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Self-consistent three-dimensional models for quantum ballistic transport in open systems
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A quasi-three-dimensional model for quantum ballistic transport in nanostructures is proposed. The model
goes beyond the Thomas-Fermi approximation and is numerically more tractable than the full three-
dimensional Schro¨dinger-Poisson model. Its derivation relies on the strong confinement of electrons at the
heterojunction which allows us to split the three-dimensional Schro¨dinger equation into a one-dimensional
Schrödinger equation for the confined direction and a two-dimensional Schro¨dinger equation in the transport
direction. The space charge effects are taken into account in a three-dimensional framework. Numerical
simulations of quantum waveguide devices such as T stubs and directional couplers are used to illustrate the
accuracy of the quasi-3D model versus the fully 3D model and to show the importance of quantum effects.
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I. INTRODUCTION

Nanoscale split-gate devices such as quantum couple
stubs, etc., whose operation relies on the formation of a t
dimensional electron gas~2DEG! and on wave interferenc
effects, have been widely studied both from the experime
and theoretical point of view.1–12 At low temperatures, and
thanks to the confinement of electrons in the 2DEG, the m
bility is sufficiently high to consider the transport as ballis
along the 2DEG.13–15Therefore, the von Neumann or Schr¨-
dinger pictures are suitable. In the latter, electrons can
represented by a mixed state with given statistics, each
ementary state being the solution of the Schro¨dinger equa-
tion with open boundary conditions.

Since the conductance is very sensitive to the value of
electrostatic potential, an accurate computation of sp
charge effects has to be done. For numerical reasons
electrostatic potential used to be computed self-consiste
in the Thomas-Fermi approximation.9 Once the potential is
obtained, the conductance is computed either by the Keld
Green’s functions16–22or mode matching techniques~the lat-
ter method requires the replacement of the potential b
hard wall potential!.23–26 The Thomas-Fermi approximatio
is only valid for equilibrium situations and for slowly vary
ing electrostatic potentials. This is not the case for the
vices we are interested in, as will be illustrated in the for
coming sections. Therefore, an accurate representation o
electrostatic potential requires the resolution of the Sch¨-
dinger equations~thus allowing us to go beyond the Thoma
Fermi approximation!. We shall perform this program by us
ing the Lent and Kirkner boundary conditions27 for each
wave function@the quantum transmitting boundary meth
~QTBM!, analogous results in electromagnetic were obtai
in particular by Nedelec and Starling28#. Let us mention that
the Schro¨dinger picture is suitable for ballistic transpo
since the density matrix is diagonal. When collisions are
portant, this approach is difficult to generalize~we, however,
0163-1829/2002/66~24!/245301~9!/$20.00 66 2453
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mention the Pauli master equation approach proposed by
chetti in Ref. 29!. The Keldysh Green’s function approach
meeting an increasing interest since it allows us to ea
take into account collisions. The idea consists in comput
the density matrix directly by solving the Dyson equation,
which the collision can be incorporated in a rather dire
way. The method is, however, very time consuming since
diagonal terms of the density matrix have to be comput
This results in doubling the number of position variabl
compared to the Schro¨dinger picture. In three-dimensiona
situations, this leads to a six-dimensional Dyson equation
which the numerical cost is high. Let us mention21 where a
new recursive Green’s method is proposed for block dia
nal Green’s functions.

The method that we propose in this paper is based on
Schrödinger equation with the quantum transmitting boun
ary method. Numerical simulations in the two-dimension
case, without space charge effects, were performed in
30. In order to reduce the numerical complexity in the thre
dimensional case, we propose a simplified quasi-thr
dimensional model, which simultaneously takes into acco
the confinement of electrons in the 2DEG and the fact t
the electrostatic potential is completely three-dimension
This quasi-three-dimensional model is then compared w
the fully three-dimensional one.

The outline of the paper is as follows. After having r
called the three-dimensional Schro¨dinger-Poisson system t
be solved~Sec. II!, we present in Sec. III the quasi-thre
dimensional model. Section IV deals with the numerical p
cedure used to solve the defined coupled systems. The s
lations of a T stub and a quantum directional coupl
presented in Sec. V, show a satisfactory agreement betw
the three-dimensional Schro¨dinger-Poisson model and th
quasi-three-dimensional one~charge density, transmissio
spectra, etc!, whose resolution requires much less compu
resources. The comparison with classical models for cha
density based on the three-dimensional and the t
©2002 The American Physical Society01-1
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E. POLIZZI AND N. BEN ABDALLAH PHYSICAL REVIEW B 66, 245301 ~2002!
dimensional Thomas-Fermi approximations shows that
Schrödinger approach is necessary to correctly model nan
cale split-gate devices.

II. THE THREE-DIMENSIONAL
SCHRÖDINGER-POISSON SYSTEM

The structures that we are interested in are compose
an active region connected to reservoirs by quant
waveguides. Examples of such structures, and which
have simulated, are T stubs and directional quantum coup
which respectively contain two and four waveguides~see
Fig. 1!.

The three-dimensional domain~see Fig. 2! occupied by
the device is a box denoted byV0. We shall denoteLz its
height andv0 its basis. The interface between the device a
the waveguide numberj is a rectangle denoted byG j . We
shall denote its horizontal side byg j

V05v03@0,Lz#, G j5g j3@0,Lz#.
Since the system is open, the charge density correspon

the statistical mixture of scattering states

n~rW !52 (
j 0 ,m0

E
0

`

uC j 0 ,m0 ,k~rW !u2

3 f FD$E~ j 0 ,m0 ,k!2m j 0
%

dk

2p
, ~1!

where the factor 2 is the spin factor,f FD is the Fermi-Dirac
distribution, andm j 0

is the chemical potential associated

the waveguidej 0. The symbolrW5(x,y,z) stands for the po-
sition variable. The wave functionC j 0 ,m0 ,k corresponding to

an incoming wave in the guide numberj 0 on the transversa

FIG. 1. Schematics of a quantum directional coupler. The dev
is composed by four semiconductor layers with Shottky gates
top.

FIG. 2. Representation of the three-dimensional domain~active
regionV0) with its boundaries~on the left! and its planar tracev0

~on the right!.
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modem0 ( j 0 andm0 are two integer indices!, and with the
wave vectork (k is a positive continuous index!. These wave
functions are scattering states of the Schro¨dinger Hamil-
tonian

H52
\2

2m*
D1U~rW ! ~2!

(U is the potential energy andm* is the effective mass!, and
they are associated with the following energy:

E~ j 0 ,m0 ,k!5Em0

j 0 1
\2k2

2m*
, ~3!

whereEm0

j 0 is the m0th eigenvalue of the transverse Schr¨-

dinger equation in the guidej 0. We refer to Refs. 26 and 27
for a detailed description of suitable boundary conditions
these scattering states. The functionC j 0 ,m0 ,k can be numeri-
cally computed by finite elements involving the QTBM.27

The potential energyU is defined by

U~rW !52qV~rW !1Ec~z!, ~4!

whereEc is the energy of the conduction band bottom, a
V(rW) is the electrostatic potential. The electrostatic poten
within the structure is self-consistently determined by so
ing the Poisson equation

2¹„e r~z!¹V~rW !…5
q

e0
~$nD~z!2n@V#~rW !%!, ~5!

where q denotes the free electron charge,e0 the vacuum
permittivity, e r the relative dielectric constant of the differe
semiconductors layers, andnD the doping profile. The nota
tion n@V#(rW) expresses the fact that the density depends
the electrostatic potentialV and stresses the nonlinear cha
acter of the problem. The boundary conditions used z
vertical electric field far inside the substrate (z50) because
of charge neutrality, a given applied voltage at the top of
device (z5Lz) @the potential at the surfaces is assumed to
pinned at a fixed valueVs50.7 V ~Refs. 31 and 32!# and is
offset under the Shottky gates by the potential applied to
gates!. Finally, zero longitudinal electric field is assumed o
lateral faces because of the translation invariance of the
tential in the waveguides. About the last point, we assu
that the potential depends only on the transverse directio
the active region next to theG j interface with the waveguide
j. This means that the simulation domain has to be la
enough to contain sufficiently long~but not too! portions of
the waveguides.

III. THE QUASI-THREE-DIMENSIONAL
SCHRÖDINGER-POISSON SYSTEM

We have solved the three-dimensional Schro¨dinger-
Poisson system for the T stub and directional coupler sit
tions, and obtained the self-consistent solution. This is
scribed in Secs. IV and V. One of the major drawbacks
such resolution is its high numerical cost. We shall no

e
n
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SELF-CONSISTENT-THREE DIMENSIONAL MODELS . . . PHYSICAL REVIEW B 66, 245301 ~2002!
present a model that we call the quasi-three-dimensio
model which takes into account the strong confinemen
electrons in thez direction.

A. Description of the model

The 3D potential energyU(rW) can be separated arbitraril
into a potentialU1 depending on the verticalz direction, a
potentialU2 depending onx,y, and a potentialu(rW), such
that

U~rW !5U1~z!1U2~x,y!1u~rW !. ~6!

Let fn be the normalized eigenfunction solving the 1D
genvalue problem

2
\2

2m*

d2

dz2
fn~z!1U1~z!fn~z!5Eznfn~z!, ~7!

with Dirichlet boundary conditions equal to zero at the t
and the bottom of the device~respectively z50 and z
5Lz). The three-dimensional wave functionCE can be ex-
panded on thefn’s

CE5 (
n51

`

cn~x,y!fn~z!, ~8!

In the particular case ofu50, the wave functioncn sat-
isfies this 2D Schro¨dinger equation

2
\2

2m*
Dx,yc

n~x,y!1U2~x,y!cn~x,y!5~E2Ezn!c
n~x,y!.

~9!

In the general case,uÞ0, the wave functioncn is then
solution of the 2D Schro¨dinger equation~9! where the term
U2cn is replaced by

U2~x,y!cn~x,y!1(
n8

cn8~x,y!S E
0

Lz
f̄n~z!u~rW !fn8~z!dzD ,

~10!

and involves nondiagonal terms~those corresponding ton8
Þn).

The quasi-3D model consists in assuming thatu is a
slowly varying function compared tofn around the electron
gas in thez direction, and neglecting the off-diagonal term
of Eq. ~10!. cn is now the solution of a new 2D Schro¨dinger
equation

2
\2

2m*
Dx,yc

n~x,y!1Ûn~x,y!cn~x,y!5~E2Ezn!c
n~x,y!,

~11!

where the potential energy on the band numbern is given by
Ûn(x,y)5U2(x,y)1*0

Lzu(rW)ufn(z)u2 dz, which can be re-
written

Ûn~x,y!5E
0

Lz
@U~rW !2U1~z!#ufn~z!u2 dz. ~12!
24530
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Let fn0
c j 0 ,p0 ,k

n0 be the wave function solving the

quasi-3D problem and corresponding to one incoming w
in the waveguidej 0, on the vertical moden0, and the trans-
verse modep0 in the guide. Therefore the energy is given b

E~ j 0 ,p0 ,n0 ,k!5Ezn0
1Êp0 ,n0

j 0 1
\2k2

2m*
~13!

@where Êp0 ,n0

j 0 is the p0th eigenvalue of the 2D transvers

Schrödinger equation~11! in the guidej 0] and the expres-
sion of the electron density takes now the following form

n~rW !5 (
n051

`

ufn0
~z!u2 n2D

n0 ~x,y!, ~14!

wheren2D
n0 is defined as the 2D density of electrons in t

vertical moden0

n2D
n0 ~x,y!52 (

j 0 ,p0

E
0

`

uc j 0 ,p0 ,k
n0 u2

3 f FD$E~ j 0 ,p0 ,n0 ,k!2m j 0
%

dk

2p
. ~15!

To summarize, the 3D wave function solution of Eq.~2!
for a given energy can be separated in a 1D eigenvalue p
lem for the vertical z direction Eq. ~7!, and a two-
dimensional Schro¨dinger equation~11! in the transport direc-
tion with open boundary conditions at the limit of th
waveguidesg j .

B. Approximation orders

Let the surface density and the current density be given

ns~x,y!5E
0

Lz
n~rW !dz ~16!

and

J~rW !52 (
j 0 ,m0

E
0

`

j j 0 ,m0 ,k~rW ! f FD„E~ j 0 ,m0 ,k!2m j 0
…

dk

2p
,

~17!

where j j 0 ,m0 ,k(rW) is the current density associated with o
scattering state

j j 0 ,m0 ,k~rW !5
q\

m*
Im$C̄ j 0 ,m0 ,k~rW !¹C j 0 ,m0 ,k~rW !%. ~18!

We briefly summarize the results shown in Ref. 33. A
suming thatuuu!1, it can be shown using the stationa
perturbation theory that the surface and the current inte
ties in the waveguides computed by the quasi-3D model
second order approximations of the corresponding quant
of the fully 3D model. The quasi-3D model is more accura
than the fully decoupled model~in which u is set to zero!.
Indeed, for the latter, the surface and current intensities in
waveguides are first order approximations of the correspo
1-3
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ing quantities of the fully 3D model. Moreover, the approx
mation orders are still valid ifu is a slowly function com-
pared tofn around the electron gas in thez direction ~it is
not necessary to haveuuu!1).

C. Description of the electron confinement
through the quasi-3D model

For a given potentialU, we need to define a potentialU1
which depends only on thez direction. When a negative bia
potential is applied to the gates on the top of the device,
2DEG deserts the zones under the gates in which the su
density is equal to zero. Figure 3 gives the potential and
density vertical profile for a zone under the gates and for
active region where are localized the electrons. The vert
potential U1 is a potential which ‘‘must be seen’’ by th
electrons. Therefore, we define the potentialU1 as a
weighted average in thex,y direction of the 3D potential

U1@V#~z!5

E
v0

U~rW !ns@V#~x,y!dxdy

E
v0

ns@V#~x,y!dxdy

. ~19!

The chosen weight is the surfacic density in order to ign
the contributions of deserted zones; see Fig. 3. The quas
quantum model is defined by the coupled system, Eqs.~16!,
~19!, ~7!, ~12!, ~15!, ~14!, ~4!, and~5!.

D. The current density

In this section we recall the expression of the current d
sity in the waveguides using the transmission coefficients4,34

In the 3D case and for one incoming wave in the inp
ports j 0 and the transverse modem0, the transmission coef
ficient in the output portsj and the transverse modem is
defined by

FIG. 3. Vertical potential and density profiles for a T stub at tw
different locations. In the active region~zone without gates on the
top! the density is localized in the 2DEG next to th
Al xGa12xAs/GaAs interface, and in the zone under the gates,
electron density is equal to zero.
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Tj 0→ j
m0→m

~E!5H km
j ~E!

km0

j 0 ~E!
ubm

j u2 if E<Em
j

0 else,

~20!

The total transmission coefficientTj 0→ j in the output portsj

from the input portj 0 is given by

Tj 0→ j~E!5 (
m0 ,m

Tj 0→ j
m0→m

~E!. ~21!

In the quasi-3D case, the results about the transmis
coefficient presented below are still valid with the followin
changes in expressions~20! and~21!: The indicesm0 andm
become, respectively,n0 ,p0 andn,p ~the sums over the in-
dicesm0 andm become, respectively, sums over the indic
n0 ,p0 andn,p), andEm

j becomesÊp,n
j 0 1Ezn .

Therefore, the electric current between the portj 0 andj is
given by

I j 0→ j5
q

p\E0

`

Tj 0→ j~E! f FD~E2m j 0
!dE, ~22!

and the total current in the portj which takes into account the
contribution of all portj 0 by

I j5 (
j 0Þ j

~ I j 0→ j2I j→ j 0
!. ~23!

We noteTj 0→ j5Tj→ j 0
with the assumption of ballistic trans

port, and we obtain the following relation:

I j5
q

p\ (
j 0

E
0

`

Tj 0→ j~E!@ f FD~E2m j 0
!2 f FD~E2m j !#dE.

~24!

At equilibrium, the chemical potentials are all equal to
single valuem. This implies with Eq.~24! that the currents
are all equal to zero. Denotingv j the applied bias at the por
j, we obtain

e

TABLE I. Self-consistent 3D and quasi-3D models at equili
rium (m j5m) and out of equilibrium.

3D model Quasi-3D model

m j5m Semiclassical Hybrid
Thomas-Fermi 3D Schro¨dinger 1D

Poisson 3D Thomas-Fermi 2D
Poisson 3D

m j5m2qv j Quantum Quantum
Schrödinger 3D Schro¨dinger 1D

Poisson 3D Schro¨dinger 2D
Poisson 3D
1-4
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m j5m2qv j , ~25!

and the net current is nonvanishing.

IV. NUMERICAL PROCEDURE

The P1 finite element method is used to solve all t
equations of the coupled systems on a same 3D mesh.
convenient to construct the 3D mesh using parallel supe
sition of the same 2D mesh in thez direction since the
quasi-3D models require a 1D mesh in thez direction to
solve the vertical eigenproblem~7!, and a 2D mesh onx,y to
solve the 2D Schro¨dinger equation~11!. The symmetric lin-
ear complex sparse systems that we obtain with the QT
apply to the 2D or 3D open Schro¨dinger equations are solve
using a quasiminimal residual~QMR! procedure.35 In order

FIG. 4. The density profile after the quantum model conv
gence. Electrons are localized in the active region near
Al xGa12xAs/GaAs interface.
24530
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to obtain the electron density for a given potential, we ne
to solve a large number of independent 2D or 3D op
Schrödinger equations. Therefore, a parallel version of
code was developed.

Because of the highly nonlinear character of the coup
systems, implicit schemes have to be used for the nume
resolution. In order to obtain a suitable initial guess to be
the 3D and quasi-3D quantum simulations at equilibriu
~with no applied bias voltage between the input and the o
put terminals of the structures!, we use the well-known
Thomas-Fermi semiclassical approximation. We briefly
call the expression of the electron density in this approxim
tion

n@V~rW !#5
A2

p2 S m*

b\2D 3/2

F1/2„b@m2U~rW !#…, ~26!

wherem is the chemical potential of the system at equili
rium, b51/(kBT), andF1/2(h f) is the Fermi-Dirac integral
given by

F1/2~h f !5E
0

` h1/2

11exp~h2h f !
dh. ~27!

The obtained 3D Thomas-Fermi/Poisson system is solved
standard Newton method. However, for the 3D quant
model and quasi-3D models the Newton method is not pr
tical because the density depends non locally on the po
tial. Therefore, we use the Gummel iterations36 and for a
given potentialVn at the stepn, the new potentialVn11 is
now given by

2¹[ ~e r~z!¹Vn11~rW !#1
q

e0
n~rW !

Vn11

Vref

5
q

e0
FnD~z!2n~rW !S 12

Vn

Vref
D G , ~28!

-
e

ty
FIG. 5. Contour plots of the electron densi
in the waveguidex50 far from the active region
and for the four models at equilibrium.
1-5
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FIG. 6. The surfacic density
profiles for the four models. In the
quantum models, interference e
fects appear in the active region.
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where Vref is a reference potential~we choose Vref
5kBT/q).

At equilibrium, we can also define a hybrid model whic
takes into account the quantum effect of the local const
tion of electron gas in thez direction and consists in com
puting the 2D density of electrons defined in Eq.~14! by a
semiclassical model. Therefore, the obtained potential of
hybrid coupled system is a better initial guess for both
3D and quasi-3D quantum models at equilibrium. Tabl
24530
-

e
e
I

summarizes the semiclassical and quantum models as
ated with the coupled systems that we have defined.

V. RESULTS

As an illustration of the models, we give some numeric
results for the T stub and the quantum directional coupler
our simulations, the dimensions of the three semicondu
layers between the gates and the substrate are successiv
r
ent
FIG. 7. Transmission coefficients for the fou
models. The results show a very good agreem
between the 3D and quasi-3D models.
1-6
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20, and 10 nm~we choose 150 nm for the substrate!. We take
an applied gates voltage equal to20.5 V for the T stub and
20.53 V for the coupler, 4.2 K for the temperature,nD
52.431018 cm23 for the two first layers under the gates~the
cap layer GaAs andn-Al xGa12xAs), x50.26 for the portion
of Al in Al xGa12xAs, m* 50.067me for the effective mass o
GaAs (me is the electron mass!, e r512.88 for the dielectric
constant in all the device,Vs520.7 V for the pinning po-
tential, andm50 for the chemical potential at equilibrium
(v15v250 V). With these parameters, the electrons are
calized in the first vertical moden51.

A. The T stub

The width of the waveguides on the top of the device
60 nm, and the dimension of the cavity in the active region
60340 nm onx andy. We show in Fig. 4 the density profil
in the device obtain with the quantum model where we
note the localization of the electron gas in a plane next to
Al xGa12xAs/GaAs interface~which is at z5150 nm) and
only in the active region.

FIG. 8. The density profile after the quantum model conv
gence.
24530
-

s
s

-
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In Fig. 5, the electron density in the waveguides for t
four models at equilibrium is given. In semiclassical simu
tions, the electron gas sits at the heterojunction while
mean position is 140.8 nm for the quantum model, almost
nm below the AlxGa12xAs/GaAs interface. In this latter, th
electron gas appears more extended in the vertical direc
Moreover, there is a possibility for the electron to penetr
the heterojunction (z.150 nm) by tunneling effect~this re-
sult is still shown in Ref. 37 for the quantum wire case!. The
results on the density in the waveguides~far from the active
region! obtained by the quasi-3D quantum model are ve
close to the results of the full 3D quantum model. This go
agreement is also confirmed in the active region~see Fig. 6!.
Interference patterns appearing in the surfacic density c
puted by the quantum models and obviously absent for se
classical simulations confirm the need for a quantum desc
tion.

More quantitatively, Fig. 7 shows the transmission coe
cients for one incoming wave in the left waveguide (x50)
and in the first transverse mode. For all the models, the va
tions of the curves show oscillations between the total refl
tion ~the transmission coefficient is equal to zero! and the
total transmission~the transmission coefficient is equal
one!. These kind of results were expected by the tw
dimensional simulations with infinite wall potential an
without space charge effects.30 The transmission coefficient
show a very good agreement between the 3D and quas
models; this implies that the potential profile on the device
the same. The shift on the energy which appears between
semiclassical model and the others is due to vertical confi
ment of the electron gas and the fact that semiclassical m
do not take it into account. Take note that the results given
the hybrid model~also for the surfacic density! are closer to
the full quantum description than the results obtained by
semiclassical model.

The full 3D simulation requires huge computer resourc
This is not true for the quasi-3D quantum model where
convergence speed is approximatively 215 time faster t
the 3D model on a biprocesseur Compaq~DS20E!. There-

-

quantum
FIG. 9. The surfacic density profiles for the semiclassical model and the quasi-3D quantum model. In the quantum model,
effects appear in the active region.
1-7
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fore, the quasi-3D model can be used practically to comp
current-voltage characteristics while it is quasi impossi
for the 3D model.

B. The quantum directional coupler

The width of the waveguides on the top of the device
50 nm, and the dimension of the coupling branch in
middle of the device is 50360 nm onx andy. The geometry
of the quantum directional coupler is more complex than
geometry of the T stub; then the number of the mesh node
also more important. The 3D quantum model in the quant
coupler case is then numerical expensive~the size of the
linear systems obtained by solving the Schro¨dinger equations
is too large to expect a result in relevant times!. Therefore,
we assume that the quasi-3D quantum model is a very g
approximation of the full quantum model as it is shown f
the T-stub case, and we only use this model for the quan
coupler simulations.

Figure 8 shows the density profile in the device obtain
with the quasi-3D quantum model.

The mean position of the electron gas plane below
Al xGa12xAs/GaAs interface is equal to 139.6 nm. The sim
lation exhibits very important quantum effects in the act
region. This is not true for the semiclassical model, as sho
in Fig. 9 for the surfacic density.

Figures 10 and 11 show the results of the transmiss
coefficients for one incoming wave in port 1 and in the fi
transverse mode, respectively, for a transmission in por
and transmissions in ports 3 and 4~see Fig. 2 for the num-
bering of the ports!.

The transmission coefficients obtained by the quant
model are very different from those obtained by the se
classical or the hybrid one.

FIG. 10. Transmission coefficients in port 2 for one incomi
wave in port 1 and for the three models.
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VI. CONCLUSION

To summarize, we have presented a Schro¨dinger-Poisson
system modeling the electronic transport in a full 3D w
and in a quasi-3D way. The latter can be derived from
full 3D model using a decomposition of the wave functio
which takes into account the vertical confinement of the el
tron in a 2DEG in the device. A very good agreement b
tween the numerical results was obtained by the two mod
through the simulation of the T-stub device. The quasi-
quantum model requires very small computer resources c
pared to the full 3D one. Moreover, we have shown a qu
tative and quantitative comparisons, at equilibrium, betwe
the quantum models and the semiclassical models base
the 2D and the 3D Thomas-Fermi approximations. These
sults confirm that a quantum description is required for co
plex devices such as the quantum directional coupler. In
der to achieve the simulations, a 3D finite element co
called NESSIE ~Nano-Electronic Simulator for System wit
Interference Effects! was developed at the MIP Laborator
NESSIEis flexible enough to allow complex geometries whi
are defined by the gates on the top~with arbitrary numbers
and directions for the waveguides! and so could be used t
study a wide range of characteristics~current-voltage, tem-
perature effects, conductance quantization effects, etc.! of
many open quantum structures.
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FIG. 11. Transmission coefficients in ports 3 and 4 for one
coming wave in port 1 and for the three models.
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