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Polarizability, correlation energy, and dielectric liquid phase of Bose-Einstein condensate
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The coherent pairing of electrons and holes occupying only the lowest Landau level in a two-dimensional
(2D) system with a strong perpendicular magnetic field is studied using the Keldysh-Kozlov-Kopaev method
and generalized random phase approximation. Bose-Einstein condensation of the correlated pairs takes place in
a single particle state with an arbitrary wave vedton a symmetric 2D model. We show that the ground state
energy per exciton and the chemical potential are nonmonotonic functions of the filling factor, so that meta-
stable dielectric liquid states with positive compressibility exist, consisting of Bose-Einstein condensate of
magnetoexcitons. It is shown that this dielectric liquid phase of the Bose condensed excitons is more stable
than the metallic electron-hole liquid phase. The polarizability of the Bose-condensed magnetoexcitons is
calculated using Anderson-type wave functions of the coherent excited states, which correspond to the appear-
ance of one out-of-condensate electron-haeh) pair in the presence of the BCS-type ground state. The
polarizability is characterized by a coherent factor which depends amd vanishes whek tends to zero, as
well as by a resonance frequency equal to the ionization potential of a magnetoexciton, and differs consider-
ably from the polarizability of a noncondensed exciton gas. The condensate polarizability is used to determine
the correlation energy of the system and the correction to the chemical potential beyond the Hartree-Fock-
Bogoliubov approximation.
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[. INTRODUCTION high density, crystal imperfections and phonons in the crystal
all act to complicate the system.
The observation of Bose-Einstein condensatiB&C) in An essential requirement for BEC of excitons is supres-

alkali atomic gases using a laser trappifichas greatly ex-  sion of the electron-hole liqui6EHL) phase. In general, the
panded the related research in recent years. The transitid@oulomb interaction between electrons and holes usually
temperature for BEC of alkali gases is extremely low, due tacauses droplets of EHL to form at high carrier density in-
the heavy atomic mass and low gas densify~n?m). stead of a Bose condensate. To avoid this, repulsive interac-
The situation is quite different for a condensed phase of extions between the excitons are necessary. This can occur in a
citons in semiconductors due to much smaller mass of theulk, three-dimensional3D) semiconductor if the electron
excitons, which is often even smaller than the free electromnd hole masses are nearly equal, as is the case in the semi-
mass. As is well known, under certain conditions excitonsconductor CyO (Refs. 5,6 (see also Ref. 4 for a review of
i.e. bound states of electron-hole pairs in semiconductorexperiments Another way to have repulsive interactions is
have bosonic propertiesee, e.g., Ref.)4 As neutral par- to engineer a quantum well structure with the right proper-
ticles, excitons are weakly interacting, and therefore dephagies. In recent years, the system of coupled quantum wells in
ing process are much slower than free electrons and holes. $trong electric field has gained attention in both
the density is high enough, the Bose-Einstein statistics betheoretical~*'and experimentdt~?’studies as a system with
come important, and ideally one expects a Bose-Einsteinepulsive exciton-exciton interactions and long exciton life-
condensation to occur, similar to the BEC observed in coldime, ideal for BEC of excitons. Another advantage of the 2D
trapped atomic gases. Due to the macroscopic population alystem is a possibility of much faster cooling of hot photo-
a single state which occurs in BEC, a robust macroscopiexcited excitons compared with their bulk counterp&rg.
coherent quantum mechanical wave results, which should be Another approach is to use strong magnetic field. It has
directly accessible to experiments. Although theoreticallypbeen showf? that the properties of atoms and excitons are
recognized many years agior a review, see Ref.)4experi-  dramatically changed in a strong magnetic field such that the
ments on BEC of excitons have made slow progress, becauskstance between Landau levetsH/m.c exceeds the Ryd-
finite lifetime effects, strong interactions between excitons aberg energy. In this case the binding energy of an exciton
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becomes independent of the masses of its constituent eleaxorth mentioning that the correlation energy calculated in
tron and hole, so that the exciton has universal properties antlis way does not contain any traces confirming existence of
is known as a “diamagnetic exciton” in 3D samples and athe Bose-Einstein condensate and is exclusively due to ELL.
“magnetoexciton” in 2D structures. The diamagnetic exci- It is not surprising that it happened to be the same for both
tons in bulk crystals were revealed (Refs. 24,25 In this  phases. Although the correlation energy is the same for both
case the diamagnetic exciton gas may form a Bose-Einsteiphases, it nevertheless makes the thermodynamic character-
condensate at low temperature due to the substantial decregsgcs of the excitonic phase and of the EHL droplets slightly
of the exciton-exciton interaction and increase of the excitoryifferent. The inclusion of guantum transitions leads to weak
binding energy®~2°Even more attractive and worth investi- nonideality; the low-energy spectrum becomes acoustic and
gating is the electron-holeeth) system in two dimensions tne |ow-temperature behavior changes qualitatively.

(2D) in the presence of a strong perpendicular magnetic field. Strictly speaking, it is knowi?*!that the BEC of an ideal

In this case, the energy spectrum of thé system is com- Bpse gas with a quadratic dispersion law in a 2D structure
pletely discrete, and one may expect that the properties of thgit infinite surface are® is possible only aff=0. Cou-
system differ considerably from those of a 3D system in &ling to higher Landau levels, however, makes the system
strong magnetic field, where the electron and hole kinetiq,\,ea;dy nonideaf*3® which allows the Berezinskii-

energies are functions of the momentum in one dimensiorkpsterlitz-Thouless topological phase transiffit*at finite
Unlike the 3D system, the kinetic energy in the 2D system isemperature.
completely transformed into a discrete set of states by the The results of Refs. 34,35 were reproduced in Ref. 36 on
magnetic field. The energy of electrons and holes in the 2Qne pasis of a more simple and transparent approach using
system in a strong magnetic field is simply characterized byscs-type wave functions of the BEC excitons and calculat-
the number of the Landau levels, which a¥dold degener-  jng the ground state energy as the average of the Hamiltonian
ate, with N=S/2m1%, wherel is the magnetic lengthl”>  of the Coulomb-interacting electrons and holes. The
=fic/leH, andSis the 2D sample dimension. authors® used the Hartree-Fock-Bogoliubov approximation
In the past two decades, a number of experiméfitdl  taking into account only the ground state wave functions, but
and theoreticdP~* efforts have been dedicated to the studyconsidered the case of nonzero wave vectors and the possi-
of 2D systems in a strong magnetic field. The problem ofyjlity of coupling with higher Landau levels. They intro-
metallic electron-hole liquid formation using finite- duced the indirect interactions of the particles on the LLL
temperature Green's function and diagram techniques, Wagye their virtual excitation to the ELL. The indirect interac-
studied”** assuming that the electrons and holes are on thgon leads to corrections to the exciton binding energy and to
lowest Landau |eV&LLL) and tak|ng into account the influ- the energy per one-h pair in the BCS ground Sta‘[e, which
ence of the single-particle-excited states; the direct Coulombre equivalent to the correlation effect discussed in Refs.
interactions in the system are mutually compensated due tg4 35 They also considered an asymmetric model, which
the electroneutrality condition. It was shown that the groundakes into account the possibility that the electron and hole
state of thee-h system can be found asymptotically exactly wave functions did not occupy the same region of space in a
within the Hartree-Fock approximation for an infinitely high quantum well with finite thickness and finite barrier height.
magnetic fieldH. In this case the exchange energy increasesnterestingly, in this case, the Coulomb interaction of elec-
with the magnetic field strength a8, whereas the correla- trons and holes makes BEC of magnetoexcitons \ith0
tion energy contains a small supplementary fadta.,  unstable, but the possibility of the virtual transitions to the
~1/\JH, wherea,, is the exciton Bohr radius. In Refs. 34,35 excited Landau level stabilizes the BE&ee also Ref. 45
the coherent pairing of electrons and holes resulting in the One of the aims of the present paper will be first to obtain
formation of the Bose-Einstein condensate of excitons in ahe results of Refs. 33—36 from more simple arguments. The
single-particle state with wave vecthr=0 was investigated. second aim is to investigate the properties of the system be-
In the Hartree-Fock approximation, when the coupling to theyond the Hartree-Fock-Bogoliubov approximation, taking
higher Landau levels and the correlation energy are neinto account the possibility of coherent excited states, the
glected, the magnetoexcitons wkk-0 representaf =0 an  corresponding polarizability of the Bose-Einstein conden-
ideal excitonic gas, which has the same properties in theate, the screening effects and the correlation energy due to
longwave approximation as an ideal 2D Bose gas. A surprisiust this channel of polarizability. Contrary to Refs. 34,35 our
ing result was that the fermionie-h droplets of metallic correlation energy is not related to excited Landau levels. We
EHL, which corresponds to maximal local filling facter  find that instead of coexistence of an excitonic condensate
=1 on the lowest Landau levélLL ), can be considered as and electron-hole liquid, there is a single metastable dielec-
an aggregate of excitons sticked together. Returning to th&ric phase formed by a Bose-Einstein condensate of magne-
excited Landau levels and taking into account the correctiontexcitons withk#0.
of the first order inl/a,,, the author¥>®realized that the In the present paper we will consider only the case of a
correlation energy is the same for both EHL and for exci-symmetric 2D model with arbitrary wave vectors of magne-
tonic phase. It is determined by the single-ring polarizationtoexcitonsk+# 0, which means that the excitons have non-
operator and only the transitions from the LLL to the excitedzero dipole moments. An exciton with nonzero momentum
Landau level(ELL) give considerable contributions. The must have a dipole moment because the electron and the hole
contribution of the all excited Landau levels is about fourare pulled in opposite directions by the magnetic field when
times greater than that of the only first Landau level. It isthey move together. As we will see, this effect leads to a
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number of interesting properties. It will turn out that the 1
binding energy of the excitons decreases with increakjng ‘I'ﬁ:o,a (X,y) = ———exp(ipx)exd — (y— pyl ?)?/21?],
so that the magnetoexcitons have an energy term which in- o Ll \/;
creases ak?, even though their kinetic energy is quantized
in the Landau level spectrum. 1
Allowing a Bose-Einstein condensate of magnetoexcitons«}r2:0’q (x,y)= ———expligqx)exd — (y+q,l?)%/21?],
in a single particle state witk#0, and therefore having a § L
dipole moment, leads to novel and interesting properties of 1)

the system. We calculate the polarizability of the Bose- herel is the maanetic lenath anf=L.L. is the surface
Einstein condensate, the screening effects, the correlation el): 9 9 Xy

ergy and the chemical potential of the metastable dielectriﬁia:(rfl)(;i ?feg;;(l:?i}\/gl@x andgy are wave vectors of electron and

liquid phasg: in the range of filling factor far from the maxi- In the solution given by Eq(1), the electron moves in the
mal valuer®=1. _ x direction with translational symmetry and are confined by
The paper is organized as follows. In Sec. _II the wavey o oscillator potentiaH2y? caused by the magnetic poten-
functions of electrons, holes, and magnetoexcitons and thg,| iy the y direction. This results in Landau quantization
Hamiltonian of the interacting quasiparticles are presented gt cyclotron frequencyw®=eH/mec, where m, is the
a simple form. In Sec. Il we use the Keldysh-Kozlov- s of the conduction electron. The motion of the electron
Kopaev method to transform the initial Hamiltonian, intro- ;, the x direction with the wave vectop, corresponds to a
ducing the Bose-Einstein condensate of magnetoexcitonghit of the minimum of the oscillator potential from the
The chemical potential, the single particle energy spectrumyointy=0 to the pointy,=p,!2 due to the Lorentz force.
and the ground state energy are calculated in the Hartree- Since the values of the wave vectqss and g, are re-
Fock-Bogoliubov approximation. In this approximation the stricted by the size of the layer surface in thalirection
existence of the dipole moments results in an attractive in— Ly/2< W ERMESS Ly/2, the total number of possible states
teraction between excitons. In Sec. IV we introduce the cois
herent excited states and calculate the polarizability of the
Bose-Einstein condensate. This polarizability is character- LyLy S
ized by the coherence factor and resonance frequency, and N= 2|2 = PYREL
we show the difference between polarizability of noncon-
densed and condensed magnetoexcitons. The screening efid the lowest Landau levels of the electrons and holes are
fects, the correlation energy and the corrections to chemical-fold degenerate. We define the filling factof=Ng/N,
potential are studied in Sec. V, using the generalized randomhich is the ratio of the number of occupied electron states
phase approximation. We show that these corrections lead fe to the total numbeN of electron states. The condition
the formation of metastable states of a Bose-Einstein corfhat the gaps between the Landau levels for electrons and
densed dielectric liquid phase with positive compressibility.noles are larger than the binding energy of the 2D exciton in
We also calculate the energy peth pair of the EHL and the abs_ence of the magnetic fleId., and that th_e magnetic
compare it with that of this new dielectric liquid phase. Fi- Iengthl is smaller than the Bohr radius of 2D exciton, leads
nally, the obtained results are summarized and discussed [@ the following inequalities:

2

Sec. VI. p ot

e

ﬁwg~ﬁw2> >3
h 80
Il. HAMILTONIAN OF 2D ELECTRON-HOLE SYSTEM
IN A STRONG MAGNETIC FIELD 52

|<aZ=""0 @3

We consider first a simple 2D model with a perpendicular ex 2,ue2’

magnetic field, assuming that the Zeeman splitting of the . ]

Landau levels is large enough that the electrons and holes aYéere . =mem; /Mgy, is the exciton reduced masSe=me
restricted to the lowest Landau level and the typical electro-t My iS the ftranslational exciton mass, amg is zero-
static energies are much smaller than the cyclotron energieféguency dielectric constant of the layer. The magnetic field
We choose the 2D layer plane as they( plane with thez ~ Which corresponds to thg binding energy of the exciton equal
axis directed along the direction of the magnetic field, witht0 the cyclotron energy is

the Landau gauge for the vector potenfia+ (—Hy,0,0). In 3 o
this case, the electron and exciton wave functions in a mag- _4ce’u
netic field are well knowrtsee, e.g., Refs. 45-A8he states e 5382
of an electror(hole) are characterized by two quantum num-

bersn andp, (g,), corresponding to its two degrees of free- Typical values ofH, e.g., for GaAs, areu=0.1m,, &g
dom. For the lowest Landau level=0, which is considered =11, |=a2>=100 A, andH,=6.25T.

below, the envelope Bloch wave functions of the electron The condition that only the lowest Landau levels are oc-
and the hole are cupied means that the first excited Landau level is situated

4
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much higher on the energy scale, at least of order of thelefine the exciton dipole momept, which arises perpen-
ionization potential of the exciton in the 2D structure. Since,dicular to the wave vectdt whenk#0, as

as we shall see, the ionization potential of the magnetoexci-

tons with large wave vectors is typically smaller than that po=[zX k]~|2:(—iky+jkx)-I2. (9)
with k=0, this condition is always satisfied fét>H,,.

We consider the wave function of magnetoexciton in the  The Hamiltonian of the 2D electron-hole system in a
spatial coordinate representation, following Ref. 36. In astrong perpendicular magnetic field was derived in Ref. 36 in
strong magnetic field, the 2D exciton wave function in thethe second quantization representation taking into account
lowest Landau levelr{=0) can be written using the enve- the electron-hole Coulomb interaction in the ideal symmetric

lope functions(1) 2D layer (corresponding to the electrons and holes confined
) to exactly the same regipand in a quantum well with finite
Wex(Xe YeiXn:Yn) thickness(with different electron and hole wave functions in
iPXe @itXp the z direction, and also taking into account the electron-

> D> Cn, n,(P.0) ——= bn, p(Ye) Pry q(Yn) hole indirect interaction through virtually excited Landau
P.q4 Ne,Np " VL \/— " levels. We consider here only the case of an ideal symmetric

2D layer and introduce another representation of the Cou-

-3 2 Codp.q) — elPXe g®h 1 lomb matrix elements, which allows us to demonstrate their
P 0. JL \/[ |\/— symmetry properties in a more simple way.
First, we introduce the chemical potentials for electrons
X exy — (y—pl?)?/21?] and holesu, and uy,, respectively, which allow us to take
x exd — (y+ql?)?/212]. ©) into account the constancy of their average numbers during

phase transitions. The spin-oriented electrons and holes are
We consider the particular case,.=m,=m,/2, and intro- assumed to be in the lowest Landau level, and therefore their
duce the coordinates of the center of mass of the electron arkinetic energy does not appear in the Hamiltonian. The
hole and their relative motion with the corresponding waveHamiltonian describing the Coulomb interaction of electrons
vectork, of the exciton translation motion, and wave vectorand holes is

t of the relative motion

1 1 H ﬂ N _,LLhNh
§=5(XetXn),  7=5(YeTYn), 1
2 2 =3 Eq e-e(P,0;P—S,0+5)a; 84 8q+sBp-s
X=Xe™Xpy  Y=Ye Yh,
1
1 +3 2 Frn(P.Gip=s.a+s)bybgby. b,
ke=p+q, t=>(p-aq). (6) Pae
Then the coefficient in Eq(5) takes the form _pzqs Fen(P.g;p—s,q+s)a; by bgsaps
C ! t — e, ala,— >, blb (10
oo(F’Q) \/E p+qk¢’k() Mep apap Mhp p Yp»
wherea; ,b; anda,,b, are the electron and hole creation
o (t)——exp(ikytlz). (7) and annihilation operators, respectively. The operators are
VL marked by the wave vectofsq,s, which are oriented in the

direction along thex axis. The translational symmetry and
momentum conservation law are provided by the chosen
Landau gauge. For example, the matrix elements of the

After summation overp and g, the magnetoexciton wave
function in the coordinate representation takes the form

elkxé gikyn , electron-electron Coulomb interaction are
Vel & m.%y) = e
R e?
Fee(P.G;p—S,0+5)= f f\lf (P ¥p-s(pr)
" (x+kyH?  (y—kd?)?
exg — - : "
412 412 XWg (Pz)‘I’gH(Pz)dPlsz,

(8) (11

The wave function(8) reflects the interaction between the where only the envelope parts of the conduction electron
translational and relative-h motion expressed by the plane Bloch function are used. The periodic parts of the Bloch
wave expiy/l?). The radius of the relative electron-hole functions can be excluded by integration over the volume of
motion is of the same order as the magnetic lerigtthe  the unit cell. This part of the calculations can be omitted
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when we are not interested in such matters as exchange We introduce the exciton creation operator followihg
electron-hole interaction, band-to-band transition dipole mo-

ments, etc. L1 S ekytiZgt +
Using the series expansion of 2D Coulomb interaction dy _\/_N : e akx/Zkux/Z*t’ (19
e? . with the 2D vectok=(k,, k), with k, corresponding to the
- = E V. e '*P . . Y N
cop 5% ' exciton translational motion, arid being the quantum num-
ber describing the interna-h motion. The magnetoexciton
262 wave function is obtained by acting on the vacuum sfaje

V;{:V;{x ,%y: W!
|‘Pex,k> = d; |0>- <\Pex,k’|wex,k>: 5kr(k,ik)- (16)

2 2
x| =+ xS, (12 ) . . .
1 o The energy of exciton formation can be obtained by acting
and the electron envelope functi¢h), one can reduce Eq. on the exciton wave function with the Hamiltoni&h Rela-
(11) to tive to the lowest Landau level it equals

with the operatod, ,

Fee(P.4;p—5,0Fs) HIW i) = EedK) [ Wexi), Eex(K)=—leyk),  (17)
where the exciton ionization potential is

212

|ex(k)=§Q‘, Vo exp[— QT—H(kXQy—kyQX)IZ

(18)

andQ stands for the wave vector of the exciton excited state.

1
=7 2 Vs e~ (a-p)sh]
The ionization potential of the magnetoexcitofPis
k2|2)

. _ |22
xﬁ exp{—(yll—zp)—(s—ix)ylldyl
. _ |22
XJ exr{—wnt(s—ix)yz e (= -
- ! |ex(k)=—f e X 2o(xkhdx= 11" | ——
80| 0 4

After integration, all other Coulomb matrix elements can be (19
obtained in a similar way, and we have

dy,.

where
($%+ %212 > 2
Fee(p,g;p—S,9g+S)= Vg, eXp————— e [ e T
ee(P, 0P g+s) ; s, F{ 2 l=— e—QZIZIZdQ:_\ﬁ (20)
€pJ0O 80' 2
+ix(p—q—s)I?|, andly(k?1%/4) is a modified Bessel function. The asymptotic
behavior of the modified Bessel function means that the ion-
(4212 ization potential (k) tends to zero as Rf when the dipole
S+ x — L2 e ;
Fro(D.ap=—sg+s)=3 V.. exg— momentpy=kl“~k tends to infinity. Using the operator of
nh(PGip=S.4+S) ; S [{ 2 the electron-hole density fluctuation
. ~ : 2
—ix(p—q—9)I?|, PQ:Et et (attQXIZatJer/Z_btthX/2b7t+QX/2)y
(21
(s2+ 2?)12 . — . L
Fe—h(p,qip—SyCI"'S):E Vs, exg— ———— we can rewrite the Hamiltonian of Coulomb interaction in
x 2 the form
; 2 .1 ~ A PN
+ix(p+q)l } (13 H= > % Wo(pgp-g—Ne—Np),

with the following symmetry properties:
2me?

_ -Q2%12 — =
Fee(P,0;p—5,0+5)=Fee(d,p;q+s,p—9) Wo=Vee Vo £05/Q|" %WQ o (22

=Fnn(p.q;p—s,q+s) and the full Hamiltoniarfy will be
:Fh-h(_p'_q;_p_l—S’_q_S)! . 1 o 1 . ~ .
H=5 2 Wopap-o~ 5 2 WoNet Ny — peNe
FeelP,—0—s;p—S,—q)=Fpn(s—p,q;—p,g+s) Q Q
=Fen(p,g;p—s,0+9). (14 — unNp, (23)
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which will be used below to calculate the polarizability of For this Hamiltonian, the new ground state wave function
magnetoexcitons. (27) plays the same role as the initial vacuum stéxe for
the HamiltonianH,

Ill. COHERENT PAIRING OF ELECTRONS AND HOLES B .
IN A SINGLE-PARTICLE STATE WITH FINITE H|W4(k))=DHD " D|0)=DH|0)=0.
WAVE VECTOR: THE KELDYSH-KOZLOV-KOPAEV

METHOD The unitary transformatio(29) of the HamiltoniariH means

the unitary transformations of the operatars b,
The numbers of electrons and holes which occupy the

lowest Landau levels are determined by the experimental

conditions, e.g., the generation rate due to laser excitation

and the exciton recombination rate. Assuming an quasiper-

manent population with an equal number of electrons and N

holes, their quasiequilibrium states are characterized by the DbpD " =Bp=uby+tv

chemical potentialg., and uy,. The energy of electrons and

holes as well as their chemical potentials are measured reldhere

tive to their lowest Landau levels. The exciton formation

reactione+ h«eximplies the relation between the chemical v(t)=ve

potentials

Ky
DapD+=ap=uap—v(p—3)b|:’x_p,

Ky
5P a p (30)

ik 112
|kytl ,

v(Hhv(s)=v-v(t+s),
Met h= Wex- (29

Below, we assumei.= u,= ted2 and denoteue,=wp. The i ()=v(=1), 3D
coherent macroscopic state corresponding to Bose-Einsteand the inverse transformation is

condensation of correlated electron-hole pairs in a single-
particle state with the wave vect&rcan be introduced fol-
lowing Keldysh-Kozlov-Kopaev methodKKK method)*®

by applying the unitary transformation

k
a,=Uaptuv|p— ?X) B:X_p,

k
D(VNed = ex VNe(dy —di)] bp=uﬁp—v(§— p) ay . (32
_ exd V2m2n (e ikti?ar bt The ground staté27) plays the role of vacuum state for the
l_t[ AN2m e A Pz new Fermi operatorg, and A,
i 2

— &by o @210, (25 ap|W4(k))=0,

where Bpl¥4(k))=0, (33
Nex Ney which can be verified directly,
W =277I2nex, nex=?. (26)

ap| W 4(K))=Da,D * D|0)=Da,|0)=0.

We introduce the BCS-typg wave function of the new COher’The average numbers of the electrons and holes in the new
ent macroscopic state acting on the electron-hole vacuu

state|0) by the unitary transformation operafdX \/N_ex) rBround state al=0 can be determined from equalities
(Vo (k)|atay|Wq(k))={(¥(k)|bs b, | ¥, (k))=v2
|W4(k))=D(VNeo|0) e Seree (34)

Zikytl2 This expression means that the total average numbers of
= utve %t . bl 0), (2 .
1:[ (ut+v k2t Pa-010), (@D electrons, holes and excitons are

where the coefficienta andv are . )
Nex= 2 (Wg(k)|ay ap|¥q(k))=No?,
u=cosg, v=sing, P

2
9= V2 ey o= 35
2l
ul+uv?=1. (28) ] ] o )
with the following restriction that is extracted from Eq35)
The transformed Hamiltonian is and(29):
H=D(Ng)HD * (\Ngy). (29) v2=sirt(y27l%ng,) =sirfv. (36)

245316-6



POLARIZABILITY, CORRELATION ENERGY, AND . .. PHYSICAL REVIEW B66, 245316 (2002

The applicability of the theory is therefore restricted to val-It is seen from the Hamiltoniahl, that the new quasiparti-
ues of the filling factow? defined byv?~sirfv. This restric-  cles described by the operatarg, B, can appear spontane-
tion reflects the physical assumption that only the lowesbusly from the new vacuum state as a pair with total momen-
Landau level is occupied. When the filling factof ap-  tum k,, which coincides with the translational wave vector
proaches unity, one must take into account the first excitedf the Bose-Einstein condensate of magnetoexcitons. Such
Landau level. Below we shall assumé<;. terms in the Hamiltonian and the corresponding diagrams are

Following the KKK method, the transformed Hamiltonian called dangerous ones and make the new vacuum state un-
ﬂ: DHD™ must be expressed in terms of the new operator§tab|e. To avoid this |nStab|||ty, the condition of compensa-
@y, ap, By, and B, using Bogoliubov'su,v transforma- tion of the dangerous diagrams is used. In the Hartree-Fock-

Bogoliubov approximation, when only the dangerous

diagrams inH, are taken into account, the condition of their
compensation is

ﬂ:U+H2+H’ (37) l/f(k,Uz,,LL):O

The first termU does not contain operatots, and 8, and  This condition determines the unknown parameter of the
plays the role of the new ground state energy. The secongheory, namely the chemical potentjalof the system. In the

termH, is quadratic in the operators, and 8, and appears  Hartree-Fock-Bogoliubov approximation it is
as a result of transpositions of the new operators and their

tions (32). In this way the Hamiltoniari can be represented
in the form

normal ordering. In this transposition, the commutation rela- wHPB=E_(K)— 2021, =l o(k)]
tions of the Fermi operators, and 8, transform terms with 5
four operators into quadratic terms. The tdi#hcontains the =~ ledk) = 2071 —lelK) . (42)

remaining normal-ordered terms with four operators, whic
is treated as a perturbation. The telthtan be represented as
equivalent its ground state and the new ground dtiaté/ith

_ 1= N?[] —
U=Nef Eex(k) = ] =New Tl —lexk)] the help of ™™ we can determine self-consistently the

= —NoJ oK)+ 1]—Ngw[l—1o(k)], (38  ground state energy and the energy of the single-particle
elementary excitations, which in the given approximation are

hThis condition introduces the breaking of thl) gauge
symmetry of the initial Hamiltoniarf{ and makes non-

where
2 UHFB=N o[, — 1ok E(k,v? —1| k
Ney=Nv?,  Eg(k)=—1lg(k), =Ne 1= lexK)],  E(kv®p)=lefk).
—Kk21%/4 217 “
lex(K)=1e lo 4 | As one can see, the single-particle elementary excitation

has an energy spectrum without dispersion. It does not de-
The last term in Eq(38), containing the correction propor- pend on the wave vectopsor k,— p of the electron or of the
tional to filling factorv?, is negative due to the inequality hole appearing from the new vacuum state, and for each
lex(k)=<I,. The termH, contains diagonal quadratic terms particle is equal exactly to one half of the ionization energy
as well as the terms describing the creation and annihilationf the condensed excitons. To excite one electron-hole pair
of the newe-h pairs from the new vacuum stat# y(k)). It~ from the vacuum, the enerdy (k) is required, because it is
has the form equivalent to an unbound single exciton with the wave vector
k. The absence of dispersion reflects the absence of the ki-
netic energy of the electrons and holes in the lowest Landau
level. It was showtf that there are no plasma oscillations in
the cas&k=0, whereas the dispersion relation of the collec-
tive excitations in this case is given by the exciton dispersion
relation E¢(k) —E¢(0). These results can be generalized
when condensation of excitons with dipole moments occurs.
In this case, the ground state energy can be determined with
BCS-type wave function§27) by the expression

H2=§ E(k,v?u)(ay apt By By)

R

Ky
UU(E_ p) w(kivzuu)ﬂkxfpap

+uv , (39

Kk
p— EX) w(k7U2=M)a;:8|:;7p

where Eq(k)=(W4(K)| AW 4(k))
= —Nv?l (k) = No[ I, =1 oK) ]. 44
E(k,vz,,u)=2u2v2|ex(k)+||(U4—u202)—%(uz—vz) v ex( ) v [ | ex( )] ( )

It was obtained in the scope of the Hartree-Fock approxima-

(40 tion. Its derivatived Ey(k)/d N, determines the chemical po-
and tential «"FB in full accordance with Eq.42), whereas
the rateEgy(k)/Ngy characterizes the mean energy per one
P(k,v2,w) =202+ o (k) (UP— %) — . (41)  exciton
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Eq(k) We(q+Q,/2)|H,| We(q+ Qy/2
ISI :Ee%(k)_UZ[Eex(k)_Eex(O)] E(qt%)=< (0= Qx )l 2| (0= Qx )>=|ex(k)-
ex 2] (V(a=QJ2)| V(= Q,2))
=Eed k) =011 = le(K)], (51)
The excitation energy of this state equals the ionization po-
Eg(K)=U+ u"™Ng,. (45  tential of Bose-condensed magnetoexcitons with wave vector

. It does not depend on the wave vectqrandQ,, which
haracterize the excited state. The excitation energy and the
nergy spectrum of single-particle elementary excitations are
he same for the full set of the excited stat4¥) and have no
ispersion.

In the next section we show that this result can be extende
beyond the Hartree-Fock-Bogoliubov approximation, taking,
into consideration the polarizability of the Bose-Einstein
condensed magnetoexcitons, at least for a symmetric 2

model. We also introduce the excited states generated by the fluc-
tuation of the hole density and by the action of the corre-
IV. ANDERSON-TYPE WAVE FUNCTIONS OF THE sponding operator on the ground state wave function
COHERENT EXCITED STATES: POLARIZABILITY OF |\Ifg(k))

THE BOSE-EINSTEIN CONDENSED
MAGNETOEXCITONS P
J‘I’h< - pi—) > =b" ., p b p-pa VoK)
The coherent excited states of the Bose-condensed mag 2 ) i
netoexcitons can be constructed following the method pro-
posed by Anderson in the theory of superconductrffityhe =
excited state can be obtained by acting with the electron part

N
v (P @y 1 p—p 120k +p+p2t UL

of the density fluctuation operat§21) on the ground state K,
wave function(27), X|pt 5+ 7) Ay 1 pipBlpipy
Q X |¥ 4 (K)). 52
‘we(qif >=a;+QX,2aq_Qx/2|~1fg<k>>. (46 W) (

They have the same properties of orthogonality and normal-

Using the operatora,,3,, theu-v transformatior(32) and  ization as Eq(49),
taking into account

(Aol w3
ap|Wg(k))= Byl Wg(k))=0, (47) 2 2

this function can be reduced to =U%0% 8 ( Py, Qx) 8ir(P, D), (53
as well as the same excitation eneigyk). Because of the

Q : ; .
’\Pe( qifx) > _ U'U(_Qx)ﬁkqufQXIZB:qu+QX/2+ uv| q obvious relations between these two sets of wave functions
7DX QX
% ! (fo=3 a3
- 7)( - jx aqt 2Bk, q+e|| Vo(K)- 2 2
(48 = UZUU(QX) Skr(Py s Q) Skr(P— Ky, d),
Taking into account tha®, is different from zero, one can oh P we L
simplify Eq. (48) neglecting the first term in the right hand =7 4=
side. The set of functiong8) obeys the following orthogo- )
nality and normalization conditions = U0 (= Q,) S (Px,Qx) dir(A, P Ky), (54)
D Q they are not independent and there is a correspondence be-
<‘I’e pifx) We(‘ﬁ%) > =U%0?8r(Py, Qx) ir(P, Q). tween each function from one set with some function from
another set. This means that one should take into account

only one of them.

The excitation energy in the Hartree-Fock-Bogoliubov ap- In a.S|m|Iar way, the excited wave functions generatgd by
L . ~ . the pair of electron and hole creation operators are intro-
proximation can be found using the, part of the Hamil- duced in the form

tonian (37),
Ptk
-h X X1\ 4+ +
A= w(agaﬁﬁ;ﬂp) (50) e ( =P > = ap+(7>x+kx)/2b—p+(7>x+kx)/2|‘1'g(k)>.
¢ (55
and equals Their orthogonality and normalization properties are
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<\I,e—h( +q, QX;— kx) \I,e—h( +p, PX;_ kx > (;Js)n,oz (;’—Q)n,o
y = U0 By (P, Qe WP 1 — e (5@ Q).
=U" 0k (Px, Qx) 6ir(P,Q), 61)
<q,e-h( +q, QX; K q,e< i%)> It is seen that
+k k ~ ~
=u3v(p— sz | 5| g+ Exp) |(Pa)n,o|2:|(P—Q)n,o|2
(56) :4u202§kr(7)x ny)SinZ({kny_ kay}IZ/Z),
Qxt+ky Px (62)
e-h hf _ =z
<\If (tq, 5 v p* 5
K K and these do not depend on the wave veptand contain
=u3v( o+ Pt X) Sl apt =], the coherence factor Sigk,Q,—kQ,}1%2). The correspond-
2 A 2 ing excitation energy is determined by E&§1) and will be

. . ) ) ) denoted below as
The third set of excited wave functions in E&5) is depen-

dent on the other two. One can expect similar properties of
the fourth set of excited wave functions generated by the pair i wn 0=l ex(K). (63
of electron and hole annihilation operators. To verify the

completeness of the first set of the excited wave functions ifve shall calculate the polarizability in the approximation of
In the case of a 2D structure with Hamiltonian of the form

Py Py (22), the perturbation caused by an external probe charge can
iy ‘\Pe( pi?) ><q’e pi?) be written in the form
= P, Py e Px e Px . (57)
N4 pi7 N4 pi?

ez . _
Hex(t)=— _ZWQ[Pext(Q:w)PQeilwt—i_ p;xt(va)erlwt]-
The completeness of the wave functigd$) can be verified e
by direct substitution into the normalization and orthogonal- (64)
ity relations(54) and(56). The matrix elements of the opera-

tor (21) can be calculated using these excited-state wavdhe specific properties of a 2D structure appear due to the

functions Coulomb interaction coefficieW , determined in Eq(22),
which differs essentially from the case of 3D structure. Sub-
A 1 P - 2 stituting Eq.(62) into a general expression for the polariz-
|(pQ)nd®= @<W(pt7) polWy(k)) ., (58  ability, we find
2gtsjethey determine the polarizability of the system. In our (O % E |(;5)n’0|2 B |(13Q)n,o|2
Tdo @ i S | wo—wnotid wotwngtid)
, 0 (65
- . _Qy

whereWq, |(po)nd? andw,o depend on the wave func-

N _Qy tions of the electrons, holes, and magnetoexcitons in the 2D
—|v —q+7 (59 structure. We obtain, after straightforward calculations,
We denote the normalized excited state as k,Q,—k,Q
477agF(Q,w) = —4u2v2WQN Sin2< y=x_ X ylz)
1 rPX 6—+0 2
= - €l p+—=
m=lerom= o W] 60 1 1

X

ho—lo(K)+id fhotlegk) +id

It is characterized by two independent quantum numipgrs
andp or by their combinations. (66)

The matrix elements of the density fluctuation operé@r
(21) are This expression can be rewritten as
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e? e"PAQ,w)=1+47aF(Q,w). (72
4walf(Qu) = —4un?— —e 17 ’

9-+0 el Q| The relation between the polarizabilityré ' (Q, w) and the

_ tributi f th larization | ) i

sir? k,Qx kXlez) contribution of the polarization loopl(Q,w) is

2 RP, HF

efFPAQ,0)=1-11(Q,w)Wo=1+4mag (Q,w),
1 1
X — — — .

ho—lg(K)+id fiot+leglk)+id 4maf (Q,w)=—TI(Q,w)Wq. (72)

(67)

S ) One can see that the expression for the dielectric constant
The same result for the polarizability can be obtained fromsHF(Q,w) appears as the first two terms in the series expan-
another possible set of excitations. The polarizability has &jon on the polarizability #agF(Q ) of the inverse value
resonance frequency equal to the ionization %otemgék) of eRPA(Q, w). This result can be easily obtained if only two
of the magnetoexciton with dipole momeny=kI“. The po-  giagrams are taken into account when the effective Coulomb
larizability vanishes when the wave vect&rapproaches iyieraction is calculated.
zero, and the magnetoexcitons behave as an ideal noninter- 14 compare the obtained results with the polarizability of
acting gas. The polarizability is an anisotropic function onpgncondensed magnetoexcitons, we consider the wave func-
the wave vectoQ and decreases exponentially WHRIoes  tjon (16) of the magnetoexciton with wave vectar The

to infinity. . o excited state of the magnetoexciton
The real and imaginary parts of the polarizability are

47TaHF(Q,w)=47TaHF(Q,w)+i47TaHF(Q,w), , 1 + +
0 0t 02 |Wex, k') = \/_N Ep: ap+k)’(/2b7p+k>’</2|o>a (73
kyQx—kiQ
HF _ 2.2 H y <X XY 2
Amagy(Q @) =—4u% (WQN)Sm2< 2 ! ) is characterized by the wave vector. Taking into account
that the square matrix element of the density fluctuation op-
Pf Pf } erator is

oK) hotlgk)

k,Q,—k,Q |(;)5)n,0|2:|(;>—o)n,0|2
HF _ 2.2 H y <X X<y 2
47TCYO’2(Q,(1))—47TU v (WQN)SII'IZ(—Z I ) :25kr(Q,k_k’)[l_COE(kaX_QXky)lz].
X{ o ho— oK)= Ao+ 1K)}, 749
(68)  We calculate the polarizability of the noncondensed magne-

The symbol Pf) in Eq. (68) denotes that the singular term °€XC1ONS

which may appear in the expressionrdy(Q,w) at the
point Aw=1¢(k) must be removed. The polarizability
47afF(Q,w) determines the dielectric constan{Q,w),
which in the Hartree-FockHF) approximation is

4magt(k,Q w)=4mafi(k,Q ) +idmagyk,Q,w),

4mag(k,Q,w)=—4Wq sinz(M| 2)

2
; =1—4m7aF
HE - TR (Q!w)! (69) Pf
e (Q,w) X
fio—[lefK)—lek—Q)]
contrary to the random phase approximati{®PA), where
the expression for the dielectric constant is different. This _ Pf
difference appears due to the summation of the diagrams ho+[lelK) —lo(k+Q) ]|

with polarization loops, which are related to the screening of
the effective Coulomb interactini* and give the following

expression: 4magy(k,Q,w)=47Wq sinz(wlz)(é{ﬁw
Wq eir=Wo + Woll(Q, 0)Wq + WolI1(Q, ) W]+ - - [ ex(K) — (k= Q) Tt = 8l Frw+[1 oK)

C1-TH(Q,0)Wo  ¢RPAQ,w) o , _
The resultant polarizability can be obtained by summation
The dielectric constant(Q,w) obtained by this method is over all the wave vectork of noncondensed magnetoexci-
denoteds "PAQ, w): tons with Bose distribution function

245316-10



POLARIZABILITY, CORRELATION ENERGY, AND . .. PHYSICAL REVIEW B66, 245316 (2002

0.0010 ———— — — ———] V. SCREENING EFFECTS AND CORRELATION ENERGY:
3 NOZIE RES AND COMTE APPROACH

0.0005 | Polarizability of ngncondensed In this section, we calculate the correlation energy of the

it 1 . . . .
..... 7/ orerions ]  condensed excitons, taking into account the screening ef-

[ | i el ] fects. For this purpose it is convenient to use the method
GO0 Premm®= T ] proposed in Ref. 52, which allows us consider simulta-
] neously the binding processes and the screening effects in a
system of Bose condenseeh pairs, which can be used both

in the cases of dense and dilute limits of exciton concentra-
tions.

-0.0005

Polarizability (arb. units)

Polarizability of condensed

-0.0010: s — The formulation of.this_ method,_called the generali;ed
random-phase approximatig@RPA), is based on the Pauli-
[ Feynman theorefrr®?for the ground state energy. In the
Bopis - ] case of interacting-h pairs, their ground state enerdy,
e 4 can be expressed in the form

Dimensionless wave vector Q/ 5

e da
Eo=Euint fo Eint(N) ~ (78)

FIG. 1. Real part of the polarizability versus dimensionless
wave vector. Solid curve: polarizability of condensed magnetoexci- ) o )
tons atkl=4.6. Dashed curve: polarizability of noncondensed mag-Here Ey, is the kinetic energy of the Bose condensed ideal

netoexcitons. e-h pairs without Coulomb interaction between them, and
Eint(\) is the mean value of the Coulomb interaction, with
4maiF(Q,w) being the square electric charge, which changes from zero to

the real values?.
For the gas of electrons and holes occupying the lowest
Landau levels only the Coulomb interaction tef22) enters
the Hamiltonian. Applying the GRPA method, we introduce
the hypothetical gas with the bare Coulomb interaction
(76) WQ()\)=WQ()\/e2) and wave functiongn(\)). Then the
interaction part of the ground state energy is

W _erWQ()\)
272 Q- A
k“h 0
Eef(K)=—lok)=—1,+ 7—,
© ¢ ' 2my The expressiof;,(\) takes the form

k<Kmnamo ledKmad=0, m=-—1,, 1 -
e Ein(M)=~Ne Wo(M)+ 5 X WolM) 2 [(po)nd”

. kny_ kay N Q2k2| 4 ( Q2k2| 4) 80
S|n2( 5 I2)~ 5 1+ =——. (80)

— 1 HF
5:+o§k: E(K)— dray (K,Q,w).
ex kB—T -1

To simplify the expressior{76) the following approxima-
tions were introduced:

d\. (79

(77) which can be expressed through the imaginary part of the

. . polarizability 4ma"(Q,w) obtained in the Hartree-Fock ap-
They allows to perform the exact integration over the po""‘rproximation.

angles, which appear in the denominat6rs) and the nu- Taking into account the definition$5) and (69), we ob-
merical calculations of the integrals on the modwkus the  {5in the relations
interval O<k=<Kyax-

The real part of the polarizability for the condensed and =#dw 1 )
noncondensed magnetoexcitons is shown in Fig. 1 versus the ——Im4mag (Qw)= EWQ; [(pg)nd? (81)

. . ~ . 0o 2m
dimensionless vectad@=QIl. One can see that the polariz-
ability vanishes for both the condensed and noncondensed

magnetoexcitons for large wave vect@slf the direction of EW S (PE)nol2= - *fido | 1

. . . . . . Q()\) |(PQ)n,O| m HE '
the polarization is perpendicular to the single particle wave 2 n(x) 0o 2m e"(Q,w,\)
vector of the condensate, the polarizability of the condensed (82

magnetoexcitons is zero. One can see that polarizability is i

essentially different for the condensed and noncondensed ex1d for the ground state energy we find

citons. The polarizability of the condensed excitons is ohd 2

strongly oscillating function o, and this fact opens up the - _ @le _)‘ 1
9y : : Eo=—NegX, Wo— >, Im :

possibility for an experimentally observable signature of the Q Q Jo 2m Jo A e(Q,m,\)

appearance of Bose-Einstein condensation. (83
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Taklng mto account the chemical potential, the Hamil-ever, this reduction is not monotonic and the local minimum

tonian is7{=H — ueNo— 1N}, and the ground state energy Of the correlat|on energy depends on the value of the filling
becomes factorv?
Substltuting Eq(75) in Eq.(87), we obtain the correlation
Eo=Eg— uNgy, (84) energy in the form
where u= ue+ u,. As mentioned in Ref. 52, the choice of 8(u%v?)? ) yQx—keQy 1,
the approximation foe(Q,w,\) determines the accuracy of  Econ=— BNGE > (WoN)“sin (TI )
the energyE, given by Eq.(83). The best results were ob- © Q
tained using the RPA together with the Habbard correétion N(uZ2)? |2
for the one-component plasma and the electron-hole liquid. = F(Kkl), (88
Whene(Q,w,\) is taken in the forme"F(Q,w,\), we ob- Jr o ledK)

tain the previous expressiot¥2),(43) written in the Hartree-
Fock-Bogoliubov approximation. Representisi@Q, w,\) in
the form

where the sum ove® was substituted by the integral

dQ _ 022 ny ny ) TN T
f Q2 Ql ( 5 12 5 F(kl).
(89)

S(Q,(D,)\):81(Q,(1),)\)+i82(Q,(D,)\),

0, \)=1+47ad(Q,0,\);
e1(QoM) maoiQeN) These expressions can be presented through the modified

. 2 212
and supposing,(Q,»,\)~\ ande;(Q,w,A\)~1, we ob- F(kl)=3+e %2 k2! _ae e k77 ,
tain 2 8
erd)\ m ! ! "rctar‘sz(Q ) iz K2
. cQ.oN) (0.2 - (Q.0) e (K)=1,G(Kkl), G(kh)=e IO(T)' (90)
£,5(Q,w) The total mean energy per particle consists of two parts. One
T2 : of them coincides withE,(k)/Ng, (45 and the other is
Sl(Q,(U) g
Ecorr/Ner
Substituting Eq(85) into this expression and expanding it in
series up to the first order in7e{'(Q,w), inclusively we _ GHF _ Eg(K) +Ecorr
i : E=ETH im0
obtain Nex
2
47Tag§(Q,w) __ _ory _ 1
: ~ 4700, 0)—2 lexd(K) =01 = lo(k) ] F(khu*
Lt dmali Qe Teed Q@) NEANT)
91
><4Tra5‘£(Q,a))47Ta5'E(Q,w).
(86) The corresponding correction to the chemical potential is
The first term in the series expansié®6) corresponds to ~dEcor  d Ecor
Hartree-Fock-Bogoliubov approximation, whereas the sec- Heorr™= dNey dp2 N’
ond term determines the correlation energy
Ney=Nuv? (92
-2 j 4 4
Ecor= E masdQ w)4mag(Q ). and the total value of the chemical potential is
(87)
; ; o M:MHFB+ Mcorr
As explained above, only the real part of the polarizability
4magi(Q,w), which contains the denominatoffw =— 1ol K) = 207 1| =l o(K) ]
+1(Kk)], gives a nonvanishing contribution to the correla- 5
tion energy at the poinkw=1.,(k). At this point the de- 2 1Rk 21— p2)(1- 207 @3
nominator equals k), which means that the correlation Jr ledK) v v v

energy is due to the virtual excitation of two quasiparticle

pairs out of the mean-field ground st y(k)). The corre- It is convenient to express the total energy per particle and
lation energy is negative due to the screening effects anthe chemical potential in terms of the exciton ionization po-
therefore lowers the energy of the interacting system. Howtential at the poink=0,l,=1.,(0),
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T T T Fock-Bogoliubov approximation. For small valueskdf the
02 [ Energy per one e-h pair of the EFL ] tota! energy and chem_ical po?ential, with the correla_tion cor-
- v ] rections, are monotonic functions of, and almost coincide
2 o4l T J with those found in the scope of the HFBA. For larder
= ! / ] the total energy and chemical potential deviate considerably
§ 0.6 | B ) . their values in the HFBA and become nonmonotonic func-
S nergy per exction tions of v? with a well-pronounced local minimum. This
5 08} in the HFBA _ . .
minimum becomes deeper and more pronounced with the
;;if A0 i ] increase of the dipole momeklt?, due to the increase of the
o I | coherent factor and the decrease of the ionization potential
£ a2} . g I ex(K).
2 Total energy per one exciton 1 At first, the local minimum of chemical potential appears
é T4 y for kl=2.2; it becomes deeper with further increasekbf
a 6 [ ] The relative minimum of the chemical potential of the Bose-
I ] Einstein condensed magnetoexcitons implies the formation
el o v of a metastable dielectric liquid phase with positive com-
0.0 02 04 06 08 10 pressibility in this range of filling factov?. At the values
Filling factor v/ kl=4.6, 1o,(k)=0.18,, po=4.6, andv?=0.25, the mini-

. - 2 .. mum on the plot of the chemical potential achieves the same
FIG. 2. Energy per particle versus filling factof. Solid line: value as at the limiting poim2=1 In spite of the fact that
energy per exciton &l=4.6. Dashed line: energy per one exciton th in Ei 2 and 3 ) i lated to th int
in the Hartree-Fock-Bogoliubov approximation. Dash-dotted line: ze Cur\{es N FIgS. 2 an . aré extrapoia e. up. .0 ¢ pon
energy pere-h pair of the metallic EHL v°=1, it should be noticed that the applicability of the
' theory is limited by the upper boundary given hy
1 F(KI ~sirfv, which means that we neglect the transitions to ex-
:_G(kl)_[l_G(kl)]UZ__ ( )U2(1_02)2, cited Landau levels.
Jar G(KI) Whether the dielectric liquid phase of the Bose-Einstein
(99 condensed magnetoexcitons or the electron-hole liquid
(EHL) state is preferable depends on the energy of the sys-
o ) 2 F(kl) tem in these states. In the HFA, the ground state energy of an
ﬂ: —G(kl)=2v[1-G(kh]- \/_;—G(kl) EHL can be found from the Hamiltonian of the Coulomb
interaction of electrons and holes,

£
I

Xv2(1—v?)(1-202). (95) .

The mean energy per particle and the chemical potential ver- H= > E Fe_e(p,q;p—s,qus)a;a;an,Sap_S
sus the filling factow? are shown in Figs. 2 and 3. The first P.Q.s
term in Eq.(95) gives the energy per exciton in the Hartree- 1
+5 2 Fra(P.0ip—s,a+s)bbgbg. by s
R i T e U — p.a.S

0.2 b~ Chemical potential of excitons 1

in the HFBA

—qusFe.h(p,q;p—s,q+s)a;b3bq+sap-s (96)

-0.4
averaging over the ground state. Using Wick’s theorem and
taking into account that all electrons and holes are in their
. lowest Landau levels, so théa™a)=(b*b)=»? we obtain

-0.6

V4
EEHL=7< 2, FeePAiP.a)+ 2 poFhn(P.diP.Q)

Dimensionless chemical potential
N N
~ o

V4
~ 22 Fe.h(p,q,p.q)>—7<p25 Fe.o(P.p=sip

Total chemical potential .
" of excitons A
18} \d s
MR P RIS NS S S S RS S — S, + F : p— S, — S, i 9
0.0 0.2 0.4 06 08 1.0 P) p.sFh-n(P,P=S;p=S,p) 47
Filling factor v’

From Egs(13) and(14) one can see that the direct Coulomb
FIG. 3. Chemical potential versus filling facto?. Solid line: ~ terms cancel each other, and only the exchange terms remain,

total chemical potential of the condensed magnetoexcitoril at SO that after integration, we obtain

=4.6. Dashed line: chemical potential of the condensed magne-

toexcitons in HFBA akl=4.6. Egn=— v*I|N. (98)
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The energy per electron-hole pair is states of the correlated pairs taking into account only the
lowest Landau level. These excited states means the excita-
tion and the unbinding of one of margth pairs bounded
into Bose-Einstein condensate and its transformation into a
free e-h pair. The energy of such unbinding equals to the
ionization potentiall (k) of the magnetoexcitons witk
ﬁfo. The polarizability of the Bose-Einstein condensate with
k# 0 is characterized by the coherent factor which equals to
ero wherk=0 as well as by the resonance frequency equal
to the ionization potential, (k). The correlation energy is
the same for all condensed coherent excitons and therefore is
proportional to the square of the coherence factor and inverse
proportional to the ionization potentigl(k). The calculated
correlation energy and the correction to the chemical poten-
We have studied the coherent pairing of electrons angja| do not contain any small parameters and have the same
holes in an ideal 2D structure in a strong transverse magnetigependencies as energy and chemical potential in the HFB
field. The coherent pairing results in the Bose-Einstein Conapproximation_ Comparing the po|arizabi|ity of the Bose-
densation of 2D magnetoexcitons on the single-particle statginstein condensed and noncondensed magnetoexcitons one
with wave vectok. We have shown that within the model of can observe that the coherence factor which appears even if a
the carriers confined to the lowest Landau level and lowsingle exciton is considered remained a common factor in the
densities of electrons and holes, the correlation energy anghse of coherent macroscopic state and determines the exis-
the corrections to the chemical potential beyond the HFAgnce of a superlattice with the periodr&. Due to this fact
result in the existence of a metastable dielectric liquid phasg,e polarizability depends periodically on the wave ve€or
formed by the Bose-condensed magnetoexcitons. We haw the longitudinal weak perturbation. In the case of noncon-
seen that this dielectric liquid phase of Bose-condensed magrensed excitons the coherence factors of different excitons
netoexcitons with nonzero values of_the .dipole moments anfjaye different wave vectors and the average of these polar-
comparatively low ionization potentials is more stable thanzapjilities over the distribution function of the noncondensed
the EHL phase. Although we havm_a cc_)nsidered arbitrary wav@ycitons leads to a smooth dependenceQ@nThis is the
vectorsk, the range of the main interest ld=1. The  mgajn difference of the polarizabilities of the condensed and
Keldysh-Kozlov-Kopaev method supplemented by the gennoncondensed magnetoexcitons. They also have different
eralized random phase approximation was applied for theesonance frequencies. The perturbative method have been
analysis. It was shown that the attractive interaction betwee(jsed to simplify the calculation of the correlation energy. By
excitons in the system prevails due to the existence of thgis reason the correction to the chemical potential, can-
dipole moments ak+#0 and the ground state of the Bose- ot exceed the valug"™. This means that we can consider
Einstein condensed excitons is unstable within the HFB aPonly the limiting valueskl<4.6 andl,;> 1 ,(k)=0.18,. An-
proximation. This fact leads to the tendency of the system tQ,iner restriction of the theory ig2~ sirfy, which means that
transform into another more stable phase. This new phase {§ can consider the phenomenon of the Bose-Einstein con-
a droplet of a metastable liquid dielectric phase formed byjensation of magnetoexcitons in the LLL approximation only
the magnetoexcitons with considerably large dipole momentg, the limit of small filing factor »><1. This requirement
kl=4.6 and sufficiently low ionization potential$>1c(k)  goes not concern the theory of EHL. The metastable states
=0.18,. Each droplet has a well defined local direction of appear at the value of the filling factoP~0.25 and this
the inplane wave vectdr as well as the inplane dipole mo- y5|ye satisfies the above restriction. To develop more general
ment po=[kXz] | perpendicular tck. These values can theory extended to the case gi~1 it is necessary to gen-
slowly change in space and in time, for example, due tqyajize the definition of the exciton creation operator involv-

hydrodynamic evolution. A set of such droplets can form, foring into its construction the creation operators of electrons
instance, a ring so that the wave veckoof the particular 304 holes on the excited Landau levels.

droplet coincides with the tangent to the ring, whereas the
dipole moment is directed along the radius of the ring. Dif-
ferent structures of such type may appear if the energy per
onee-h pair is the lowest one. This scenario differs from the
case considered in Ref. 53. We have shown that this new This research was supported by the Swedish Royal Acad-
phase may occur for the coherent excited states of the Bosemy of Sciences and by the U.S. Civilian Research and De-
Einstein condensed magnetoexcitons even within the framerelopment Foundation in the frame of the CRDF-MRDA
work of the lowest Landau level approximation. Contrary toGrant No. MP2-3026. One of the authdiS. M) is grate-

this approximation the correlation energy calculated in Refsfully acknowledge the financial support of the Wenner-Gren
34,35 and the indirect interaction in Ref. 37 are due to acFoundation and the hospitality of the Department of Physics,
count of the excited Landau levels and they are proportionallppsala University where considerable part of this work has
to a small parametdfag~1,/hw.. In our analysis we used been made. We are grateful to P. I. Khadzhi, I. V. Beloussov,
the Anderson-type wave functions of the coherent excite@and M. I. Shmiglyuk for useful discussions.

EEHL
= = — V2|

Nor | (99

and has a global minimum ai?=1, when the drop is
formed of the completely filled Landau level. In Fig. 2, the
dashed-dotted line corresponds to the energy per electro
hole pair of the metallic EHL. The energy of the metallic
EHL is always above the energy of the dielectric liquid phas
and has no local minimum.

VI. CONCLUSIONS
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