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Self-consistent three-dimensional models for quantum ballistic transport in open systems
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A quasi-three-dimensional model for quantum ballistic transport in nanostructures is proposed. The model
goes beyond the Thomas-Fermi approximation and is numerically more tractable than the full three-
dimensional Schidinger-Poisson model. Its derivation relies on the strong confinement of electrons at the
heterojunction which allows us to split the three-dimensional Qtihger equation into a one-dimensional
Schralinger equation for the confined direction and a two-dimensional ‘Satger equation in the transport
direction. The space charge effects are taken into account in a three-dimensional framework. Numerical
simulations of quantum waveguide devices such as T stubs and directional couplers are used to illustrate the
accuracy of the quasi-3D model versus the fully 3D model and to show the importance of quantum effects.
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[. INTRODUCTION mention the Pauli master equation approach proposed by Fis-
chetti in Ref. 29. The Keldysh Green'’s function approach is

Nanoscale split-gate devices such as quantum couplers,Meeting an increasing interest since it allows us to easily
stubs, etc., whose operation relies on the formation of a twotake into account collisions. The idea consists in computing
dimensional electron gaDEG) and on wave interference the density matrix directly by solving the Dyson equation, in
effects, have been widely studied both from the experimentalvhich the collision can be incorporated in a rather direct
and theoretical point of view:? At low temperatures, and way. The method is, however, very time consuming since off
thanks to the confinement of electrons in the 2DEG, the modiagonal terms of the density matrix have to be computed.
bility is sufficiently high to consider the transport as ballistic This results in doubling the number of position variables
along the 2DEG>~'®Therefore, the von Neumann or Schro compared to the Schdinger picture. In three-dimensional
dinger pictures are suitable. In the latter, electrons can bsituations, this leads to a six-dimensional Dyson equation for
represented by a mixed state with given statistics, each elwhich the numerical cost is high. Let us menfibwhere a
ementary state being the solution of the Sclimger equa- new recursive Green's method is proposed for block diago-
tion with open boundary conditions. nal Green’s functions.

Since the conductance is very sensitive to the value of the The method that we propose in this paper is based on the
electrostatic potential, an accurate computation of spac&chralinger equation with the quantum transmitting bound-
charge effects has to be done. For numerical reasons, tleey method. Numerical simulations in the two-dimensional
electrostatic potential used to be computed self-consistentlyase, without space charge effects, were performed in Ref.
in the Thomas-Fermi approximatidnOnce the potential is  30. In order to reduce the numerical complexity in the three-
obtained, the conductance is computed either by the Keldystiimensional case, we propose a simplified quasi-three-
Green’s function®~?2or mode matching techniquéthe lat-  dimensional model, which simultaneously takes into account
ter method requires the replacement of the potential by ¢he confinement of electrons in the 2DEG and the fact that
hard wall potentigl>>~?® The Thomas-Fermi approximation the electrostatic potential is completely three-dimensional.
is only valid for equilibrium situations and for slowly vary- This quasi-three-dimensional model is then compared with
ing electrostatic potentials. This is not the case for the dethe fully three-dimensional one.
vices we are interested in, as will be illustrated in the forth- The outline of the paper is as follows. After having re-
coming sections. Therefore, an accurate representation of tlwalled the three-dimensional Schinger-Poisson system to
electrostatic potential requires the resolution of the Schrobe solved(Sec. 1), we present in Sec. Ill the quasi-three-
dinger equationgthus allowing us to go beyond the Thomas- dimensional model. Section IV deals with the numerical pro-
Fermi approximation We shall perform this program by us- cedure used to solve the defined coupled systems. The simu-
ing the Lent and Kirkner boundary conditidsfor each lations of a T stub and a quantum directional coupler,
wave function[the quantum transmitting boundary method presented in Sec. V, show a satisfactory agreement between
(QTBM), analogous results in electromagnetic were obtainedhe three-dimensional Schiimger-Poisson model and the
in particular by Nedelec and Starliffy Let us mention that quasi-three-dimensional ongharge density, transmission
the Schrdinger picture is suitable for ballistic transport spectra, etc whose resolution requires much less computer
since the density matrix is diagonal. When collisions are im+esources. The comparison with classical models for charge
portant, this approach is difficult to generalizee, however, density based on the three-dimensional and the two-
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modemy (jo andmy are two integer indicgsand with the
wave vectok (k is a positive continuous indgxXThese wave
functions are scattering states of the Sclimger Hamil-

tonian
GaAs
n—AlGaAs #2
AlGaAs7 H=—-—A+U(r) 2
GaAs (Substrate) 2m*
2DEG/

(U is the potential energy and* is the effective magsand
FIG. 1. Schematics of a quantum directional coupler. The devicghey are associated with the following energy:
is composed by four semiconductor layers with Shottky gates on
top. _ S
E(Jo,mo,k):EmO+ 2m* y (3)

dimensional Thomas-Fermi approximations shows that the

Schftdinger approe_lch is necessary to correctly model nanosihere E° is the moth eigenvalue of the transverse Schro
cale split-gate devices. Mo

dinger equation in the guidg. We refer to Refs. 26 and 27
for a detailed description of suitable boundary conditions for
these scattering states. The functiép . « can be numeri-
cally computed by finite elements involving the QTB.
The structures that we are interested in are composed of The potential energy is defined by
an active region connected to reservoirs by quantum
waveguides. Examples of such structures, and which we U(F)z—qV(F)+EC(z), (4
have simulated, are T stubs and directional quantum couplers ) i
which respectively contain two and four waveguidese thzreEc is the energy of the conduction band bottom, and
Fig. 1). V(r) is the electrostatic potential. The electrostatic potential
The three-dimensional domaiisee Fig. 2 occupied by within the structure is self-consistently determined by solv-
the device is a box denoted y,. We shall denotd., its  ing the Poisson equation
height andw, its basis. The interface between the device and q
the waveguide numbgris a rectangle denoted Hy;. We _ Sy _ >
shall denote its horizontal side by : Vie(2)VV(r) 60({nD(z) VI, ®)

Il. THE THREE-DIMENSIONAL
SCHRODINGER-POISSON SYSTEM

Qo=woX[0L,], Tj=y;x[0L,]. Whergq _denotes the free _electrqn chargg, the vacuum
permittivity, €, the relative dielectric constant of the different
semiconductors layers, amg, the doping profile. The nota-

tion n[V](r) expresses the fact that the density depends on

Since the system is open, the charge density correspond
the statistical mixture of scattering states

- * > o the electrostatic potential and stresses the nonlinear char-
N=22 | [ m (D] -
1S Jo ! JorMo: acter of the problem. The boundary conditions used zero
vertical electric field far inside the substrate=0) because
e K dk 1 of charge neutrality, a given applied voltage at the top of the
X feo{E(io.Mo, )_“Jo}ﬂ’ @ device ¢=L,) [the potential at the surfaces is assumed to be

pinned at a fixed valu®;=0.7 V (Refs. 31 and 34 and is
offset under the Shottky gates by the potential applied to the
gates. Finally, zero longitudinal electric field is assumed on
the waveguidg,. The symbolfz(x,y,z) stands for the po- lateral faces because of the translation invariance of the po-
sition variable. The wave functio'; . « corresponding to tential in the waveguides. About the last point, we assume
an incoming wave in the guide numbgyon the transversal that the potential depends only on the transverse direction in
the active region next to the; interface with the waveguide
Ay j. This means that the simulation domain has to be large
Tl’ enough to contain sufficiently londput not tog portions of
the waveguides.

where the factor 2 is the spin factdip is the Fermi-Dirac
distribution, and,uj0 is the chemical potential associated to

lll. THE QUASI-THREE-DIMENSIONAL
SCHRODINGER-POISSON SYSTEM

We have solved the three-dimensional Sclmger-
Poisson system for the T stub and directional coupler situa-

FIG. 2. Representation of the three-dimensional dongadtive ~ tions, and obtained the self-consistent solution. This is de-
region),) with its boundariegon the lefi and its planar trace,  Scribed in Secs. IV and V. One of the major drawbacks of
(on the righj. such resolution is its high numerical cost. We shall now

(a) (b)
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SELF-CONSISTENT-THREE DIMENSIONAL MODES . ..

present a model that we call the quasi-three-dimensional | et ¢n ,/,
model which takes into account the strong confinement o

electrons in the direction.

A. Description of the model

The 3D potential energw(F) can be separated arbitrarily

into a potentialU, depending on the vertica direction, a

potentialU, depending orx,y, and a potentiaU(F), such
that

U(r)=Uy(2)+Ux(x,y) +u(r). (6)

Let ¢,, be the normalized eigenfunction solving the 1D ei-

genvalue problem
h? d?
2m* dZ

én(2) +U1(2) pn(2) = E;npn(2), (7)

with Dirichlet boundary conditions equal to zero at the top

and the bottom of the devicéespectivelyz=0 and z
=L,). The three-dimensional wave functidhz can be ex-
panded on theb,'s

\IfE=n§1 P(XY) bn(2), ®)

In the particular case af=0, the wave function)" sat-
isfies this 2D Schrdinger equation

ﬁZ

Ay (X Y) +Uo(X,y) 4"(X,y) =(E—E ) " (X,Y).
9

In the general casay# 0, the wave function)” is then
solution of the 2D Schidinger equation(9) where the term
U,¢" is replaced by

2m*

’ L, -,
Ua(xy) 9" (xy)+ 2 7 (x,y>< | “a@ui g @aa),
(10

and involves nondiagonal ternfthose corresponding to’
#n).
The quasi-3D model consists in assuming thats a

slowly varying function compared t,, around the electron

PHYSICAL REVIEW B 66, 245301 (2002

IooPo .k be the wave function solving the

auasu 3D problem and corresponding to one incoming wave
in the waveguidg,, on the vertical moda,, and the trans-
verse mode, in the guide. Therefore the energy is given by

2k2

E(jo:po’nOak):Ezno+EJ

P e (13

[where EL% o is the poth eigenvalue of the 2D transverse

Schralinger equatior(11) in the guidej,] and the expres-
sion of the electron density takes now the following form:

n(n)= 2 |¢n ()| n33(xy), (14

wheren ° is defined as the 2D density of electrons in the
vertical modeno

oxy)=2 2> |¢

jo/Po

|2
ig:Pg K

. dk
XfFD{E(JoypOinO!k)_MjO}E. (15)

To summarize, the 3D wave function solution of Eg)
for a given energy can be separated in a 1D eigenvalue prob-
lem for the vertical z direction Eq. (7), and a two-
dimensional Schinger equatiori11) in the transport direc-
tion with open boundary conditions at the limit of the
waveguidesy; .

B. Approximation orders

Let the surface density and the current density be given by

I‘Z -
ns;(x,y)=J0 n(r)dz (16)

and

dk
=23 JJ,Omoku)fFD(Euo,mo,k) b

(17)

wherejjoymo,k(F) is the current density associated with one

gas in thez direction, and neglecting the off-diagonal terms scattering state

of Eq. (10). 4" is now the solution of a new 2D Schiimger
equation

ﬁ2

Ay 006 Y) + U Y) 4 (x,y) = (E=En) "(x,Y),
(11)
where the potential energy on the band number given by

Un(x,Y) =U,(x,y)+ [52u(F) | ¢n(2)|? dz, which can be re-
written

2m*

LZ -
n(x,y>=f0 (U - U@ | éa@ P dz. (12)

. L e - -
]jo,mo,k(r):EIm{\PjO,mo,k(r)V‘Pjo,mo,k(r)}- (18)

We briefly summarize the results shown in Ref. 33. As-
suming that|u|<1, it can be shown using the stationary
perturbation theory that the surface and the current intensi-
ties in the waveguides computed by the quasi-3D model are
second order approximations of the corresponding quantities
of the fully 3D model. The quasi-3D model is more accurate
than the fully decoupled modéin which u is set to zern
Indeed, for the latter, the surface and current intensities in the
waveguides are first order approximations of the correspond-
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KL(E) _
: B = =
o o T (B)=1 Kmy(E) (20)

I 0 else,

The total transmission coefficiemjfoﬂ in the output port$
from the input portj, is given by

Tj,—i(E)= 2 T/ "(E). (21)
mg.m 0

In the quasi-3D case, the results about the transmission
coefficient presented below are still valid with the following
! changes in expressioi(0) and (21): The indicesmy; andm
, ek , e become, respectivelyy,po andn,p (the sums over the in-
dicesmy, andm become, respectively, sums over the indices

FIG. 3. Vertical potential and density profiles for a T stub at two j o
different locations. In the active regidaone without gates on the MNo-Po @ndn,p), andE;, becomes ? +E,,.
top) the density is localized in the 2DEG next to the  Therefore, the electric current between the pgrandj is
Al,Ga,_,As/GaAs interface, and in the zone under the gates, thgiven by
electron density is equal to zero.

q s}
ing quantities of the fully 3D model. Moreover, the approxi- ljo—i= %jo Tio—i(E)feo(E—p; )dE, (22
mation orders are still valid iti is a slowly function com-

pared tog, around the electron gas in tizedirection (it is  and the total current in the pgrivhich takes into account the
not necessary to have|<1). contribution of all portj, by

C. Description of the electron confinement
through the quasi-3D model lj= 2;4 (=i = li—jy)- (23
Jo7)

For a given potentiall, we need to define a potentidl;
which depends only on thedirection. When a negative bias We noteT; ;=T ; with the assumption of ballistic trans-
potential is applied to the gates on the top of the device, thgort, and we obtain the following relation:
2DEG deserts the zones under the gates in which the surface
density is equal to zero. Figure 3 gives the potential and the q ®
density vertical profile for a zone under the gates and for thel; - E f Tioﬁj(E)[fFD(E—,ujo)— fep(E— ) JdE.
active region where are localized the electrons. The vertical T Jo SO
potential U, is a potential which “must be seen” by the (24)
electrons. Therefore, we define the potentld) as a

At equilibrium, the chemical potentials are all equal to a
weighted average in they direction of the 3D potential d b .

single valueu. This implies with Eq.(24) that the currents
are all equal to zero. Denoting the applied bias at the port

u(rng V](x,y)dxdy j, we obtain
o
Ui VI(2)= (19 TABLE I. Self-consistent 3D and quasi-3D models at equilib-
f ns{V](x,y)dxdy rium (u;=w) and out of equilibrium.
@
The chosen weight is the surfacic density in order to ignore 3D model Quasi-3D model
the contributions of deserted zones; see Fig. 3. The quasi-3D
G mode s defined by e ovpled Stem BB,
A ' ' A ' Thomas-Fermi 3D Schdinger 1D
) Poisson 3D Thomas-Fermi 2D
D. The current density Poisson 3D
In this section we recall the expression of the current den-
sity in the waveguides using the transmission coefficiéfts.  u;=u—qu, Quantum Quantum
In the 3D case and for one incoming wave in the input Schralinger 3D Schrdinger 1D
portsj, and the transverse moae,, the transmission coef- Poisson 3D Schinger 2D
ficient in the output portg and the transverse moda is Poisson 3D

defined by
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to obtain the electron density for a given potential, we need
to solve a large number of independent 2D or 3D open
Schralinger equations. Therefore, a parallel version of the
code was developed.

Because of the highly nonlinear character of the coupled
systems, implicit schemes have to be used for the numerical
resolution. In order to obtain a suitable initial guess to begin
the 3D and quasi-3D quantum simulations at equilibrium
(with no applied bias voltage between the input and the out-
put terminals of the structurgswe use the well-known
Thomas-Fermi semiclassical approximation. We briefly re-
call the expression of the electron density in this approxima-

100 tion

312
) . 2 m* R
Y (nm) 0 X (o) n[v(r)]= ?(@ Fi(Blu—U(r)]), (26
FIG. 4. The density profile after the quantum model conver-where . is the chemical potential of the system at equilib-
gence. Electrons are localized in the active region near th?ium,,B=1/(kBT), andF (%) is the Fermi-Dirac integral
Al,Ga, _,As/GaAs interface. given by

— —qu. - 12
M= H=qugs @9 Fl/z(ﬂf):f — (27

dz.
1+expn—
and the net current is nonvanishing. 0 R 7r)
The obtained 3D Thomas-Fermi/Poisson system is solved by

standard Newton method. However, for the 3D quantum
model and quasi-3D models the Newton method is not prac-

The P, finite element method is used to solve all thetical because the density depends non locally on the poten-
equations of the coupled systems on a same 3D mesh. It ti@l. Therefore, we use the Gummel iteratihand for a
convenient to construct the 3D mesh using parallel superpagiven potentialV" at the stepn, the new potentiaV" ! is
sition of the same 2D mesh in the direction since the now given by

IV. NUMERICAL PROCEDURE

quasi-3D models require a 1D mesh in thalirection to q nil

solve the vertical eigenproble(i), and a 2D mesh or,y to —v AV YT+ —n(r

solve the 2D Schinger equatior(11). The symmetric lin- [(er(2) ()] € (r) Vof

ear complex sparse systems that we obtain with the QTBM Vv

apply to the 2D or 3D open Schitimger equations are solved - 9 Np(z)— n(ry| 1— _) } (28)
using a quasiminimal residué@MR) procedure”® In order €0 Vet

Semi-classical model Hybrid model
' 180} :

145

£ £ 140
£ £
'] P N — 130
1 25210 60 8:0 100 120 1 2540 6v0 80 1 60 1 éO
FIG. 5. Contour plots of the electron density
v anm) P in the waveguidex=0 far from the active region
3D quantum model Quasi-3D quantum model B
: . and for the four models at equilibrium.
150 s s
145
B E 140}
£ £
N N i35
130
125 : ' ' ‘ 125 ' ' '
40 60 80 100 120 40 60 80 100 120
Y (nm) Y (nm)
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Semi-classical model

Hybrid model

15 :
x 10 PR, N x 10

300 300

100 200
80

y o 100 y 60 ;m 100 FIG. 6. The surfacic density
(nm) 0 X (nm) ) ¢ X () profiles for the four models. In the

) quantum models, interference ef-
3D quantum model Quasi-3D quantum model fects appear in the active region.

200

15 .
x 10 S T x 10

300 300

100 100

. 200
80

200
60 100
Y (nm) 40 o X (nm) Y (nm) 40 o X (nm)

where V. is a reference potentialwe choose V.  summarizes the semiclassical and quantum models associ-
=kgT/q). ated with the coupled systems that we have defined.

At equilibrium, we can also define a hybrid model which
takes into account the quantum effect of the local constric-
tion of electron gas in the direction and consists in com-
puting the 2D density of electrons defined in E#4) by a As an illustration of the models, we give some numerical
semiclassical model. Therefore, the obtained potential of theesults for the T stub and the quantum directional coupler. In
hybrid coupled system is a better initial guess for both theour simulations, the dimensions of the three semiconductor
3D and quasi-3D quantum models at equilibrium. Table llayers between the gates and the substrate are successively 5,

V. RESULTS

1

| I
[ | I
0.8
5 l |
2 06 | 1 j
E | 1
€ 04 -
i I | I
'_
0.2 |- : i
| I
1 L
I
I
0.8
5 : ’
@ 06 : . -
€ | FIG. 7. Transmission coefficients for the four
% 0.4 gl models. The results show a very good agreement
F s ﬁ between the 3D and quasi-3D models.
| o
0.8 o
g 21T : X w
@ os ] i Vi
£ ! | £
% 0.4 *+ Quantum 3D ‘ i
= r . | |©© Quantum quasi-3D § i
0.2 2 | 1 h i
| | 1 I~
I L L L © L I

0 & ¥ 3 O
-620-03  -520-03 -42e-03 -32e-03 -22e-03 -1.2e-03 -—20e-04  80e-04
Energy (eV)
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In Fig. 5, the electron density in the waveguides for the
four models at equilibrium is given. In semiclassical simula-
tions, the electron gas sits at the heterojunction while its
mean position is 140.8 nm for the quantum model, almost 10
nm below the AlGa, _,As/GaAs interface. In this latter, the
electron gas appears more extended in the vertical direction.
Moreover, there is a possibility for the electron to penetrate
the heterojunctionZ>>150 nm) by tunneling effedtthis re-
sult is still shown in Ref. 37 for the quantum wire casehe
results on the density in the waveguidéasr from the active
region obtained by the quasi-3D quantum model are very
200 close to the results of the full 3D quantum model. This good

50 ST - agreement is also confirmed in the active regisee Fig. 6.

190 200 20 Interference patterns appearing in the surfacic density com-
g 150 p pp g _ y _
Y (nm) 0 g 50 puted by the quantum models and obviously absent for semi-
X (nm) classical simulations confirm the need for a quantum descrip-
tion.

More quantitatively, Fig. 7 shows the transmission coeffi-
cients for one incoming wave in the left waveguide=0)

20, and 10 nnfwe choose 150 nm for the substrat@/e take  and in the first transverse mode. For all the models, the varia-
an applied gates voltage equal+d.5 V for the T stub and tions of the curves show oscillations between the total reflec-
—0.53 V for the coupler, 4.2 K for the temperatung;  tion (the transmission coefficient is equal to Zeemd the
=2.4x 10" cm™ 3 for the two first layers under the gatéhe  total transmissior(the transmission coefficient is equal to
cap layer GaAs and-Al,Ga, _,As), x=0.26 for the portion one. These kind of results were expected by the two-
of Alin Al ,Ga _,As, m* =0.067n, for the effective mass of dimensional simulations with infinite wall potential and
GaAs (m, is the electron magse, =12.88 for the dielectric  without space charge effecThe transmission coefficients
constant in all the deviceys=—0.7 V for the pinning po- show a very good agreement between the 3D and quasi-3D
tential, andu=0 for the chemical potential at equilibrium models; this implies that the potential profile on the device is
(v1=v,=0 V). With these parameters, the electrons are lothe same. The shift on the energy which appears between the

FIG. 8. The density profile after the quantum model conver-
gence.

calized in the first vertical mode=1. semiclassical model and the others is due to vertical confine-
ment of the electron gas and the fact that semiclassical model
A. The T stub do not take it into account. Take note that the results given by

The width of the waveguides on the top of the device isthe hybrid modelalso for the surfacic densityare closer to
60 nm, and the dimension of the cavity in the active region ighe full quantum description than the results obtained by the
60x 40 nm onx andy. We show in Fig. 4 the density profile semiclassical model.
in the device obtain with the quantum model where we de- The full 3D simulation requires huge computer resources.
note the localization of the electron gas in a plane next to th@his is not true for the quasi-3D quantum model where the
Al,Ga, _,As/GaAs interface(which is atz=150 nm) and convergence speed is approximatively 215 time faster than
only in the active region. the 3D model on a biprocesseur Comp&@f5208. There-

Semi-classical model Quasi-3D quantum model

150 150
100 100

0 X (hm) 0 X (hm)

FIG. 9. The surfacic density profiles for the semiclassical model and the quasi-3D quantum model. In the quantum model, quantum

effects appear in the active region.
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FIG. 10. Transmission coefficients in port 2 for one incoming  FIG. 11. Transmission coefficients in ports 3 and 4 for one in-

wave in port 1 and for the three models. coming wave in port 1 and for the three models.

fore, the quasi-3D model can be used practically to compute VI. CONCLUSION

current-voltage characteristics while it is quasi impossible ) . .

for the 3D model. To summarize, we have presented a Sdhrger-Poisson

system modeling the electronic transport in a full 3D way
and in a quasi-3D way. The latter can be derived from the
) ) ~_ full 3D model using a decomposition of the wave function
The width of the waveguides on the top of the device isyhich takes into account the vertical confinement of the elec-
50 nm, and the dimension of the coupling branch in theyon in a 2DEG in the device. A very good agreement be-
middle of the device is 5860 nm onx andy. The geometry  yeen the numerical results was obtained by the two models
of the quantum directional coupler is more complex than thenrough the simulation of the T-stub device. The quasi-3D
geometry of the T stub; then the number of the mesh nodes igyantum model requires very small computer resources com-
also more important. The 3D quantum model in the quantunpared to the full 3D one. Moreover, we have shown a quali-
coupler case is then numerical expensitiee size of the tative and quantitative comparisons, at equilibrium, between
linear systems obtained by solving the Salinger equations  the quantum models and the semiclassical models based on
is too large to expect a result in relevant timeBherefore,  the 2D and the 3D Thomas-Fermi approximations. These re-
we assume that the quasi-3D quantum model is a very googits confirm that a quantum description is required for com-
approximation of the full quantum model as it is shown for yjex devices such as the quantum directional coupler. In or-
the T-stub case, and we only use this model for the quantumjer to achieve the simulations, a 3D finite element code,

B. The quantum directional coupler

coupler simulations. _ o _ ~ called NESsIE (Nano-Electronic Simulator for System with
_Figure 8 shows the density profile in the device obtainednterference Effeciswas developed at the MIP Laboratory.
with the quasi-3D quantum model. NEssIEis flexible enough to allow complex geometries which

The mean position of the electron gas plane below thgye defined by the gates on the togith arbitrary numbers
Al,Ga, _,As/GaAs interface is equal to 139.6 nm. The simu-and directions for the waveguideand so could be used to
lation exhibits very important quantum effects in the activestydy a wide range of characteristigirrent-voltage, tem-
region. This is not true for the semiclassical model, as showRerature effects, conductance quantization effects) efc.

in Flg 9 for the surfacic denSity. many open quantum structures.
Figures 10 and 11 show the results of the transmission
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