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Total energy of solids: An exchange and random-phase approximation correlation study

T. Miyake! F. Aryasetiawarf, T. Kotani2 M. van Schilfgaardé,M. Usuda® and K. Terakura
!Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
%Research Institute for Computational Sciences, AIST, 1-1-1 Umezono, Tsukuba Central 2, Ibaraki 305-8568, Japan
3Department of Physics, Osaka University, 1-1 Machikane-yama, Toyonaka 560-0043, Japan
4Sandia National Laboratory, Livermore, California 94551
SDepartment of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
(Received 1 August 2002; published 4 December 2002

Total energies of solids are calculated byadminitio method based on the Green’s-function theory. Green’s
function is constructed from one-body wave functions and eigenvalues obtained in the local-density approxi-
mation (LDA) to density-functional theory, and the correlation energy is estimated within the random-phase
approximation. The scheme is applied to Na and Si. In both cases, the equilibrium lattice constants are in
reasonable agreement with experiments. The role of the exchange-correlation energy in the total-energy curve
is discussed in detail in comparison with the LDA.
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The Green’s-function theory provides a way to include The total energy of a many-electron system is obtained by
correlations in many-electron systems. One of the simple apthe formula due to Luttinger and Waf8,
proximations for practical application is the random-phase 1
approximation(RPA) for the polarizability: and theGW ap- E[G]=Eo+ 1[Gy 'G—1]-t[InG—InGo]+ P[G],
proximation (GWA) for the self-energg® The RPA takes @)
into account dynamical screening of electrons within thewhere the tr operator is defined by =t(i/
time-dependent Hartree approximation. The GWA include® ) fdrdr'dwe'“’. E, and G, are the total energy and
RPA screening and has been successful in describing on&reen’s function of the noninteracting system in which the
electron excitation spectra in soli¢fs? Optical properties, Coulomb interaction is switched of6s is Green’s function
including the semiconductor band gap are much more accuncluding the electron-correlation effect. The functiodais
rate than in the LDA. defined asb[G]= —3,tr(M,G)/2n, with M, being thenth
Although the Green’s-function approach has been tradiorder contributions to the self-energy. It contains contribu-
tionally used for electronic excitations, energy functionals oftions from the Hartree, exchang@y) and correlation ¢ )
Green'’s function can be used to calculate ground-state progmergies.
erties. This possibility is attracting strong interest, since it |n order to carry out calculation in practice, we introduce
can potentially overcome drawbacks in the widely used LDAwo approximations. First, we construct Green’s function
in density-functional theory. from LDA wave functions{¢,} and eigenvalueée,}. Thus
There have been several papers reporting total-energy cat =G, ,, =, /% /(w—€,) is included in Eq.(1). Sec-
culations based on the Green’s-function technique. EIectrand|y(pc is estimated within the RPA. In terms of a diagram-
gas studies have revealed good total energies in the GWA{\atic approach, this corresponds to counting closed bubble

RPA. In particular, energies from the self-consist&iV diagrams only. The total energ§kes is then rewritten ¢
method are as accurate as the quantum Monte C@N4C)

method®~*? Applications to the Hubbard model also have Erea=Eipa— EXPA+ D+ D, )
shown reasonable results except strong correlation regime
where vertex corrections are considered to be impoit#dt. where Epa and El* are the LDA total energy
Related works have been also reportgd. These results and exchange-correlation energy, respectively, is
suggest that the Green's-function approach at the level dhe exchange energy defined by &,
RPA could be an improved tool for the total energies. It may= — 3=, X ¢yl 1 | by and @ is the RPA correla-
be more accurate than the LDA, and would be less compution energy whose explicit expression is given below. We
tation demanding than the QMC. However, so far applicahote that bothb, and® are estimated from the LDA wave
tions to solids have resorted to further simplifications such agunctions, not from the Hartree-Fock wave functions. Thus,
a model self-enerd§ and a model spectral functidfi. d. is not the difference between the RPA total energy and
Recently, we proposed a method for the total energythe Hartree-Fock energy.
based on the RPA! We calculated the total energy of the  The numerical implementation is done as follows. We first
hydrogen molecule as a function of nuclear separation, angolve the LDA Kohn-Sham equation to obtain the band struc-
obtained encouraging results, particularly at large nucleature. As a numerical check, we use both the full-potential
separations where the LDA fails. In this work, we report thelinear-muffin-tin-orbital (FLMTO) method and the full-
application of this method to solids. The total-energy curvegotential linear-augmented-plane-wavELAPW) method.
for Na and Si are presented and the results are compardtbr the LDA exchange-correlation functional, we adopt the
with experiments and LDA. von Barth—Hedin formuld! which is based on the RPA cal-
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culation for the electron gas. In the Green’s-function ap-
proach, we need physical quantities involving the
Coulomb interactionv = |1/ | gy b ). We decom-
pose this by inserting basis{|M,)} such that

21 Kt MM LI [M )My oy o). Here, {[M,)} is
required to cover the function space consisting of two one-
electron wave functions. We then construgtM,)}
={|B,).|Pg)} as follows. Within the muffin-tin region,
product of two atomic orbitalg,,,, is used, namelyB ,(r)
=dnm(r) dnrrm(r), which are then optimized to form a
minimal orthonormal basi€ Outside the muffin-tin region,
plane waveP, is used for the basfSThe exchange energy
(®,) and the polarizability ) are computed in this mixed
basis. Further numerical techniques will be found
elsewheré:>® The correlation energy is calculated from 08
and yo as* - (b)

1

b=~ 7 dkfwdwE (M lIn{[ 21— xo(k,i v (K)] R
m™)BZ 0 |

Dy (eV)

X[1=v(K)xo(k,iw) 1} +2xo(k,iw)v(K)[Mp).  (3)

The frequency integration in E@3) is performed along the //
imaginary axis. This is numerically advantageous, since the g P

@ (eV)

polarizability is smooth, in contrast to the real axis whgge -1.4 - 1
has poles at excitation energies. Ten Gaussian points are su L — o . _ ]
ficient for convergence. In this method, the correlation en- 7.5 8.0 85
ergy is obtained directly from the polarizability, and we need a(au.)

neither the self-energy nor the spectral function of Green’s
function. This is also preferable for practical calculations, 440035 (©) )
since the polarizability is calculated from LDA wave func- 440050
tions and eigenvalues for which it is easy to obtain numeri-
cally accurate values. The Brillouin-zone integration is re-
placed with summation over $2ind & k point mesh for Na '
and Si, respectively. The difference from the LDA total en- g #4940 - -] =
ergy, —E-PA+ @, + ®, is estimated by including contribu- W | 40095 5
tions from valence orbitals only, which ares,3p,3d, and 4f
in both Na and Si. To check the code, we have performed tes -
calculations for the electron gas. -4400.45 exp.

In Fig. 1(a), the exchange energy of Na is plotted by : 75 a0 gp 440060
triangles(circles as a function of the lattice constaatin a(au)
which the FLMTO (FLAPW) wave function is used. The
squares are the LDA exchange energy. For comparison, the F|G. 1. (a) Exchange energy arth) correlation energy of Na as
analytic value for the electron gas is also presented by a solid function of the lattice constant. Trianglésircles are energies
line, where the density is set to the average density of vaeomputed from the FLMTGQFLAPW) wave functions and eigen-
lence electrons in Na. The exchange energy is very close tealues. The LDA values are plotted by squares for comparison. The
the electron-gas value, reflecting the fact that the valenceolid line in (a) is the exchange energy of the electron gas, and the
orbitals of simple metals are nearly free electron. It is inter-solid line in(b) is the electron-gas correlation energy with the von
esting to observe that although the Fock exchadgeis  Barth—Hedin formula.(c) Total energy of Na using the LDA
electron-gas-like, the LDA exchange energy deviates frontsquaresand using the present approach with the RPA correlation
the electron-gas line. It is larger in magnitude, and has 4triangles. The experimental lattice constant is also indicated by an
slightly steeper slope. The exchange energy from th@&ow.
FLMTO wave function is close to that from FLAPW. This
gives us confidence that the calculation has been performestant. We see thab. is underestimated by about 10%, when
correctly. FLMTO wave functions and eigenvalues are uggi@dngles

The correlation energy is plotted in Fig(hl. It is smaller in the figurg. This value is as large as that found in the
than the exchange energy not only in magnitude but also ielectron-gas check with the same number of basis, and is
variation againsa. The variation is, however, sizable on the attributed to the limited number of unoccupied states in the
scale of the total-energy curve described below, so that thELMTO calculation, which includes33p,3d, and 4f orbit-
correlation energy is crucial for the equilibrium lattice con- als. In any case, the error can be regarded as a constant shift
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in the total-energy curve. The solid line is the von Barth— 54

Hedin formula for the RPA correlation of the electron ghs. F ] L 3
We see that, as is found in the exchange energy, the correle -55  (a) . & X
tion energy is also close to the electron-gas line. The LDA 56 3 . x ]
correlation energysquaresis smaller in magnitude than the < : ¥ x
RPA correlation energy. This partly cancels the overestima- @ ™7 - . K :
tion of the exchange energy in the total-energy calculation. = .58 . UK

In Fig. 1(c), the total energy by the present approgth ) 59 X .
angles is compared with the LDA energgquares Because haas s ]
the exchange energy curve is flatter in the present approact -60 - ¥
the total-energy curve leads to a larger equilibrium lattice 61 N L o
constant than the LDA case. It is closer to the experimental 9.5 10.0 10.5 11.0
value, though it is still smaller. The bulk modulus is 0.086 a(au.)
Mbars. It is close to the LDA value, 0.085 Mbars, but is -
considerably larger than the experimental value 0.077 Mbars proT o
(at 0 K). These discrepancies with experiment could be -8 (b)
partly due to the effect of R orbitals. Since they are shallow 9 b

in energy, their polarization effect will not be negligible. In Py X X X XX XXX XX XXX

the present calculation, however, they are treated as core, ar % ‘10; 2.2.2.242.2
the polarization effect is neglected. Further significant devel- o 1L 2 4 : : o : s mmEmEmEHN
opment in the numerical calculations is necessary to treat the € E .- ,
core. LA E

Now we move to Si. In Fig. @) the exchange energfh) -13 -
the correlation energy, ar(d) the total energy are showp.; 14 ; ‘ |
is only 1/6 of®, and its variation againgt is also small, so 9.5 10.0 10.5 11.0
that the correlation is not important in structural properties a(a.u.)
such as the equilibrium lattice constant and the bulk modu-
lus. Actually, even though we neglect the correlation energy, 157298 I 197303
namely, we putb =0 in Eqg.(2), the total-energy curvéot -15729.9 | | -15730.4
shown hergis reasonable. It shows a minimum at 10.4 bo- PN {JER—
hrs, which is slightly larger than the experimental value __ B m
10.26 bohrs. When we includ®., the total energy de- % -15730.1 | | -15730.6 »
creases by about 9 eV and approaches the LDA total energy \g/ 157302 F ] _15730_7:
The position of the energy minimum is also reduced when uy ; ] &
d. is included, becaus® has a slightly positive slope. To -15730.3 -15730.8 ™
check the convergence, we present two kinds of calculatior 5700, ¢ 1 15730.9
with different number of muffin-tin orbital@MTQO’s). In Fig.
2(b), triangles(crosses denote a case with 8&%2) MTO’s. "5730-%’5‘ = ‘160" B 65‘ Y 8573‘-0
The difference between the two calculations is rather inde- ' T a (a_u_s ' '

pendent of the lattice constant, and they both show similar
behavior with the FLAPW data. Therefore FLMTO with FIG. 2. (a) Exchange energy anh) correlation energy of Si as
relatively small number of MTO’s is quite accurate in de- a function of the lattice constant. Trianglésircles are computed
scribing mechanical properties. The bulk modulus is 0.9Grom the FLMTO(FLAPW) wave functions and eigenvalues, while
Mbars, which is to be compared with that of the LDA, 0.94 squares are LDA values from the FLMTO. Crosses are obtained
Mbars, and experiment, 0.988 Mbars. from the FLMTO with smaller number of basisee text (c) Total

The present approach is based on two approximationsnergy of Si calculated using the LDfsquares and using the
The first one is the approximation & with G, p, . Hence,  present approactiriangles. The energies are per unit cell which
the total energy depends on the LDA wave functions andontains two Si atoms. The experimental lattice constant is also
eigenvalues. Th&W method starting from the LDA gives indicated by an arrow.
an accurate band gap in a wide range of materials. The suc-
cess implies that the LDA hamiltonian is a good startingMigdal formula?® We can expect that the total energy is
point for one-electron excitation spectra. Our results suggesather insensitive to the input Green’s function.
that this is the case also for the total energy. We note here The other approximation is the RPA for electron correla-
that the Luttinger-Ward formula, on which E) is based, tion. The present two studies suggest that it is valid for de-
satisfies a variational principle; The derivative of the totalscribing structural properties of solids. The RPA has a poten-
energy with respect t& is zero, if G is conservingin the tial to be a powerful tool also for problems for which the
sense of Baym and Kadandff® This is an advantage of LDA fails. An interesting possibility is application to the van
using the Luttinger-Ward formula over the simpler Galitskii- der Waals force. It arises from the interaction of virtual di-
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poles between distant atoms, and is captured in the RPA danctions and eigenvalues, and no adjustable parameters are
the second-order bubble diagraft’?’Neither the LDA nor  introduced. As an illustration, total energies of Na and Si are
generalized gradient approximatiBGA) properly describe calculated and accurate equilibrium lattice constants are ob-
this interactior?®~3-*®Treatment of short-range Coulomb re- tained. In particular, the underestimation of lattice constant
pulsion is another problem in the LDA. Structures and magfor Na by the LDA is improved.

netism are qualitatively wrong in some strongly-correlated, 1ne present approach opens a way for deeper understand-
materials such as LaMnG? Although the RPA may not be INd ©f, and going beyond the LDA. In this paper, as a test of
sufficient, it is interesting to apply the present approach tdl€ method, we have treated materials for which the perfor-
such systems, and see the effect of nonlocality in electroff!ance Of LDA is not so bad. Next targets include systems

correlations. Comparison with other methods going beyontii/ a?nt greer (wggfsltiﬁet;:gttigvﬁth the LDA, such as those with the
LDA (GGA X *meta-GGA3 and so o9 is also a future :

problem.
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