

2
2pDc~k,v2,m!bkx2pap

1uvS p2
kx

2 Dc~k,v2,m!ap
1bkx2p

1 G , ~39!

where

E~k,v2,m!52u2v2I ex~k!1I l~v42u2v2!2
m

2
~u22v2!

~40!

and

c~k,v2,m!52v2I l1I ex~k!~u22v2!2m. ~41!
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It is seen from the HamiltonianH2 that the new quasiparti
cles described by the operatorsap ,bp can appear spontane
ously from the new vacuum state as a pair with total mom
tum kx , which coincides with the translational wave vect
of the Bose-Einstein condensate of magnetoexcitons. S
terms in the Hamiltonian and the corresponding diagrams
called dangerous ones and make the new vacuum state
stable. To avoid this instability, the condition of compens
tion of the dangerous diagrams is used. In the Hartree-Fo
Bogoliubov approximation, when only the dangero
diagrams inH2 are taken into account, the condition of the
compensation is

c~k,v2,m!50

This condition determines the unknown parameter of
theory, namely the chemical potentialm of the system. In the
Hartree-Fock-Bogoliubov approximation it is

mHFB5Eex~k!22v2@ I l2I ex~k!#

52I ex~k!22v2@ I l2I ex~k!#. ~42!

This condition introduces the breaking of theu(1) gauge
symmetry of the initial HamiltonianH and makes non-
equivalent its ground state and the new ground stateU. With
the help of mHFB we can determine self-consistently th
ground state energyU and the energy of the single-partic
elementary excitations, which in the given approximation

UHFB5Nexv
2@ I l2I ex~k!#, E~k,v2,m!5

1

2
I ex~k!.

~43!

As one can see, the single-particle elementary excita
has an energy spectrum without dispersion. It does not
pend on the wave vectorsp or kx2p of the electron or of the
hole appearing from the new vacuum state, and for e
particle is equal exactly to one half of the ionization ener
of the condensed excitons. To excite one electron-hole
from the vacuum, the energyI ex(k) is required, because it is
equivalent to an unbound single exciton with the wave vec
k. The absence of dispersion reflects the absence of the
netic energy of the electrons and holes in the lowest Lan
level. It was shown36 that there are no plasma oscillations
the casek50, whereas the dispersion relation of the colle
tive excitations in this case is given by the exciton dispers
relation Eex(k)2Eex(0). These results can be generaliz
when condensation of excitons with dipole moments occu
In this case, the ground state energy can be determined
BCS-type wave functions~27! by the expression

Eg~k!5^Cg~k!uĤuCg~k!&

52Nv2I ex~k!2Nv4@ I l2I ex~k!#. ~44!

It was obtained in the scope of the Hartree-Fock approxim
tion. Its derivativedEg(k)/dNex determines the chemical po
tential mHFB in full accordance with Eq.~42!, whereas
the rateEg(k)/Nex characterizes the mean energy per o
exciton
6-7
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Eg~k!

Nex
5Eex~k!2v2@Eex~k!2Eex~0!#

5Eex~k!2v2@ I l2I ex~k!#,

Eg~k!5U1mHFBNex. ~45!

In the next section we show that this result can be exten
beyond the Hartree-Fock-Bogoliubov approximation, tak
into consideration the polarizability of the Bose-Einste
condensed magnetoexcitons, at least for a symmetric
model.

IV. ANDERSON-TYPE WAVE FUNCTIONS OF THE
COHERENT EXCITED STATES: POLARIZABILITY OF

THE BOSE-EINSTEIN CONDENSED
MAGNETOEXCITONS

The coherent excited states of the Bose-condensed m
netoexcitons can be constructed following the method p
posed by Anderson in the theory of superconductivity.50 The
excited state can be obtained by acting with the electron
of the density fluctuation operator~21! on the ground state
wave function~27!,

UCeS q6
Qx

2 D L 5aq1Qx/2
1 aq2Qx/2uCg~k!&. ~46!

Using the operatorsap ,bp , theu-v transformation~32! and
taking into account

apuCg~k!&5bpuCg~k!&50, ~47!

this function can be reduced to

UCeS q6
Qx

2 D L 5Fv•v~2Qx!bkx2q2Qx/2bkx2q1Qx/2
1 1uvS q

2
Qx

2
2

kx

2 Daq1Qx/2
1 bkx2q1Qx/2

1 G uCg~k!&.

~48!

Taking into account thatQx is different from zero, one can
simplify Eq. ~48! neglecting the first term in the right han
side. The set of functions~48! obeys the following orthogo-
nality and normalization conditions

K CeS p6
Px

2 D UCeS q6
Qx

2 D L 5u2v2dkr~Px ,Qx!dkr~p,q!.

~49!

The excitation energy in the Hartree-Fock-Bogoliubov a
proximation can be found using theĤ2 part of the Hamil-
tonian ~37!,

Ĥ25(
p

I ex~k!

2
~ap

1ap1bp
1bp! ~50!

and equals
24531
d
g

D

g-
-

rt

-

ES q6
Qx

2 D5
^Ce~q6Qx/2!uĤ2uCe~q6Qx/2!&

^Ce~q6Qx/2!uCe~q6Qx/2!&
5I ex~k!.

~51!

The excitation energy of this state equals the ionization
tential of Bose-condensed magnetoexcitons with wave ve
k. It does not depend on the wave vectorsq andQx , which
characterize the excited state. The excitation energy and
energy spectrum of single-particle elementary excitations
the same for the full set of the excited states~47! and have no
dispersion.

We also introduce the excited states generated by the
tuation of the hole density and by the action of the cor
sponding operator on the ground state wave funct
uCg(k)&

UChS 2p6
Px

2 D L 5b2p1Px/2
1 b2p2Px/2uCg~k!&

5Fv•v~Px!akx1p2Px/2akx1p1Px/2
1 1uv

3S p1
Px

2
1

kx

2 Dakx1p1Px/2
1 b2p1Px/2

1 G
3uCg~k!&. ~52!

They have the same properties of orthogonality and norm
ization as Eq.~49!,

K ChS 2p6
Px

2 D UChS 2q6
Qx

2 D L
5u2v2dkr~Px ,Qx!dkr~p,q!, ~53!

as well as the same excitation energyI ex(k). Because of the
obvious relations between these two sets of wave functio

K CeS p6
Px

2 D UChS 2q6
Qx

2 D L
5u2vv~Qx!dkr~Px ,Qx!dkr~p2kx ,q!,

K ChS 2p6
Px

2 D UCeS q6
Qx

2 D L
5u2vv~2Qx!dkr~Px ,Qx!dkr~q,p1kx!, ~54!

they are not independent and there is a correspondence
tween each function from one set with some function fro
another set. This means that one should take into acc
only one of them.

In a similar way, the excited wave functions generated
the pair of electron and hole creation operators are in
duced in the form

UCe-hS 6p,
Px1kx

2 D L 5ap1(Px1kx)/2
1 b2p1(Px1kx)/2

1 uCg~k!&.

~55!

Their orthogonality and normalization properties are
6-8
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K Ce-hS 6q,
Qx1kx

2 D UCe-hS 6p,
Px1kx

2 D L
5u4dkr~Px ,Qx!dkr~p,q!,

K Ce-hS 6q,
Qx1kx

2 D UCeS p6
Px

2 D L
5u3vS p2

Px1kx

2 D dkrS q1
kx

2
,pD ,

~56!

K Ce-hS 6q,
Qx1kx

2 D UChS 2p6
Px

2 D L
5u3vS p1

Px1kx

2 D dkrS q,p1
kx

2 D .

The third set of excited wave functions in Eq.~55! is depen-
dent on the other two. One can expect similar properties
the fourth set of excited wave functions generated by the
of electron and hole annihilation operators. To verify t
completeness of the first set of the excited wave function
the framework of these four sets, we use the identity oper

Î 5 (
p,Px

UCeS p6
Px

2 D L K CeS p6
Px

2 D U
K CeS p6

Px

2 D UCeS p6
Px

2 D L . ~57!

The completeness of the wave functions~48! can be verified
by direct substitution into the normalization and orthogon
ity relations~54! and~56!. The matrix elements of the opera
tor ~21! can be calculated using these excited-state w
functions

u~ r̂Q!n,0u25U 1

uv K CeS p6
Px

2 D Ur̂QuCg~k!&U2

, ~58!

and they determine the polarizability of the system. In o
case

r̂QuCg~k!&5(
q

eiQyql2XUCeS q7
Qx

2 D L
2UChS 2q7

Qx

2 D L C. ~59!

We denote the normalized excited state as

un&[ue,Px ,p&5
1

uv UCeS p6
Px

2 D L . ~60!

It is characterized by two independent quantum numbersPx
andp or by their combinations.

The matrix elements of the density fluctuation operatorr̂Q
~21! are
24531
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~ r̂Q
1!n,05~ r̂2Q!n,0

5uvdkr~Px ,Qx!e
2 iQypl2@12e2 i (kyQx2kxQy) l 2#.

~61!

It is seen that

u~ r̂Q
1!n,0u25u~ r̂2Q!n,0u2

54u2v2dkr~Px ,Qx!sin2~$kyQx2kxQy% l
2/2!,

~62!

and these do not depend on the wave vectorp and contain
the coherence factor sin2($kyQx2kxQy%l

2/2). The correspond-
ing excitation energy is determined by Eq.~51! and will be
denoted below as

\vn,05I ex~k!. ~63!

We shall calculate the polarizability in the approximation
a weak response to the external longitudinal perturbatio51

In the case of a 2D structure with Hamiltonian of the for
~22!, the perturbation caused by an external probe charge
be written in the form

Hext~ t !52
ez

e2
WQ@rext~Q,v!rQ

1e2 ivt1rext
! ~Q,v!rQeivt#.

~64!

The specific properties of a 2D structure appear due to
Coulomb interaction coefficientWQ , determined in Eq.~22!,
which differs essentially from the case of 3D structure. Su
stituting Eq.~62! into a general expression for the polari
ability, we find

4pa0
HF~Q,v!52

WQ

\ (
n

F u~ r̂Q
1!n,0u2

v2vn,01 id
2

u~ r̂Q!n,0u2

v1vn,01 id
G ,

~65!

whereWQ , u( r̂Q)n,0u2, and vn,0 depend on the wave func
tions of the electrons, holes, and magnetoexcitons in the
structure. We obtain, after straightforward calculations,

4pa0
HF~Q,v! 5

d→10
24u2v2WQN sin2S kyQx2kxQy

2
l 2D

3F 1

\v2I ex~k!1 id
2

1

\v1I ex~k!1 idG .
~66!

This expression can be rewritten as
6-9
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4pa0
HF~Q,v! 5

d→10
24u2v2

e2

«0l 2uQu
e2Q2l 2/2

3sin2S kyQx2kxQy

2
l 2D

3F 1

\v2I ex~k!1 id
2

1

\v1I ex~k!1 idG .
~67!

The same result for the polarizability can be obtained fr
another possible set of excitations. The polarizability ha
resonance frequency equal to the ionization potentialI ex(k)
of the magnetoexciton with dipole momentr05kl2. The po-
larizability vanishes when the wave vectork approaches
zero, and the magnetoexcitons behave as an ideal noni
acting gas. The polarizability is an anisotropic function
the wave vectorQ and decreases exponentially whenQ goes
to infinity.

The real and imaginary parts of the polarizability are

4pa0
HF~Q,v!54pa0,1

HF~Q,v!1 i4pa0,2
HF~Q,v!,

4pa0,1
HF~Q,v!524u2v2~WQN!sin2S kyQx2kxQy

2
l 2D

3F P f

\v2I ex~k!
2

P f

\v1I ex~k!G ,
4pa0,2

HF~Q,v!54pu2v2~WQN!sin2S kyQx2kxQy

2
l 2D

3$d@\v2I ex~k!#2d@\v1I ex~k!#%.

~68!

The symbol (P f) in Eq. ~68! denotes that the singular term
which may appear in the expression 4pa0,1

HF(Q,v) at the
point \v5I ex(k) must be removed. The polarizabilit
4pa0

HF(Q,v) determines the dielectric constant«(Q,v),
which in the Hartree-Fock~HF! approximation is

1

«HF~Q,v!
5124pa0

HF~Q,v!, ~69!

contrary to the random phase approximation~RPA!, where
the expression for the dielectric constant is different. T
difference appears due to the summation of the diagr
with polarization loops, which are related to the screening
the effective Coulomb interaction4,51 and give the following
expression:

WQ eff5WQ1WQP~Q,v!WQ1WQ@P~Q,v!WQ#21•••

5
WQ

12P~Q,v!WQ
5

WQ

«RPA~Q,v!
. ~70!

The dielectric constant«(Q,v) obtained by this method is
denoted«RPA(Q,v):
24531
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«RPA~Q,v!5114pa0
HF~Q,v!. ~71!

The relation between the polarizability 4pa0
HF(Q,v) and the

contribution of the polarization loopP(Q,v) is

«RPA~Q,v!512P~Q,v!WQ5114pa0
HF~Q,v!,

4pa0
HF~Q,v!52P~Q,v!WQ . ~72!

One can see that the expression for the dielectric cons
«HF(Q,v) appears as the first two terms in the series exp
sion on the polarizability 4pa0

HF(Q,v) of the inverse value
of «RPA(Q,v). This result can be easily obtained if only tw
diagrams are taken into account when the effective Coulo
interaction is calculated.

To compare the obtained results with the polarizability
noncondensed magnetoexcitons, we consider the wave f
tion ~16! of the magnetoexciton with wave vectork. The
excited state of the magnetoexciton

uCex,k8&5
1

AN
(

p
ap1k

x8/2
1

b
2p1k

x8/2
1 u0&, ~73!

is characterized by the wave vectork8. Taking into account
that the square matrix element of the density fluctuation
erator is

u~ r̂Q
1!n,0u25u~ r̂2Q!n,0u2

52dkr~Q,k2k8!@12cos~Qykx2Qxky!l 2#.

~74!

We calculate the polarizability of the noncondensed mag
toexcitons

4pa0
HF~k,Q,v!54pa0,1

HF~k,Q,v!1 i4pa0,2
HF~k,Q,v!,

4pa0,1
HF~k,Q,v!524WQ sin2S kyQx2kxQy

2
l 2D

3F P f

\v2@ I ex~k!2I ex~k2Q!#

2
P f

\v1@ I ex~k!2I ex~k1Q!#G ,
4pa0,2

HF~k,Q,v!54pWQ sin2S kyQx2kxQy

2
l 2D „d$\v

2@ I ex~k!2I ex~k2Q!#%2d$\v1@ I ex~k!

2I ex~k1Q!#%…. ~75!

The resultant polarizability can be obtained by summat
over all the wave vectorsk of noncondensed magnetoexc
tons with Bose distribution function
6-10
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4pa0
HF~Q,v!

5
d→10

(
k

1

expFE~k!2m

kBT G21

4pa0
HF~k,Q,v!.

~76!

To simplify the expression~76! the following approxima-
tions were introduced:

Eex~k!52I ex~k!52I l1
k2\2

2mH
,

k<kmax, I ex~kmax!50, m52I l ,

sin2S kyQx2kxQy

2
l 2D'

Q2k2l 4

8 Y S 11
Q2k2l 4

4 D .

~77!

They allows to perform the exact integration over the po
angles, which appear in the denominators~75! and the nu-
merical calculations of the integrals on the modulusk in the
interval 0<k<kmax.

The real part of the polarizability for the condensed a
noncondensed magnetoexcitons is shown in Fig. 1 versus
dimensionless vectorQ̃[Ql. One can see that the polariz
ability vanishes for both the condensed and nonconden
magnetoexcitons for large wave vectorsQ. If the direction of
the polarization is perpendicular to the single particle wa
vector of the condensate, the polarizability of the conden
magnetoexcitons is zero. One can see that polarizabilit
essentially different for the condensed and noncondensed
citons. The polarizability of the condensed excitons
strongly oscillating function ofQ, and this fact opens up th
possibility for an experimentally observable signature of
appearance of Bose-Einstein condensation.

FIG. 1. Real part of the polarizability versus dimensionle
wave vector. Solid curve: polarizability of condensed magnetoe
tons atkl54.6. Dashed curve: polarizability of noncondensed m
netoexcitons.
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V. SCREENING EFFECTS AND CORRELATION ENERGY:
NOZIÈ RES AND COMTE APPROACH

In this section, we calculate the correlation energy of
condensed excitons, taking into account the screening
fects. For this purpose it is convenient to use the meth
proposed in Ref. 52, which allows us consider simul
neously the binding processes and the screening effects
system of Bose condensede-h pairs, which can be used bot
in the cases of dense and dilute limits of exciton concen
tions.

The formulation of this method, called the generaliz
random-phase approximation~GRPA!, is based on the Pauli
Feynman theorem4,51,52 for the ground state energy. In th
case of interactinge-h pairs, their ground state energyE0
can be expressed in the form

E05Ekin1E
0

e2

Eint~l!
dl

l
. ~78!

HereEkin is the kinetic energy of the Bose condensed id
e-h pairs without Coulomb interaction between them, a
Eint(l) is the mean value of the Coulomb interaction, withl
being the square electric charge, which changes from zer
the real valuee2.

For the gas of electrons and holes occupying the low
Landau levels only the Coulomb interaction term~22! enters
the Hamiltonian. Applying the GRPA method, we introdu
the hypothetical gas with the bare Coulomb interact
WQ(l)5WQ(l/e2) and wave functionsun(l)&. Then the
interaction part of the ground state energy is

WQ5E
0

e2WQ~l!

l
dl. ~79!

The expressionEint(l) takes the form

Eint~l!52Nex(
Q

WQ~l!1
1

2 (
Q

WQ~l!(
n(l)

u~ r̂Q
1!n,0u2,

~80!

which can be expressed through the imaginary part of
polarizability 4pa0

HF(Q,v) obtained in the Hartree-Fock ap
proximation.

Taking into account the definitions~65! and ~69!, we ob-
tain the relations

E
0

`\dv

2p
Im 4pa0

HF~Q,v!5
1

2
WQ(

n
u~ r̂Q

1!n,0u2, ~81!

1

2
WQ~l!(

n(l)
u~ r̂Q

1!n,0u252E
0

`\dv

2p
Im

1

«HF~Q,v,l!
,

~82!

and for the ground state energy we find

E052Nex(
Q

WQ2(
Q

E
0

`\dv

2p E
0

e2dl

l
Im

1

«~Q,v,l!
.

~83!

s
i-
-
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Taking into account the chemical potential, the Ham
tonian isĤ5Ĥ2meN̂e2mhN̂h , and the ground state energ
becomes

E05E02mNex, ~84!

wherem5me1mh . As mentioned in Ref. 52, the choice o
the approximation for«(Q,v,l) determines the accuracy o
the energyE0 given by Eq.~83!. The best results were ob
tained using the RPA together with the Habbard correcti4

for the one-component plasma and the electron-hole liq
When«(Q,v,l) is taken in the form«HF(Q,v,l), we ob-
tain the previous expressions~42!,~43! written in the Hartree-
Fock-Bogoliubov approximation. Representing«(Q,v,l) in
the form

«~Q,v,l!5«1~Q,v,l!1 i«2~Q,v,l!,

«1~Q,v,l!5114pa0,1
HF~Q,v,l!;

«2~Q,v,l!54pa0,2
HF~Q,v,l!, ~85!

and supposing«2(Q,v,l)'l and «1(Q,v,l)'1, we ob-
tain

E
0

e2dl

l
Im

1

«~Q,v,l!
52

1

«1~Q,v!
arctan

«2~Q,v!

«1~Q,v!

'2
«2~Q,v!

«1
2~Q,v!

.

Substituting Eq.~85! into this expression and expanding it
series up to the first order in 4pa0,1

HF(Q,v), inclusively we
obtain

4pa0,2
HF~Q,v!

@114pa0,1
HF~Q,v!#2

'4pa0,2
HF~Q,v!22

34pa0,2
HF~Q,v!4pa0,1

HF~Q,v!.

~86!

The first term in the series expansion~86! corresponds to
Hartree-Fock-Bogoliubov approximation, whereas the s
ond term determines the correlation energy

Ecorr522(
Q

E
0

`\dv

2p
4pa0,2

HF~Q,v!4pa0,1
HF~Q,v!.

~87!

As explained above, only the real part of the polarizabil
4pa0,1

HF(Q,v), which contains the denominator@\v
1I ex(k)#, gives a nonvanishing contribution to the corre
tion energy at the point\v5I ex(k). At this point the de-
nominator equals 2I ex(k), which means that the correlatio
energy is due to the virtual excitation of two quasipartic
pairs out of the mean-field ground stateuCg(k)&. The corre-
lation energy is negative due to the screening effects
therefore lowers the energy of the interacting system. Ho
24531
-

d.

c-

-

d
-

ever, this reduction is not monotonic and the local minimu
of the correlation energy depends on the value of the fill
factor v2.

Substituting Eq.~75! in Eq. ~87!, we obtain the correlation
energy in the form

Ecorr52
8~u2v2!2

I ex~k! (
Q

~WQN!2 sin4S kyQx2kxQy

2
l 2D

52
N~u2v2!2

Ap

I l
2

I ex~k!
F~kl !, ~88!

where the sum overQ was substituted by the integral

E d2Q

Q2
e2Q2l 2 sin4S kyQx2kxQy

2
l 2D5

pAp

8
F~kl !.

~89!

These expressions can be presented through the mod
Bessel functionI 0(z), as

F~kl !531e2k2l 2/2I 0S k2l 2

2 D24e2k2l 2/8I 0S k2l 2

8 D ,

I ex~k!5I lG~kl !, G~kl !5e2k2l 2/4I 0S k2l 2

4 D . ~90!

The total mean energy per particle consists of two parts. O
of them coincides withEg(k)/Nex ~45! and the other is
Ecorr/Nex,

E5E HF1Ecorr5
Eg~k!1Ecorr

Nex

52I ex~k!2v2@ I l2I ex~k!#2
1

Ap

I l
2

I ex~k!
F~kl !u4v2.

~91!

The corresponding correction to the chemical potential is

mcorr5
dEcorr

dNex
5

d

dv2

Ecorr

N
,

Nex5Nv2 ~92!

and the total value of the chemical potential is

m5mHFB1mcorr

52I ex~k!22v2@ I l2I ex~k!#

2
2

Ap

I l
2F~kl !

I ex~k!
v2~12v2!~122v2!. ~93!

It is convenient to express the total energy per particle
the chemical potential in terms of the exciton ionization p
tential at the pointk50,I l5I ex(0),
6-12
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E
I l

52G~kl !2@12G~kl !#v22
1

Ap

F~kl !

G~kl !
v2~12v2!2,

~94!

m

I l
52G~kl !22v2@12G~kl !#2

2

Ap

F~kl !

G~kl !

3v2~12v2!~122v2!. ~95!

The mean energy per particle and the chemical potential
sus the filling factorv2 are shown in Figs. 2 and 3. The fir
term in Eq.~95! gives the energy per exciton in the Hartre

FIG. 2. Energy per particle versus filling factorv2. Solid line:
energy per exciton atkl54.6. Dashed line: energy per one excito
in the Hartree-Fock-Bogoliubov approximation. Dash-dotted li
energy pere-h pair of the metallic EHL.

FIG. 3. Chemical potential versus filling factorv2. Solid line:
total chemical potential of the condensed magnetoexcitons akl
54.6. Dashed line: chemical potential of the condensed mag
toexcitons in HFBA atkl54.6.
24531
r-

Fock-Bogoliubov approximation. For small values ofkl, the
total energy and chemical potential, with the correlation c
rections, are monotonic functions ofv2, and almost coincide
with those found in the scope of the HFBA. For largerkl,
the total energy and chemical potential deviate considera
their values in the HFBA and become nonmonotonic fun
tions of v2 with a well-pronounced local minimum. Thi
minimum becomes deeper and more pronounced with
increase of the dipole momentkl2, due to the increase of th
coherent factor and the decrease of the ionization poten
I ex(k).

At first, the local minimum of chemical potential appea
for kl52.2; it becomes deeper with further increase ofkl.
The relative minimum of the chemical potential of the Bos
Einstein condensed magnetoexcitons implies the forma
of a metastable dielectric liquid phase with positive co
pressibility in this range of filling factorv2. At the values
kl54.6, I ex(k)50.18I l , r054.6l , andv250.25, the mini-
mum on the plot of the chemical potential achieves the sa
value as at the limiting pointv251. In spite of the fact that
the curves in Figs. 2 and 3 are extrapolated up to the p
v251, it should be noticed that the applicability of th
theory is limited by the upper boundary given byv2

'sin2v, which means that we neglect the transitions to e
cited Landau levels.

Whether the dielectric liquid phase of the Bose-Einst
condensed magnetoexcitons or the electron-hole liq
~EHL! state is preferable depends on the energy of the
tem in these states. In the HFA, the ground state energy o
EHL can be found from the Hamiltonian of the Coulom
interaction of electrons and holes,

Ĥ5
1

2 (
p,q,s

Fe-e~p,q;p2s,q1s!ap
1aq

1aq1sap2s

1
1

2 (
p,q,s

Fh-h~p,q;p2s,q1s!bp
1bq

1bq1sbp2s

2 (
p,q,s

Fe-h~p,q;p2s,q1s!ap
1bq

1bq1sap2s ~96!

averaging over the ground state. Using Wick’s theorem a
taking into account that all electrons and holes are in th
lowest Landau levels, so that^a1a&5^b1b&5n2 we obtain

EEHL5
n4

2 S (
p,q

Fe-e~p,q;p,q!1( p,qFh-h~p,q;p,q!

22(
p,q

Fe-h~p,q;p,q! D 2
n4

2 S (
p,s

Fe-e~p,p2s;p

2s,p!1( p,sFh-h~p,p2s;p2s,p! D . ~97!

From Eqs.~13! and~14! one can see that the direct Coulom
terms cancel each other, and only the exchange terms rem
so that after integration, we obtain

EEHL52n4I lN. ~98!

:

e-
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The energy per electron-hole pair is

E5
EEHL

Ne-h
52n2I l ~99!

and has a global minimum atv251, when the drop is
formed of the completely filled Landau level. In Fig. 2, th
dashed-dotted line corresponds to the energy per elec
hole pair of the metallic EHL. The energy of the metal
EHL is always above the energy of the dielectric liquid pha
and has no local minimum.

VI. CONCLUSIONS

We have studied the coherent pairing of electrons
holes in an ideal 2D structure in a strong transverse magn
field. The coherent pairing results in the Bose-Einstein c
densation of 2D magnetoexcitons on the single-particle s
with wave vectork. We have shown that within the model o
the carriers confined to the lowest Landau level and l
densities of electrons and holes, the correlation energy
the corrections to the chemical potential beyond the H
result in the existence of a metastable dielectric liquid ph
formed by the Bose-condensed magnetoexcitons. We h
seen that this dielectric liquid phase of Bose-condensed m
netoexcitons with nonzero values of the dipole moments
comparatively low ionization potentials is more stable th
the EHL phase. Although we have considered arbitrary w
vectors k, the range of the main interest iskl>1. The
Keldysh-Kozlov-Kopaev method supplemented by the g
eralized random phase approximation was applied for
analysis. It was shown that the attractive interaction betw
excitons in the system prevails due to the existence of
dipole moments atkÞ0 and the ground state of the Bos
Einstein condensed excitons is unstable within the HFB
proximation. This fact leads to the tendency of the system
transform into another more stable phase. This new pha
a droplet of a metastable liquid dielectric phase formed
the magnetoexcitons with considerably large dipole mome
kl<4.6 and sufficiently low ionization potentialsI l.I ex(k)
>0.18I l . Each droplet has a well defined local direction
the inplane wave vectork as well as the inplane dipole mo
ment r05@k3z# l 2 perpendicular tok. These values can
slowly change in space and in time, for example, due
hydrodynamic evolution. A set of such droplets can form,
instance, a ring so that the wave vectork of the particular
droplet coincides with the tangent to the ring, whereas
dipole moment is directed along the radius of the ring. D
ferent structures of such type may appear if the energy
onee-h pair is the lowest one. This scenario differs from t
case considered in Ref. 53. We have shown that this
phase may occur for the coherent excited states of the B
Einstein condensed magnetoexcitons even within the fra
work of the lowest Landau level approximation. Contrary
this approximation the correlation energy calculated in Re
34,35 and the indirect interaction in Ref. 37 are due to
count of the excited Landau levels and they are proportio
to a small parameterl /aex'I l /\vc . In our analysis we used
the Anderson-type wave functions of the coherent exc
24531
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states of the correlated pairs taking into account only
lowest Landau level. These excited states means the ex
tion and the unbinding of one of manye-h pairs bounded
into Bose-Einstein condensate and its transformation int
free e-h pair. The energy of such unbinding equals to t
ionization potentialI ex(k) of the magnetoexcitons withk
Þ0. The polarizability of the Bose-Einstein condensate w
kÞ0 is characterized by the coherent factor which equals
zero whenk50 as well as by the resonance frequency eq
to the ionization potentialI ex(k). The correlation energy is
the same for all condensed coherent excitons and therefo
proportional to the square of the coherence factor and inv
proportional to the ionization potentialI ex(k). The calculated
correlation energy and the correction to the chemical pot
tial do not contain any small parameters and have the s
dependencies as energy and chemical potential in the H
approximation. Comparing the polarizability of the Bos
Einstein condensed and noncondensed magnetoexcitons
can observe that the coherence factor which appears eve
single exciton is considered remained a common factor in
case of coherent macroscopic state and determines the
tence of a superlattice with the period 2p/k. Due to this fact
the polarizability depends periodically on the wave vectorQ
of the longitudinal weak perturbation. In the case of nonco
densed excitons the coherence factors of different excit
have different wave vectors and the average of these po
izabilities over the distribution function of the noncondens
excitons leads to a smooth dependence onQ. This is the
main difference of the polarizabilities of the condensed a
noncondensed magnetoexcitons. They also have diffe
resonance frequencies. The perturbative method have
used to simplify the calculation of the correlation energy.
this reason the correction to the chemical potentialmcorr can-
not exceed the valuemHFB. This means that we can consid
only the limiting valueskl<4.6 andI l.I ex(k)>0.18I l . An-
other restriction of the theory isn2'sin2n, which means that
we can consider the phenomenon of the Bose-Einstein c
densation of magnetoexcitons in the LLL approximation on
in the limit of small filling factorn2,1. This requirement
does not concern the theory of EHL. The metastable st
appear at the value of the filling factorn2'0.25 and this
value satisfies the above restriction. To develop more gen
theory extended to the case ofn2'1 it is necessary to gen
eralize the definition of the exciton creation operator invo
ing into its construction the creation operators of electro
and holes on the excited Landau levels.
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