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Buildup dynamics of transmission resonances in superlattices
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A closed analytical expression for the time-dependent probability density of transmitted particles in super-
lattices is derived from a formal solution of the time-dependent Schro¨dinger equation. Such an expression
consists of Breit-Wigner type resonance terms and interference contributions with explicit time dependence,
which is applied to different superlattices to describe step-by-step how the transmission resonances are con-
structed as a function of time. In particular, it is found that for incidence at a resonance of position«n and
width Gn , the buildup of the transmission peaks is governed by a simple exponential lawTn(«n ,t)5Tn

peak@1
2exp(2Gnt/2\)#2, whereTn(«n ,t) is the probability density at the right edge of the superlattice andTn

peak the
height of the corresponding transmission peak. We show that our results are valid for periodic superlattices as
well as for asymmetrical or even disordered potential profiles.

DOI: 10.1103/PhysRevB.66.245311 PACS number~s!: 73.40.Gk, 73.21.Cd
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I. INTRODUCTION

The investigation of resonant tunneling in finite superl
tices~SL’s! has been a field of intense research in the last
decades. These man-made quantum structures have attr
a great deal of interest not only for the possibility of ele
tronic device application,1 but also for the exploration of a
wide variety of transport phenomena both in double a
multibarrier systems.2–6

In the general study of resonant tunneling, the transm
sion coefficient has been an important quantity since it p
vides most of the relevant information of the transport p
cess in SL’s, and is characterized by a series of resona
peaks at specific incidence energies. The properties of t
transmission resonances and their implications on the e
tronic transport in semiconductor heterostructures have b
extensively studied using solutions of the time-independ
Schrödinger equation~TISE!,7–10 which describe physica
situations where the stationary regime has already been
tablished. The need of studies of resonant tunneling also
solutions of the time-dependent Schro¨dinger equation
~TDSE! has been widely recognized.3,6,11The interest on the
study of the transient regime lies in part on the fact that
earliest tunneling events, which have important implicatio
on the speed of resonant tunneling devices, occur within
time domain. Here we address the issue of how the trans
sion resonances are formed as well as the duration of
corresponding transient.

In the present work we use a dynamical approach11 to
describe step-by-step the time evolution of the buildup of
transmission resonances, starting from the situation in wh
the SL is initially empty. The initial condition used here
visualized as a shutter placed at the left edge of the sys
~see sketch in Fig. 1!, which for t,0 stops incident waves
coming from the left, and att50 the shutter is suddenl
removed enabling the incoming wave to interact with the
potential. For this setup, explicit analytic solutions of t
TDSE can be obtained. An interesting feature of this meth
is that allows us to analyze in a natural way the transit
from the transient to the well known stationary regime. T
approach is a generalization to tunneling problems, of
free quantum shutter setup that predicted the phenomeno
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diffraction in time12 in 1952, which has been recently ver
fied experimentally.13 We apply here this formalism to finite
SL’s to study the buildup dynamics of the transmission re
nances and to estimate the time required for the formatio
each of the transmission peaks of the SL miniband for a w
range of potential profile parameters; we find that they f
low a simple exponential buildup law whose transient tim
constant can be written explicitly in terms of the resonan
width.

The paper is organized as follows. In Sec. II we make
brief presentation of the formalism, which is discussed
more detail in Ref. 11 in which it was recently introduced.
Sec. III we derive an expression for the probability dens
valid to describe the tunneling dynamics around a miniba
In Sec. IV we apply the derived expression to study t
buildup of the transmission resonances for different SL
Also in that section, we use the link with the transmissi
coefficient to analyze the duration of the transient and es
lish the buildup law for the transmission peaks. Finally,
Sec. V we present the concluding remarks.

II. THE FORMAL SOLUTION

In this paper we use a dynamical approach developed
Garcı́a-Caldero´n,11 that deals with the analytic solution of th
TDSE

FIG. 1. Shutter problem for a finite SL. The incoming plan
wave att50 exists only at the left of the SL, and is instantaneou
released by the sudden removal of the shutter att50, enabling it to
interact with the potential. Note that the shutter is a device that a
in visualization of the initial condition and hence it does not app
as a part of the potential in the Hamiltonian.
©2002 The American Physical Society11-1
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S i\
]

]t
2H DC50, ~1!

for finite range potentialsV(x) of arbitrary shape that van
ishes outside the region 0<x<L. The initial condition used
here consists of cutoff plane waves confined to the left of
SL by a reflecting shutter placed at the left edge of the str
ture, atx50, and is represented by

C~x,k;t50!5H eikx2e2 ikx, `,x<0,

0, x.0.
~2!

The onset of tunneling is chosen at t50 and before this
time our noninvasive initial state exists only at the left of t
structure, hence the SL is initially empty. Once the shutte
suddenly removed att50, the initial wave is enabled to
interact with the potential giving rise to the transmissi
through the SL system. For the above initial condition,
solution along the internal region reads11

C~x,k;t !5f~x,k!M @y~k,t !#2f* ~x,k!M @y~2k,t !#

2 (
n52`

`

rn~x,k!M @y~kn ,t !#, ~3!

where the indexn runs over the complex poleskn of the
outgoing Green’s function of the system,11 distributed in the
third and fourth quadrants in the complexk plane. The func-
tion f(x,k) stands for the stationary solution.

The coefficients of the sum are given by

rn~x,k!52ik
un~0!un~x!

k22kn
2

. ~4!

To compute these coefficients we basically need to calcu
the complex poleskn and the resonant statesun(x) which are
solutions of the time-independent Schro¨dinger equation with
outgoing boundary conditions.14

The time dependence of the solution given by Eq.~3! is
contained in the Moshinsky functionsM (y), defined as,

M ~yq!5
1

2
w~ iyq!, ~5!

where w(z)5exp(2z2)erfc(2iz) is the complex error
function.15 The argumentyq depends on the time through th
relation

y~q,t !52e2 ip/4S m

2\t D
1/2F\q

m
t G , ~6!

whereq stands for6k or k6n . The formal solution, Eq.~3!,
involves the contribution of the full resonant spectrum of t
system, and can be used to calculate the probability den
uC(E,x;t)u2 for 0<x<L, at any timet and incidence energy
E, provided that the relevant set of resonant states$un% and
complex eigenvalues$kn% of the system are known.
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III. SINGLE MINIBAND APPROXIMATION

In the present study we are interested in the tim
dependent description of the probability density in finite s
perlattices, in which typically the resonances are distribu
in isolated groups called minibands. To obtain a descript
of time-dependent resonant tunneling around a miniba
one can just evaluate the relevant subset of resonance t
in Eq. ~3! corresponding to the resonances of such a m
band, and neglecting the small contribution of far away re
nances. Using some analytic properties of the Moshin
functions, it is possible to derive a simple and reliable f
mula to describe the time-dependent probability dens
uCN(E,t)u2 for incidence energies around a miniband co
sisting of N resonances. Such a derivation is included
Appendix, and the derived expression foruCN(E,t)u2 is
given by in Eq.~A5!. If we ignore the negligible contribution
R, the single miniband approximation for Eq.~3! reads

uCN~E,t !u2' (
n51

N

Tn~E,t !1 (
n,m

N

Tmn~E,t !, ~7!

where the resonant termsTn(E,t) and the interference con
tributionsTmn(E,t) are given, respectively, by Eqs.~A6! and
~A7!.

A considerable simplification of the problem has been
complished with the derivation of the above formula, no
for example that the time dependence~originally contained
in the Moshinsky functions! is now expressed in terms o
simple functions, see Eqs.~A8! and ~A9!.

In order to illustrate the accuracy of our approximate fo
mula, Eq.~7!, we shall illustrate its reliability with a pair of
numerical examples. Our first example is a simple perio
SL of six rectangular barriers of heightV050.3 eV, and
width b052.5 nm, with well widthsw056.5 nm~similar to
the parameters used by Pacher16 et al.!. In all the examples
of this paper we use the effective massm50.067me , where
me is the mass of the electron. Figure 2 shows the result
the comparison of Eq.~7! ~solid line! with Eq. ~3! ~dashed
line! for this sample. The incidence energy was chosen

FIG. 2. Comparison of the calculation ofuCu2 vs t with Eq. ~7!
~solid line! and Eq.~3! ~dashed line! for a periodic SL of six rect-
angular barriers with parameters given in the text. The incide
energy (E5«5575.4 meV) is indicated by the arrow in the corre
spondingT vs E plot shown in the inset.
1-2
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BUILDUP DYNAMICS OF TRANSMISSION RESONANCES . . . PHYSICAL REVIEW B 66, 245311 ~2002!
coincide with one of the resonances (E5«5), see arrow in
inset of Fig. 2. We can appreciate that the calculation w
Eq. ~7! successfully reproduces the predictions of the form
solution, Eq.~3!, since both curves are almost indistinguis
able among them. This result supports our conjecture thR
has in Eq.~A5! a negligible small contribution.

In order to emphasize on the importance of the interf
ence termsTmn(E,t), we choose as a second example a
with a strong interaction between the resonances belon
to a miniband. For this purpose, the ‘‘SL with antireflectio
coating’’ studied by Pacher and co-workers16 is an appropri-
ate example in view of the extremely high interference
hibited in the transmission coefficient. This SL is the eig
barrier structure that consists of the periodic SL of
barriers of the previous example, with two additional ‘‘ha
barriers’’ of width b15b851.25 nm and two additiona
wells of widthw15w756.5 nm. The results of the compar
son of Eq.~3! and Eq.~7! are depicted in Fig. 3. As in the
previous case, the insets shows the corresponding trans
sion coefficient versus energy plot around the first miniba
and the arrow indicates the incidence energy, off-resona
in this case (E563.31 meV). We can appreciate that even
this case of high interference among the resonances o
miniband, the calculation with Eq.~7! ~solid line! success-
fully reproduces the predictions of the formal solution, E
~3! ~dashed line!. Also in this case of intense interference a
off-resonance incidence,R has a negligible contribution, im
plying that Eq.~7! is an excellent approximation even fo
SL’s with overlapping resonances.

Note also that the plots ofuCu2 vs t, calculated from our
formula ~7! leads to the correct asymptotic values at lo
times. In fact, we can appreciate in Figs. 2 and 3 that it te
to 1.0 and 0.818, respectively, which are exactly the val
of the transmission coefficient for the chosen incidence
ergies, fulfilling the requirement uC(E,L,t→`)u2
5uf(E,L)u2.11

In contrast to the neglecting contribution ofR, the inter-

FIG. 3. The same as in Fig. 2 for a SL with strong interferen
between the resonances of the first miniband. Also in this case
solid and dashed lines are indistinguishable among them. Her
indicated by the arrow in the inset, the incidence energy was ch
approximately in the center of the miniband (E563.31 meV). If
the interference termsTmn(E,t) are ignored, a very bad descriptio
is obtained~dotted line!, note that the corresponding curve lies we
above unity.
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ference termsTmn(E,t) are very important. The contribution
of the latter may, in some cases, be of the order of or e
larger than the contribution of the resonant termsTn(E,t). To
illustrate the above we have included in Fig. 3 the calcu
tions of uCu2 ignoring the interference contribution
Tmn(E,t); that is, using the ‘‘incomplete’’ formulaf (E,t)
5(n51

N Tn(E,t), in which the interference contributions ar
absent~dotted line!. It is clearly evident that if we ignore the
interference contributions, a very bad description may be
tained, not only in the transient regime but also in t
asymptotic limit of long times. Therefore, we stress out th
in our dynamical description of resonant tunneling aroun
miniband, the contribution of the interference term
Tmn(E,t) is essential.

IV. BUILDUP OF TRANSMISSION RESONANCES

In this section we shall study step-by-step the proces
construction of the transmission resonances. In order to
form this task, we apply the time-dependent expression gi
by Eq.~7! to SL’s with diverse shape parameters that exh
different distribution of resonances.

A. Examples

1. Periodic SL

We start our discussion with the simplest of the SL’s, t
periodic structure. Let us consider the system consisting
five rectangular barriers with heightsV050.2 eV and widths
b055.0 nm and well widthsw055.0 nm. Figure 4 shows a
series of plots ofuCN(E,L;t)u2 vs E at different fixed times,
calculated using Eq.~7! with N54 ~solid line!. The trans-
mission coefficientT(E), calculated by the standard metho
of the transfer matrix approach is included for comparis
~dotted line!, which, in the absence of an external field
given by

T~E!51/uM22u2, ~8!

where M22 is an element of the transfer matrixM of the
system.

In the snapshots depicted in Figs. 4~b!–4~e! we can ap-
preciate the ‘‘birth’’ of the transmission resonances and th
subsequent evolution towards the well known stationary
gime. At the very beginning of the tunneling process, the p
of uCN(E,L;t)u2 vs E appears as a smooth curve with n
peaks, see Fig. 4~b!; that is, no evidence of the resonanc
have appeared at this early stage. However, as time ela
some peaks in the curve gradually begin to appear as we
see in Figs. 4~c!–4~e!. The height of such resonance pea
increases at different rates towards their correspond
asymptotic values. In Fig. 4~e!, where we usedt580 ps, we
can see that the predicted values by Eq.~7! perfectly repro-
duce the transmission coefficient at large enough tim
showing that the stationary situation is reached in the app
priate asymptotic limit. Notice that the buildup of the pea
is faster for the wider resonances (n52 and 3!, and slower
for the thinner ones (n51 and 4!. As we shall see in the

e
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FIG. 4. Snapshots of the time-dependent probability density for the periodic SL of five barriers~a!, with equal heightsV050.2 eV,
widthsb055.0 nm, and well widthsw055.0 nm. The values ofuCu2 vs E are calculated using Eq.~7! ~solid lines! at different fixed times:
~b! t50.6 ps,~c! t52.0 ps,~d! t55.0 ps,~e! t580.0 ps. The transmission coefficient is also included for comparison~dotted lines!.
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following examples, this behavior is also observed in S
with other arbitrarily chosen potential parameters.

2. SL with overlapping resonances

In the above example we described a situation in wh
the neighboring resonance levels of the miniband are alm
equally spaced, having a relatively small interference
tween them. However, one of the advantages of Eq.~7! is
that it can describe successfully situations in which the re
nances have a strong interference between them. Pai
overlapping resonances~doublets! can be obtained for ex
ample from symmetric potentials with a relatively wide ce
tral barrier~or central well, if the number of barriers is even!,
or with a relatively thin central barrier~or well!. As an ex-
ample, let us consider a SL consisting of six rectangular b
riers with equal heightsV050.1 eV and widths b0
54.0 nm, a central well of widthw355.0 nm, narrower
than the rest, which have the common widthwn57.0 nm
(n51, 2, 4, 5!. The potential profile is sketched in Fig. 5~a!

As can be appreciated in Figs. 5~b!–5~e!, the transmission
coefficient around the first miniband consists of two pairs
overlapping peaks and a single isolated peak~dotted lines!.
The behavior ofuCN(E,L;t)u2 vs E predicted by Eq.~7!
~with N55), for different fixed times are shown in a seri
of snapshots, see solid line in Figs. 5~b!–5~e!. As is clearly
evident, also in this SL an excellent agreement with the
tionary solution is obtained for long times. Note that, as
the previous example, the buildup of the transmission pe
occurs in such a way that it is faster for the wider and slow
for the thinner resonances.
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3. Irregular SL

As a final example, let us now consider a totally irregu
structure whose potential profile is sketched in Fig. 6~a!,
which is an ‘‘intentionally disordered’’ SL of eight barrier
with the following potential parameters: barrier heigh
$Vn%5$0.25,0.40,0.30,0.50,0.26,0.30,0.35,0.23% ~eV!; bar-
rier widths $bn%5$2.5,1.5,3.8,1.0,3.0,3.2,2.0,2.7% ~nm!; and
well widths $wn%5$5.0,5.5,5.1,4.8,5.2,4.5,5.0% ~nm!. Snap-
shots of the behavior ofuCN(E,L;t)u2 vs E are depicted in
Figs. 6~b!–6~e! for different fixed times. As in the two pre
vious figures, here the continuous line corresponds to
values of uCN(E,L;t)u2 vs E calculated from the approxi
mate expression given by Eq.~7! with N57, and the trans-
mission coefficientT(E), calculated from Eq.~8!, is repre-
sented by the dotted line. As expected, the observed beha
is more complex than in the previous two examples. In c
trast with the cases of Figs. 4 and 5 of unity transmiss
peaks, for this irregular potential the transmittance is v
low for most of the resonances~for example the fifth peak is
so small and wide that is difficult to see it in the graph!.
However, despite of this complexity, once again Eq.~7!
gives an excellent description, and perfectly reproduces
transmission coefficient at long enough times as can be
preciated in Fig. 6~e!.

Notice that also in this case the wider resonances are
first established around the asymptotic value~as observed in
the two previous examples!. This leads to a natural question
What is the duration of the transient for each of the tra
mission resonances according to their corresponding wid
1-4
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FIG. 5. The same as in the previous figure for a symmetrical SL with central well narrower that the rest~a! ~see parameters in the text!.
The plots ofuCu2 vs E were calculated at the times:~b! t50.5 ps,~c! t51.0 ps,~d! t53.0 ps,~e! t520.0 ps~solid lines!. As expected, we
see that a perfect fit with the transmission coefficient is achieved at long enough times.
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Gn? We shall discuss this point at the end of this section,
show that the buildup of the transmission resonances foll
a simple exponential law whose transient time constant
pends on the widthGn of the resonances. In order to perfor
this task, we need to explore analytically the link of t
quantity uCN(E,t)u2 with the transmission coefficientT(E).
This is the purpose of the next subsection.

B. Transmission coefficient

In the above numerical examples, it is clearly evident t
the approximate expression foruCN(E,t)u2 evolves towards
the correct asymptotic limit~the transmission coefficient!,
despite the fact that it involves only a finite number of res
nance contributions. Although in the general case~in which
the full resonant spectrum of the system is consider!
Garcı́a-Caldero´n and Rubio11 have already demonstrated th
uC(L,k;t)u→ut(k)u as t→`, wheret(k) is the transmission
amplitude, it is instructive to explore here the analytic co
nection of our approximate quantityuCN(E,t)u2 with an ex-
plicit analytic expression of the transmission coefficie
T(E). Using the definition of the partial decay widthsGn

0 and
Gn

L , we shall obtain an expression foruCN(E,t)u2 that will
be used in the next subsection to analyze the duration of
buildup of each of the transmission peaks.

The partial widths are given by10

Gn
05

\2an

mIn
uun~0!u2 ~9!

and
24531
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Gn
L5

\2an

mIn
uun~L !u2. ~10!

Herean is the real part ofkn andI n5*0
Luun(x)u2dx'1, and

the sum of the partial widths is equal to the total widthGn

5Gn
01Gn

L .
The above quantities can be used in the expression

Tn(E,t) and Tmn(E,t) ~derived in the Appendix! to obtain
new explicit formulas that allow us to explore analytical
the link of uCN(E,t)u2 with the transmission coefficien
T(E). From Eqs.~4!, ~9!, and~10!, we obtain after a simple
algebra a Breit-Wigner type expression forurn(L,k)u2 in
terms ofGn

0 andGn
L . Using such an expression in Eq.~A6!,

the quantityTn(E,t) can be rewritten as

Tn~E,t !5Tn~E!xn~E,t !, ~11!

where

Tn~E!5CnF Gn
0Gn

L

v̂n
21~Gn/2!2G . ~12!

Notice that, although the time dependence in Eq.~11! ap-
pears only in the factorxn , bothTn andxn have in common
the energyE and hence they are still coupled. This couplin
is important in the transient regime and gradually disappe
as the solution evolves towards the stationary situation.
1-5
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FIG. 6. The same as in the two previous figures for a SL with an irregular potential profile~a! with parameters given in the text. The plo
of uCu2 vs E were calculated at the times:~b! t50.5 ps,~c! t51.0 ps,~d! t52.0 ps,~e! t570.0 ps. Even for this highly irregular potentia
a perfect fit with the transmission coefficient is achieved at long times.
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above is obvious from the fact thatxn(E,t)→1 when t
→` as can be easily verified.

The interference termsTmn(E,t) can also be expressed
terms of the partial decay widthsGn

0 and Gn
L . After using

Eqs. ~4!, ~9!, and ~10! in Eq. ~A7!, the following analytic
expression is obtained:

Tmn~E,t !52Cmn~Gm
0 Gm

L Gn
0Gn

L!1/2

3ReF exp@ i ~fmn!#jmn~E,t !

~v̂m1 iGm/2!~v̂n2 iGn/2!
G , ~13!

where Cn5(k/an)2I n
2 and Cmn5(k2/aman)I mI n , fmn

[@fm(0)1fm(L)2fn(0)2fn(L)#, the fn’s being the
phases of the resonant states, i.e.,un(x)
5uun(x)uexp@ifn(x)#.

Also in the termsTmn(E,t), the time dependent facto
jmn(E,t) is coupled to the rest of the expression through
energyE. It is straightforward to see that if we lett→`, we
havejmn(E,t)→1 and as a consequence, the asymptotic
pression of Eq.~7! coincides exactly with the analytic ex
pression of the transmission coefficientT(E) derived in Ref.
10 for multibarrier resonant structures.

C. Duration of the transient

In the examples of the previous sections, we noticed
the wider resonance peaks rise up to the level of the stat
ary value faster than the thiner ones. The purpose of
section is give an estimate of the duration of this transien
terms of the widthGn of the resonances.
24531
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For incidence at one of the resonances, sayE5«n , we
have: v̂n50, k'an , and henceTn(E,t) adopts a very
simple form, namely,

Tn~«n ,t !5Tn
peak@12exp~2t/2tn!#2, ~14!

where

Tn
peak5

4Gn
0Gn

L

~Gn
01Gn

L!2
~15!

is the maximum of the transmission coefficient at thenth
resonance energy, andtn5\/Gn is the corresponding life-
time. Note that in general, for asymmetric potentials we ha
Gn

0ÞGn
L and henceTn

peakmay have values below unity~this is
the case of the irregular structure whose transmission co
cient is plotted in Fig. 6!. It is clear from Eq.~15! that
Tn

peak51 only occurs in the case in which the partial dec
widths coincide,Gn

05Gn
L5Gn/2. Although the under-unity

transmission is easily explained here with Eq.~15!, it is im-
portant to mention that the situation is more subtle when
interference between neighboring resonances is very str
In this special situation, under-unity transmission peaks h
been observed even in symmetrical structures.9

Equation~14! tells us that the buildup of each of the tran
mission peaks follows an exponential law in which the tra
sient time constanttn is twice the value of the lifetime of the
1-6
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BUILDUP DYNAMICS OF TRANSMISSION RESONANCES . . . PHYSICAL REVIEW B 66, 245311 ~2002!
resonance. This implies, in particular, that the wider re
nances build up faster than the thinner resonances, a r
that is consistent with the numerical examples presente
the previous sections.

An interesting result is that Eq.~14! predicts the same
buildup law for any of the resonances of the miniband, a
makes no distinction between different systems: it applie
the transmission resonances of both periodic SL’s~for which
Tn

peak51) and asymmetrical or disordered SL’s~for which
typically Tn

peak<1). This kind of ‘‘universality’’ is illustrated
in Fig. 7, in which we have~arbitrarily! chosen some of the
resonances of two SL’s with quite different potential profile
In Fig. 7~a!, using Eq.~7!, we plot uCNu2/Tn

peak vs t, where
t[t/tn , for the SL’s of the second and third examples
Sec. IV, where the incidence energy was chosen to coin
with the position of their sharper resonances, which,
simple inspection of Figs. 5 and 6, areE5«5 in the former
andE5«7 in the latter. As we can see in Fig. 7~a!, a perfect
fit is obtained with the exponential curve given by Eq.~14!
despite the fact that we are considering different resonan
of different SL’s.

Let us consider now a couple of cases with incidence
wider and overlapping resonances. In view of interferen
effects between neighboring resonances, some ‘‘noise’’ is
pected in this case. This situation is illustrated in Fig. 7~b!, in
which, for the same two SL’s used in Fig. 7~a!, we usedE

FIG. 7. Plots ofuCu2 normalized toTpeakvs timet normalized to
the corresponding lifetimetn5\/Gn , for incidence at~a! isolated
and ~b! overlapping resonances. In~a!, the curve with hollow tri-
angles corresponds toE5«5 for the symmetric SL of Fig. 5, and
hollow circles toE5«7 for the irregular SL of Fig. 6. The curves i
~b! with hollow triangles and hollow circles correspond, respe
tively, to E5«3 and E5«1 for the same two SL’s. Also shown i
the calculation made by Eq.~14! ~dotted line!, which gives a good
description for the different cases depicted here.
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5«3 in the former~one of the peaks of the second doublet
Fig. 5! andE5«1 in the latter~see the first small peak in Fig
6!. We see in Fig. 7~b! that the corresponding plots also fit t
the same exponential curve, except for the small oscillatio
which, as mentioned above, is the noise produced by
influence of the interference with neighboring resonances
is important to emphasize that Eq.~14! is a single resonance
approximation which does not include interference contrib
tions, hence the imperfect fit observed in Fig. 7~b! is not
surprising; in fact, the amplitude of the oscillations may i
crease for resonances with stronger overlap. However,
spite this noise the fitting is still good, and even the resu
shown in Fig. 7~b! are good enough to establish that t
buildup of the transmission peaks is roughly governed by
exponential formula given by Eq.~14!.

Note the resemblance of the derived buildup law, E
~14!, with the buildup law of a charging-up capacitor in a R
circuit, Q(t)5Q@12exp(2t/tRC)#, where tRC is the tran-
sient time constant. In our quantum system, according to
~14!, the transient time constant that characterizes
buildup of the transmission resonances is twice the value
the lifetime of the resonance, namely,

tn
res'2tn52\/Gn . ~16!

The above is a relevant time scale that characterizes
duration of the transient, and can be easily calculated for
of the resonances of the miniband provided the correspo
ing width Gn is known. It is interesting that a transient tim
constant of also twice the value of the natural lifetime w
found by Pastawski some years ago using a differ
approach.17 He studied the time-dependent resonant tunn
ing in the presence of dephasing processes using a forma
based on a modified Landauer-Bu¨ttiker picture. Although our
description is based on a more idealized model, it give
clear description of time-dependent resonant tunneling
only in the regime of short times, it also succesfully d
scribes the transition from the transient to the stationary
gime.

To complete our discussion, we end this section illustr
ing the time evolution of the integrated probability density
x5L,

I L~ t !5E
E1

E2
uC~E,L;t !u2dE. ~17!

For the case of the periodic SL considered in Fig. 4, we sh
in Fig. 8 a plot ofI L(t)/I 0 vs t, whereI 05*E1

E2T(E)dE, with

the integration performed along an energy interval@E1 ,E2#
that extends around the first miniband~in the present calcu-
lation, E1565.0 meV andE2586.0 meV, as in Fig. 4!. As
can be seen, whent→` the value of the integralI L(t) tends
smoothly to the correct asymptotic limit,I 0. The features
exhibited byI L(t) before it reaches the asymptotic value a
the effects of the changes in the shape of theuCu2 vs E
curves occurring during the transient regime. As seen in
snapshots of Fig. 4, dramatic variations of the shape of
uCu2 vs E plots are observed at the different stages, mai
due to the birth of the resonance peaks at early times, and

-
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ROBERTO ROMO PHYSICAL REVIEW B66, 245311 ~2002!
relatively fast increase of their heights~and simultaneous de
crease of their widths!. As a consequence of these variation
during this transient the integrated probability density exh
its the steplike fluctuations observed in Fig. 8. A qualitative
similar behavior~not shown here! is observed in theI L(t)/I 0
vs t plots for the SL with overlapping resonances of Fig
and the irregular SL of Fig. 6.

V. CONCLUDING REMARKS

A time-dependent description of resonant tunneling
SL’s around a miniband has been accomplished. Star
from the formal solution of the TDSE for cutoff initial wave
incident on one side of the potential, a closed analytic
pression for the probability density at the right edge of
SL has been derived. It consists of a finite numberN of
Breit-Wigner-type resonance terms plus interference con
butions with explicit time dependence. This approximate f
mula is applied to superlattices with quite different distrib
tion of resonances and an excellent description is obtaine
the numberN is taken equal to the number of resonances
the miniband. It also applies to superlattices with poten
parameters such that the resonance levels are closely sp
presenting significant interference among them. The inter
ence effects due to the multiple interaction between theN
resonances of the miniband and the incidence energy
rise to oscillatory contributions with frequenciesvn5uE
2«nu/\ and vmn5u«m2«nu/\. As discussed elsewhere
these frequencies play relevant role on the dynamics of
tunneling process, in particular they can be tuned by a pro
choice of the incidence energy in order to enhance the
neling probability of the earliest transmitted carriers18

Within the framework of this dynamical approach, we stu
the way in which the transmission resonances are forme
a function of time, and show that they are governed b
simple exponential buildup lawTn(«n ,t)5Tn

peak@12exp
(2t/tn

res)#2, whose transient time constanttn
res is twice the

value of the lifetime of the resonant statetn
res'2tn

52\/Gn .
As a final remark, it is worth to mention that an importa

FIG. 8. Plot ofI L(t)/I 0 vs t for the periodic case considered
Fig. 4. The limits of the integrals were chosen also as in Fig. 4,
E1565.0 meV andE2586.0 meV.
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problem in this context has been the investigation of
relevant time scales for the passage of electrons across
SL. A recent work on the subject was made by Pereyr19

using a stationary approach valid for finite periodic SL’s,
which thephase timewas analyzed in a wide range of ene
gies. We believe that this problem also deserves a tim
dependent analysis in order to obtain information of the e
liest tunneling events that occur in the transient regime. O
of the features of the approach used here is that lead
analytic solutions of the TDSE that allow to analyze the tra
sition from the transient to the stationary regime, having
possibility to explore not only the dynamics of the emissi
at x5L of the earliest transmitted particles, but also its re
tion to the buildup dynamics inside the SL. Moreover, o
approach is valid not only for periodic SL’s, it also applies
irregular ~disordered! potentials and consequently it may a
lows us to observe the localization phenomena in a tim
dependent picture. This investigation is considered for fut
work.
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APPENDIX

The approximation to Eq.~3! for one miniband consisting
on N resonances is

C'CN5fNM @y~k,t !#2f* NM @y~2k,t !#

2 (
n51

N

$rnM @y~kn ,t !#1r2nM @y~k2n ,t !#%. ~A1!

HerefN denotes the miniband approximation of the s
tionary solutionf(x,k), which is given by10

f~x,k!'fN~x,k!52ik (
n51

N
un~0!un~x!

k22kn
2

. ~A2!

The M functions involved in Eq.~A1! exhibit different
behavior as functions of time depending on the value of
phase of its complex argumenty[uyuexp(iu). When 2p/2
,u,p/2, M (y) is a decreasing function of time. In fact, a
long times it can be represented in terms of inverse pow
of t by the series11 M (y);(1/2)@1/(p1/2y)21/(p1/2y3)
1•••#. As can be easily verified, only the function
M @y(q,t)# in Eq. ~3! with q52k and q5k2n lie in this
category. Therefore, it is expected that, compared with
exponential terms, these functions have a relatively sm
contribution to the solution.20

On the other hand, it is not difficult to convince onese
that for M ’s with q51k andq51kn the inequality2p/2
,u,p/2 is not fulfilled, and hence the above argumen

.,
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does not apply to bothM @y(k,t)# and M @y(kn ,t)#. Fortu-
nately, they can be related with the otherM functions by the
symmetry relation11

M ~y!5ey2
2M ~2y!, ~A3!

by noting that2y(q,t)5y(2q,t). By feeding Eq.~A3! and
Eq. ~A2! into Eq. ~A1!, the solution at the right edge (x
5L) of the SL can be rewritten in the form

CN~k,t !5 (
n51

N

rn~L,k!@e[ y(k,t)] 2
2e[ y(kn ,t)] 2

#1D~L,k;t !,

~A4!

where D(L,k;t) accounts for all the terms containingM
functions of the form M @y(2k,t)# and M @y(k2n ,t)#,
which, as mentioned above, are decreasing functionst
with negligible contribution.

A useful analytic expression for the probability density
x5L can be easily calculated from Eq.~A4!. After a straight-
forward algebra it reads

uCN~E,t !u25 (
n51

N

Tn~E,t !1 (
n,m

N

Tmn~E,t !1R, ~A5!
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