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Nonequilibrium Green’s function theory for transport and gain properties
of quantum cascade structures

S.-C. Lee and A. Wacker
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~Received 18 June 2002; revised manuscript received 9 October 2002; published 20 December 2002!

The transport and gain properties of quantum cascade~QC! structures are investigated using a nonequilib-
rium Green’s function~NGF! theory which includes quantum effects beyond a Boltzmann transport descrip-
tion. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes
within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation.
With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an
applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these
structures. We define two contributions to the current, one contribution driven by the scattering-free part of the
Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current
in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamil-
tonian. In addition, by considering the linear response of the stationary state of the structure to an applied
optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A
comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the
spectra tend to be offset to higher values in the simpler theories.
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I. INTRODUCTION

Quantum cascade~QC! structures are semiconductor he
erostructures grown with a complicated sequence of alter
ing layers of different semiconductor materials and w
varying thicknesses. This sequence of layers is repe
many times, up to tens or even over a hundred periods.
ure 1 shows an example of the conduction-band line-up
QC structure. These structures form the basis of a new
of semiconductor laser,1 in which the laser light emission
occurs through intersubband or interminiband transitions~in
most cases within the conduction band! rather than interband
transitions. These lasers have a great variety of designs,
a recent review is given in Ref. 2. Until recently,3 all quan-
tum cascade laser~QCL! structures were designed so th
each period in the structure contains an active region
which the lasing transition occurs, and a separate inje
region. The injector acts as a reservoir of electrons for inj
tion into the active region of the next stage. It also acts a
collector of electrons from the preceding active region. T
direction of the electron flow is indicated in Fig. 1, and t
electron flow is seen to resemble a cascade as the elec
move from one stage to the next when a bias is appl
Hence, the electron transport through a QCL structure
complicated interplay between relaxation through light em
sion and scattering in the active region, and transmiss
through tunneling and scattering in the injector region.4

Initially, most theoretical investigations4–6 of transport in
QC structures have focused on the role played by scatte
processes in determining transport properties and the dyn
ics of the electron distributions in these structures. Very
cently, however, the first theoretical investigations of qu
tum transport in these structures which have considere
incorporated quantum effects beyond a Boltzmann equa
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approach have been reported.7,8 A theoretical study of quan-
tum transport may be treated using the density ma
formalism,9 or with a nonequilibrium Green’s function
~NGF! approach.10–13

In the work reported here, we extend the NGF theo
described in Ref. 13 to the study of quantum transport in
structures. Very early results from this investigation ha
been reported in Refs. 7 and 14. In this paper, we pres
further and more detailed results from this study. In additi
we have extended the work further to the problem of eva
ating the gain or absorption spectra of these structures,15 and
we also report and discuss results of this work here.

In the following section, we describe the theoretical fo
mulation that we use to derive the transport properties,
then the linear optical response of QC structures. In Sec.
we apply this theory to example QC structures, and desc
the results obtained. The last section contains a summary
conclusion.

FIG. 1. Example of the conduction-band lineup in a quant
cascade structure with an applied bias. The arrows indicate the
rection of electron flow in the structure.
©2002 The American Physical Society14-1
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II. THEORETICAL FORMULATION

A. Basis states and Hamiltonian

We model the QC structure as a periodic superlat
structure, in which each period containsNs semiconductor

layers with varying thicknesses. The HamiltonianĤ which
we use to model this system may be separated into two p

Ĥ5Ĥo1Ĥscatt. Ĥo contains the superlattice potential and
static electric fieldE applied in the growth direction, i.e.

Ĥo5ĤSL1ĤE . The HamiltonianĤscattdescribes the scatter
ing processes included in the theory.

The Hamiltonian is expressed in a set of basis sta
Ck,a(r ,z)5(eik.r/AA)ca(z), which we assume separabl
although this is an approximation when the effective mas
position dependent. In the plane of the semiconductor lay
the basis functions behave as plane waves. The norma
tion constantA is the sample area in this plane. The positi
vector r and in-plane wave vectork are two-dimensiona
~2D! vectors. In the growth direction, here labeledz, there
are several possible choices~see Ref. 13 for a discussion! for
the functionsca(z). Although the physical results obtaine
from the theory should be independent of the specific cho
of these functions, there are different advantages or dr
backs attached to a given choice. For instance, as we dis
as follows, one choice may be more suited to expediting
numerical computation, while another choice may more e
ily allow the extraction of physical information in a form tha
can be compared with experimental measurements. Pos
choices are~i! Bloch functions which are eigenstates of t
bare superlattice potentialĤSL , and are spatially extende
across the whole structure.~ii ! Wannier-Stark states whic
are eigenstates ofĤo, i.e., of the superlattice potential an
the applied bias. These eigenstates are metastable16 ~non-
Hermitian! with complex energies. They are often treat
approximately as stationary states~their metastable nature i
neglected!, and this leads to an ambiguity in the definition
these states depending on how this approximation is m
~iii ! Wannier functions, which should not be confused w
Wannier-Stark functions, may be constructed so that they
spatially well localized. In particular, they may be co
structed as eigenstates of the position operator. In symm
superlattice structures, these eigenstates are maxim
localized.17 The spatial localization of the Wannier states e
ables one to setup a picture of transport in which scatte
occurs from one spatial region of the structure to anoth
The Wannier functions do not depend on bias, and this
computationally advantageous since coupling matrix e
ments between Wannier functions may be calculated o
once at zero bias, and the same matrix elements may the
used at any applied bias. For these reasons, the theory
sented here is formulated in the Wannier function basis~see
Appendix A!, which we derive as eigenstates of the positi
operator. A disadvantage in using this basis is that the W
nier functions are not energy eigenstates of the structure,
it is therefore difficult to obtain a physical interpretation
the energy picture or domain. For instance, there is no o
to-one correspondence between an optical transition in
structure and a transition between a pair of Wannier fu
24531
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tions. This difficulty may be partially circumvented, how
ever, at a later stage in the calculation, by transforming
results obtained into the Wannier-Stark basis. We empha
again that the basis choice is not in itself an important iss
i.e., the physical content of the theory should not depend
this choice, but a suitable choice of basis can facilitate
numerical computation~e.g., Wannier states!, or more easily
allow physical interpretation~e.g., Wannier-Stark states!.

Expressing the Hamiltonian in the Wannier basis we o
tain

ĤSL5(
n,n

(
k,s

@Enkân,k,s
n† ân,k,s

n 1T1
n~ ân11,k,s

n† ân,k,s
n

1ân21,k,s
n† ân,k,s

n !#, ~1!

where the indexn labels a period in the superlattice, and t
index n labels a Wannier functioncn(z) within a period.
ân,k,s

n† andân,k,s
n are creation and annihilation operators for

electron with in-plane wave vectork, and spin indexs, in the
nth Wannier level, in periodn. As stated earlier, the Wannie
functions are not eigenstates ofĤSL , and henceTl

n repre-
sents the off-diagonal couplings between Wannier levels
different periods, andEnk represents the diagonal elemen
of ĤSL in this basis. We keep only terms inT1

n , i.e., we
consider only couplings between adjacent periods. The n
nearest-neighbor couplingsT2

n are two or more orders o
magnitude smaller. The HamiltonianHE , due to the electric
field E, is written as

ĤE5 (
n,n,m

(
k,s

$2eER0
mnân,k,s

m† ân,k,s
n 2neEddmnân,k,s

m† ân,k,s
m

2eER1
mn@ ân11,k,s

m† ân,k,s
n 1ân,k,s

n† ân11,k,s
m #%, ~2!

where Rl
mn5*dzcm* (z2 ld)zcn(z). d is the length of one

period ande,0 is the electron charge.
In the scattering HamiltonianĤscatt, we include interface

roughness, impurity, and electron-phonon scattering p
cesses. Both acoustic phonons and longitudinal optical~LO!
phonons are considered. The electron–acoustic-phonon
tering rates are far smaller than those of the other scatte
processes~Table I!, but we include these to provide a cha
nel for small energy transfers between the electrons and
tice. This opens up a route for the carrier-lattice system
move towards thermal equilibrium, particularly at low bia
when the electrons may have insufficient energy to emit L
phonons.

In the NGF theory, the scattering processes expresse
Ĥscatt are treated in the form of self-energies which are d
scribed below. We have also included electron-electron s
tering in a mean-field approximation so that the interact
between electrons appears as an additional single-particle
tential in Ĥscatt, i.e., we replaceĤscatt with Ĥscatt8 5Ĥscatt

1ĤMF . ĤMF is written as

ĤMF5 (
mm,nn

(
k,s

@VMF#mm,nn âm,k,s
m† ân,k,s

n , ~3!
4-2
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where @VMF#mm,nn5*dzcmm* (z)VMF(z)cnn(z). The evalua-
tion of the mean-field potentialVMF(z) is described in the
following subsection.

B. Quantum transport equations and self-energies

To determine the transport properties of a QC struct
under applied bias, we need first to obtain a description
the nonequilibrium stationary state of the system. This inf
mation is contained in the nonequilibrium Green’s functio
the retarded Green’s functionGret(E) and the correlation
functionG,(E) ~bold typeG, andS below, indicates a ma
trix in, e.g., the Wannier basis!. The quantum transport equa
tions, which these functions obey, can be derived11,13 from
the HamiltonianĤ and have the following form. The Dyso
equation for the matrix elementGa1a2 ,k

ret (E) is written as

E Ga1a2 ,k
ret ~E!2(

b
@~Ĥo1ĤMF!a1b,k

1Sa1b,k
ret ~E!#Gba2 ,k

ret ~E!5da1a2
, ~4!

wherea1 , a2, andb are general indices that include bo
the period and Wannier level indices, e.g.,a1[(m,m). The
correlation function Ga1a2 ,k

, (E) is obtained from the

Keldysh relation

Ga1a2 ,k
, ~E!5(

bb8
Ga1b,k

ret ~E!Sbb8,k
,

~E!Gb8a2 ,k
adv

~E!, ~5!

whereGadv(E)5@Gret(E)#†.
The self-energiesSret(E) and S,(E) originate from the

scattering processes contained inĤscatt~i.e., excludingĤMF),
and are evaluated within the self-consistent Born approxi
tion. Assuming that the diagonal parts of the Green’s fu
tions and the self-energies dominate~because the basis stat
are spatially localized!, the self-energy for interface rough
ness or impurity scattering has the form

TABLE I. This table gives order-of-magnitude estimates of
verse scattering rates between Wannier levels in structureA ~see
Sec. III! at 77 K. The times given in this table are obtained fro
\/g with g ~in energy units! defined in Eq.~B3!. More specifically,
for interface roughness and impurity scattering,g (m2n),mn

rough 1gab
imp

from Eqs.~B17! and~B18! was used, and for acoustic phonon sc
tering, Eq. ~B26! is used. For LO-phonon scattering, Eq.~B25!
without the phonon distribution factor was used. The parame
used in obtaining these estimates are as follows. For inter
roughness scattering:DEc50.27 eV,h50.28 nm,l510 nm. For
impurity scattering:gpar

imp55 meV. For LO-phonon scattering:Elo

536.7 meV,es513.1e0 , e`510.9e0. For acoustic phonon scatte
ing: gpar

ac 50.1 meV.

Interface roughness LO-phonon Acoustic phono
& impurity

Intrasubband 0.05 ps 0.2 ps .7 ps
Intersubband @0.2 ps .0.6 ps @8 ps
24531
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Sa1a1 ,k
,,rough/imp~E!5 (

b,k8
^uVa1b

rough/imp~k2k8!u2& Gbb,k8
,

~E!.

~6!

Va1b
rough(k82k) and Va1b

imp (k82k) are matrix elements for in-

terface roughness and impurity scattering. In the former c
the angle brackets denote an average over all possible d
butions of variations in the interface thickness, and in
latter case these brackets denote an average over all pos
impurity distributions. The equation forSret,rough/imp(E) is
obtained by making the replacements:S,,rough/imp(E)
→ Sret,rough/imp(E), andG,(E) → Gret(E).

For optical or acoustic phonon scattering, the se
energies are

Sa1a1 ,k
ret,phon~E!5 (

b,k8
uVa1b

phon~k,k8!u2

3F @ f B~Ephon!11#Gbb,k8
ret

~E2Ephon!

1 f B~Ephon!Gbb,k8
ret

~E1Ephon!

1
1

2
@Gbb,k8

,
~E2Ephon!2Gbb,k8

,
~E1Ephon!#

1 i E dE1

2p
Gbb,k8

,
~E2E1!S PH 1

E12Ephon
J

2PH 1

E11Ephon
J D G , ~7!

and

Sa1a1 ,k
,,phon~E!5 (

b,k8
uVa1b

phon~k,k8!u2

3$ f B~Ephon!Gbb,k8
,

~E2Ephon!

1@ f B~Ephon!11#Gbb,k8
,

~E1Ephon!%, ~8!

whereVphon represents the interaction with optical or acou
tic phonons, andEphon represents the energy of the optic
or acoustic phonon. f B(E)51/@exp(E/kBT)21# is the
equilibrium phonon distribution at a temperatureT. This
is the only place where the lattice temperature appear
this theory. Further detail about the evaluation of the scat
ing matrix elements and the self-energies is given
Appendix B. For simplicity in the numerical evaluation, w
neglect the last line containing the principle value terms
Eq. ~7!. To further expedite the numerical computation, w
use momentum-independent scattering matrix eleme
Vab

phon/rough/imp(ktyp ,ktyp8 ), employing a representative mome
tum ktyp ~see Appendix B!.

As mentioned in the previous section, we include a
electron-electron scattering in the form of a mean-field p
tential which we determine by solving Poisson’s equation

d2VMF~z!

dz2
52

e

es
@rdope~z!1re~z!#, ~9!
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with periodic boundary conditionsVMF(z1d)5VMF(z). es
is the absolute static background permittivity.rdope(z) is the
dopant density profile in the structure, and the electron d
sity profile

re~z!52e(
ab

(
k
E dE

2p
2 iGab,k

, ~E!cb* ~z!ca~z!,

~10!

with the factor of 2 from summation over the spin index.
To determine the Green’s functions,Gret(E) andG,(E),

we loop iteratively between the quantum transport equatio
Eqs.~4! and ~5!, and the equations for the self-energies a
mean-field potential Eqs.~6!–~10!, until we reach a self-
consistent solution for these equations. To solve these e
tions, we assume that the system is an infinite periodic st
ture with period d. The boundary conditionsGab(E)
5Ga8b8(E1eEd) are applied between each period to mod
the bias drop per period in the structure, wherea8 andb8 are
shifted one period to the left ofa andb. As starting condi-
tions for the iterative loop, we assume the electrons are
Fermi distribution with temperatureT, and that the density o
states in each Wannier subband is a simple stepfunc
However, once a converged solution was obtained fo
given applied voltage, we used this solution as a star
point for the calculation at the next bias to facilitate the co
vergence process. To test for convergence, we compare
differences in the k-integrated Green’s function
@Gaa

ret,,(E)# i 112@Gaa
ret,,(E)# i , and carrier density@ne# i 11

2@ne# i , evaluated in two successive iteration steps, wit
given tolerance value. A further test for convergence co
be carried out by starting the calculation at different b
points, e.g., starting at zero bias and increasing the voltag
a high bias point, then restarting the calculation at a high b
point and decreasing the voltage to a low value.

C. Transport properties

Having determinedGret(E) and G,(E), information
about the stationary state of the system, such as excita
energies, energy renormalizations, broadenings or lifetim
density of states, populations, and distribution functions
be extracted. Examples of such information and their ap
cation are given in Sec. III A. We can also evaluate the c
rent density using the rate of change of the position oper
ẑ

J~ t !5
e

V K dẑ

dtL 5
e

V
i

\
^@Ĥ,ẑ#&. ~11!

J(t) is the average current density flowing in thez direction,
in system volumeV. Recalling the separation of the Hami
tonianĤ into two parts,Ĥo andĤscatt8 , we can determine two
separate contributions to the currentJ(t). The first contribu-
tion comes fromĤo ,

Jo~ t !5
e

V
i

\
^@Ĥo ,ẑ#&5

e

\VTr$@Ĥo ,ẑ#G,~ t,t !%, ~12!

which we evaluate in the energy representation
24531
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2e

\V (
ab

(
k
E dE

2p
@Ĥo ,ẑ#abGba,k

, ~E!. ~13!

The second contribution is fromĤscatt8 ,

Jscatt8 ~ t !5Jscatt~ t !1JMF~ t !5
e

V
i

\
^@Ĥscatt1ĤMF ,ẑ#&,

~14!

where we evaluateJMF similarly to Jo , i.e., Ref. 18

JMF5
2e

\V (
ab

(
k
E dE

2p
@ĤMF ,ẑ#abGba,k

, ~E!. ~15!

The current contribution driven byHscatt is written in the
energy representation as~see Appendix C!

Jscatt5
2e

\V (
abg

(
k
E dE

2p
@Gbg,k

, ~E!Sgg,k
adv(a)~E!

1Gbg,k
ret ~E!Sgg,k

,(a)~E!#zgb2zag@Sgg,k
,(b)~E!Gga,k

adv ~E!

1Sgg,k
ret(b)~E!Gga,k

, ~E!#. ~16!

The superscript notation (a) in, for example, the self-energ
Sgg,k

,(a)(E) indicates that we take only the part of the se
energy which depends onGaa(E). The factor of 2 in Eqs.
~13!, ~15!, and~16! is from the spin index summation.

We note here, that although we have divided the curr
into separate contributions driven byĤo , ĤMF , and Ĥscatt,
this should not be taken to mean that the scattering proce
play no role in driving, for example, the currentJo . Al-
though, Ĥscatt does not appear explicitly in Eq.~12!, it is
instrumental in determiningG,, and, hence, implicitly influ-
ences the currentJo . The scattering processes provide cha
nels for energy dissipation from the electronic system, so
as the electrons descend downwards through the electric
tential their kinetic energy does not increase but rema
constant, and a steady current flow is maintained through
structure.

D. Gain and absorption spectra

We can also use the information contained inGret(E) and
G,(E) as a starting point to evaluate the gain or absorpt
spectra of the structure. To do this, we consider the lin
response of the stationary state described byGret(E) and
G,(E) to a small perturbation from an optical field. Fro
this response we determine the susceptibilityx(v), and from
Maxwell’s equations19 we obtain the gain coefficient

g~v!.2
v

c

Im@x~v!#

nB
, ~17!

wherenB;Aes is the background refractive index. The a
plied optical field

E~r ,t !5ezE dv

2p
E~v!eik(v)y2 ivt, ~18!
4-4
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which propagates in they direction is included as a sma
time-dependent perturbation to the Hamiltonian:Ĥ→Ĥ

1dV̂(t), where the perturbation

dV̂~r ,t !52
e

2me~z!
@ p̂•A~r ,t !1A~r ,t !•p̂#1ef~r ,t !,

~19!

with the momentum operatorp̂, and me(z) is the spatially
dependent effective mass. The vector potentialA(r ,t) and
scalar potentialf(r ,t) are related to the optical field throug

A~r ,t !5E dv

2p

E~v!

iv
eik(v)y2 ivt ez ,

f~r ,t !50, ~20!

in the Coulomb gauge. A discussion of the use of differ
gauges in this problem is given in Ref. 20. For the resu
presented here, we apply the long-wavelength approxi
tion, in which we neglect the spatial variation of the optic
field across the structure. Hence, in this gauge, the pertu
tion is written in the energy representation as

dVab~v!5 i
eE~v!

v
F p̂z

me~z!
G

ab

52
eE~v!

\v
@Ĥo ,ẑ#ab .

~21!

The linear changes in the Green’s functions and s
energies caused by the additional termdV̂(t) in the Hamil-
tonian represent the linear response of the nonequilibr
stationary state to the applied optical field. These chan
may be written as20

dGret~v,E!5Gret~E1\v!@dV~v!1dSret~v,E!#Gret~E!
~22!

dGadv~v,E!5Gadv~E1\v!@dV~v!

1dSadv~v,E!#Gadv~E!, ~23!

and

dG,~v,E!5Gret~E1\v!dV~v!G,~E!

1G,~E1\v!dV~v!Gadv~E!

1Gret~E1\v!dSret~v,E!G,~E!

1Gret~E1\v!dS,~v,E!Gadv~E!

1G,~E1\v!dSadv~v,E!Gadv~E!. ~24!

Note thatdGadv(v,E)Þ@dGret(v,E)#†. The expressions fo
dS(E) take the same form as in Eqs.~6!–~8! where the
functionsG(E) are replaced bydG(E). For dSadv(E), the
expression for dSret(E) is used with the replacemen
dG,(E)→2dG,(E) anddGret(E)→dGadv(E). dS,/ret(E)
must be evaluated self-consistently withdG,/ret(E), and
therefore another iterative loop must be carried out, sim
to the earlier procedure to determineG,/ret(E) and
24531
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S,/ret(E). From the change in the Green’s functions a
self-energies, and using Eqs.~11!–~16!, we obtain the change
in current density

dJ~v!5dJo~v!1dJMF~v!1dJscatt~v!, ~25!

where18

dJo~v!5
2e

\V (
ab

(
k
E dE

2p
@Ĥo ,ẑ#abdGba,k

, ~v,E!

1@dV,ẑ#abGba,k
, ~v,E!, ~26!

dJMF~v!5
2e

\V (
ab

(
k
E dE

2p
@ĤMF ,ẑ#abdGba,k

, ~v,E!,

~27!

and

dJscatt~v!5
2e

\VE dE

2p (
abg

(
k

@dGbg,k
, ~v,E!Sgg,k

adv(a)~E!

1dGbg,k
ret ~v,E!Sgg,k

,(a)~E!

1Gbg,k
, ~E1\v!dSgg,k

adv(a)~v,E!

1Gbg,k
ret ~E1\v!dSgg,k

,(a)~v,E!#zgb

2 (
abg

(
k

zag@dSgg,k
,(b)~v,E!Gga,k

adv ~E!

1dSgg,k
ret(b)~v,E!Gga,k

, ~E!

1Sgg,k
,(b)~E1\v!dGga,k

adv ~v,E!

1Sgg,k
ret(b)~E1\v!dGga,k

, ~v,E!#, ~28!

where the factor 2 is again from the spin index summati
From the change in current densitydJ(v), we obtain the
polarizationdP(v)5 idJ(v)/v induced in the material, and
hence the complex susceptibility

x~v!5
dP~v!

e0E~v!
5

i

e0

dJ~v!

vE~v!
, ~29!

and from Eq.~17! we obtain the gain coefficientg(v).

III. APPLICATION TO QUANTUM CASCADE
STRUCTURES

We have applied the theory presented above to some
ample QCL structures reported in the literature. These st
tures were grown in the GaAs/AlxGa12xAs material system,
but this theory is also applicable to other material syste
The examples we consider are@A# the first
GaAs/AlxGa12xAs QCL structure21 reported by Sirtoriet al.,
with x50.33, and@B# a structure22 reported by Pageet al.
with a similar layer design to structureA but with a higher Al
content in the barrier,x50.45, resulting in higher barriers
This QCL structure operates in pulsed mode at room te
perature. The lasing transition in structuresA and B occurs
between quantum well subbands. Other parameters for t
4-5
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structures are summarized in Table II. In this section,
present and discuss results obtained for these structures

A. Nonequilibrium stationary state

In this subsection, we describe some of the informat
about the nonequilibrium stationary state of a QC struct
under an applied bias that can be extracted from the Gre
functions. In Fig. 2, we show some examples of the diago
elements of Im@Gret(E)# for k50 plotted as a function of the
energy parameterE. Figure 2~a! shows two examples of thi
function evaluated in the Wannier basis. These exam
were evaluated for structureA at a bias of 0.2 V/period. Eac
curve represents a Wannier state in one period of the
structure. The Wannier states are not energy eigenstate
the system, and if a Wannier state is expressed as a li
superposition of the energy eigenstates, the position of
peaks in, for instance, the curve labeledn53 represent the
energies of the eigenstates which comprise this superp
tion.

It is possible also to express the Green’s functions in
Wannier-Stark basis. From the diagonalization of the Ham
tonian Ĥo expressed in the Wannier basis we obtain
transformation matrix between the Wannier and Wann
Stark basis.23 Applying this transformation matrix toGret(E)

TABLE II. Parameters for example GaAs/AlxGa12xAs QC
structures:x is the aluminium content in the barrier,ne is the 2D
carrier density in one period,d is the period length, andNp is the
number of periods.

Structure x ne (cm22) d ~nm! Np

A ~Ref. 21! 0.33 3.931011 45.3 30
B ~Ref. 22! 0.45 3.831011 45 36

FIG. 2. Examples of the diagonal elements Im@Gnn,k50
ret (E)# in

one period of structureA with an applied voltage of 0.2 V/period
~a! Wannier basis.~b! Wannier-Stark basis.
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we obtain the example curves shown in Fig. 2~b!. Each of
these curves~diagonal elements of Im@Gret(E)# for k50 in
the Wannier-Stark basis! represents a Wannier-Stark state.
contrast to the curves shown in Fig. 2~a! with their compli-
cated structure of peaks, each curve in the Wannier-S
basis consists of a single, broadened peak. This indicates
at this bias, the Wannier-Stark states approximate closely
true energy eigenstates of the system. The positions of th
peaksEi are shifted downwards by around 10 to 15 meV
comparison to the eigenenergies obtained from the diago

ization of Ĥo . This shift represents the renormalization
the Wannier-Stark energy levels due to the scattering p

cesses described inĤscatt8 . The broadening of the peaks als
originates from these scattering processes, and the widt
the peaks gives a measure of the decay rateG i of these levels
due to scattering. In particular, we takeG i5DEfwhm, where
DEfwhm is the full width at half maximum of the single pea
in the function Im@Gii ,k50

ret (E)#, in the Wannier-Stark basis
In Sec. III C, we will use this information to analyze the ga
spectra obtained from the NGF theory.

The curves in Fig. 2 were evaluated fork50. If instead
we integrate over the in-plane wave vectork, we obtain the
curves shown in Fig. 3~a!. These staircaselike curves are t
density of states~DOS! in two example Wannier subband
~the two Wannier states considered in Fig. 2~a! are thek
50 states in these subbands!. The onset of each step in th
staircase corresponds to the position of each peak in the
responding curve in Fig. 2~a!. If we carried out thek integral
in the Wannier-Stark basis, we would obtain a single s
instead of a staircaselike structure, corresponding to
single peak~for a given curve! seen in Fig. 2~b!. If we sum
the DOS curves for all Wannier subbands within a period,
obtain Fig. 3~b!, which is the total DOS per period of th

FIG. 3. ~a! Examples of density of states~per period! in Wannier
subbands: Im@Gnn

ret(E)#52(kIm@Gnn,k
ret (E)#. ~b! Total density of

states per period,(nIm@Gnn
ret(E)#.
4-6



en

t
w

ie
fo
s

is
n
f

.

uc
e

-

is

ice
t is
he
QC
ric

ens
ich
ure

nt
l
e

ata
r
lots
ng

ory,
the
nal

ata
at

nd
the
the
rent

oss
nd

eak
-
s to

ity

t
t
he

om
h
th

uc-

NONEQUILIBRIUM GREEN’S FUNCTION THEORY FOR . . . PHYSICAL REVIEW B 66, 245314 ~2002!
structure. The result in Fig. 3~b! is basis independent if we
sum over contributions from all basis states within the
ergy range shown.

We consider now the lesser correlation functionG,(E).
At equal times, Gnn,k

, (t)5 i ^ânk
† (t)ânk(t)&5 i ^n̂nk(t)&,

where^n̂nk(t)& is the occupation of a statek in subbandn. If
we move into the energy representation, and sum over
contributions from all states in all subbands in a period,
obtain the populationn(E)52(nk Gnn,k

, (E) as a function of
energy within the period. Figure 4~a! shows the normalized
population per period per unit energy for several appl
voltages. Dividing these curves by the total DOS curves
the corresponding bias gives the distribution function a
function of energy, i.e.,

f ~E!5

(
nk

Gnn,k
, ~E!

2(
nk

Im@Gnn,k
ret ~E!#

. ~30!

The distribution function at 0.26 V/period in structure A
shown in Fig. 4~b!. In this curve, the jagged points betwee
0 and 0.2 eV are LO-phonon replicas, and the onset o
small population inversion at around 0.2 eV is also seen

B. Transport

We consider now the transport properties of the QC str
tures described above. Figure 5 shows a plot of current d
sity against V/period, calculated from Eqs.~11!–~16!. The
current density for structureB is reduced below structureA

FIG. 4. ~a! n(E), normalized population per period for differen
applied voltages.~b! f (E), distribution function in one period a
0.26 V/period. The thin vertical line marks the position of t
conduction-band offset between the thin~first! well in the active
region in this period, and the thick barrier separating this well fr
the preceding period. The bottom of this well is at around 0 eV. T
peak at around 0.2 eV corresponds to a population inversion in
upper laser level in the active region.
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because of the higher barrier heights inB. The separate cur
rent contributionsJo andJscatt1JMF from Eqs.~13!–~16! are
also shown. In both the structures, the main contribution
from Jscatt (JMF is negligible in comparison withJscatt). This
finding is in contrast to the behavior in simple superlatt
structures where the dominant contribution to the curren
from Jo . This difference could perhaps be explained by t
far greater number of subbands within one period of a
structure~in comparison to one period of a simple symmet
superlattice structure!, in which the envelope functions
ca(z) are spatially displaced across the period. This op
up the possibility for many more scattering transitions wh
facilitates the transport of carriers across the struct
through scattering processes. ComparingA and B, we see
that Jo is almost identical for both structures. The curre
Jscattin B is around half that inA so that the reduction in tota
current in B compared toA arises from a decrease in th

transport driven by the scattering HamiltonianĤscatt.
To compare the theoretical results with experimental d

reported in the literature, we show in Fig. 6 the results foA
andB plotted against similar scales as the experimental p
shown in Fig. 3 in Ref. 21, and Fig. 4 in Ref. 22. Compari
the results for structureA with the data given in Ref. 21, we
see the voltage trend in both curves agree well. In the the
the voltage tends to be lower for a given current than in
experiment, but this may be accounted for by an additio
series resistance in the cladding layers. For structureB, we
see again that the voltage trends agree well with the d
shown in Ref. 22. In particular, when comparing the trends
different temperatures, we find that in both the theory a
experiment the current is higher for a given voltage at
higher temperature. In both theory and experiment,
curves at both temperatures converge at a certain cur
density. Unlike the experiment, the two curves do not cr
at the point of convergence in the theory, but diverge beyo
this point. The theoretical curves reproduce the sharp br
in the voltage trend at around 23 kA/cm2 as seen in the ex
periment, and the theory shows that this break correspond
the onset of a region of negative differential resistiv

e
e

FIG. 5. Current density vs voltage/period for example QC str
tures. StructureA: Thick lines. StructureB: Thin lines with sym-
bols.
4-7
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S.-C. LEE AND A. WACKER PHYSICAL REVIEW B66, 245314 ~2002!
~NDR!. NDR is not seen explicitly in the experimental da
in Ref. 22 because of an artifact of the measurem
system.24

The break in the voltage trend is attributed22 by Page
et al. to the breaking of the level alignment in the inject
region and the active region causing an interruption in
current flow. To verify this, we show the wave functions a
alignment of the injector leveli and upper laser levelu ~in
the Wannier-Stark basis23! at 77 K, for different applied volt-
ages, in Fig. 7. Figures 7~a!–~c! correspond to the voltage
markeda, b, andc in Fig. 6~b!. Figure 6~b! shows that as the
voltage increases from 10 V, the current-voltage characte
tic passes through a peak at 13 V, and then beyond this p
the current decreases to a minimum at around 16.5 V. C
paring this behavior with Fig. 7, we see that the change
voltage, and the behavior of the I–V characteristic, is acco
panied by a shift in the position of leveli from below to
above levelu. Level i passes through the resonance w
level u which causes the peak in the I–V characteristic s
at 13 V. The population percentage in these levels is a
shown in Fig. 7, and we see that away from the resona
position, ;50% of the population is in the injector leve
with only ;10% in the upper laser level. Close to resonan
however, we see that the population is more evenly dist
uted between the two levels, with;30% in the injector
level, and 20% in the upper laser level. The wave functio
in the near-resonance case~b! are less well-localized than in
the off-resonance cases~a! and~c!, and tend to spread acros
both the injector and active region. This increases the ove
of the two wave functions and facilitates the transfer of c
riers between the injector and active region.

In the experimental data at 233 K, the break in the volta
trend is less pronounced, and this was attributed22 to the

FIG. 6. Current-voltage characteristic for comparison with e
perimental data for structuresA andB ~see text for references!. The
alignment of the injector level and upper laser level at the positi
marked with arrows in~b! is shown in Fig. 7.
24531
nt

e

s-
int

-
n
-

n
o

ce

,
-

s

p
-

e

presence of electrons with higher-energy leaking into c
tinuum states, and maintaining the current flow. In the th
retical results, shown in Fig. 6~b!, there is a small increase i
current at 233 K, but it is difficult to make a quantitativ
comparison with the experimental data because of the un
tainty in the experimental data in the NDR region.24 Figure 8
shows the electron distribution functionsf (E) at 77 K and
233 K, in one period of the structure at 14.4 V, i.e., ju
beyond the peak in the I–V characteristic in Fig. 6~b!. The
thin horizontal line marks the conduction-band offset or b

-

s
FIG. 7. Wave functions~mod. squared! of the injector leveli

~solid line! and upper laser levelu ~dashed line! in structureB for
different applied bias at 77 K. The energetic positions show
alignment of these levels. Parts~a!–~c! correspond to each of the
voltages marked with arrows in Fig. 6~b!. The percentage of popu
lation in each level is also shown.DE is the energy separation
between the two levels.

FIG. 8. Electron distribution functionsf (E) at 77 K and 233 K
in one period of structureB at 14.4 V.
4-8
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NONEQUILIBRIUM GREEN’S FUNCTION THEORY FOR . . . PHYSICAL REVIEW B 66, 245314 ~2002!
rier height. The peak in the distributions at around 0.2
corresponds to the population inversion in the upper la
level. The population inversion at 233 K is about a third le
than that at 77 K. In the high-energy tails, the distribution
slightly larger at 233 K than at 77 K. The difference in th
distribution functions is not large, however, and although t
difference may result in more electron leakage into the c
tinuum at 233 K, it is not clear at this point if this is
sufficiently large effect to elucidate the experimental resu

C. Gain and absorption spectra

In this section, we apply the theory described in Sec. I
to structure A. We distinguish here between the gain coe
cient g(v) evaluated usingdJ(v) from Eq. ~25!, and the
gain coefficient go(v) which is evaluated neglectin
dJscatt(v) in Eq. ~25!, and neglecting terms containin
dS,/ret/adv in dG,(v,E) @Eq. ~24!#. Hence,go(v) does not
depend on changes in the self-energies, and it is simple
evaluate since its evaluation does not require a further s
consistent calculation.

In Fig. 9, we show the gain coefficientg(v) calculated
with the NGF theory for different applied voltages, betwe
0 to 0.2 V/period. With zero applied bias, there is a bro
absorption ranging from around 120 to 140 meV. As t
applied voltage increases, the absorption gradually decre
in this range. There is a corresponding slow increase in
sorption between around 80 to 100 meV. At around 0
V/period, a positive gain begins to appear in the range 12
140 meV, and this gain increases further as the voltag
further increased. These results were obtained in the Wan
basis and as stated in Sec. II A, there is a problem in in
preting the origin of the different features in the spectra
cause these cannot be related to transitions between Wa
states. Later in this section, we discuss a way round
problem by considering a transformation to Wannier-St
states.

Before this we compare the results obtained forg(v)
from the more rigorous NGF theory, with the gaingo(v)
which is calculated neglecting terms fromdJscatt. This com-
parison is shown in Fig. 10. We see that the simpler the

FIG. 9. Gain and absorption spectrag(v) for structureA with
different applied voltages, calculated with the NGF theory.
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gives rise to gain curves which are offset to higher valu
~i.e., absorption is reduced and gain is increased! in compari-
son to the more rigorous theory.

To determine the origin of the different features in t
spectra, we consider a different approach for evaluating
gain coefficient. In this approach, we transform the Gree
functions G,/ret obtained in the Wannier basis to th
Wannier-Stark basis (GWS

,/ret) as described earlier in Sec
III A. From the diagonal elements ofGWS,i i

, , we obtain the
populationsni of the Wannier-Stark levels, and from the p
sitions and widths of the single peaks in Im@GWS,i i

ret #, we
obtain the Wannier-Stark level energies,Ei , for k50, and
the corresponding decay rates,G i . We treat each pair of
Wannier-Stark subbands in a simple two-band model,
which the optical response due to subbandsi and j is given
by,19

Im@x i j ~v!#5
2p

e0V (
k

udi j u2~ f i ,k2 f j ,k!d~\v1Ei ,k2Ej ,k!,

~31!

wheredi j 5e*dzc i* (z) z c j (z) is the dipole matrix elemen
between the Wannier-Stark functionsc i(z) and c j (z), and
f i ,k and f j ,k are the nonequilibrium distribution functions i
subbandsi andj. The factor 2 comes from summing over th
spin index. Assuming parabolic bands and replacing thd
function with a Lorentzian to model the broadening of t
levels we obtain

Im@x~v!#5
p

e0d (
i j

(Ej .Ei )

udi j u2~ni2nj !Li j ~v!, ~32!

with the Lorentzian Li j (v)5(G i j /2p)/@(\v2DEji )
2

1(G i j /2)2#, whereG i j 5G i1G j , and DEji 5Ej2Ei ~these
parameters are defined in Sec. III A!. ni (nj ) is the 2D carrier
density in subbandi ( j ). In Eq. ~32!, the contributions from
all transitions withEj.Ei are included. Using Eq.~32! with
Eq. ~17! gives us an estimate of the gain coefficientgWS(v)
within the Wannier-Stark picture.

FIG. 10. Comparison ofg(v) andgo(v), with different applied
bias, for structureA. a: solid lines, b: dashed lines, c: dotted lines,
dot-dashed lines, e: dot–double-dashed lines.
4-9
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Disadvantages of this simpler approach, compared to
approach described in Sec. II D, are, firstly, that the Wann
Stark levels become increasingly delocalized at low bias
an increasingly large number of basis states must be use
obtain a good approximation to the energy eigenstates a
applied voltage decreases. Thus, this approach become
practicable to apply at low bias. In addition, the functi
Im@Gret(E)# is not always a simple Lorentzian as seen
Fig. 2~b! for each Wannier-Stark level, but may, for som
levels, have additional peaks or shoulders indicating t
these levels do not approximate well a single eigenstat
the system but are superpositions of the eigenstates.
behavior occurs mainly at low bias, but can also occur wh
two Wannier-Stark levels are very close in energy wh
gives a double-peaked structure to Im@Gret(E)#, e.g., for the
two levels in panel~b! in Fig. 7. In these cases, it is no
possible to use this simple model to estimate the gain.
other drawback of this model is that by only making use
the diagonal elements of the Green’s functions,GWS,i i

, and
GWS,i i

ret , we have discarded information on quantum effe
that are contained in the offdiagonal elements.

In Fig. 11, we compare the gain coefficientg(v) from the
NGF theory with the gain coefficientgWS(v) from the
simple model in the Wannier-Stark basis. Spectra are sh
for a bias of 0.12–0.2 V/period. We find that the simp
model reproduces well the main features of the NGF the
As in the previous figure, we see that for the simpler the
in Fig. 11, the gain curves are again offset to higher val
compared to the more rigorous theory.

We consider now the origin of the different features in t
spectra. This can be most simply understood if we look at
gain spectra obtained in the Wannier-Stark basis. For cla
only these spectra are shown again in Fig. 12, and for a w
bias range, 0.1 to 0.22 V/period, than seen in Fig. 11. Th
spectra contain transitions between all possible pairs of
els with energy separationDEji in the energy range show
on thex axis. At the lowest bias shown, i.e., 0.1 V/period, w
see that the structure is almost transparent with only a v
small absorption for the energy range shown. As the app
voltage increases, absorption increases in the range 0.0

FIG. 11. Comparison ofg(v) and gWS(v), with different ap-
plied bias, for structureA. a: dashed lines, b: dotted lines, c: sol
lines, d: dot-dashed lines.
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0.11 eV. Simultaneously, gain appears and increases in
range 0.11 to 0.16 eV. The gain peak shifts to higher ener
as the voltage increases.

To explain these features, we consider the curve at
V/period in Fig. 12. In Fig. 13, we show the main Wannie
Stark energy levels involved in the transitions which gi
rise to the absorption and gain features seen at this b
From an inspection of the transitions contributing to the s
in Eq. ~32!, we find as expected that the gain feature ori
nates mainly from the transition~markedB in the figure!
between the upper laser level~labeled 2! and the lower laser
level ~1!. There is also some contribution to the gain fro
transitions between an injector level~28! and the lower laser
level ~1!, and between other injector levels and the upper
lower laser level~not shown!. The absorption feature below
0.1 eV is due mainly to transitions~markedA in the figure!
from the upper laser level~2! to levels in the continuum~3
and 38), with additional contributions also from transition
between injector levels. The relative population in each le
is also shown in the figure, and levels 2 and 28 have a greater
fraction of the population compared to levels 1, 3, and 38.
This supports the attribution of gain to transitionB, and ab-
sorption to transitionA. The largest fraction of the populatio
;70% is in the lowest injector level~not shown in the fig-
ure!. Level 0 contains around 2% of the population.

FIG. 12. Gain spectragWS(v) evaluated in Wannier-Stark bas
for structureA.

FIG. 13. Wannier-Stark levels in structureA at 0.2 V/period.
4-10
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NONEQUILIBRIUM GREEN’S FUNCTION THEORY FOR . . . PHYSICAL REVIEW B 66, 245314 ~2002!
When we consider the relative populations in these lev
for different applied voltages~in the range 0.1–0.22 V/perio
as shown in Fig. 12!, we find that the population in the lowe
laser level remains at around 1% at all voltages. The po
lation in the upper laser level, however, changes from aro
0.2% at 0.1 V/period to over 10% at 0.22 V/period. Hen
there is a transition to a population inversion between
two levels as the bias increases. The population in leve
ranges from around 20% at 0.1 V/period to around 2 to
above 0.16 V/period. The largest proportion of the popu
tion remains in the injector region, particularly in the lowe
injector level which forms a reservoir of around 60 to 70%
the carriers at all applied voltages.

We also note here that the broad gain or absorption
tures seen in Fig. 12 are not due to transitions betwee
single pair of levels but contain contributions from ma
transitions. For example, in Fig. 14, we show the differe
Lorentzian contributions~thin lines! to the gain curve~thick
line! at 0.22 V/period. Although the main contribution to th
absorption feature~thin line labeledA) originates from the
upper laser level–continuum transition, and the main con
bution to the gain feature~thin line labeledB) arises from
the upper–lower laser level transition, there is also a subs
tial contribution from other~energetically! neighboring tran-
sitions. The figure also shows that the inhomogeneous br
ening due to the contributions from different transitions, a
the broadening due to scattering, observed in the linewidt
each individual Lorentzian, are comparable in size. At hig
applied bias the number of contributing transitions decrea
e.g., at 0.3 V/period, the contributions to the gain feat
come mainly from only two transitions.

Finally, in the last set of results, we consider structureB.
Experimental data showing the light output vs current d
sity is shown in Fig. 4 of Ref. 22. At 77 K, the light output
seen to increase with increasing current density unti
reaches a maximum at around 22 kAcm22, corresponding to
the peak in the I–V characteristic seen in Fig. 6~b!. The light
output goes to zero for higher current densities. A sim
behavior is seen at 233 K but with a much reduced li
output. Figure 15 shows the gain coefficientgWS(v) calcu-
lated at 77 K for structureB at different applied voltages

FIG. 14. Contributions of individual transitions~thin lines! to
gain curvegWS(v) ~thick line! at 0.22 V/period for structureA.
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around the peak of the I–V characteristic shown in Fig. 6~b!.
The gain feature increases as the applied voltage or cur
density increases, reaching a maximum around the pea
the I–V characteristic, and then decreases beyond this p
A similar behavior is also seen at 233 K except that the g
is reduced at the higher temperature. For comparison, a
curve calculated at 233 K, at the peak current dens
22 kAcm22, is also shown in Fig. 15. The gain feature
this curve is much smaller than the gain feature in the co
sponding curve~at 22 kAcm22) at 77 K. Hence, the behav
ior of the calculated gain curves correlate well with the lig
output vs current density curves measured in the experim

IV. CONCLUSION

We have applied an NGF theory to obtain a description
the nonequilibrium stationary state of QC structures unde
applied bias. Using this information, we evaluate the curre
voltage characteristic of example QC structures reported
the literature. The theoretical results are quantitatively cl
to experimental I–V data, and reproduce well the trends s
in the data. In addition, we determine two contributions
the current density. The first contributionJo is driven byĤo
which is the Hamiltonian for the superlattice potential wi
applied bias. The other contributionJscatt8 is driven byĤscatt

1ĤMF which describes the scattering processes in the st
ture. We find that, in contrast to simple superlattice str
tures,Jscatt8 is the main contribution to the current in the Q
structures we consider.

In addition, we have extended the theory to determine
linear response of the nonequilibrium stationary state
these structures to a small applied optical perturbation. T
enables us to evaluate the linear susceptibility and hence
gain or absorption spectra of the structure. We compare
spectra obtained using a more rigorous NGF theory in wh
the changesdG, dS, anddJscatt due to the optical perturba
tion are considered, to simpler models in which~i! only dG
is considered, or~ii ! by summing over transitions in a simpl
two-band model~summing over different pairs of bands!
with Lorentzian broadened levels. We find that the simp

FIG. 15. Gain curvesgWS(v) at 77 K for structureB, for dif-
ferent applied voltages. Thin solid line with symbols is at 233 K
4-11
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models result in spectra which are offset to higher val
than in the more rigorous theory. We have also made a
tailed analysis of the origin of the different gain and abso
tion features in the spectra, and of the redistribution of po
lation within the Wannier-Stark levels as the applied volta
changes. The gain and absorption features correlate well
the distribution of population within these levels, which
determined from the NGF theory.
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APPENDIX A

The construction of the Wannier function basis used in
calculations is described in this appendix. As the first st
we solve the one-dimensional Schro¨dinger equation

F2
\2

2me~z!

d2

dz2
1V~z!Gc~z!5Ec~z!, ~A1!
re

rix
ng
r-

ra
e
o
th

ith
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,

for the envelope functionsc(z). The spatially dependent su
perlattice potentialV(z) and the effective massme(z) are
assumed constant in each semiconductor layer, i.e.,V(z)
5Vo and me(z)5mb in the barriers, andV(z)50 and
me(z)5mw in the wells. Equation~A1! can be solved with a
transfer matrix method~for a textbook discussion see, e.g
Ref. 25!. In this approach, the envelope function in a sem
conductor layerj is written as

c j~z!5Aje
ik j (E)(z2zj )1Bje

2 ik j (E)(z2zj ), ~A2!

where zj labels the position of interfacej, and kj (E)
5A2mj (E2Vj )/\ with mj andVj the mass and potential in
that layer. Applying continuity conditions

c j5c j 11 , ~A3!

1

mj

dc j

dz
5

1

mj 11

dc j 11

dz
, ~A4!

at the interfacej 11, gives

S Aj 11

Bj 11
D5Mj~E!S Aj

Bj
D , ~A5!

with
Mj~E!5
1

2S S 11
mj 11kj

mjkj 11
Deik j (zj 112zj ) S 12

mj 11kj

mjkj 11
De2 ik j (zj 112zj )

S 12
mj 11kj

mjkj 11
Deik j (zj 112zj ) S 11

mj 11kj

mjkj 11
De2 ik j (zj 112zj )

D . ~A6!
he
on-

ns

are
ase
or
s
rac-
nt
ith
ns
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g
ll-
en
s

If a single periodd of the structure containsM semiconduc-
tor layers, the Bloch conditioncq(z1d)5eiqdcq(z) implies

S AM11

BM11
D5)

j 51

M

Mj~E!S A1

B1
D5eiqdS A1

B1
D . ~A7!

For a given value ofq, only certain values ofE allow the
solution of Eq.~A7!, and this defines the miniband structu
En(q). For eachq value, we determineEn(q) numerically
by looking for the zeroes of the determinant of the mat
product) j 51

M Mj (E). These zeroes were found by steppi
through the energyE, and comparing the signs of the dete
minant for two consecutive values ofE ~separated byDE).
When these signs are opposite this sets the first coarse b
eting of the zero position. This position is then further r
fined by halving this interval and successive intervals up t
hundred times, while comparing the determinant signs of
interval endpoints at each iteration. OnceEn(q) is deter-
mined, we can also obtainAn(q)5A1 and Bn(q)5B1, and
the Bloch functionscq

n(z), from Eqs.~A2!, ~A5!, and~A7!.
In the calculations reported here,En(q) was evaluated for
500 q points for each miniband, andDE was set to 5 meV.
The Bloch functions were evaluated on a position grid w
1500 points per period. In structureA (B), there are eight
ck-
-
a
e

~nine! minibands below the conduction-band offset. For t
calculations here, we included one miniband above the c
tinuum, so the band indexn runs from 1 to 9~10! for struc-
ture A (B).

In the following step, we construct the Wannier functio
~associated with minibandn)

cn
W~z2nd!5A d

2pE2p/d

p/d

dqe2 inqdcq
n~z! ~A8!

from a superposition of the Bloch functions in minibandn.
The Wannier functions constructed by this superposition
not unique, and can be very different depending on the ph
of the Bloch functions which can be chosen arbitrarily f
each value ofq. Ideally, we would like the Wannier function
to be as spatially localized as possible to reduce the inte
tion matrix elements between Wannier functions in differe
periods. As a first step to construct Wannier functions w
this property, we first fix the phase of the Bloch functio
such that these functions are real at some arbitrary pos
xs . Different values ofxs can be tested, and the resultin
Wannier functions checked to see if they are fairly we
localized, e.g., within one period of the structure. We th
express the position operatorẑ in the basis made up of thi
4-12
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initial set of Wannier functions. Finally, we diagonalize th
resulting matrix representation ofẑ, and the resulting eigen
functions give us the required set of Wannier functions as
ciated with a given miniband. This process is repeated
each miniband.

The Wannier states associated with a given miniband
degenerate, and their energy expectation values lie at
center of the miniband. Their wave functions are spatia
displaced from each other, with a separation given by
period of the structure, i.e., there is one Wannier state in e
period of the structure. To set up the matrix representatio
ẑ for a given miniband, we use Wannier states in 11 nei
boring periods. The large number of periods used in t
construction is necessary to improve the numerical accu
of the result.

In the transport and gain calculations, however, we c
sider only couplings and matrix elements between Wan
functions in the same period, and nearest-neighbor peri
Hence, the matrices representing the Green’s functions
self-energies are constructed with 27 basis states~for struc-
ture A) from three periods.

APPENDIX B

This appendix describes in more detail the evaluation
the self-energies and scattering matrix elements in Eqs.~6!–
~8!. The self-energies contain summations overk8 of the
form (k8uVab(k,k8)u2$G.F.% whereVab is a generic matrix
element representing interface roughness, impurity, or p
non scattering, and$G.F.% represents a Green’s functio
Gbb,k8(E8), with E85E or E85E6Ephon, and including,
for the case of phonon scattering, a phonon distribution f
tor. Taking the summation to the continuous limit leads to

(
k8

uVab~k,k8!u2$G.F.%

5
A

~2p!2E0

`

dk8k8E
0

2p

duuVab~k,k8,u!u2$G.F.%.

~B1!

We carry out the angle integration assuming the Gree
function term does not depend on the angle, and defining
angle-integrated quantity@ f (k8)#u5*0

2pdu f (k8,u) we ob-
tain

(
k8

uVab~k,k8!u2$G.F.%

5
A

~2p!2E dk8k8@ uVab~k,k8!u2#u $G.F.%

5
A

~2p!2

me

\2E dEk8@ uVab~k,k8!u2#u$G.F.%

5
1

2p

Aro

2
@ uVab~ktyp ,ktyp8 !u2#uE dEk8$G.F.%.

~B2!
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The integral over momentumk8 has been transformed to a
integral over energyEk8 , and the density of statesro
5me /(p\2). In the last line of Eq.~B2! we assume the
matrix elementVab(k,k8) is slowly varying compared to the
Green’s function term and can be taken out of the integra
is evaluated at fixed momentaktyp andktyp8 , and the choice of
these momenta is described below.

From a comparison of the factors outside the integral
the last line of Eq.~B2!, with a scattering or transition prob
ability rate derived from Fermi’s golden rule we can define26

a fictitious scattering rate~in energy units!

gab5
Aro

2
@ uVab~ktyp ,ktyp8 !u2#u . ~B3!

With this definition we can rewrite Eqs.~B1! and ~B2! as

(
k8

uVab~k,k8!u2$G.F.%5
gab

2p E dEk8$G.F.%. ~B4!

Estimates ofg for different scattering processes are given
Table I.

As stated after Eq.~8!, and earlier in this appendix, w
evaluate the scattering matrix elementsVab

phon/rough/imp(k,k8)
using fixed momentaktyp and ktyp8 ~with the corresponding
energiesEtyp andEtyp8 ) to accelerate the numerical comput
tion. To fix Etyp , we consider the energy dependence of
scattering matrix elements. For LO-phonon scattering, th
is an energy threshold for phonon emission because of
ergy conservation and the fixed phonon energyELO . The
scattering matrix element is maximum at the emiss
threshold, and decreases monotonically with increasing
ergy above this threshold. To obtain an estimate of the s
tering matrix element, which lies between the higher valu
near threshold, and the lower values far above threshold
setEtyp one LO-phonon energy above the LO-phonon thre
old. We then fix Etyp8 5Etyp1DEab2ELO , where DEab

5@Ĥo#aa2@Ĥo#bb ~see Fig. 16!. To test the sensitivity of
the results to the value chosen forEtyp , we have carried out
runs with other values ofEtyp , e.g., at threshold,12 ELO above
threshold, and 2ELO above threshold. The calculated curre
density changes by at most;9% ~at some bias points with
Etyp at threshold! but in most cases the change is around 5
or much less~1–2 %!. This tends to support the assumptio
that, for the LO-phonon process, the results are not v
sensitive to the specific value ofEtyp . For impurity and in-
terface roughness scattering, we setEtyp515 meV, and
Etyp8 5Etyp1DEab . Test runs were also carried out forEtyp

51, 7, and 30 meV. The results are more sensitive to
value of Etyp . For Etyp57 and 30 meV, the calculated cu
rent density changed by at most 15%. ForEtyp51 meV, near
the bottom of the subband, the difference was much lar
ranging from 10 to 50%. The valueEtyp515 meV was cho-
sen as a value that lies near the center of the distribution
each subband, to give an estimate of the average scatte
matrix element.
4-13
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With the momenta fixed, the scattering matrix eleme
can be taken outside the integrals in Eqs.~6!–~8!, and the
self-energies depend only on integrals of the form@as shown
in Eq. ~B2!#

Gaa
ret ~E!5E

0

`

dEk8Gaa,k8~E!, ~B5!

and

Im@Gaa
, ~E!#5E

0

`

dEk8Im@Gaa,k8
,

~E!#. ~B6!

Note that the diagonal elements ofG, are pure imaginary. A
problem arises in evaluatingGaa

ret (E) when a momentum-
independent scattering matrix element is used because
leads to a divergence in the integral asEk8→`. To deal with
this problem, a cutoff energy for the upper limit of the int
gral is used in the numerical integration. The following su
sections give more detail concerning the evaluation of
matrix elements for the different scattering processes~see,
also, Refs. 12, 27, 28!.

FIG. 16. Examples ofEtyp and Etyp8 selection.~a! LO-phonon
scattering for the caseDEab>ELO.0 ~requiresEtyp>0). Similar
figures can be drawn for the casesELO.DEab.0 ~requiresEtyp

>ELO2DEab), andDEab,0 ~requiresEtyp>uDEabu1ELO). For
all three cases,Etyp8 5Etyp1DEab2ELO . ~b! interface roughness
and impurity scattering forDEab.0.
24531
s
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-
e

1. Interface roughness and impurity scattering

To derive matrix elements for interface roughness scat
ing we consider an interfacej located atz5zj with thickness
fluctuationsj j (r ) of the order of one monolayer. We assum
correlation functions for the fluctuations given by

^j j~r !&50, ~B7!

^j j~r !j j 8~r 8!&5d j , j 8 f̃ ~ ur2r 8u!

with f̃ ~r !5h2expS 2
r

l D ~B8!

h denotes the root-mean-square of the roughness height
l is a typical island size. Correlations between neighbor
interfaces are neglected. The angle brackets@as stated after
Eq. ~6!# denote an average over different distributions
thickness fluctuations.

The Hamiltonian for interface roughness scattering
written as

Ĥ rough5 (
k,p

mm,nn

@Vmm,nn
rough ~p!âm,m

† ~k1p!ân,n~k!1H.c.#,

~B9!

with the matrix element

Vmm,nn
rough ~p!5(

j

1

AE d2re2 ip•rj j~r !DEccm* ~zj2md!

3cn~zj2nd!, ~B10!

whereDEc is the band offset.
Within the self-consistent Born approximation, the se

energy contribution from interface roughness scattering
written as

Sa1a2 ,k
,,rough~E!5 (

bb8,k8
^Va1b

rough~k2k8!

3Vb8a2

rough
~k82k!&Gbb8,k8

,,rough
~E!. ~B11!

This equation is more general than Eq.~6! since it includes
the offdiagonal contributions. Now we assume that the di
onal parts ofGbb8,k8

,,rough dominate, and we keep only the term
b5b8 in the summation. Then we obtain for the matr
element term
4-14
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^Va1b
rough~2p!Vba2

rough~p!&

5^Vm1m1 ,nn
rough ~2p!Vnn,m2m2

rough ~p!&

5
~DEc!

2

A 2 K (
j 8

E d2r 1 eip•r1j j 8~r1!

3cm1
* ~zj 82m1d!cn~zj 82nd!

3(
j
E d2r 2 e2 ip•r2j j~r2!cn* ~zj2nd!cm2

~zj2m2d!L
5

~DEc!
2

A 2 E d2r 1E d2r 2eip•(r12r2) f̃ ~ ur12r2u!

3(
j

cm1
* ~zj2m1d!ucn~zj2nd!u2cm2

~zj2m2d!

5
~DEc!

2

A 2 E d2reip•r f̃ ~ ur u!

3(
j

cm1
* ~zj2m1d!ucn~zj2nd!u2cm2

~zj2m2d!,

~B12!

where we have expanded the general indicesa1 , a2 , b in
terms of the period and Wannier level indices@see after Eq.
~4!#, and definedp5k82k. Because of the orthogonality o
the wave functions, and because the wave functions ex
over many interfaces, the sum overj tends to vanish for
m1Þm2 and m1Þm2. This suggests replacing this term
the last line withFm12n

m1n dm1 ,m2
dm1 ,m2

where

Fh
m1n

5(
j

ucm1
* ~zj2hd!u2ucn~zj !u2. ~B13!

Applying Eq. ~B8! we obtain
2,
rit

24531
nd

^Vmm,nn
rough ~2p!Vnn,mm

rough ~p!&5
~DEc!

2h2

roAEl

1

~11Ep /El!3/2
Fm2n

mn

5F~Ep!, ~B14!

with El5\2/2ml2 and Ep5\2p2/2m5Ek1Ek8
22AEkEk8cosu, whereu is the angle betweenk and k8.
The subscript 1 from the indicesm1 and m1 is dropped for
simplicity. Substituting this latter result in Eq.~B11! gives
Eq. ~6! which contains only the diagonal terms in the se
energy and the Green’s function. We now follow the proc
dure outlined in Eqs.~B1!–~B2! and take the summation
over k8 in Eq. ~6! to the continuous limit. We observe tha
both the self-energy and the Green’s function depend only
Ek andEk8 , but not on the angleu. Hence, as shown in Eq
~B2!, the angle integration over the matrix element can
carried out analytically, and we define the angle-integra
quantity ~Ref. 29, 2.575!:

@^uVmm,nn
rough ~k2k8!u2&#u

5E
0

2p

duF~Ek1Ek822AEkEk8cosu!

5
~DEc!

2h2

roAEl
Fm2n

mn
4

~a2b!Aa1b
ESA 2b

a1bD ,

~B15!

with

a511
Ek1Ek8

El
b52

AEkEk8
El

. ~B16!

E(x) is the complete elliptic integral of the second kin
which is of order p/25E(0).E(x).E(1)51 ~Ref. 30,
17.3!. Therefore we setE(x)'p/2, and fixingEk5Etyp and
Ek85Etyp1DEab as described earlier, we define the fic
tious interface roughness scattering rate@using Eq.~B3!#
g (m2n),mn
rough 5

p~DEc!
2h2AElFm2n

mn

@El1~AEtyp2AEtyp1DEab!2#AEl1~AEtyp1AEtyp1DEab!2
. ~B17!
-
e

le-
Impurity scattering is mediated through the~3D! Cou-
lomb interactionV;1/q2;1/uk2k8u2. Neglecting the angle-
dependent term givesuVu2;1/(Ek1Ek8)

2. Fixing Ek5Etyp

andEk85Etyp1DEab as before, and neglecting factors of
we obtain an order-of-magnitude estimate of the impu
scattering rate

gab
imp5gpar

imp
F E dz uca* ~z!cb~z!u G2

~11DEab /Etyp!
2

. ~B18!
y

The parametergpar
imp ~see Table I! is estimated from calcula

tions of impurity scattering in simple superlattic
structures.31

2. LO-phonon

To derive the electron–LO-phonon scattering matrix e
ment we start from the interaction Hamiltonian32

Ĥ lo5(
Q

ia~Q!@e2 iQ•Rb̂Q
† 2eiQ•Rb̂Q#, ~B19!
4-15
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with

a~Q!5F e2

2V
\v lo

Q2 S 1

e`
2

1

es
D G 1/2

. ~B20!

Q5(q,qz) is the 3D phonon wave vector with the 2D in
plane componentq and the componentqz in the growth di-
rection. Similarly, the 3D position vectorR5(r ,z). b̂Q

† (b̂Q)
is the phonon creation~annihilation! operator,\v lo5Elo is
the LO-phonon energy, andV is the crystal volume.e` and
es are the high-frequency and static absolute permittivitie

The matrix element

Vab
lo 5^auĤ loub&5(

Q
ia~Q!^aue2 iQ•rb̂Q

† 2eiQ•rb̂Qub&,

~B21!

is written with initial and final states,ub& and ua&, given by

ub&5uCk,b~r ,z!&un~v lo!&,

ua&5uCk8,a~r ,z!&un~v lo!61&.

The ket containingn(v lo) is a phonon number state. Th
upper ~lower! sign in the ketun(v lo)61& corresponds to
phonon emission~absorption!. The ket containingC gives
the electron state, and the electron wave funct
Ck,b(r ,z)5A 21/2eik•rcb(z). Evaluating Eq.~B21! leads to

uVab
lo ~k,k8!u25u^auĤ loub&u2

5(
Q

a2~Q!Fn~v lo!1
1

2
6

1

2G
3uMab~qz!u2dk8,k7q , ~B22!

with Mab(qz)5*0
Lwdze7 iqzzca* (z)cb(z). Lw is the distance

in the z-direction over which the wave functionsc(kz ,z)
extend. Converting the sum overQ in Eq. ~B22! to an inte-
gral, and evaluating the in-plane componentq with the help
of the Kronecker delta gives

uVab
lo ~k,k8!u25Fn~v lo!1

1

2
6

1

2G
3

Eloe
2

4pepAE
2`

`

dqz

uMab~qz!u2

qz
21p2

, ~B23!

wherep5uk2k8u25k21k8222kk8cosu.
As described earlier in this appendix, the matrix elem

is evaluated within a self-energy integral, for instance of
form: S(k,E)5(k8uVab(k,k8)u2$G.F%. Following again
the procedure shown in Eqs.~B1!–~B2!, we take the summa
tion over k8 in the self-energy to the continuous limit, an
we define the angle-integrated quantity
24531
.

n

t
e

[ ^uVab
lo ~k,k8!u2] u

5CE
0

2p

duE
2`

`

dqz

uMab~qz!u2

qz
21k21k8222kk8cosu

52pCE
2`

`

dqz

uMab~qz!u2

A~qz
21k21k82!224k2k82

5
C

ro
E

2`

`

dqz

uMab~qz!u2

AS \2qz
2

2m
1Ek1Ek8D 2

24EkEk8

,

~B24!

whereC5Eloe
2@n(v lo)1 1

2 6 1
2 #/(4pepA).

Using this result in Eq.~B3!, and fixing the energiesEk

5Etyp andEk85Etyp8 as described earlier, we can define t
scattering rate

gab
lo 5Fn~v lo!1

1

2
6

1

2
G Eloe

2

8pep
E

2`

`

dqz

3
uMab~qz!u2

AS \2qz
2

2m
1Etyp1Etyp8 D 2

24EtypEtyp8

.

~B25!

3. Acoustic phonon

The phonons are implemented as an artificial optical p
non with a phonon energyEac which should be smaller than
kBT and which should not be commensurable with the op
cal phonon energy. The matrix element, or equivalently,
fictitious scattering rategab

ac , is set to

gab
ac 5gpar

ac F E dz uca* ~z!cb~z!u G2

. ~B26!

APPENDIX C

A derivation of the current contributionJscatt @Eq. ~16!# is
given here. We assume that the scattering HamiltonianĤscatt
has the form

(
ab

k,k8,s

Ôak,bk8~ t !âaks
† ~ t !âbk8s~ t !, ~C1!

whereÔab(t) may be just a scalar time-independent mat
element, i.e.,Ôak,bk8(t)5Vak,bk8 , as in interface roughnes
or impurity scattering. Alternatively, as in phonon scatterin
it may be a time-dependent operator containing the pho
operatorsb̂(t) and b̂†(t). Then we find
4-16
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Jscatt~ t !5
e

V
i

\
^@Ĥscatt,ẑ#&5

e

V
1

\ (
abg

k,k8,s

i ^âaks
† ~ t !

3@Ôak,gk8~ t !zgb2zagÔgk,bk8~ t !#âbk8s~ t !&.

~C2!

In the following, this expression will be expressed in term
of Green’s functions and self-energies. For this purpose,
consider the contour-ordered Green’s function:

F abg
k,k8,s

c
~t1 ,t2!52 i T̂c$^âbk8s~t1!âaks

† ~t2!Ôak,gk8~t2!zgb

2zagÔgk,bk8~t1!âbk8s~t1!âaks
† ~t2!&%,

~C3!

whereT̂c orders the times argumentst on the complex con-
tour from t52`1 i01 to t52`2 i01 ~see Ref. 11!. By

taking the lesser componentF abg
k,k8,s

,
(t,t), one obtains the

summand in Eq.~C2!.
Using the interaction picture with superscriptD, Fc is

now evaluated according to the standard perturbation ex
sion of

F abg
k,k8,s

c
~t1 ,t2!52 i T̂cH K expS 2

i

\E dtĤD~t! D
3@ âbk8s

D
~t1!âaks

D† ~t2!Ôak,gk8~t2!zgb

2zagÔgk,bk8~t1!âbk8s
D

~t1!âaks
D† ~t2!#L J .

~C4!

The exponential term can be expanded as

expS 2
i

\E dtĤD~t! D'12
i

\E dt (
de

p,q,s8

Ôdp,eq~t!âdps8
D†

~t!

3âeqs8
D

~t!. ~C5!

Substituting this expansion into Eq.~C4!, and noting that
terms containing only a singleÔ are zero after averaging, th
lowest-order nonvanishing terms give

F abg
k,k8,s

c
~t1 ,t2!'

1

\ (
de

E dt@Gbk8s,dk8s
c0

~t1 ,t!Odk8,ek~t!

3Geks,aks
c0 ~t,t2!Oak,gk8~t2!zgb

2zagOgk,bk8~t1!Gbk8s,dk8s
c0

~t1 ,t!

3Odk8,ek~t!Geks,aks
c0 ~t,t2!# ~C6!

with the bare Green’s functions Gaks,bks
c0 (t1 ,t)

52 i T̂c$^âaks
D (t1)âbks

D† (t)&%. Only Green’s functions diago
nal in the momentum and spin indices are kept in Eq.~C6!.
In order to be consistent with the perturbation expansion
24531
s
e

n-

n

the Green’s functions, further terms are taken into acco
which replace the bare Green’s functions by the full Gree
functions. Then we find

(
k,k8

F abg
k,k8,s

c
~t1 ,t2!5

1

\ (
d,k

E dt@Gbks,dks
c ~t1 ,t!

3Sdgk
c(a,r )~t,t2!zgb2zagSgdk

c(b,l )~t1 ,t!

3Gdks,aks
c ~t,t2!#, ~C7!

where

Sdg,k
c(a,r )~t,t2!5(

ek8
Odk,ek8~t!Gek8s,ak8s

c
~t,t2!Oak8,gk~t2!

~C8!

denotes the part of the self-energy which exhibitsOag on the
right-hand side, and

Sgd,k
c(b,l )~t1 ,t!5(

ek8
Ogk,bk8~t1!Gbk8s,ek8s

c
~t1 ,t!Oek8,dk~t!

~C9!

with Ogb on the left-hand side. In the second term in E
~C7! we have exchanged the dummy indicesd ande, and in
the first term we have exchangedk andk8.

For diagonal self-energies, which depend on diago
Green’s functions ~see Sec. II B!, one has Sdg,k

c(a,r / l )

5ddgSgg,k
(a) , where Sgg,k

(a) is defined after Eq.~16!. Using
Langreth rules33 and changing to the energy representat
leads to Eq.~16! which is given again here for reference

~C10!

We can obtain some insight into this expression forJscattif
we consider only the diagonal terms of the above equat
i.e., we setg5b in part I, andg5a in part II, to obtain

~C11!

~C12!

where for brevity we neglect the indexk, andS andG are
understood to be functions ofE. We observe that each term
in the integrals above is a product of a Green’s function a
a self-energy, i.e., of the formGS or SG. These terms can
be interpreted as scattering rates. In particular, Eq.~C11!
contains information about scattering rates into and out
the stateb, and Eq.~C12! describes scattering into and o
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of the statea. To be more specific, we interpret the term
containingS ret or Sadv as a scattering-out rate, e.g, the te
Ia, *dEGbb

, Sbb
adv(a) , can be interpreted as a rateGb→a

out for
scattering out of stateb into statea. Similarly, term IIb,
*dESaa

ret(b)Gaa
, , is interpreted as a rateGa→b

out for scattering
out of statea into stateb. On the other hand, the term
containingS, are interpreted as scattering-in rates. Th
term Ib describes the rateGa→b

in for scattering into stateb
from a, and term IIa describes the rateGb→a

in for scattering
into statea from b. We note here thatGb→a

out 5Gb→a
in ,0 and

Ga→b
in 5Ga→b

out .0. Combining Eqs.~C11! and ~C12! gives
n

og

co
tt.

E

or

pl.

s.

-

d

24531
,

E dEI1II 5~Gb→a
out 1Ga→b

in !zbb2zaa~Gb→a
in 1Ga→b

out !

5~Gb→a
out/in 1 Ga→b

in/out!~zbb2zaa!. ~C13!

Thus, this expression is the product of the distanceuzbb

2zaau with the net transfer rate (Gb→a
out/in1Ga→b

in/out) between
stateb and a, and we can interpret this as a velocity
charge transfer rate from e.g.,zbb to zaa , i.e., a current flow
from zbb to zaa . ~The direction of current flow depends o
the net transfer rate.!
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Numerically, we findJMF'0 supporting this expectation. Like
wise, the numerical result fordJMF in Eq. ~27! is negligible. In

Eq. ~27!, we have neglected a term in@dĤMF,ẑ#G, which is
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