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Buildup dynamics of transmission resonances in superlattices

Roberto Romd
Facultad de Ciencias, Universidad Amoma de Baja California, Apartado Postal 1880, 22800 Ensenada, Baja CalifornigicMe
(Received 20 March 2002; revised manuscript received 15 July 2002; published 19 December 2002

A closed analytical expression for the time-dependent probability density of transmitted particles in super-
lattices is derived from a formal solution of the time-dependent &tihger equation. Such an expression
consists of Breit-Wigner type resonance terms and interference contributions with explicit time dependence,
which is applied to different superlattices to describe step-by-step how the transmission resonances are con-
structed as a function of time. In particular, it is found that for incidence at a resonance of pesitorl
width I',, the buildup of the transmission peaks is governed by a simple exponentigL,(aw,t)=Tﬁea’[l
—exp(Tt/27) 12, whereT, (g, 1) is the probability density at the right edge of the superlattice'Bﬁ‘iEl‘the
height of the corresponding transmission peak. We show that our results are valid for periodic superlattices as
well as for asymmetrical or even disordered potential profiles.
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. INTRODUCTION diffraction in timé* in 1952, which has been recently veri-

fied experimentally® We apply here this formalism to finite
The investigation of resonant tunneling in finite superlat-SL's to study the buildup dynamics of the transmission reso-
tices(SL's) has been a field of intense research in the last twd'@nces and to estimate the time required for the formation of

decades. These man-made quantum structures have attracRafh Of ]Ehe tran_srlnissicf:)_r peaks of the SL n}ini(;Jarl']\d fohr a V}’i?e
a great deal of interest not only for the possibility of elec- range of potential profile parameters; we find that they fol-

. . e ! low a simple exponential buildup law whose transient time
tronic device application,but also for the exploration of a onstant can be written explicitly in terms of the resonance

wide variety of transtort phenomena both in double aanvidth

multibarrier systems. . . The paper is organized as follows. In Sec. Il we make a
_In the general study of resonant tunneling, the transmisp et presentation of the formalism, which is discussed in

sion coefficient has been an important quantity since it propgre detail in Ref. 11 in which it was recently introduced. In

vides most of the relevant information of the transport pro-gec. || we derive an expression for the probability density

cess in SL's, and is characterized by a series of resonanGgyid to describe the tunneling dynamics around a miniband.

peaks at specific incidence energies. The properties of thesg Sec. IV we apply the derived expression to study the

transmission resonances and their implications on the eleguildup of the transmission resonances for different SL's.

tronic transport in semiconductor heterostructures have beesiso in that section, we use the link with the transmission

extensively studied using solutions of the time-independentoefficient to analyze the duration of the transient and estab-

Schralinger equation(TISE),’ 1% which describe physical lish the buildup law for the transmission peaks. Finally, in

situations where the stationary regime has already been eSec. V we present the concluding remarks.

tablished. The need of studies of resonant tunneling also with

solutions of the time-dependent Sctimger equation Il. THE FORMAL SOLUTION

(TDSE) has been widely recognizéd: The interest on the In this paper we use a dynamical approach developed by

study of the transient regime lies in part on the fact that thezarca-Caldera,* that deals with the analytic solution of the

earliest tunneling events, which have important implicationSTDSE

on the speed of resonant tunneling devices, occur within this

time domain. Here we address the issue of how the transmis- {

sion resonances are formed as well as the duration of the Shutter

corresponding transient.

In the present work we use a dynamical approach
describe step-by-step the time evolution of the buildup of the
transmission resonances, starting from the situation in which
the SL is initially empty. The initial condition used here is
visualized as a shutter placed at the left edge of the system
(see sketch in Fig.)1 which fort<<0 stops incident waves
coming from the left, and at=0 the shutter is suddenly
removed enabling the incoming wave to interact with the SL
potential. For this setup, explicit analytic solutions of the £ 1. Shutter problem for a finite SL. The incoming plane
TDSE can be obtained. An interesting feature of this methogyave att=0 exists only at the left of the SL, and is instantaneously
is that allows us to analyze in a natural way the transitioryeleased by the sudden removal of the shuttér=4t, enabling it to
from the transient to the well known stationary regime. ThiSinteract with the potential. Note that the shutter is a device that aids
approach is a generalization to tunneling problems, of thén visualization of the initial condition and hence it does not appear
free quantum shutter setup that predicted the phenomenon a$ a part of the potential in the Hamiltonian.

Y(x,k;t=0)

0 L
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i~ —H|¥=0, (1)

for finite range potential®y/(x) of arbitrary shape that van- 0.8l

ishes outside the regionsOx<L. The initial condition used :
0.4t

here consists of cutoff plane waves confined to the left of the
SL by a reflecting shutter placed at the left edge of the struc-

[W(E,Lst)*

ture, atx=0, and is represented by 045 8% F 80
E (meV)
eikx_e—ikx’ 00<X$0,
T(x,k;t=0)= (2) \ . )
0, x>0. %90 7.5 15.0 22.5 30.0

t (ps
The onset of tunneling is chosen atQ and before this (pe)

time our noninvasive initial state exists only at the left of the  FIG. 2. Comparison of the calculation pP|? vst with Eq. (7)
structure, hence the SL is initially empty. Once the shutter igsolid line) and Eq.(3) (dashed lingfor a periodic SL of six rect-
suddenly removed at=0, the initial wave is enabled to angular barriers with parameters given in the text. The incidence
interact with the potential giving rise to the transmissionenergy E=es=75.4 meV) is indicated by the arrow in the corre-
through the SL system. For the above initial condition, thespondingT vs E plot shown in the inset.

solution along the internal region redtls
I1l. SINGLE MINIBAND APPROXIMATION

Y (x,kit)= o(x,K)M[y(K,t) ] = ¢* (X, K)M[y(—k,1)] In the present study we are interested in the time-
o dependent description of the probability density in finite su-

_ 2 pn(X KMy (K, D], (3) perlattices, in which typically the resonances are distributed

n=—o in isolated groups called minibands. To obtain a description

of time-dependent resonant tunneling around a miniband,
where the indexn runs over the complex polds, of the  one can just evaluate the relevant subset of resonance terms
outgoing Green’s function of the systéindistributed in the in Eq. (3) corresponding to the resonances of such a mini-
third and fourth quadrants in the complexylane. The func-  band, and neglecting the small contribution of far away reso-

tion ¢(x,k) stands for the stationary solution. nances. Using some analytic properties of the Moshinsky
The coefficients of the sum are given by functions, it is possible to derive a simple and reliable for-
mula to describe the time-dependent probability density
~up(0)up(x) |WN(E,1)|? for incidence energies around a miniband con-
pn(X,K)=2ik —————. (4 sisting of N resonances. Such a derivation is included in

k®=kq Appendix, and the derived expression foFN(E,t)|? is

To compute these coefficients we basically need to calcuIat%'vtehlbgr:gls?n'(ﬁ?géggvsggpgﬁn tgt?oze%'rggég (r:gg(tjr;butlon

the complex poleg,, and the resonant stateg(x) which are

solutions of the time-independent ScHirger equation with N N
outgoing boundary conditiorté. WNE D~ S T(EN+ S T.(E), @
The time dependence of the solution given by Bj.is n=1 n<m

contained in the Moshinsky functiond(y), defined as, where the resonant tern(E,t) and the interference con-

tributions7,,,(E,t) are given, respectively, by Eqs\6) and

1
M(yq)= =w(iyq), 5 (A7)
(o) 2 (1¥q) ® A considerable simplification of the problem has been ac-

, (6)

o complished with the derivation of the above formula, note
where w(z)=exp(-Z)erfo(—iz) is the complex error for example that the time dependeneiginally contained
function® The argumeny, depends on the time through the jn the Moshinsky functionsis now expressed in terms of
relation simple functions, see EqéA8) and (A9).

In order to illustrate the accuracy of our approximate for-
—imal M Y21 mula, Eq.(7), we shall illustrate its reliability with a pair of
y(an=-e 2t ﬁt numerical examples. Our first example is a simple periodic
SL of six rectangular barriers of height;=0.3 eV, and
whereq stands for=k or k..,,. The formal solution, Eq(3),  width by=2.5 nm, with well widthsw,=6.5 nm(similar to
involves the contribution of the full resonant spectrum of thethe parameters used by Pacfiest al). In all the examples
system, and can be used to calculate the probability densiiyf this paper we use the effective mass- 0.0671,, where
| W (E,x;t)|? for 0<x<L, at any timet and incidence energy m, is the mass of the electron. Figure 2 shows the results of
E, provided that the relevant set of resonant stétg$ and  the comparison of Eq(7) (solid line) with Eq. (3) (dashed
complex eigenvaluegk,} of the system are known. line) for this sample. The incidence energy was chosen to
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2.4 - - ' ference termd,,,(E,t) are very important. The contribution
P - of the latter may, in some cases, be of the order of or even
o T larger than the contribution of the resonant teffpE,t). To

L 1.0
1.8 o illustrate the above we have included in Fig. 3 the calcula-
o Fos tions of |¥|? ignoring the interference contributions
j 1.2¢ Tmn(E b); that is, using the “incomplete” formuld (E,t)
= =3N_,7,(E,t), in which the interference contributions are
Eal 06l absentdotted ling. It is clearly evident that if we ignore the
M interference contributions, a very bad description may be ob-
tained, not only in the transient regime but also in the
0.0k s - s asymptotic limit of long times. Therefore, we stress out that
0.00 0.75 1.50 2.25 3.00

in our dynamical description of resonant tunneling around a
t (ps) miniband, the contribution of the interference terms

Ton(E,t) is essential.
FIG. 3. The same as in Fig. 2 for a SL with strong interference mr(E.0)

between the resonances of the first miniband. Also in this case the

solid and dashed lines are indistinguishable among them. Here, as  IV. BUILDUP OF TRANSMISSION RESONANCES

indicated by the arrow in the inset, the incidence energy was chosen . .

approximately in the center of the minibanE+63.31 meV). If In this section we shall study step-by-step the process of
the interference term,,(E,t) are ignored, a very bad description construction of the transmission resonances. In order to per-

is obtaineddotted ling, note that the corresponding curve lies well form this task, we apply the time-dependent expression given
above unity. by Eq.(7) to SL's with diverse shape parameters that exhibit

o ) ~ different distribution of resonances.
coincide with one of the resonanceSe5), see arrow in

inset of Fig. 2. We can appreciate that the calculation with
Eq. (7) successfully reproduces the predictions of the formal
solution, Eq.(3), since both curves are almost indistinguish- 1. Periodic SL

able among them. This result supports our conjectureRhat . . . . ,
has in Eq.(A5) a negligible small contribution. We start our discussion with the simplest of the SL’s, the

In order to emphasize on the importance of the interferperiOdiC structure. L_et us _consi<_jer the system cons_isting on
ence termsT., (E,1), we choose as a second example a S%Ze rectangular barriers with height§=0.2 eV and widths

A. Examples

with a strong interaction between the resonances belongin :_5'0 fnrr|1 and W%" WithS’\é‘):S'o nm. Figure_ 4 Sh_OWS a
to a miniband. For this purpose, the “SL with antireflection Seres of plots of W (E,L;t)|* vs E at different fixed times,

coating” studied by Pacher and co-work€ris an appropri- cglcqlated us_in_g Eq7) with N=4 (solid ling). The trans-
ate example in view of the extremely high interference ex-Mission coefficienT (E), calculated by the standard method

hibited in the transmission coefficient. This SL is the eight—Of the tr:_;msfer r_natrix approach is included for comparispn
barrier structure that consists of the periodic SL of six(qomad ling, which, in the absence of an external field is

barriers of the previous example, with two additional “half given by
barriers” of width b;=bg=1.25 nm and two additional
wells of widthw; =w,=6.5 nm. The results of the compari- T(E)=1M,)% ®)
son of Eq.(3) and Eq.(7) are depicted in Fig. 3. As in the
previous case, the insets shows the corresponding transmishere M,, is an element of the transfer matr of the
sion coefficient versus energy plot around the first minibandsystem.
and the arrow indicates the incidence energy, off-resonance In the snapshots depicted in Figgb®-4(e) we can ap-
in this case E=63.31 meV). We can appreciate that even inpreciate the “birth” of the transmission resonances and their
this case of high interference among the resonances of theubsequent evolution towards the well known stationary re-
miniband, the calculation with Eq7) (solid line) success- gime. At the very beginning of the tunneling process, the plot
fully reproduces the predictions of the formal solution, Eq.of |WN(E,L;t)|? vs E appears as a smooth curve with no
(3) (dashed ling Also in this case of intense interference andpeaks, see Fig.(8); that is, no evidence of the resonances
off-resonance incidenc® has a negligible contribution, im- have appeared at this early stage. However, as time elapses
plying that Eq.(7) is an excellent approximation even for some peaks in the curve gradually begin to appear as we can
SL's with overlapping resonances. see in Figs. &)—4(e). The height of such resonance peaks
Note also that the plots df'|? vs t, calculated from our increases at different rates towards their corresponding
formula (7) leads to the correct asymptotic values at longasymptotic values. In Fig.(d), where we used=80 ps, we
times. In fact, we can appreciate in Figs. 2 and 3 that it tendsan see that the predicted values by Ef}.perfectly repro-
to 1.0 and 0.818, respectively, which are exactly the valuesluce the transmission coefficient at large enough times,
of the transmission coefficient for the chosen incidence enshowing that the stationary situation is reached in the appro-
ergies, fulfiling the requirement |W(E,L,t—x)|?  priate asymptotic limit. Notice that the buildup of the peaks
=|¢(E,L)|2.1 is faster for the wider resonances=2 and 3, and slower
In contrast to the neglecting contribution Bf the inter-  for the thinner onesn(=1 and 4. As we shall see in the
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1.00 — 1.00
(o) ()
i 0.6ps i i 2ps
0.75+ 0.75}
(a) o o
T o050t o050t
) )
B
= 0.25¢ = 0.25}
000 - '. """"" |.A — 008 ¢ N ".. ] . .. o
65.0 72.0 79.0 86.0 5.0 72.0 79.0 86.0
E (meV) E (meV)
1.00 ‘ — 1.00
@ . 5ps (&) 80 ps
0.75¢ 0.75}
= o050} = o0}
) )
z 0.25} z 0.25} k
0% 72.0 79.0 86.0 008575 72.0 79.0 86.0
E (meV) E (meV)

FIG. 4. Snapshots of the time-dependent probability density for the periodic SL of five bdaievgith equal heightd/,=0.2 eV,
widths bg=5.0 nm, and well widthsv,=5.0 nm. The values df¥’|2 vs E are calculated using E¢7) (solid lineg at different fixed times:
(b) t=0.6 ps,(c) t=2.0 ps,(d) t=5.0 ps,(e) t=80.0 ps. The transmission coefficient is also included for compafotted lineg.

following examples, this behavior is also observed in SL's 3. Irregular SL

with other arbitrarily chosen potential parameters. As a final example, let us now consider a totally irregular
structure whose potential profile is sketched in Figa)6
which is an “intentionally disordered” SL of eight barriers
In the above example we described a situation in whictwith the following potential parameters: barrier heights
the neighboring resonance levels of the miniband are almogt/,} ={0.25,0.40,0.30,0.50,0.26,0.30,0.35,0.2@V); bar-
equally spaced, having a relatively small interference berjer widths {b,} ={2.5,1.5,3.8,1.0,3.0,3.2,2.0,2.7hm); and
tween them. However, one of the advantages of Eis  well widths {w,}={5.0,5.5,5.1,4.8,5.2,4.5,5.Gnm). Snap-
that it can describe successfully situations in which the resogpots of the behavior diN(E,L;t)|2 vs E are depicted in
nances have a strong interference between them. Pairs pfys gh)—6(e) for different fixed times. As in the two pre-
overlapping resonancgsloublets can be obtained for ex- ;iq, figures, here the continuous line corresponds to the
ample from symmetric potentials with a relatively wide cen-\ -lues of[WN(E,L;t)|? vs E calculated from the approxi-
tral barrier(or central well, if the number of barriers is eyen . expressior; g,iven by E7) with N=7, and the trans-

or with a relatively thin central barrigior well). As an ex- C fficientT(E lculated Eq(), |

ample, let us consider a SL consisting of six rectangular bar-1'SSI0N COETTCien ( .)’ caiculated rom £qto), 1S repre--

riers with equal heightsV,=0.1 eV and widths b sented by the dotted line. As expected, the observed behavior
O 0 is more complex than in the previous two examples. In con-

=4.0 nm, a central well of widtlw;=5.0 nm, narrower th th £ Fi q f uni .
than the rest, which have the common width=7.0 nm trast with the cases of Figs. 4 and 5 of unity transmission

(n=1, 2, 4, 9. The potential profile is sketched in Fig(ah peaks, for this irregular potential the transmit_tance is very
As can be appreciated in Figgbp-5(¢), the transmission low for most of t_he resongncgéf;)r example the. fifth peak is
coefficient around the first miniband consists of two pairs ofS0 Small and wide that is difficult to see it in the graph
overlapping peaks and a single isolated pé&dtted lines. ~ However, despite of this complexity, once again Ead)
The behavior of| WN(E,L;t)|? vs E predicted by Eq(7) gives an excellent description, and perfectly reproduces the
(with N=5), for different fixed times are shown in a series transmission coefficient at long enough times as can be ap-
of snapshots, see solid line in Figgbb-5(e). As is clearly  preciated in Fig. ).
evident, also in this SL an excellent agreement with the sta- Notice that also in this case the wider resonances are the
tionary solution is obtained for long times. Note that, as infirst established around the asymptotic valas observed in
the previous example, the buildup of the transmission peakthe two previous examplgesThis leads to a natural question:
occurs in such a way that it is faster for the wider and sloweWhat is the duration of the transient for each of the trans-
for the thinner resonances. mission resonances according to their corresponding widths

2. SL with overlapping resonances
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1.00 : 1.00 .
(b) 0.5 ps (© 1 os
(@) 0.75} ~ 075¢
o 5
T os0r W o.50f
= 0.25f 0.25}
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Y
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0.0 - ' A _ . .

%50 350 450 550 650 00 380 450 550 650
E (meV) E (meV)

FIG. 5. The same as in the previous figure for a symmetrical SL with central well narrower that th® fese parameters in the téxt
The plots of|¥|? vs E were calculated at the timeg) t=0.5 ps,(c) t=1.0 ps,(d) t=3.0 ps,(e) t=20.0 ps(solid lineg. As expected, we
see that a perfect fit with the transmission coefficient is achieved at long enough times.

I',,? We shall discuss this point at the end of this section, and #2a

. .. L__ n
show that the buildup of the transmission resonances follows Fn_W|
a simple exponential law whose transient time constant de- "
pends on the widtl',, of the resonances. In order to perform
this task, we need to explore analytically the link of the
quantity | WN(E,t)|2 with the transmission coefficieft(E).
This is the purpose of the next subsection.

un(L)[2. (10

Herea, is the real part ok, and!,=[§|u,(x)|?dx~1, and
the sum of the partial widths is equal to the total width
=I%+rk.

The above quantities can be used in the expressions of
T.(E,t) and 7,,,(E,t) (derived in the Appendixto obtain
new explicit formulas that allow us to explore analytically

In the above numerical examples, it is clearly evident thathe |ink of |[WN(E,t)|2 with the transmission coefficient
the approximate expression foF"(E,t)|? evolves towards  T(E). From Eqs(4), (9), and(10), we obtain after a simple
the correct asymptotic limitthe transmission coefficient  aigebra a Breit-Wigner type expression figr, (L, Kk)|2 in

despite the fact that it involves only a finite number of resoerms of " and Tt . Using such an expression in E&6),
nance contributions. Although in the general césewhich .o quanti?yT(E {’) can be rewritten as
the full resonant spectrum of the system is considered me
Garcr-Caldera and Rubid! have already demonstrated that
| (L,k;t)|—|t(k)| ast—oo, wheret(k) is the transmission T(E,t)=To(E)xa(E,1), (11)
amplitude, it is instructive to explore here the analytic con-
nection of our approximate quantitN(E,t)|? with an ex-  where
plicit analytic expression of the transmission coefficient
T(E). Using the definition of the partial decay width§ and
'L, we shall obtain an expression fpFN(E,t)|? that will T.(E)=C
be used in the next subsection to analyze the duration of the " "
buildup of each of the transmission peaks.

The partial widths are given By

B. Transmission coefficient

il

——. 12
w2+ (T,12)? 12

Notice that, although the time dependence in @4) ap-
h2a, pears only in the factoy,, bothT, and x,, have in common
1ﬂgzw|un(0)|2 (9)  the energyE and hence they are still coupled. This coupling
. is important in the transient regime and gradually disappears
and as the solution evolves towards the stationary situation. The

245311-5
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FIG. 6. The same as in the two previous figures for a SL with an irregular potential gepfilith parameters given in the text. The plots
of | |2 vs E were calculated at the timeg) t=0.5 ps,(c) t=1.0 ps,(d) t=2.0 ps,(e) t=70.0 ps. Even for this highly irregular potential,
a perfect fit with the transmission coefficient is achieved at long times.

above is obvious from the fact that,(E,t)—1 whent For incidence at one of the resonances, Bayes,,, we

—o as can be easily verified. have: w,=0, k~a,, and henceZ,(E,t) adopts a very
The interference term;,(E,t) can also be expressed in simple form, namely,

terms of the partial decay widthg® and I';. After using

Egs. (4), (9), and (10) in Eq. (A7), the following analytic

expression is obtained: Tn(en 1) = TR 1—exp( —t/27,) 2, (14
Tonn(E)=2C (TR OTH) where
exdi E.t
Re{ i bl ED_| -

(wm+iT /2 (w,—iT',/2) — AT T 15
where C,=(k/a))212 and Cpn=(k¥aman)lmln, &mn " (I%+rh)?
E[¢m(0)+¢m(|-)_d’n(o)_¢n(|—)]a the ¢n,s b'eing the
phases of the resonant states, 1.€. Un(x) is the maximum of the transmission coefficient at thé

= |un(x)|exri a(¥)]. _ : o
. . resonance energy, ang,=#/I",, is the corresponding life-

Also n the termsTyq(E,t), the time depgndent factor ime Note that in general, for asymmetric potentials we have
Emn(E,1) IS pouplgd to the rest of the expression through thel“ﬂ# '’ and hencgﬁeakmay have values below unityhis is
energyE. Itis straightforward to see that if we let>c, W€ " the case of the irregular structure whose transmission coeffi-
haveg_mn(E,t)—>1 and. as a consequence, the asymplotiC eXgjany js plotted in Fig. B It is clear from Eq.(15) that
pression of Eq(7) coincides exactly with the analytic ex- reak_ 1 only occurs in the case in which the partial decay
pression of the transmission coeffici@tE) derived in Ref. w?dths coincide IO=TL=T" /2. Although the under-unity

= n n n "

10 for multibarrier resonant structures. T _ ! . o
transmission is easily explained here with Ebp), it is im-
portant to mention that the situation is more subtle when the
interference between neighboring resonances is very strong.
In the examples of the previous sections, we noticed thaln this special situation, under-unity transmission peaks have
the wider resonance peaks rise up to the level of the statiorbeen observed even in symmetrical structdres.
ary value faster than the thiner ones. The purpose of this Equation(14) tells us that the buildup of each of the trans-
section is give an estimate of the duration of this transient inmission peaks follows an exponential law in which the tran-
terms of the widthl",, of the resonances. sient time constant, is twice the value of the lifetime of the

C. Duration of the transient
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1.00k@ ' ' =g5 in the former(one of the peaks of the second doublet of
Fig. 5 andE= ¢, in the latter(see the first small peak in Fig.
i 075 o Egg 6). We see in Fig. (b) that the corresponding plots also fit to
o R O — Eq. (14) the same exponential curve, except for the small oscillations,
= o050} which, as mentioned above, is the noise produced by the
; influence of the interference with neighboring resonances. It
~ 0051 is important to emphasize that Ed4) is a single resonance

approximation which does not include interference contribu-

0_0%0 o 00 30.0 tions,_ henc_e the imperfect .fit observed in.Figb)7is not .
: ' : : surprising; in fact, the amplitude of the oscillations may in-
Ve, crease for resonances with stronger overlap. However, de-
: : spite this noise the fitting is still good, and even the results
1.00}(b) shown in Fig. Tb) are good enough to establish that the
; —o— E=¢, of Fig. 5 buildup of the transmission peaks is roughly governed by the
§ 0750 [§ —o— E=e, of Fig. 6 exponential formula given by Eq14).
£ e Ba. (14) Note the resemblance of the derived buildup law, Eq.
= 0.501 (14), with the buildup law of a charging-up capacitor in a RC
£ circuit, Q(t)=Q[1—exp(—t/7rc)], wWhere Txc is the tran-
0.25[, sient time constant. In our quantum system, according to Eq.
; (14), the transient time constant that characterizes the
0.00°5 100 0.0 30.0 buildup of the transmission resonances is twice the value of
vt the lifetime of the resonance, namely,
FIG. 7. Plots of |2 normalized tor"®2vs timet normalized to T =271, =2RIT. (16)
the corresponding lifetime,,=#%/T",,, for incidence afa) isolated
and (b) overlapping resonances. [a), the curve with hollow tri- The above is a relevant time scale that characterizes the

angles corresponds B=¢5 for the symmetric SL of Fig. 5, and duration of the transient, and can be easily calculated for any
hollow circles toE = &5, for the irregular SL of Fig. 6. The curves in of the resonances of the miniband provided the correspond-
(b) with hollow triangles and hollow circles correspond, respec-ing width I", is known. It is interesting that a transient time
tively, to E=g5 andE=¢, for the same two SL's. Also shown is constant of also twice the value of the natural lifetime was
the calculation made by E¢14) (dotted ling, which gives a good  found by Pastawski some years ago using a different
description for the different cases depicted here. approach! He studied the time-dependent resonant tunnel-
ing in the presence of dephasing processes using a formalism
resonance. This implies, in particular, that the wider resobased on a modified LandauerBker picture. Although our
nances build up faster than the thinner resonances, a resa@lescription is based on a more idealized model, it gives a
that is consistent with the numerical examples presented ialear description of time-dependent resonant tunneling not
the previous sections. only in the regime of short times, it also succesfully de-
An interesting result is that Eq14) predicts the same scribes the transition from the transient to the stationary re-
buildup law for any of the resonances of the miniband, andjime.
makes no distinction between different systems: it applies to To complete our discussion, we end this section illustrat-
the transmission resonances of both periodic Soswhich  ing the time evolution of the integrated probability density at
TPe= 1) and asymmetrical or disordered Slfor which ~ X=L,
typically TP*¥<1). This kind of “universality” is illustrated c
in Fig. 7, in which we ha\_/eéarblltrarll_y) chosen some of tr_]e IL(t):f 2|‘P(E,L;t)|2dE. (17)
resonances of two SL's with quite different pl?tentlal profiles. E;
; ; N|2 /7 peal
ITnEI?/gT-n ,7(?2)} %ﬁ?%ﬁglg‘)'ﬂ\:\fsﬂgyrﬁ :lirgnthir\éseZavr\;\hp?;eS of .For _the case of the periodic SL consideregzin Fig. 4, we show
Sec. IV, where the incidence energy was chosen to coincid® Fig- 8 a plot ofl (t)/1o vst, wherel o= [*T(E)dE, with
with the position of their sharper resonances, which, bythe integration performed along an energy intefu ,E,]
simple inspection of Figs. 5 and 6, dte=¢5 in the former  that extends around the first minibafid the present calcu-
andE=e¢- in the latter. As we can see in Fig(dJ, a perfect lation, E;=65.0 meV andE,=86.0 meV, as in Fig. # As
fit is obtained with the exponential curve given by Ety) can be seen, when—« the value of the integrdl (t) tends
despite the fact that we are considering different resonancesnoothly to the correct asymptotic limity. The features
of different SL’s. exhibited byl (t) before it reaches the asymptotic value are
Let us consider now a couple of cases with incidence athe effects of the changes in the shape of g2 vs E
wider and overlapping resonances. In view of interferenceurves occurring during the transient regime. As seen in the
effects between neighboring resonances, some “noise” is exsnapshots of Fig. 4, dramatic variations of the shape of the
pected in this case. This situation is illustrated in Figp),7in |W|? vs E plots are observed at the different stages, mainly
which, for the same two SL's used in Fig(ay, we usedE due to the birth of the resonance peaks at early times, and the
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' ' ' problem in this context has been the investigation of the

1.00F relevant time scales for the passage of electrons across the
SL. A recent work on the subject was made by Per€yra
0.75 using a stationary approach valid for finite periodic SL's, in

which thephase timevas analyzed in a wide range of ener-

_o gies. We believe that this problem also deserves a time-
é: 0.50 dependent analysis in order to obtain information of the ear-
- liest tunneling events that occur in the transient regime. One
of the features of the approach used here is that leads to

0.25¢ analytic solutions of the TDSE that allow to analyze the tran-
sition from the transient to the stationary regime, having the

0.00 L L L possibility to explore not only the dynamics of the emission
0.0 5.0 10.0 15.0 20.0 atx=L of the earliest transmitted particles, but also its rela-

t (ps) tion to the buildup dynamics inside the SL. Moreover, our

approach is valid not only for periodic SL’s, it also applies to

_ FIG. 8. Plot ofl (t)/1, vst for the periodic case considered in jregular (disordered potentials and consequently it may al-
Fig. 4. The limits of the integrals were chosen also as in Fig. 4, I.8.lows us to observe the localization phenomena in a time-
E;=65.0 meV and=,=86.0 meV. dependent picture. This investigation is considered for future

work.
relatively fast increase of their heighnd simultaneous de-

crease of their widthsAs a consequence of these variations,

during this transient the integrated probability density exhib-

its the steplike fluctuations observed in Fig. 8. A qualitatively | am indebted to Jorge Villavicencio for many useful dis-

similar behavior(not shown hergis observed in thé, (t)/l;  cussions and suggestions. Discussions with Ga&arca-

vs t plots for the SL with overlapping resonances of Fig. 5Caldefm are also acknowledged. This work is supported fi-

and the irregular SL of Fig. 6. nancially by Conacyt, Meco, through Contract No.
431100-5-32082E.
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V. CONCLUDING REMARKS

. s . . APPENDIX
A time-dependent description of resonant tunneling in

SUs around a miniband has been accomplished. Starting The approximation to Ed:3) for one miniband consisting
from the formal solution of the TDSE for cutoff initial waves on N resonances is

incident on one side of the potential, a closed analytic ex-

pression for the probability density at the right edge of the Y~PN=gNM[y(k,t)]— ¢* "M[y(—Kk,t)]

SL has been derived. It consists of a finite humbeiof
Breit-Wigner-type resonance terms plus interference contri-
butions with explicit time dependence. This approximate for-
mula is applied to superlattices with quite different distribu-
tion of resonances and an excellent description is obtained if are 4N denotes the miniband approximation of the sta-
the numbem is taken equal to the number of resonances Oftionary solutiong(x,k), which is given by®

the miniband. It also applies to superlattices with potential

N
= 3 MLy (kn 0]+ p-aMIy(k_o D]} (AD)

parameters such that the resonance levels are closely spaced N 0
presenting significant interference among them. The interfer- B,k ~ PN K) = 2ik S Un(0)un(x) a2
ence effects due to the multiple interaction between Nhe ' ’ =1 k*—K3

resonances of the miniband and the incidence energy give

rise to oscillatory contributions with frequencies,=|E The M functions involved in Eq(A1) exhibit different
—epl/h and wpn=|em—e,|/fi. As discussed elsewhere, pehavior as functions of time depending on the value of the
these frequencies play relevant role on the dynamics of thghase of its complex argument= |y|exp(6). When — /2
tunneling process, in particular they can be tuned by a propet g< /2, M(y) is a decreasing function of time. In fact, at
choice of the incidence energy in order to enhance the tunpng times it can be represented in terms of inverse powers

neling probability of the earliest transmitted carriéts. of ¢ by the serie§ M(y)~(1/2)[ 1/(m¥2y)— 1/(m2y3)
Within the framework of this dynamical approach, we Study+...]_ As can be easily verified, only the functions

the way in which the transmission resonances are formed a§[y(q,t)] in Eq. (3) with g=—k andgq=Kk_,, lie in this
a function of time, and show that they are governed by &ategory. Therefore, it is expected that, compared with the

simple exponential buildup lawZy(z,,t)=Th**f1-exp  exponential terms, these functions have a relatively small
(—t/791?, whose transient time constanf® is twice the  contribution to the solutioR?
value of the lifetime of the resonant statd®~2r, On the other hand, it is not difficult to convince oneself
=2hIT,. that for M’s with g= +k andq= +k, the inequality— /2

As a final remark, it is worth to mention that an important < #<s/2 is not fulfilled, and hence the above arguments

245311-8
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does not apply to botM[y(k,t)] and M[y(k,,t)]. Fortu-
nately, they can be related with the otirfunctions by the
symmetry relatioft

M(y)=e""~M(—y), (A3)

by noting that—y(q,t) =y(—q,t). By feeding Eq(A3) and
Eq. (A2) into Eq. (Al), the solution at the right edgex (
=L) of the SL can be rewritten in the form

N
WN(k,t)= ngl (L, K)[elV(01? gly(ka 017 4 A(L k:t),
(Ad)

where A(L,k;t) accounts for all the terms containing
functions of the form M[y(—k,t)] and M[y(k_,,t)],

which, as mentioned above, are decreasing functions of

with negligible contribution.

A useful analytic expression for the probability density at

x=L can be easily calculated from E@\4). After a straight-
forward algebra it reads

N N
[WMEDP= X T(ED+ X TnED+R, (AS)

PHYSICAL REVIEW B 66, 245311 (2002

where the ternR involves the negligible contributions com-
ing from the termA(L,k;t). 7,(E,t) and the interference
terms7,,,(E,t) are given, respectively, by

To(E, )= pnl*Xn(E,1) (AB)

and

Ton(Eit)=2 qump: fmn(E,t)}, (A7)

E=#2k?/2m being the incidence energy. Notice that the time
dependence is now contained in the functignsand &,
which have the following closed analytic expressions

Yn(E,t)=1—2 cogw,t)e Tt eIt/ (Ag)
Emn(E1) =[1— el omt~Tt/2h _ g~ iwnt=Tqt/2h
+e*i&)mnt—(rm+rn)t/2ﬁ]. (A9)

We have defined here the quantities=(E—e,)/#%, and

omn=(em—en)/h, whereg, is the position of thenth reso-
nance and’,, the corresponding width. Their absolute values

correspond to different oscillation frequencies=|w,| and

wmn=|®@ma Which arise as a result of the multiple interac-
tion between resonant states, and the incidence energy.
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