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Total energy of solids: An exchange and random-phase approximation correlation study
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Total energies of solids are calculated by anab initio method based on the Green’s-function theory. Green’s
function is constructed from one-body wave functions and eigenvalues obtained in the local-density approxi-
mation ~LDA ! to density-functional theory, and the correlation energy is estimated within the random-phase
approximation. The scheme is applied to Na and Si. In both cases, the equilibrium lattice constants are in
reasonable agreement with experiments. The role of the exchange-correlation energy in the total-energy curve
is discussed in detail in comparison with the LDA.
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The Green’s-function theory provides a way to inclu
correlations in many-electron systems. One of the simple
proximations for practical application is the random-pha
approximation~RPA! for the polarizability,1 and theGW ap-
proximation ~GWA! for the self-energy.2,3 The RPA takes
into account dynamical screening of electrons within
time-dependent Hartree approximation. The GWA includ
RPA screening and has been successful in describing
electron excitation spectra in solids.4–9 Optical properties,
including the semiconductor band gap are much more a
rate than in the LDA.

Although the Green’s-function approach has been tra
tionally used for electronic excitations, energy functionals
Green’s function can be used to calculate ground-state p
erties. This possibility is attracting strong interest, since
can potentially overcome drawbacks in the widely used L
in density-functional theory.

There have been several papers reporting total-energy
culations based on the Green’s-function technique. Elec
gas studies have revealed good total energies in the G
RPA. In particular, energies from the self-consistentGW
method are as accurate as the quantum Monte Carlo~QMC!
method.10–12 Applications to the Hubbard model also ha
shown reasonable results except strong correlation reg
where vertex corrections are considered to be important.13,14

Related works have been also reported.15–17 These results
suggest that the Green’s-function approach at the leve
RPA could be an improved tool for the total energies. It m
be more accurate than the LDA, and would be less com
tation demanding than the QMC. However, so far appli
tions to solids have resorted to further simplifications such
a model self-energy18 and a model spectral function.19

Recently, we proposed a method for the total ene
based on the RPA.14 We calculated the total energy of th
hydrogen molecule as a function of nuclear separation,
obtained encouraging results, particularly at large nuc
separations where the LDA fails. In this work, we report t
application of this method to solids. The total-energy curv
for Na and Si are presented and the results are comp
with experiments and LDA.
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The total energy of a many-electron system is obtained
the formula due to Luttinger and Ward,20

E@G#5E01tr@G0
21G21#2tr@ ln G2 ln G0#1F@G#,

~1!

where the tr operator is defined by tr[( i /
2p)*drdr 8dveivd. E0 and G0 are the total energy and
Green’s function of the noninteracting system in which t
Coulomb interaction is switched off.G is Green’s function
including the electron-correlation effect. The functionalF is
defined asF@G#[2Sntr(MnG)/2n, with Mn being thenth
order contributions to the self-energy. It contains contrib
tions from the Hartree, exchange (Fx) and correlation (Fc)
energies.

In order to carry out calculation in practice, we introdu
two approximations. First, we construct Green’s functi
from LDA wave functions$cn% and eigenvalues$en%. Thus
G5GLDA5(ncncn* /(v2en) is included in Eq.~1!. Sec-
ondly Fc is estimated within the RPA. In terms of a diagram
matic approach, this corresponds to counting closed bub
diagrams only. The total energyERPA is then rewritten as14

ERPA5ELDA2Exc
LDA1Fx1Fc , ~2!

where ELDA and Exc
LDA are the LDA total energy

and exchange-correlation energy, respectively.Fx is
the exchange energy defined by Fx
52 1

2 (n,m
occ^cncmu1/r ucmcn& and Fc is the RPA correla-

tion energy whose explicit expression is given below. W
note that bothFx andFc are estimated from the LDA wave
functions, not from the Hartree-Fock wave functions. Th
Fc is not the difference between the RPA total energy a
the Hartree-Fock energy.

The numerical implementation is done as follows. We fi
solve the LDA Kohn-Sham equation to obtain the band str
ture. As a numerical check, we use both the full-poten
linear-muffin-tin-orbital ~FLMTO! method and the full-
potential linear-augmented-plane-wave~FLAPW! method.
For the LDA exchange-correlation functional, we adopt t
von Barth–Hedin formula,21 which is based on the RPA ca
©2002 The American Physical Society03-1
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culation for the electron gas. In the Green’s-function a
proach, we need physical quantities involving t
Coulomb interactionv[^cncmu1/r ucm8cn8&. We decom-
pose this by inserting basis $uMI&% such that
( I ,J^cncmuMI&^MI u1/r uMJ&^MJucm8cn8&. Here, $uMI&% is
required to cover the function space consisting of two o
electron wave functions. We then construct$uMI&%
[$uBa&,uPb&% as follows. Within the muffin-tin region
product of two atomic orbitalsfnlm is used, namely,Ba(r )
5fnlm(r )fn8 l 8m8(r ), which are then optimized to form
minimal orthonormal basis.22 Outside the muffin-tin region
plane wavePb is used for the basis.8 The exchange energ
(Fx) and the polarizability (x0) are computed in this mixed
basis. Further numerical techniques will be fou
elsewhere.8,23 The correlation energy is calculated fromv
andx0 as14

Fc52
1

4pEBZ
dkE

0

`

dv(
I

^MI u ln$@12x0~k,iv!v~k!#

3@12v~k!x0~k,iv!#%12x0~k,iv!v~k!uMI&. ~3!

The frequency integration in Eq.~3! is performed along the
imaginary axis. This is numerically advantageous, since
polarizability is smooth, in contrast to the real axis wherex0
has poles at excitation energies. Ten Gaussian points are
ficient for convergence. In this method, the correlation
ergy is obtained directly from the polarizability, and we ne
neither the self-energy nor the spectral function of Gree
function. This is also preferable for practical calculation
since the polarizability is calculated from LDA wave fun
tions and eigenvalues for which it is easy to obtain num
cally accurate values. The Brillouin-zone integration is
placed with summation over 123 and 83 k point mesh for Na
and Si, respectively. The difference from the LDA total e
ergy, 2Exc

LDA1Fx1Fc , is estimated by including contribu
tions from valence orbitals only, which are 3s,3p,3d, and 4f
in both Na and Si. To check the code, we have performed
calculations for the electron gas.

In Fig. 1~a!, the exchange energy of Na is plotted b
triangles~circles! as a function of the lattice constanta in
which the FLMTO ~FLAPW! wave function is used. The
squares are the LDA exchange energy. For comparison
analytic value for the electron gas is also presented by a s
line, where the density is set to the average density of
lence electrons in Na. The exchange energy is very clos
the electron-gas value, reflecting the fact that the vale
orbitals of simple metals are nearly free electron. It is int
esting to observe that although the Fock exchangeFx is
electron-gas-like, the LDA exchange energy deviates fr
the electron-gas line. It is larger in magnitude, and ha
slightly steeper slope. The exchange energy from
FLMTO wave function is close to that from FLAPW. Thi
gives us confidence that the calculation has been perfor
correctly.

The correlation energy is plotted in Fig. 1~b!. It is smaller
than the exchange energy not only in magnitude but als
variation againsta. The variation is, however, sizable on th
scale of the total-energy curve described below, so that
correlation energy is crucial for the equilibrium lattice co
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stant. We see thatFc is underestimated by about 10%, whe
FLMTO wave functions and eigenvalues are used~triangles
in the figure!. This value is as large as that found in th
electron-gas check with the same number of basis, an
attributed to the limited number of unoccupied states in
FLMTO calculation, which includes 3s,3p,3d, and 4f orbit-
als. In any case, the error can be regarded as a constant

FIG. 1. ~a! Exchange energy and~b! correlation energy of Na as
a function of the lattice constant. Triangles~circles! are energies
computed from the FLMTO~FLAPW! wave functions and eigen
values. The LDA values are plotted by squares for comparison.
solid line in ~a! is the exchange energy of the electron gas, and
solid line in ~b! is the electron-gas correlation energy with the v
Barth–Hedin formula.~c! Total energy of Na using the LDA
~squares! and using the present approach with the RPA correlat
~triangles!. The experimental lattice constant is also indicated by
arrow.
3-2
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in the total-energy curve. The solid line is the von Bart
Hedin formula for the RPA correlation of the electron gas21

We see that, as is found in the exchange energy, the cor
tion energy is also close to the electron-gas line. The L
correlation energy~squares! is smaller in magnitude than th
RPA correlation energy. This partly cancels the overestim
tion of the exchange energy in the total-energy calculatio

In Fig. 1~c!, the total energy by the present approach~tri-
angles! is compared with the LDA energy~squares!. Because
the exchange energy curve is flatter in the present appro
the total-energy curve leads to a larger equilibrium latt
constant than the LDA case. It is closer to the experime
value, though it is still smaller. The bulk modulus is 0.0
Mbars. It is close to the LDA value, 0.085 Mbars, but
considerably larger than the experimental value 0.077 Mb
~at 0 K!. These discrepancies with experiment could
partly due to the effect of 2p orbitals. Since they are shallow
in energy, their polarization effect will not be negligible.
the present calculation, however, they are treated as core
the polarization effect is neglected. Further significant dev
opment in the numerical calculations is necessary to trea
core.

Now we move to Si. In Fig. 2~a! the exchange energy,~b!
the correlation energy, and~c! the total energy are shown.Fc

is only 1/6 ofFx and its variation againsta is also small, so
that the correlation is not important in structural propert
such as the equilibrium lattice constant and the bulk mo
lus. Actually, even though we neglect the correlation ene
namely, we putFc50 in Eq.~2!, the total-energy curve~not
shown here! is reasonable. It shows a minimum at 10.4 b
hrs, which is slightly larger than the experimental val
10.26 bohrs. When we includeFc , the total energy de-
creases by about 9 eV and approaches the LDA total ene
The position of the energy minimum is also reduced wh
Fc is included, becauseFc has a slightly positive slope. To
check the convergence, we present two kinds of calcula
with different number of muffin-tin orbitals~MTO’s!. In Fig.
2~b!, triangles~crosses! denote a case with 84~72! MTO’s.
The difference between the two calculations is rather in
pendent of the lattice constant, and they both show sim
behavior with the FLAPW data. Therefore FLMTO wit
relatively small number of MTO’s is quite accurate in d
scribing mechanical properties. The bulk modulus is 0
Mbars, which is to be compared with that of the LDA, 0.9
Mbars, and experiment, 0.988 Mbars.

The present approach is based on two approximatio
The first one is the approximation ofG with GLDA . Hence,
the total energy depends on the LDA wave functions a
eigenvalues. TheGW method starting from the LDA gives
an accurate band gap in a wide range of materials. The
cess implies that the LDA hamiltonian is a good starti
point for one-electron excitation spectra. Our results sugg
that this is the case also for the total energy. We note h
that the Luttinger-Ward formula, on which Eq.~2! is based,
satisfies a variational principle; The derivative of the to
energy with respect toG is zero, if G is conservingin the
sense of Baym and Kadanoff.24,25 This is an advantage o
using the Luttinger-Ward formula over the simpler Galitsk
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Migdal formula.26 We can expect that the total energy
rather insensitive to the input Green’s function.

The other approximation is the RPA for electron corre
tion. The present two studies suggest that it is valid for
scribing structural properties of solids. The RPA has a pot
tial to be a powerful tool also for problems for which th
LDA fails. An interesting possibility is application to the va
der Waals force. It arises from the interaction of virtual d

FIG. 2. ~a! Exchange energy and~b! correlation energy of Si as
a function of the lattice constant. Triangles~circles! are computed
from the FLMTO~FLAPW! wave functions and eigenvalues, whi
squares are LDA values from the FLMTO. Crosses are obtai
from the FLMTO with smaller number of basis~see text!. ~c! Total
energy of Si calculated using the LDA~squares! and using the
present approach~triangles!. The energies are per unit cell whic
contains two Si atoms. The experimental lattice constant is a
indicated by an arrow.
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poles between distant atoms, and is captured in the RP
the second-order bubble diagram.16,17,27Neither the LDA nor
generalized gradient approximation~GGA! properly describe
this interaction.28–31,38Treatment of short-range Coulomb r
pulsion is another problem in the LDA. Structures and m
netism are qualitatively wrong in some strongly-correla
materials such as LaMnO3.32 Although the RPA may not be
sufficient, it is interesting to apply the present approach
such systems, and see the effect of nonlocality in elec
correlations. Comparison with other methods going beyo
LDA ~GGA,33–36meta-GGA,37 and so on38,39! is also a future
problem.

In summary, we have calculated total energies of so
based on the Green’s-function approach at the level of R
The input Green’s function is constructed from LDA wa
ys

ev

24510
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functions and eigenvalues, and no adjustable parameter
introduced. As an illustration, total energies of Na and Si
calculated and accurate equilibrium lattice constants are
tained. In particular, the underestimation of lattice const
for Na by the LDA is improved.

The present approach opens a way for deeper underst
ing of, and going beyond the LDA. In this paper, as a test
the method, we have treated materials for which the per
mance of LDA is not so bad. Next targets include syste
that are difficult to treat with the LDA, such as those with t
van der Waals interaction.
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Culture, Japan.
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