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The transport and gain properties of quantum cas¢Q@® structures are investigated using a nonequilib-
rium Green's functionfNGF) theory which includes quantum effects beyond a Boltzmann transport descrip-
tion. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes
within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation.
With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an
applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these
structures. We define two contributions to the current, one contribution driven by the scattering-free part of the
Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current
in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamil-
tonian. In addition, by considering the linear response of the stationary state of the structure to an applied
optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A
comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the
spectra tend to be offset to higher values in the simpler theories.

DOI: 10.1103/PhysRevB.66.245314 PACS nuntber73.63—b, 05.60.Gg, 78.6%n

[. INTRODUCTION approach have been reportetiA theoretical study of quan-
tum transport may be treated using the density matrix
Quantum cascad@C) structures are semiconductor het- formalism® or with a nonequilibrium Green’s function
erostructures grown with a complicated sequence of alternatNGF) approach?13
ing layers of different semiconductor materials and with In the work reported here, we extend the NGF theory
varying thicknesses. This sequence of layers is repeatedescribed in Ref. 13 to the study of quantum transport in QC
many times, up to tens or even over a hundred periods. Figstructures. Very early results from this investigation have
ure 1 shows an example of the conduction-band line-up in &een reported in Refs. 7 and 14. In this paper, we present
QC structure. These structures form the basis of a new typ@rther and more detailed results from this Study. In addition,
of semiconductor lasérjn which the laser light emission We have extended the work further to the problem of evalu-
occurs through intersubband or interminiband transitigns ~ 2ting the gain or absorption spectra of these structtirasd
most cases within the conduction bamather than interband W€ /S0 report and discuss results of this work here.
transitions. These lasers have a great variety of designs, and In Fhe following section, we describe the theoretu_:al for-
a recent review is given in Ref. 2. Until recentigll quan- mulation that we use to derive the transport properties, and

tum cascade lasefQCL) structures were designed so that then the Ilngar optical response of QC structures. In Sec. !II,
each period in the structure contains an active region if.- apply this theory to example QC structures, and describe

N P . . 910N e results obtained. The last section contains a summary and
which the lasing transition occurs, and a separate inject

. . . I€C%onclusion.
region. The injector acts as a reservoir of electrons for injec-

tion into the active region of the next stage. It also acts as a
collector of electrons from the preceding active region. The 1 period
direction of the electron flow is indicated in Fig. 1, and the
electron flow is seen to resemble a cascade as the electrons
move from one stage to the next when a bias is applied.
Hence, the electron transport through a QCL structure is a
complicated interplay between relaxation through light emis-
sion and scattering in the active region, and transmission
through tunneling and scattering in the injector redion.
Initially, most theoretical investigatiofis® of transport in
QC structures have focused on the role played by scattering
processes in determining transport properties and the dynam-
ics of the electron distributions in these structures. Very re-
cently, however, the first theoretical investigations of quan- FIG. 1. Example of the conduction-band lineup in a quantum
tum transport in these structures which have considered aascade structure with an applied bias. The arrows indicate the di-
incorporated quantum effects beyond a Boltzmann equatiorection of electron flow in the structure.
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[l. THEORETICAL FORMULATION tions. This difficulty may be partially circumvented, how-
ever, at a later stage in the calculation, by transforming the
results obtained into the Wannier-Stark basis. We emphasize

We model the QC structure as a periodic superlatticeagain that the basis choice is not in itself an important issue,
structure, in which each period contaiNg semiconductor i.e., the physical content of the theory should not depend on
|ayers with Varying thicknesses. The Ham"ton'anwhlch this Choice, but a suitable choice of basis can facilitate the
we use to model this system may be separated into two part§Umerical computatiofe.g., Wannier statgsor more easily
N ~ . . . allow physical interpretatiofe.g., Wannier-Stark states
H=H,+Hg.a Ho contains the superlattice potential and a . I . .

. at | T o . Expressing the Hamiltonian in the Wannier basis we ob-

static electric field€ applied in the growth direction, i.e.,

A. Basis states and Hamiltonian

tain
H,=Hg, +H.. The HamiltoniarH 4., describes the scatter-
ing processes included in the theory. N At Ay boAut Ay
The Hamiltonian is expressed in a set of basis states, HSL:nS; ;S [Eu@n ik s@nkst T1(@ns 1k sn ks
W\ o(r,2)=(e™*"1JA) ¢,(z), which we assume separable, o
although this is an approximation when the effective mass is +a’l 1,k,sé:,k,s)]v (1)

position dependent. In the plane of the semiconductor layers,

the basis functions behave as plane waves. The normaliz#there the index labels a period in the superlattice, and the
tion constantd is the sample area in this plane. The positionindex v labels a Wannier function),(z) within a period.
vector r and in-plane wave vectok are two-dimensional a;fk,S anday , ¢ are creation and annihilation operators for an
(2D) vectors. In the growth direction, here labeledthere  electron with in-plane wave vect&; and spin indess, in the
are several possible choicesee Ref. 13 for a discussipfor ~ vth Wannier level, in period. As stated earlier, the Wannier

the functionsy,(z). Although the physical results obtained functions are not eigenstates Hfs,, and henceT} repre-
from the theory should be independent of the specific choicgents the off-diagonal couplings between Wannier levels in

gf tEese fu?]ct(ijons, there aLe different advantages Orddra"‘ﬁifferent periods, and,, represents the diagonal elements
acks attached to a given choice. For instance, as we discugs A, in this basis. We keep only terms i, ic., we

as follows, one choice may be more suited to expediting the __: : . g
numerical computation, while another choice may more easgonsnder only coupllngs.betvvveen adjacent periods. The next-
ily allow the extraction of physical information in a form that neares t-gelghbcl)lr C(?I_uhpllr;'gﬁz .;elre .tWO c&r moreh ordlers 0 f
can be compared with experimental measurements. PossthTéagn't“ e smaller. The Hamiltonia,, due to the electric

choices ardi) Bloch functions which are eigenstates of the leld &, is written as

bare superlattice potenti#ds,, and are spatially extended o o
across the whole structuréi) Wannier-Stark states which Hg= 2 E {—eERg”aﬁ’L,Sa;’kls—neéd&w,aﬁyﬂ,saf{k,s

. ~ . . . n,v,u K,s
are eigenstates dfl,, i.e., of the superlattice potential and
the applied bias. These eigenstates are metastasien- —efRIMALT, AL At At b P
Hermitian with complex energies. They are often treated
approximately as stationary stat@seir metastable nature is where R{*”= [dzy7 (z—1d)zy,(2). d is the length of one
neglected, and this leads to an ambiguity in the definition of period ande<0 is the electron charge.

these states depending on how this approximation is made. |n the scattering HamiltoniaHl .., We include interface
(iii ) Wannier functions, which should not be confused withroughness, impurity, and electron-phonon scattering pro-
Wannier-Stark functions, may be constructed so that they argesses. Both acoustic phonons and longitudinal optic@)
spatially well localized. In particular, they may be con- phonons are considered. The electron—acoustic-phonon scat-
structed as eigenstates of the position operator. In symmetrigring rates are far smaller than those of the other scattering
superlattice structures, these eigenstates are maximalpfocessegTable ), but we include these to provide a chan-
localized!’ The spatial localization of the Wannier states en-ne| for small energy transfers between the electrons and lat-
ables one to setup a picture of transport in which scatteringice. This opens up a route for the carrier-lattice system to
occurs from one spatial region of the structure to anothefmove towards thermal equilibrium, particularly at low bias
The Wannier functions do not depend on bias, and this igvhen the electrons may have insufficient energy to emit LO-
computationally advantageous since coupling matrix elephonons.

ments between Wannier functions may be calculated only |n the NGF theory, the scattering processes expressed in

once at zero b|a53 and_the same malrix elements may then pﬁcaﬁ are treated in the form of self-energies which are de-
used at any applied bias. For these reasons, the theory pre

d here is f lated in the Wannier f ion bésg cribed below. We have also included electron-electron scat-
sented here is formulated in the Wannier function bésee tering in a mean-field approximation so that the interaction

Appendix A, .WhiCh we derive as eig(.enstatgs.of the poSitionbetween electrons appears as an additional single-particle po-
operator. A disadvantage in using this basis is that the Wan- N

. . ~ . ~ . ~ ’ _
nier functions are not energy eigenstates of the structure, arjfarlt'al n HSC?“’ |..e., we replaceH scar With Heai= Hiscar
it is therefore difficult to obtain a physical interpretation in +Hwr. Hue Is written as
the energy picture or domain. For instance, there is no one-
to-one correspondence between an optical transition in the [ v YA 3
structure and a transition between a pair of Wannier func- MF mgnv kzs (Ve Iy o Bk s s ©
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TABLE |. This table gives order-of-magnitude estimates of in-

verse scattering rates between Wannier levels in strudiufsee Eiifl‘)llf?(h/im'iE)= > <|V£ffﬂgh“mF(k—k’)|2) G;ﬁ’k,(E).
Sec. Il at 77 K. The times given in this table are obtained from B.K
fly with y (in energy unitsdefined in Eq(B3). More specifically, (6)

for interface roughness and impurity scatteringo9 ,,+ ¢ V9K’ —k) and Vi (k’—k) are matrix elements for in-
from Egs.(B17) and(B18) was used, and for acoustic phonon scat-, _ + 1 . .
tering, Eq, (B26) is used. For LO-phonon scattering, E@25) terface roughness and impurity scattering. In the former case,

without the phonon distribution factor was used. The parameter hef{. angle fbrac_ket_ts de_notti an f;lvefrage t?]\'/ekr all poss'gl.e dtlﬁm'
used in obtaining these estimates are as follows. For interfac utions of variations In the interface thickness, and in the

roughness scatterinE,=0.27 eV, 7=0.28 nm,\ =10 nm. For _atter case thgse 'brackets denote.an avergi}%]otlaj (g/\i/rsr all possible
impurity scattering:y/i’=5 meV. For LO-phonon scattering, impurity distributions. The equation fak - ’ h'/(.E) IS
=36.7 meV,e.=13.1e,, €. =10.9,. For acoustic phonon scatter- Obtained by making the replacement&=""""{E)

ing: 725=0.1 mev. — Yo andG(E) — G'{E).

For optical or acoustic phonon scattering, the self-
Interface roughness LO-phonon Acoustic phonon energies are

& impurity
ret,pho _ pho |2
Intrasubband 0.05 ps 0.2 ps >7 ps Ealal,kr(E)_ EK, |Va1 (kK"
Intersubband >0.2 ps >0.6 ps >8 ps p

X [fB(Ephon) + 1]G,rge;,k/(E_ Ephor)

where [Vyelm,n=Jdz¢y,,(2) Vue(2) ¥n,(2). The evalua- ot
tion of the mean-field potentiaVy(z) is described in the + fa(Ephon G g5k (E+ Ephon)
following subsection.

1
+ E[G;ﬁ,k’(E_ Ephon) - G;p,kr(E'l' Ephon)]
B. Quantum transport equations and self-energies

To determine the transport properties of a QC structure o f E(f (E—Ep| P 1
under applied bias, we need first to obtain a description of 27  BBK 1 E1— Ephon
the nonequilibrium stationary state of the system. This infor-
mation is contained in the nonequilibrium Green'’s functions: _p 1 ” @
the retarded Green's functio&™{E) and the correlation E1+Ephon /]’

functionG=(E) (bold typeG, andX below, indicates a ma-
trix in, e.g., the Wannier bagisThe quantum transport equa-
tions, which these functions obey, can be derfvédifrom

the Hamiltoniand and have the following form. The Dyson S PNE) = 2 [VERGUk, k)2
equation for the matrix elememretazlk(E) is written as Bk

ag

and

X {fB( EphorDG;B,k/(E_ Ephon)

E GL?;az,uE)—; [(HotHup)a sk +[fe(Ephon + 11G 554 (E+Eppon},  (8)
et et whereVPM" represents the interaction with optical or acous-
+Ealﬁ,k(E)]GBa2,k(E):5a1a2’ @4 tic phonons, and ., represents the energy of the optical

or acoustic phonon.fg(E)=1[expE&ksT)—1] is the
wherea;, a,, andg are general indices that include both equilibrium phonon distribution at a temperatufe This
the period and Wannier level indices, e.gs=(m,u). The s the only place where the lattice temperature appears in
correlation function G, (E) is obtained from the this theory. Further detail about the evaluation of the scatter-
Keldysh relation ing matrix elements and the self-energies is given in
Appendix B. For simplicity in the numerical evaluation, we
_ ot - adv neglect the last line containing the principle value terms in
Galaz,k(E)zz Galﬁ,k(E)Eﬁﬁ/,k(E)GB/azvk(E), (5)  Eq. (7). To further expedite the numerical computation, we
b use momentum-independent scattering matrix elements
where GA(E) =[ G*(E)]. VEE" U ™k, ki), employing a representative momen-
The self-energieX™{(E) and X<(E) originate from the UM Ky, (see Appendix &

scattering processes containedig,(i.e., excludingye) As mentioned in the previous section, we include also
att\!-< -y MF/ . . )

L : . _electron-electron scattering in the form of a mean-field po-
and are evaluated within the self-consistent Born approximac, . e determineg by solving Poisson’s equatior?
tion. Assuming that the diagonal parts of the Green’s func-
tions and the self-energies domin@because the basis states 42V, (2) e
are spatially localizex the self-energy for interface rough- MR —[paopd2) + pe(2)], 9)

€s

ness or impurity scattering has the form a2
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with periodic boundary condition¥y(z+d)=Vye(2). € 2e dE . . _

is the absolute static background permittiviyo,d2) is the Jo=79 > 2> 5-[Ho:Z]apCpak(E). (13
. . . aB K v

dopant density profile in the structure, and the electron den-

sity profile

The second contribution is frofd ..,

dE
pi2=263, 3 [ oG E @2,

%<[Hscatt+|:|MFai]>v
(10

<l @

Jécat(t) =Jscat) +Inpe(t) =

(14
with the factor of 2 from summation over the spin index. o )
To determine the Green's function&/®(E) and G=(E), where we evaluaté, similarly to J,, i.e., Ref. 18
we loop iteratively between the quantum transport equations, 26 dE
Egs.(4) and (5), and the equations for the self-energies and Joe= f_ Aoe 21 .GS (E). 15
mean-field potential Eqs(6)—(10), until we reach a self- MF ﬁvazg ; 277[ we ZapCpailB). (19

consistent solution for these equations. To solve these equa- L ) . . .
tions, we assume that the system is an infinite periodic struct"€ current contribution driven biscay is written in the
ture with period d. The boundary conditionsG,,(E)  ©Ne'dy representation asee Appendix ¢

=G, g (E+e&d) are applied between each period to model 26 dE

the bias drop per period in the structure, whefeandg’ are 5~ % % f ~[GS, (E)S @) ()

shifted one period to the left af and 8. As starting condi- o« AV &5, &' ) 2= Ak vk

tions for the iterative loop, we assume the electrons are in a
: +G;;s;,k(E)2<(a)(E)]Z%B—Za7[2<(:3)(E)Gadv (E)

Fermi distribution with temperaturg and that the density of y7.K yy.K ya,k
states in each Wannier subband is a simple stepfunction. _{_Eret(ﬁ)(E)G;a’k(E)]. (16)

However, once a converged solution was obtained for a vk

given applied voltage, we used this solution as a startingrhe superscript notation) in, for example, the self-energy

point for the calculation at the next bias to facilitate the con-2<(olr()(E) indicates that we take only the part of the self-

vergence process. To test for convergence, we compared t@gé’rgy which depends o@,,(E). The factor of 2 in Egs.

d|ffr2tr§nces in rtefzg k-integrated ~ Green's  functions (13), (15), and(16) is from the spin index summation.

[Goe (B)i+1—[Gea (E)]i, and carrier densitynel; ;. We note here, that although we have divided the current

j[ne]i, evaluated in two successive iteration steps, with gn¢q separate contributions driven lg’i’o, |:|MF, and gscaw

given tolerance value. A further test for convergence coulghis should not be taken to mean that the scattering processes

be carried out by starting the calculation at different bia lay no role in driving, for example, the curredt. Al-

points, e.g., starting at zero bias and increasing the voltages@Ou h i does not,a ear ex Iic,itl in Eq12), it is

a high bias point, then restarting the calculation at a high bia 9N, Flscart X .pp< picitly in £dLs), 1
instrumental in determininG =, and, hence, implicitly influ-

point and decreasing the voltage to a low value. ences the currenl, . The scattering processes provide chan-

nels for energy dissipation from the electronic system, so that

as the electrons descend downwards through the electric po-
Having determinedG™{(E) and G<(E), information tential their kinetic energy does not increase but remains

about the stationary state of the system, such as excitatiacbnstant, and a steady current flow is maintained through the

energies, energy renormalizations, broadenings or lifetimestructure.

density of states, populations, and distribution functions can

be extracted. Examples of such information and their appli- D. Gain and absorption spectra

cation are given in Sec. Il A. We can also evaluate the cur-

rent density using the rate of change of the position operator We can also use the information contained3fi(E) and
5 G=(E) as a starting point to evaluate the gain or absorption

spectra of the structure. To do this, we consider the linear
eld? ei .. response of the stationary state described@S}(E) and
J(t)= —<—> =——([H,z]). (11 G=(E) to a small perturbation from an optical field. From
vidt Vh this response we determine the susceptibjifyw), and from
J(t) is the average current density flowing in thdirection, ~Maxwell's equation¥’ we obtain the gain coefficient
in system volume&/. Recalling the separation of the Hamil-

tonianH into two partsH, andH/ ., we can determine two g(w)=— = Im[ x(@)] 17
separate contributions to the currdft). The first contribu- c Ng

tion comes fromH,,,

C. Transport properties

whereng~ e, is the background refractive index. The ap-
plied optical field

3= 55 {[Flo 2= 1T, 2IG= (L0}, (12

dw ) )
— _ ik(w)y—iot
which we evaluate in the energy representation E(r.t) ezf ZWE(w)e ' (18)
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which propagates in thg direction is included as a small ¥</"*{(E). From the change in the Green’s functions and
time-dependent perturbation to the Hamiltoniad:— A self-energies, and using Eq41)—(16), we obtain the change

+ 8V(t), where the perturbation in current density
. e . A 8J(w)=8Jo(w)+ SIyp(@) + 8dgcaf @), (25
W(rrt): - 2me(Z) [pA(rlt)+A(r!t) : p]+e¢(r:t): Wherég
(19
. 2e
with the momentum operatqs, andmy(2) is the spatially 0do(@) = 75 2 2 f [H0-Z]aﬁaGﬁ k(w,E)
dependent effective mass. The vector potentiét,t) and
scalar potentialp(r,t) are related to the optical field through +[8V,7] aﬁG;a (@,E), (26)
do &w) . .
A(rt)= | — —Lelk(@y-iotg 2e dE . .
(r.t) J 27 i © & 5J|v||=(w):ﬂ)§;g Ek: Z[HMFaZ]aﬁﬁe,Za,k(va)a
$(r,H=0, (20) @0
and

in the Coulomb gauge. A discussion of the use of different
gauges in this problem is given in Ref. 20. For the results
presented here, we apply the long-wavelength approxima- 6Jscad @)= —J 7 - 2 2 [6G, k(@ E)S30 M (E)
tion, in which we neglect the spatial variation of the optical
field across the structure. Hence, in this gauge, the perturba- +8G™ (w,E)3 Y (E)
tion is written in the energy representation as pr a8
+Gj, ((E+hw) 8339 (w,E)

eE ) P ef(w) - o
5V gl @)= (0)| P _ L[ O,Z]aﬁ +G:Be;k(E+ﬁw)5§,?§yk)(w,E)]Zyﬁ
Me(2) opB fiw
2y 3 S 2,300, E)GE)
The linear changes in the Green’'s functions and self- s
energies caused by the additional tefM(t) in the Hamil- + 63120 (w,E)GS, «(E)

tonian represent the linear response of the nonequilibrium +E<('B)(E+ﬁw)5Gad"k(w E)

stationary state to the applied optical field. These changes vy.K
may be written & ?;(lli)(E""ﬁw)&Gya (@,E)], (28

5G™(w,E)=G"™(E+%w)[6V(w)+ 62 (w,E)]G™(E) where the factor 2 is again from the spin index summation.
(22 From the change in current densij(w), we obtain the
polarization6P(w) =i 6J(w)/w induced in the material, and

6G*M w,E)=G*ME+%w)[ 8V (w) hence the complex susceptibility
+ 5Eadv(a), E)]Gadv(E), (23 5P(a)) i 8J(w)
x(w)= (29
and € E(w) 60 w&(w)’

5G<(,E)=G"™(E +# w) 6V (w)G=(E) and from Eq.(17) we obtain the gain coefficienf( ).

+GS(E+hw)éV(w)G*NME) lIl. APPLICATION TO QUANTUM CASCADE

+ G E+hw) 53 ,E)G=(E) STRUCTURES
We have applied the theory presented above to some ex-
+G(E+hw) 627 (w,E)G*YE) ample QCL structures reported in the literature. These struc-
+G (E+hw)d3* M w,E)G*NE). (24)  tures were grown in the GaAs/&ba _,As material system,
but this theory is also applicable to other material systems.
Note thatsG3(w,E) #[ 6G™(w,E)]". The expressions for The examples we consider are[A] the first
53 (E) take the same form as in Eqé)—(8) where the GaAs/AlLGa _,As QCL structuré! reported by Sirtoret al.,
functionsG(E) are replaced byG(E). For §32E), the  with x=0.33, and[B] a structuré reported by Paget al.
expression for 53®(E) is used with the replacement with a similar layer design to structufebut with a higher Al
8G=(E)— — 6G~(E) and 6G"®(E)— 6G*ME). 63~'™(E)  content in the barrierx=0.45, resulting in higher barriers.
must be evaluated self-consistently wilG~'"(E), and This QCL structure operates in pulsed mode at room tem-
therefore another iterative loop must be carried out, similaperature. The lasing transition in structur®sand B occurs
to the earlier procedure to determin€~'"{E) and between quantum well subbands. Other parameters for these
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TABLE Il. Parameters for example GaAsi8a_,As QC Structure A 77K 0.2 Viperiod
structuresx is the aluminium content in the barrier, is the 2D . (a)
carrier density in one period is the period length, anll, is the S 0.8
number of periods. 8
—. 0.6
Structure X ne (cm?) d (nm) N, ,6% 0.4k
©
A (Ref. 21 0.33 3.9< 10t 45.3 30 T 02k
B (Ref. 22 0.45 3.8<10% 45 36 -
%
T T
structures are summarized in Table Il. In this section, we = gl-® -
present and discuss results obtained for these structures. 8 6
)
A. Nonequilibrium stationary state '%54‘ T
In this subsection, we describe some of the information E oF -
about the nonequilibrium stationary state of a QC structure AS
under an applied bias that can be extracted from the Green’s 00— ' :

functions. In Fig. 2, we show some examples of the diagonal

0.2
E (eV)

0.4

elements of IMG™Y{E) ] for k=0 plotted as a function of the
energy parametet. Figure Za) shows two examples of this
function evaluated in the Wannier basis. These example3” ) .
were evaluated for structureat a bias of 0.2 V/period. Each States per period,Im[G,,(E)].
curve represents a Wannier state in one period of the QC
structure. The Wannier states are not energy eigenstates wke obtain the example curves shown in Figb)2 Each of
the system, and if a Wannier state is expressed as a linegifese curvesdiagonal elements of ING™Y(E)] for k=0 in
superposition of the energy eigenstates, the position of thghe Wannier-Stark basisepresents a Wannier-Stark state. In
peaks in, for instance, the curve labelee 3 represent the contrast to the curves shown in FigaRwith their compli-
energies of the eigenstates which comprise this superpostated structure of peaks, each curve in the Wannier-Stark
tion. _ ) _ basis consists of a single, broadened peak. This indicates that
Itis possible also to express the Green's functions in they thjs bias, the Wannier-Stark states approximate closely the
WanmeAr-Stark basis. From the diagonalization of the Hamily, e energy eigenstates of the system. The positions of these
tonian H, expressed in the Wannier basis we obtain thepeaksE; are shifted downwards by around 10 to 15 meV in
transformafion matrix between the Wannier and Wannierzomparison to the eigenenergies obtained from the diagonal-
Stark basis” Applying this transformation matrix t&'*(E) ization of I:|0. This shift represents the renormalization of

the Wannier-Stark energy levels due to the scattering pro-

FIG. 3. (a) Examples of density of statéper period in Wannier
bbands: IfG'®{(E)]=23,Im[G" ,(E)]. (b) Total density of

vy, k

Structure A 77 K 0.2 V/period . ~ .

_ 60 @ T — cesses described g The_broadenlng of the peaks glso

s ) originates from these scattering processes, and the width of
e 40 v the peaks gives a measure of the decaylratef these levels

m __ 2 due to scattering. In particular, we take=AEg,,y,, Where

vif » ] AEg,nm IS the full width at half maximum of the single peak
3 £20F nl s y in the function INIG{f\_o(E)], in the Wannier-Stark basis.

% ,u,’ N \ ) In Sec. Il C, we will use this information to analyze the gain
o /] = spectra obtained from the NGF theory.

100 ) T T The curves in Fig. 2 were evaluated fo=0. If in;tead

S gok , i we integrate over Fhe in-plane wave veckprwe obtain the

s B curves shown in Fig. (8. These staircaselike curves are the
= 60 i . density of stateDOS) in two example Wannier subbands
‘1‘3'40_ .i'.\ ] (the two Wannier states considered in Figa)2are thek
‘aédz— 1 =0 states in these subband$he onset of each step in the
‘= 201 oy staircase corresponds to the position of each peak in the cor-
- 5.7 . responding curve in Fig.(3). If we carried out thek integral

805 0.05 0.1

in the Wannier-Stark basis, we would obtain a single step
instead of a staircaselike structure, corresponding to the
single peak(for a given curve seen in Fig. th). If we sum

the DOS curves for all Wannier subbands within a period, we
obtain Fig. 3b), which is the total DOS per period of the

FIG. 2. Examples of the diagonal eIements[@r‘ﬁf’k:O(E)] in
one period of structuré with an applied voltage of 0.2 V/period.
(a) Wannier basis(b) Wannier-Stark basis.
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FIG. 4. (a) n(E), normalized population per period for different because of the higher barrier heightsBnThe separate cur-
applied voltages(b) f(E), distribution function in one period at rent contributionsl, andJgcqit Jyr from Eqgs.(13)—(16) are
0.26 V/period. The thin vertical line marks the position of the also shown. In both the structures, the main contribution is
conduction-band offset between the tiiirst) well in the active  from Jg..(Jwr is Negligible in comparison witlg..). This
region in this period, and the thick barrier separating this well fromfinding is in contrast to the behavior in simple superlattice
the preceding period. The bottom of this well is at around 0 eV. Thestrctures where the dominant contribution to the current is
peak at around 0._2 eV corr_espono_ls to a population inversion in thﬁ'om J,. This difference could perhaps be explained by the
upper laser level in the active region. far greater number of subbands within one period of a QC

structure. The result in Fig.(B) is basis independent if we structure@n comparison to one period of a simple symmetric
superlattice structuye in which the envelope functions

sum over contributions from all basis states within the en- . . . .

ergy range shown ¥,(2) are spatially displaced across the period. This opens

We consider no'w the lesser correlation functidn (E) up the possibility for many more scattering transitions which

At equal times, G= (t)—i(éT ()2 (t))—i(ﬁ (M) facilitates the transport of carriers across the structure
' - vk vk - vk )

. _ vrk\E ) through scattering processes. Compark@nd B, we see
where(n,(t)) is the occupation of a statein subbandv. I h4¢ 5 s almost identical for both structures. The current

we move into the energy representation, and sum over th\ﬂascanin B is around half that i\ so that the reduction in total

cont_rlbutlons from_aII states in aII<subbands in a pt_erlod, We. irrent in B compared toA arises from a decrease in the
obtain the populatiom(E) =2%,, G, ((E) as a function of dri by th ) iitoni
energy within the period. Figure(@ shows the normalized transport driven by the scattering Ham'.tonlb‘@"atF'
population per period per unit energy for several applied To compare t.he theoretical resullts Wlth experimental data
voltages. Dividing these curves by the total DOS curves for€Ported in the literature, we show in Fig. 6 the resultsAor
the corresponding bias gives the distribution function as &ndB plotted against similar scales as the experimental plots
function of energy, i.e., shown in Fig. 3 in Ref. 21, and Fig. 4 in Ref. 22. Comparing
the results for structurd with the data given in Ref. 21, we

see the voltage trend in both curves agree well. In the theory,

<
% G.k(E) the voltage tends to be lower for a given current than in the
f(E)= . (30 experiment, but this may be accounted for by an additional
22 Im[G"™ (E)] series resistance in the cladding layers. For strudBjree
vk ’

see again that the voltage trends agree well with the data

The distribution function at 0.26 V/period in structure A is shown in Ref. 2. In particulqr, when c;omparing the trends at
shown in Fig. 4b). In this curve, the jagged points between different temperatures, we find that in both the theory and
0 and 0.2 eV are LO-phonon ’replicas and the onset of xperiment the current is higher for a given voltage at the

small population inversion at around 0.2 eV is also seen. igher temperature. In both theory and experiment, ihe
curves at both temperatures converge at a certain current

density. Unlike the experiment, the two curves do not cross
at the point of convergence in the theory, but diverge beyond
We consider now the transport properties of the QC structhis point. The theoretical curves reproduce the sharp break
tures described above. Figure 5 shows a plot of current derin the voltage trend at around 23 kA/éras seen in the ex-
sity against V/period, calculated from Eg4.1)—(16). The  periment, and the theory shows that this break corresponds to
current density for structurB is reduced below structur®  the onset of a region of negative differential resistivity

B. Transport
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FIG. 6. Current-voltage characteristic for comparison with ex-
perimental data for structurédsandB (see text for referencigsThe FIG. 7. Wave functiongmod. squaredof the injector leveli
alignment of the injector level and upper laser level at the positiongsolid line) and upper laser level (dashed lingin structureB for
marked with arrows ir(b) is shown in Fig. 7. different applied bias at 77 K. The energetic positions show the

. licitlv in th ) | alignment of these levels. Parta)—(c) correspond to each of the
(NDR). NDR is not seen explicitly in the experimental data voltages marked with arrows in Fig(l§. The percentage of popu-

in Ref. 22 because of an artifact of the measuremenfyiion in each level is also showrE is the energy separation

systent* between the two levels.

The break in the voltage trend is attributedy Page
et al. to the breaking of the level alignment in the injeCtor presence of electrons with higher-energy |eaking into con-
region and the active region causing an interruption in th@jnyum states, and maintaining the current flow. In the theo-
current flow. To verify this, we show the wave functions andretical results, shown in Fig.(), there is a small increase in
alignment of the injector level and upper laser level (in  cyrrent at 233 K, but it is difficult to make a quantitative
the Wannier-Stark bas$ at 77 K, for different applied volt-  comparison with the experimental data because of the uncer-
ages, in Fig. 7. Figures(@—(c) correspond to the voltages tainty in the experimental data in the NDR regiriigure 8
markeda, b, andc in Fig. 6b). Figure &b) shows that as the shows the electron distribution functiofi¢E) at 77 K and
voltage increases from 10V, the current-voltage characteri33 K, in one period of the structure at 14.4 V, i.e., just
tic passes through a peak at 13 V, and then beyond this poieyond the peak in the |-V characteristic in Figb)6 The

the current decreases to a minimum at around 16.5 V. Comhin horizontal line marks the conduction-band offset or bar-
paring this behavior with Fig. 7, we see that the change in

voltage, and the behavior of the I-V characteristic, is accom- - T
panied by a shift in the position of levélfrom below to 08l ?glﬂ;”e B —e i
above levelu. Level i passes through the resonance with ' -- 233K
level u which causes the peak in the |-V characteristic seen

at 13 V. The population percentage in these levels is alsc g
shown in Fig. 7, and we see that away from the resonance%J
position, ~50% of the population is in the injector level,

with only ~10% in the upper laser level. Close to resonance, 2 0.4} } .

o]

JeVE aitS o N conduction band offset
however, we see that the population is more evenly dIS'[I’Ib-qCJ BN
uted between the two levels, witlr30% in the injector e
level, and 20% in the upper laser level. The wave functions 0.2} ———— s

in the near-resonance cad® are less well-localized than in
the off-resonance casés and(c), and tend to spread across
both the injector and active region. This increases the overlay 0 : 0'602 0_604 : 0.0|06
of the two wave functions and facilitates the transfer of car- f(E), dist. func.
riers between the injector and active region.

In the experimental data at 233 K, the break in the voltage FIG. 8. Electron distribution function&(E) at 77 K and 233 K
trend is less pronounced, and this was attribtfted the  in one period of structur® at 14.4 V.
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FIG. 10. Comparison af(w) andg,(w), with different applied
bias, for structuré\. a: solid lines, b: dashed lines, c: dotted lines, d:
dot-dashed lines, e: dot—double-dashed lines.

rier height. The peak in the distributions at around 0.2 eV | ) , . )
corresponds to the population inversion in the upper lase§VeS rise to gain curves which are offset to higher values
level. The population inversion at 233 K is about a third less\I-€-» absorption is reduced and gain is increagedompari-
than that at 77 K. In the high-energy tails, the distribution jsSON {0 the more rigorous theory. _
slightly larger at 233 K than at 77 K. The difference in the To determine the origin of the different features in the

distribution functions is not large, however, and although thisSPECtra, we consider a different approach for evaluating the
difference may result in more electron leakage into the cond@n coefficient. In this approach, we transform the Green’s

tinuum at 233 K, it is not clear at this point if this is a functions G~ obtained in the Wannier basis to the
sufficiently large effect to elucidate the experimental resultsYvannier-Stark basis Gys”) as described earlier in Sec.

Il A. From the diagonal elements @s;;, we obtain the
populationsn; of the Wannier-Stark levels, and from the po-
sitions and widths of the single peaks in ﬂ{,‘f,‘sii 1, we

In this section, we apply the theory described in Sec. Il Doptain the Wannier-Stark level energiés,, for k=0, and
to structure A. We distinguish here between the gain coeffithe corresponding decay ratel,. We treat each pair of
cient g(w) evaluated using’J(w) from Eq. (25), and the  \annijer-Stark subbands in a simple two-band model, in

gain coefficient go(w) which is evaluated neglecting which the optical response due to subbandsdj is given
dJscaf ) in Eqg. (25, and neglecting terms containing py,°

53~VaVin 5G=(w,E) [Eq. (24)]. Hence,g,(w) does not

depend on changes in the self-energies, and it is simpler to 20

evaluate since its evaluation does not require a further selfim[ xij(w)]= Py > 1di |2 k=i 0 8(hw+E; —Ej i),

consistent calculation. or K (31)
In Fig. 9, we show the gain coefficieg{ w) calculated

with the NGF theory for different applied voltages, between\,\,heredij =efdzy(2) z #;(2) is the dipole matrix element

0t00.2 V/perio_d. With zero applied bias, there is a broachetween the Wannier-Stark functions(z) and #i(2), and

absorption ranging from around 120 to 140 meV. As thef, , andf,  are the nonequilibrium distribution functions in

applied voltage increases, the absorption gradually decreasggphands andj. The factor 2 comes from summing over the

in this range. There is a corresponding slow increase in abspin index. Assuming parabolic bands and replacing &he

sorption between around 80 to 100 meV. At around 0.1&nction with a Lorentzian to model the broadening of the
Vliperiod, a positive gain begins to appear in the range 120 t@yels we obtain

140 meV, and this gain increases further as the voltage is
further increased. These results were obtained in the Wannier
basis and as stated in Sec. Il A, there is a problem in inter-
preting the origin of the different features in the spectra be-
cause these cannot be related to transitions between Wannier
states. Later in this section, we discuss a way round thigith the Lorentzian Lij(w)=(Fij/2w)/[(hw—AEji)2
problem by considering a transformation to Wannier-Stark+(I‘ij/2)2], whereT';;=T'j+1T';, and AE; =E;—E; (these
states. parameters are defined in Sec. lll.A; (n;) is the 2D carrier

Before this we compare the results obtained dgiw) density in subband (j). In Eqg.(32), the contributions from
from the more rigorous NGF theory, with the gaig(w) all transitions withE;>E; are included. Using Eq32) with
which is calculated neglecting terms frofd...,. This com-  Eq.(17) gives us an estimate of the gain coefficigpig »)
parison is shown in Fig. 10. We see that the simpler theoryvithin the Wannier-Stark picture.

FIG. 9. Gain and absorption spectgéw) for structureA with
different applied voltages, calculated with the NGF theory.

C. Gain and absorption spectra

lm[x<w>]=601d S (4fn-n)Lyw), (@2

(E;>E))
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FIG. 11. Comparison ofj(w) and gyws(w), with different ap- FIG. 12. Gain spectrgys(w) evaluated in Wannier-Stark basis

plied bias, for structuré\. a: dashed lines, b: dotted lines, c: solid for structureA.

lines, d: dot-dashed lines. ) ) ] )
0.11 eV. Simultaneously, gain appears and increases in the

Disadvantages of this simpler approach, compared to theange 0.11 to 0.16 eV. The gain peak shifts to higher energies
approach described in Sec. I D, are, firstly, that the Wannieras the voltage increases.
Stark levels become increasingly delocalized at low bias and To explain these features, we consider the curve at 0.2
an increasingly large number of basis states must be used Ygperiod in Fig. 12. In Fig. 13, we show the main Wannier-
obtain a good approximation to the energy eigenstates as tf8tark energy levels involved in the transitions which give
applied voltage decreases. Thus, this approach becomes iise to the absorption and gain features seen at this bias.
practicable to apply at low bias. In addition, the function From an inspection of the transitions contributing to the sum
Im[G™Y(E)] is not always a simple Lorentzian as seen inin Eq. (32), we find as expected that the gain feature origi-
Fig. 2(b) for each Wannier-Stark level, but may, for some nates mainly from the transitiotmarkedB in the figure
levels, have additional peaks or shoulders indicating thabetween the upper laser lewgdbeled 2 and the lower laser
these levels do not approximate well a single eigenstate devel (1). There is also some contribution to the gain from
the system but are superpositions of the eigenstates. Thigansitions between an injector lew®) and the lower laser
behavior occurs mainly at low bias, but can also occur whenevel (1), and between other injector levels and the upper or
two Wannier-Stark levels are very close in energy whichlower laser levelnot shown. The absorption feature below
gives a double-peaked structure td B°{E)], e.g., for the 0.1 eV is due mainly to transitionsnarkedA in the figure
two levels in panelb) in Fig. 7. In these cases, it is not from the upper laser leveP) to levels in the continuuni3
possible to use this simple model to estimate the gain. Anand 3), with additional contributions also from transitions
other drawback of this model is that by only making use ofbetween injector levels. The relative population in each level
the diagonal elements of the Green's functioBg,s;; and s also shown in the figure, and levels 2 arichave a greater
Glysii » Wwe have discarded information on quantum effectsfraction of the population compared to levels 1, 3, arid 3

that are contained in the offdiagonal elements. This supports the attribution of gain to transitiBnand ab-
In Fig. 11, we compare the gain coefficigy(iw) from the  sorption to transitior\. The largest fraction of the population
NGF theory with the gain coefficienyy,w) from the ~70% is in the lowest injector levéhot shown in the fig-

simple model in the Wannier-Stark basis. Spectra are showare). Level 0 contains around 2% of the population.
for a bias of 0.12-0.2 V/period. We find that the simpler

model reproduces well the main features of the NGF theory. ~ 04F[[['[l . = = § = StuctreA 77K
As in the previous figure, we see that for the simpler theory I 0.2 V/period
in Fig. 11, the gain curves are again offset to higher values !\ rel. pop. (%)
compared to the more rigorous theory. Rl IR ATATHY NG 0.5 37

We consider now the origin of the different features in the } ! fA 07 3]
spectra. This can be most simply understood if we look at the 245 AU 7 2
gain spectra obtained in the Wannier-Stark basis. For clarity, w ™ T 14 2
only these spectra are shown again in Fig. 12, and for a wider r B 1
bias range, 0.1 to 0.22 V/period, than seen in Fig. 11. These 0.1 ~ 4
spectra contain transitions between all possible pairs of lev- J 1.2 1
els with energy separatioAE;; in the energy range shown [ U Y N 0]
on thex axis. At the lowest bias shown, i.e., 0.1 V/period, we o——r ! LD,

) . -40 -20 0 20 40 60

see that the structure is almost transparent with only a very position (nm)

small absorption for the energy range shown. As the applied
voltage increases, absorption increases in the range 0.08 to FIG. 13. Wannier-Stark levels in structufeat 0.2 V/period.
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FIG. 14. Contributions of individual transitionghin lines to FIG. 15. Gain curvegys(w) at 77 K for structures, for dif-

gain curvegy,s(w) (thick line) at 0.22 V/period for structura. ferent applied voltages. Thin solid line with symbols is at 233 K.

When we consider the relative populations in these levelsround the peak of the |-V characteristic shown in Fitp).6
for different applied voltage@n the range 0.1-0.22 V/period The gain feature increases as the applied voltage or current
as shown in Fig. 12 we find that the population in the lower density increases, reaching a maximum around the peak of
laser level remains at around 1% at all voltages. The poputhe |-V characteristic, and then decreases beyond this point.
lation in the upper laser level, however, changes from around similar behavior is also seen at 233 K except that the gain
0.2% at 0.1 V/period to over 10% at 0.22 V/period. Hence,is reduced at the higher temperature. For comparison, a gain
there is a transition to a population inversion between theurve calculated at 233 K, at the peak current density
two levels as the bias increases. The population in level @2 kAcm 2, is also shown in Fig. 15. The gain feature in
ranges from around 20% at 0.1 V/period to around 2 to 3%his curve is much smaller than the gain feature in the corre-
above 0.16 V/period. The largest proportion of the populasponding curveat 22 kAcm ) at 77 K. Hence, the behav-
tion remains in the injector region, particularly in the lowestior of the calculated gain curves correlate well with the light
injector level which forms a reservoir of around 60 to 70% of output vs current density curves measured in the experiment.
the carriers at all applied voltages.

We also note here that the broad gain or absorption fea-
tures seen in Fig. 12 are not due to transitions between a

singlgpair of levels but gontgin contributions from_many We have applied an NGF theory to obtain a description of
transitions. For example, in Fig. 14, we show the differentine nonequilibrium stationary state of QC structures under an
Lorentzian contributionsthin lines to the gain curvethick  gpplied bias. Using this information, we evaluate the current-
line) at 0.22 V/period. Although the main contribution to the \gjtage characteristic of example QC structures reported in
absorption featuréthin line labeledA) originates from the  the |iterature. The theoretical results are quantitatively close
upper laser level—continuum transition, and the main contriyg experimental I-V data, and reproduce well the trends seen
bution to the gain featuréhin line labeledB) arises from i, the data. In addition, we determine two contributions to

the upper—lower laser level transition, there is also a substaqﬁe current density. The first contributidy is driven byF

t'f"‘.l contrlbutl_on from othel(energetlcally neighboring tran- &vhich is the Hamiltonian for the superlattice potential with
sitions. The figure also shows that the inhomogeneous broad-

ening due to the contributions from different transitions, and""pPIIGd bias. The other contributial ,yis driven byHscay
the broadening due to scattering, observed in the linewidth of- Hye which describes the scattering processes in the struc-
each individual Lorentzian, are comparable in size. At higheture. We find that, in contrast to simple superlattice struc-
applied bias the number of contributing transitions decreasesyres,J. . is the main contribution to the current in the QC
e.g., at 0.3 V/period, the contributions to the gain featurestructures we consider.
come mainly from only two transitions. In addition, we have extended the theory to determine the
Finally, in the last set of results, we consider structBre linear response of the nonequilibrium stationary state of
Experimental data showing the light output vs current denthese structures to a small applied optical perturbation. This
sity is shown in Fig. 4 of Ref. 22. At 77 K, the light output is enables us to evaluate the linear susceptibility and hence the
seen to increase with increasing current density until itgain or absorption spectra of the structure. We compare the
reaches a maximum at around 22 kAct corresponding to  spectra obtained using a more rigorous NGF theory in which
the peak in the |-V characteristic seen in Figh)6The light  the change$G, 63, and 8J..,;due to the optical perturba-
output goes to zero for higher current densities. A similartion are considered, to simpler models in whichonly §G
behavior is seen at 233 K but with a much reduced lightis considered, ofii) by summing over transitions in a simple
output. Figure 15 shows the gain coefficieni{ w) calcu-  two-band model(summing over different pairs of bands
lated at 77 K for structurdd at different applied voltages with Lorentzian broadened levels. We find that the simpler

IV. CONCLUSION
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models result in spectra which are offset to higher valuegor the envelope functiong(z). The spatially dependent su-
than in the more rigorous theory. We have also made a deperlattice potentiaM(z) and the effective masm(z) are
tailed analysis of the origin of the different gain and absorp-assumed constant in each semiconductor layer, V.€z)
tion features in the spectra, and of the redistribution of popu=V, and m,(z)=m, in the barriers, andv(z)=0 and
lation within the Wannier-Stark levels as the applied voltagem,(z) =m,, in the wells. EquatiorfAl) can be solved with a
changes. The gain and absorption features correlate well witthansfer matrix methodfor a textbook discussion see, e.g.,
the distribution of population within these levels, which is Ref. 25. In this approach, the envelope function in a semi-
determined from the NGF theory. conductor layej is written as

ACKNOWLEDGMENTS Yi(2)=Ae BB B BT, (A2)
The authors thank the Deutsche Forschungsgemeinsché(_i’{"\/eﬂlﬂS the position of interfacg, and k;(E)
for financial support through Grant No. FOR394. Discus-_ V2Mj(E=V;)/A with m; andV; the mass and potential in
sions with A. Amann, H. Page, J. Schlesner, and M. Woernefhat layer. Applying continuity conditions

are gratefully acknowledged. U=, (A3)
APPENDIX A 1dy; 1 dygj,
—_— = (A4)
The construction of the Wannier function basis used in the mp dz mj; dz

calculations is described in this appendix. As the first stepat the interfacg + 1, gives
we solve the one-dimensional Sctinger equation

Aj+1 AJ'
,}_LZ d2 Bj+l :Mj(E) Bj ’ (AS)
- —+V(z z)=Ey(2), Al
22 4 (2) |p(2)=E(2) (A1) with
<1+ mj;lkj>eikj(zj+l-zj) (1_’“1;_1'9’) e iki(z 117
1 m-k. miK;

MJ(E)=§ J J+kl J Hkl 6

(1_ mj+1 J)eikj(zj+1zj) 1+ M) e ikj(zj+1-2)

mM;iK; 41 mMiKj 41

If a single periodd of the structure contains! semiconduc- (nine) minibands below the conduction-band offset. For the

tor layers, the Bloch conditiog,(z+ d)=e'qdzpq(z) implies  calculations here, we included one miniband above the con-
tinuum, so the band index runs from 1 to 9(10) for struc-

Ar) _ iga[ A1 ture A (B).

B, —€ B,/ (A7) In the following step, we construct the Wannier functions
(associated with miniband)

AM+1
BM+1

M
J-11 a8
j=1

For a given value ofy, only certain values oE allow the

solution of Eq.(A7), and this defines the miniband structure W d [w/d nad

E”(q). For eachq value, we determin&”(q) numerically i, (z—nd)= Zf_ /ddqe M%a(2) (A8)

by looking for the zeroes of the determinant of the matrix i

productH}\":le(E). These zeroes were found by steppingfrom a superposition of the Bloch functions in miniband
through the energ¥, and comparing the signs of the deter- The Wannier functions constructed by this superposition are
minant for two consecutive values &f (separated bYAE). not unique, and can be very different depending on the phase
When these signs are opposite this sets the first coarse braai- the Bloch functions which can be chosen arbitrarily for
eting of the zero position. This position is then further re-each value of. Ideally, we would like the Wannier functions
fined by halving this interval and successive intervals up to do be as spatially localized as possible to reduce the interac-
hundred times, while comparing the determinant signs of théion matrix elements between Wannier functions in different
interval endpoints at each iteration. OnE&(q) is deter- periods. As a first step to construct Wannier functions with
mined, we can also obtaiA”(g)=A; andB”(q)=B,, and this property, we first fix the phase of the Bloch functions
the Bloch functions/q(z), from Egs.(A2), (A5), and(A7). such that these functions are real at some arbitrary position
In the calculations reported herg’(q) was evaluated for Xs. Different values ofxs can be tested, and the resulting
500 q points for each miniband, antlE was set to 5 meV. Wannier functions checked to see if they are fairly well-
The Bloch functions were evaluated on a position grid withlocalized, e.g., within one period of the structure. We then
1500 points per period. In structufe (B), there are eight express the position operatpiin the basis made up of this
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initial set of Wannier functions. Finally, we diagonalize the The integral over momentuk’ has been transformed to an

resulting matrix representation af and the resulting eigen- integral over energyE,,, and the density of statep,
functions give us the required set of Wannier functions asso=Me/(7#?). In the last line of Eq.(B2) we assume the
ciated with a given miniband. This process is repeated fomatrix elemen¥ ,z(k,k") is slowly varying compared to the
each miniband. Green’s function term and can be taken out of the integral. It
The Wannier states associated with a given miniband aris evaluated at fixed momenkg,, andky,,, and the choice of
degenerate, and their energy expectation values lie at thibese momenta is described below.
center of the miniband. Their wave functions are spatially From a comparison of the factors outside the integral, in
displaced from each other, with a separation given by théhe last line of Eq(B2), with a scattering or transition prob-
period of the structure, i.e., there is one Wannier state in eachbility rate derived from Fermi's golden rule we can detfhe
period of the structure. To set up the matrix representation o# fictitious scattering ratén energy units

z for a given miniband, we use Wannier states in 11 neigh-
boring periods. The large number of periods used in this P
. . . . _ (o] ’ 2
construction is necessary to improve the numerical accuracy YaB_T[|VaB(ktyp!ktyp)| 1o- (B3)
of the result.
In the transport and gain calculations, however, we con-

sider only couplings and matrix elements between WannieYVith this definition we can rewrite Eq$B1) and(B2) as
functions in the same period, and nearest-neighbor periods.
Hence, the matrices representing the Green’s functions and

self-energies are constructed with 27 basis stéftesstruc- > IVop(k,kK)*HG.F.}= ;aﬁf dE{G.F.}. (B4
ture A) from three periods. k' ™
APPENDIX B Estimates ofy for different scattering processes are given in
Table I.

This appendix describes in more detail the evaluation of Ag stated after Eq(8), and earlier in this appendix, we
the self-energies an_d scatteri_ng matrix glements in @8)s.  eyaluate the scattering matrix elememgzg"”’m“gh”mtk,k’)
(8). The self-ene,rglzes contain summa}tlons oké.rof thg using fixed moment,,, and kt'yp (with the corresponding
Sg;ezr‘;t’ |r\éﬁ(eks'ekn'ziLéGiﬁtFér}fz;IY:ge:stj/gﬁr:Zsasg?rzslrjlﬁt;nf:l); hcenergiesEy, andEy,) to accelerate the numerical computa-
non scattering, andG.F.} represents a éreen’s fL;nctionOtlon' Tq fix Etypi we consider the energy dependeng:e of the
' _ scattering matrix elements. For LO-phonon scattering, there

e et oo s, 2 Dhbnom oo fact, & eneay resod for phonon emisson because of n
tor. Taking the summation to the continuous limit leads to ergy conservation and the fixed phonon enefy,. The

scattering matrix element is maximum at the emission
threshold, and decreases monotonically with increasing en-
2 |VaB(k!k,)|2{G'F'} ergy above this threshold. To obtain an estimate of the scat-
K’ tering matrix element, which lies between the higher values
. . near threshold, and the lower values far above threshold, we
f dk’k’f d0|Vaﬁ(k,k’ ,0)|2(G.F.}. setE,,, one LO-phon/on energy above the LO-phonon thresh-
0 0 old. We then fix Ey,=Ey,+AE,;—E o, Where AE,g4

(B1) =[Holaa—[Holgs (see Fig. 16 To test the sensitivity of

the results to the value chosen 8,, we have carried out

We carry out the angle integration assuming the Green'suns with other values d,,, €.g., at threshold; E, o above
function term does not depend on the angle, and defining thgrreshold, and B, above threshold. The calculated current
angle-integrated quantityf(k’)],=f57dof(k’,6) we ob-  density changes by at most9% (at some bias points with
tain Eyp at thresholdbut in most cases the change is around 5%
or much lesg1-29%. This tends to support the assumption

(2m)?

E IV, (k. k')|2(G.F .} that, for the LO-phonon process, the results are not very
o api ™ o sensitive to the specific value &,. For impurity and in-
terface roughness scattering, we d4gf,=15 meV, and
A o= EwpT AE,s. Test runs were also carried out f&
= f dk’k’[|Vaﬁ(k,k’)|2]0{G.F.} typ~ Styp ap- L 1By,
(2m)? =1, 7, and 30 meV. The results are more sensitive to the

value of Ey,. For Ey,=7 and 30 meV, the calculated cur-
_ A EJ AE[|Vos(k, k)21 AG.F.} rent density changed by at most 15%. Egj,=1 meV, near
(2m2 p2) TR A the bottom of the subband, the difference was much larger,
14 ranging from 10 to 50%. The valugy,=15 meV was cho-
= ﬁuvaﬁ(kt ki )|2]*’J dE{G.F.}. sen as a value that lies near the center of the distributions in
2w 2 YprToP each subband, to give an estimate of the average scattering
(B2) matrix element.
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Aqus >Ep >0 1. Interface roughness and impurity scattering

To derive matrix elements for interface roughness scatter-
ing we consider an interfagdocated atz= z; with thickness
fluctuationsé;(r) of the order of one monolayer. We assume
correlation functions for the fluctuations given by

(&(r))=0, (B7)

<§j(r)§j’(r,)>: 5j,jr7(|r—r’|)

with f(r)= nzexp( - %) (B8)

7 denotes the root-mean-square of the roughness height and
\ is a typical island size. Correlations between neighboring
interfaces are neglected. The angle brackassstated after
Eq. (6)] denote an average over different distributions of
thickness fluctuations.

The Hamiltonian for interface roughness scattering is
written as

FIG. 16. Examples oE,, and Ey, selection.(@) LO-phonon

a _ rough At 2
scattering for the casAE,z=E >0 (requiresE,,=0). Similar Hiough= kz’; [Vian(P)an . (K+p)a, (k) +H.c],
figures can be drawn for the casEgo>AE,z>0 (requiresE, mu,nv
=E o~ AE,p), andAE, ;<0 (requiresEy,=|AE, 4|+ E ). For (B9)
all three casesE,=Ey,+AE,;z—E_o. (b) interface roughness

i i i >0. . .
and impurity scattering foAE,, ;>0 with the matrix element

With the momenta fixed, the scattering matrix elements
can be taken outside the integrals in E(®—(8), and the 1 _
;eﬁlz—en((gg)iias depend only on integrals of the fgam shown V[ﬁ;?r']‘v(p)z 2 KJ dzre—lp-rgj(r)AEct//::(Zj —md)
in EQ.

X,(z;—nd), (B10)

Gra(E)= f dE Gu i (E), (B5)
0 whereAE. is the band offset.
Within the self-consistent Born approximation, the self-
and energy contribution from interface roughness scattering is
written as

Im[Gja(E)]zfxdEk/lm[G;'k,(E)]. (B6)
’ SLeE)= 3 (VK
BB' k'

heyo )
XV k' —K))G g W (E).  (B1D)

Note that the diagonal elements®f are pure imaginary. A
problem arises in evaluatinG'*.(E) when a momentum-
independent scattering matrix element is used because this
leads to a divergence in the integrallgs — . To deal with

this problem, a cutoff energy for the upper limit of the inte- 1 S quation is more general than E@) since it includes

gral is used in the numerical integration. The following sub-t€ offdiagonal<(i(())urgaributigns. Now we assume that the diag-
sections give more detail concerning the evaluation of thé@nal parts ofG4;, ;' dominate, and we keep only the terms
matrix elements for the different scattering processe®, B=p3' in the summation. Then we obtain for the matrix

also, Refs. 12, 27, 28 element term
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(V= p)Viedp)) ough vt (AEg)27? 1 )
<Vm;.L,nV(_ p)Vny,mp,(p)>: AE 3/2F%7n
:<V:T?f,32 e p)VLOVu?nr12#2 p)> PoAEN (1+ Ep/E)\)
=FE B14
E d’ry e rig(ry) with  Ey=A%2m\?  and  Ep=#h2p?2m=E,+E,
—2\EEy cosh, where 6 is the angle betweek andk’.
% lﬁzl(zj'—mld)%(zj'—nd) The subscript 1 from the indices; and u is dropped for

simplicity. Substituting this latter result in EqB11) gives
, Eg. (6) which contains only the diagonal terms in the self-
x> f d?rp e P T2g (1) ¢ (z—nd) i, (7 — myd) energy and the Green’s function. We now follow the proce-
! dure outlined in Eqs(B1)—(B2) and take the summation
overk’ in Eq. (6) to the continuous limit. We observe that
f dzrlj d?r,eP (=2 (|r, —ry)) both the self-energy and the Green’s function depend only on
E, andE,/, but not on the angl®. Hence, as shown in Eq.
(B2), the angle integration over the matrix element can be

_(AE?

XE o, (zi— myd)| 4, (z; —nd)|? W,.,(Zj—myd) carried out analytically, and we define the angle-integrated
quantity (Ref. 29, 2.575
2
=@j dre® () (VIS (k—K')[2)],
AZ

2m
= d 07( Ek+ Ekl -2 \ EkEkI COS¢9)
x; g (2= myd)| ¢, (2= nd) 24, (7~ mad), 0

_(AE )2 5P 2b
(B12) AE o \/_
p +b
where we have expanded the general indiegs a,, 8 in o T(a=b)Va
terms of the period and Wannier level indidsee after Eq. (B1Y

(4)], and definecp=k’ —k. Because of the orthogonality of i,
the wave functions, and because the wave functions extend

over many interfaces, the sum ovgetends to vanish for Ey+Ey VE(Eyr
my;#m, and w,# u,. This suggests replacing this term in a=1+ E b=2 £ (B16)
the last line withF:'" &, 1 5, , where : .
! 1t E(x) is the complete elliptic integral of the second kind
which is of order w/2=E(0)>E(X)>E(1)=1 (Ref. 30,
Fpi'=2 |¢Zl(2j—hd)|2|l/fv(2j)|2- (B13)  17.3. Therefore we seE(x)~ /2, and fixingEy=E,, and
! Ew=Eypt+AE,;z as described earlier, we define the ficti-
Applying Eq. (B8) we obtain tious interface roughness scattering ratsing Eq.(B3)]
|
rough W(AEC)ZWZ\/E—AF#]Zn
Y(m=n),ur™ (B17)

[E,+ (VEqp— VEgpt AE ) 2] VE, + (VEy,+ VEyy+ AE, )2

Impurity scattering is mediated through tti@D) Cou-  The parametelygg’rJ (see Table)lis estimated from calcula-
lomb interactionV~ 1/g°~ 1/[k—k’|?. Neglecting the angle- tions of impurity scattering in simple superlattice
dependent term givep/|>~1/(E,+Eg)® Fixing Ex=E,,  structures’
andE,, = Ey,,+AE,; as before, and neglecting factors of 2,
we obtain an order-of-magnitude estimate of the impurity 2 LO

. . LO-phonon
scattering rate
To derive the electron—LO-phonon scattering matrix ele-

ment we start from the interaction Hamiltontan

2
[ azlvz@uso
R ey o= Ta(Qle” B¢ el (819
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with [([Vias(kk)I?T
2m * |Ma (q )|2
& hog( 1 1\]" =cJ dGJ da, e
a(Q)= D e o (B20) 0 —= Q2+ k?+k'2—2kk' cosd
Es s
*© |Maﬂ(qz)|2
Q=(q,q,) is the 3D phonon wave vector with the 2D in- =2mC %qu\/ 2 2. 22 2
plane componeny and the componery, in the growth di- (gz+k*+k'%)"—4k’k
rection. Similarly, the 3D position vect®= (r,z). b} (bo) C (= IM,5(9,)]?
is the phonon creatiofannihilation operator,z w,,=E, is =— dag, > > )
the LO-phonon energy, and is the crystal volumee,, and Po’ == \/ heq;
€, are the high-frequency and static absolute permittivities. om tEHEe | —4BRE
The matrix element (B24)
Ve —(alfy = ia(0)(ale ' BL— ey A), whereC=E,e’[n(wp) + 3+ 3]/(4mepA).
h (alHiol£) % (Q)(d Q ol Using this result in Eq(B3), and fixing the energiek,
(B21)  =E,, andE, =E,, as described earlier, we can define the
scattering rate
is written with initial and final state$) and|«), given by g
1 1] E€? (=
18)=1V 5(r,2))|n(wi)), y';’ﬁ: N(w)+=*—= © f da,
2 2)8mey)
|a>:|‘Pk’,a(raz)>|n(wlo)i1>' y |Maﬁ(QZ)|2

The ket containingn(wy,) is a phonon number state. The h2q2 2
upper (lowen sign in the ket|n(w,)*=1) corresponds to —— +EyptEyp| —4EypEqyp
phonon emissiorfabsorption. The ket containingV gives 2m

the electron state, and the electron wave function (B25)
Wy 5(r,2)=A"Y2* "y 4(2). Evaluating Eq(B21) leads to

o 12 A 5 3. Acoustic phonon
[Vag(k.k")[*=|(alHi| 8)] : N
The phonons are implemented as an artificial optical pho-

=E Q)| n(wp) + E+1} non with a phonon energ,. which should be smaller than
o) /T 272 kgT and which should not be commensurable with the opti-
X|Ma,8(qz)|25k’,kiqv (B22) cal phonon energy. Theacmatrlx element, or equivalently, the

fictitious scattering rate/, ;, is set to

yvith Maﬁ(qz)z_fgwdzeI‘qu_zj/Z(z) Wp(2). Ly is the distance )

in the z—d|rect|or) over which the.wave functlonﬁ(k%,z) VZC/F?’SEM’ dz|y*(2) ¢B(2)| ) (B26)
extend. Converting the sum ov€rin Eg. (B22) to an inte-

gral, and evaluating the in-plane compongnwith the help
of the Kronecker delta gives APPENDIX C

} A derivation of the current contributiody..[Eq. (16)] is

given here. We assume that the scattering HamiltoRian,
has the form

N| =

1
[Vieg(k k) [P=| n(wi) + 5

% EIoe2 * |MaB(qZ)|2
4me Al - 9 q§+p2 ’

(B23) ~ ~ R
2, Ot (D2uksDAgies(V), (CD

wherep=|k—k’|2=K?+ k’2— 2Kk’ cosf. ki

As described earlier in this appendix, the matrix element A . . . .
is evaluated within a self-energy integral, for instance of theVN€réQas(t) may be just a scalar time-independent matrix
form: S(k,E)=2/|V,s(k,k')|?{G.F}. Following again element, i.e.0q g (t)=Vac g , @ in interface roughness
the procedure shown in Eq®1)—(B2), we take the summa- Of impurity scattering. Alternatively, as in phonon scattering,
tion overk’ in the self-energy to the continuous limit, and it may be a time-dependent operator containing the phonon

we define the angle-integrated quantity operatorsb(t) andb’(t). Then we find
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i . el ny the Green’s functions, further terms are taken into account,
g([Hscan.ZD: Vi i{@aks(t) which replace the bare Green’s functions by the full Green’s
By functions. Then we find

<l @

Jscat{t) =

kk',s

X () ’ t A —Z é ’ t é. ’ t . 1
[ ak,yk ( ) vB ay™~ yk, Bk ( )] Bk s( )> 2 FCaBy (7_1'7_2):_ 2 f dT[G%kS 5kS(Tl'T)
(Cc2 kk'  kk's h 5k ’

In the following, this expression will be expressed in terms XSS, 72,5~ 2,3 S50 (71, 7)
of Green’s functions and self-energies. For this purpose, we c
consider the contour-ordered Green’s function: X G s, aks( T T2) ], (C7)
c A ~t - where
Fkakév (11,72) = =i Tel(@gkrs( T1)Agks( T2) Ok, yk ' (T2)Zy
,K',S
. . . soan )= Os k(TGS o o (7,72)O s (T
_Zayoyk,,Bk’(Tl)aﬁk’s(Tl)azyks(TZ»}v oy k (T,72) % sk, ek’ (T)G grs ks T172) Oakr 4k (72)
3 (C8

N ) denotes the part of the self-energy which exhiflts, on the
whereT, orders the times argumentson the complex con-  right-hand side, and

tour from r=—o+i0" to 7=——i0" (see Ref. 1L By
<
taking the lesser componei «gy (t,t), one obtains the
9 ponemt «4» (L) SN (71,1 = S O (7)) Crg rel 71,71 s (7)
summand in Eq(C2). ek’

Using the interaction picture with superscript F€ is (€9
now evaluated according to the standard perturbation expanvith O, on the left-hand side. In the second term in Eq.

sion of (C7) we have exchanged the dummy indigtande, and in
_ the first term we have exchangkdandk’.
c _ .= o ~D For diagonal self-energies, which depend on diagonal
Fk‘fﬁg( T172) = |Tc[<exp( ﬁJ drH (T)) Green’s functions (see Sec. IIB one has 354"
. ot =555\, where3(?), is defined after Eq(16). Using
X[ @ (T1)8gks(T2) Oak, vk (T2)Zyp Langreth rule¥ and changing to the energy representation
leads to Eq(16) which is given again here for reference
- Zayoyk,ﬁk’(Tl)agkfs( Tl)agl‘(rs( TZ)]> ] . 2¢ dE
J —_— JR—
(C4) scatt hv o%'y ; 277_
The exponential term can be expanded as X[G g, (VSN OE)+G g, (EVSSISUE) ]z,
i N i . - !
- D ~1_ _ Dt
ol - [ arien |11 [ 0 Opuioilico 2o SSRGS (BG4 ).
PGS’ I
~D
X a0 (7). (C5) (C10

Substituting this expansion into E§C4), and noting that We can obtain some insight into this expressionJQyif
terms containing only a singl® are zero after averaging, the we consider °”'¥ the diagonal tef”?s of the above e_quatlon,
lowest-order nonvanishing terms give i.e., we sety= g in part |, andy=« in part Il, to obtain

¢ 1 f dEI— f dE(G 55 330+ GrLs 2@z 00 (C1D)
Fagy (11,75)= 2 2 f A7 G g s 71, DO ks ekl 7) PEBE T IBECRE TR
k,k’,s o€ Ia b
<(B) ~adv ret(B) <
XGEES,akS(T! TZ)Oak,yk’(TZ)ZyB j dEII_)j dEZaa(Eaa Ga0f+2aa Gaoj)’ (C12)
Ia b
= 24301 ok (71) Gl ser( 7117
yIk pk's, ok's where for brevity we neglect the indés ands andG are
><ngfvek(T)GEES’QKS(T,Tz)] (C6)  understood to be functions & We observe that each term

_ , _ 0 in the integrals above is a product of a Green’s function and
with the bare Green's functions Gus ps(71:7)  a self-energy, i.e., of the forG3 or SG. These terms can
=—iTC{<a5kS(rl)a2JS(r)>}. Only Green’s functions diago- be interpreted as scattering rates. In particular, {1
nal in the momentum and spin indices are kept in @&f). contains information about scattering rates into and out of
In order to be consistent with the perturbation expansion irthe stateB, and Eq.(C12 describes scattering into and out

245314-17



S.-C. LEE AND A. WACKER

of the statea. To be more specific, we interpret the terms
containing2 " or 2% as a scattering-out rate, e.g, the term

la, [dEG;, 334, can be interpreted as a rat§" , for
scattering out of statg@ into statea. Similarly, term Ilb,
JAES®PGY,, is interpreted as a rate" , for scattering

out of statea into stateB. On the other hand, the terms

containingX = are interpreted as scattering-in rates. Thus,— Z..| with the net transfer ratel

term Ib describes the ralEiCL p for scattering into statg

from «, and term lla describes the rdig,_, , for scattering

into state from 3. We note here thdf%ia=l“‘l§;a<0 and
n_5=T%" ;>0. Combining Eqs(C11) and(C12) gives

a—f3

PHYSICAL REVIEW B66, 245314 (2002

JdE|+||=(r;;“La+ 0 p)Zap Zaa TR+ T )

out/in

out/in (c13

in/i
=( + Fgg%)(zﬁﬁ_zaa)'

Thus, this expression is the product of the distajmg;
N+ T0%) between
state 8 and a, and we can interpret this as a velocity or
charge transfer rate from e.gg4 to z,,,,, i.€., a current flow
from z44 t0 z,,,. (The direction of current flow depends on

the net transfer rate.
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