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Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube
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We have analytically computed the energy-loss probability of a fast electron passing near a locally aniso-
tropic hollow nanotube, in the nonretarded approximation. Numerical simulations have been performed in the
low loss(below 50 eV region, and a good agreement with experimental spatially resolved electron energy-loss
spectroscopy results is reported. We also show the importance of the surface coupling effect and of the local
anisotropy of the tubes for the plasmonic response, extending the conclusions previously reported for spherical
nano-objects.
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[. INTRODUCTION The theoretical study of the excitation of surface plasmon
by an external electron dates back to the pioneer work of
The discovery of carbon nanotubempened new fields in  Ritchie® In the 1980s, several authdrd! developed and ap-
physics. Due to their low dimensionality, they attracted theplied the dielectric model to the spherical geometry in the
interest of many scientists for possible applications in nanononretarded limit. A relativistic approach has been given in
technology and, from a more fundamental point of view, theyRef. 12. To our knowledge Chet al. have been the first to
represent an ideal object to experimentally test the validity oktudy the excitation of plasmons by an electron travelling in
models in physics of low dimensions. Besides carbon nanca cylindrical cavity'® Since this problem was treated in sev-
structures, a considerable effort has been done in the syntheral studies?2®as well as the problem of electrons passing
sis of non-carbon-based layered nanotUleeg., BN(Ref. 2 perpendicularly to a cylindrical rotl:'® Surface plasmon
and WS (Ref. 3]. The electromagnetic response of thesecoupling in isotropic  hollow nanosphéfe and
particles requires a dedicated analysis because of their pecnanocylinder®?°was also been considered in the past years.
liar anisotropy. The peculiarity of carbon nanoparticléand of related
On the experimental side, electron energy-loss spectrosbjects is their anisotropy. They can be considered uniaxial
copy (EELYS) (Ref. 4 is a very well adapted tool to study the particles with their optical axis locally oriented in the radial
dielectric response of nano-objects, especially when comdirection. In order to account for this local anisotropy, the
bined with the high spatial resolution reached in a scanninglielectric model was extended to spherical anisotropic
transmission electron microscope. The interpretation of theanoparticle$?' and tested by comparison with experimental
EEL spectra in the 1-50-eV energy range is far from beinglata?>?*Here we present a further extension of the dielectric
straightforward, and an adapted theoretical framework igheory to hollow anisotropic nanocylinders for an electron
then required. Among othergoundary element methdd, travelling perpendicular to the tube axis. A first qualitative
discrete dipole approximatién the continuum dielectric approach at the same problem was given in the literéture.
theory is the most popular approa@ee Ref. 7 for a review The paper is structured as follows. The analytical calcu-
The EELS simulation is based on the knowledge of thdation is presented in detail in Sec. Il. The dielectric response
dielectric response function of the nanoparticle, defined ags calculated by expressing in an appropriate basis the elec-
the proportionality coefficient between an external excitingtrostatic potential in the different regions of spd&ec. Il A)
potential and the induced one. This dielectric response funand imposing boundary conditioriSec. Il B. To calculate
tion in the low loss regioribelow 50 eV is the signature of the energy-losgll C), we first express in a cylindrical basis
the elementary excitations of valence electrons such as thbe potential of the probe electr@8ec. Il C 1, because this
interband transition excitationgéexcitation of an individual determines the induced potenti@ec. Il C 3, and because
electron from the valence band into the conduction bamd  the coefficients of its Fourier expansion are needed to calcu-
the plasmon excitationgcollective oscillation modes of the late theprobe factor(Sec. Il C 3. All the terms are collected
valence electrons This paper presents an extension of thein Sec. Il C 3 to give the total energy loss of the electron.
study of dielectric response of nanoparticles to anisotropiSome limit cases of the dielectric response, that give an in-
cylindrical hollow nanopatrticles. We restrict our work to the sight into the peculiar role of coupling and anisotropy, are
nonretarded continuum approach. also evaluated and compared to analogous expressions found
At the nanoscale, the contribution to the loss spectra oin the literature(Sec. Il D). Finally, in Sec. Ill, EELS simu-
the surface excitationghe surface plasmopsre of prime lations for WS nanotubes are displayed and compared to
importance. If the particle is hollow, the coupling betweenexperimental data, as well as to analogous simulations in
the electromagnetic modes of the internal and external suspherical geometry. A detailed analysis of the contributions
face has moreover to be considered. For a very thin shell, thef the different surface modes to the total loss is also pre-
validity of a continuum approach also has to be questionedsented.
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1. Regions (1) and (3)

I
: In these regions, free of material, the dielectric constant is
P’(t) set equal to the unity for all energy range, and the non-
Q retarded potential verifies the Poisson equat®fiv(}
l =0. The general solution in cylindrical coordinate®is
v
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FIG. 1. Geometry of an EELS experiment for a hollow nanotubebecaUSEKm(X) diverges forx=0. For region(3),
of internal radiug and external radiuR. The electron moves with 3) _=(3) (3)
Ry =F il m(kp) + GriKm(kp), 4
a speed along a linear trajectory at distanbgimpact parameter mk T mk m(kp) m.k m(kp) @
from the particle axis. The positions are expressed in cylindricawhere Fﬁ)klm(kp) describes the applied field and
coordinates g, 8,z) with the z direction parallel to the tube axis. GET?)ka(kP) describes the cylinder response.

II. ANALYTICAL CALCULATION 2. Region (2)

In this section we present the details of the calculation of As already mentioned, due to the lamellar structure of the
the electron energy_|oss spectrum of a high_energy e|ectroﬁhe”, the dielectric function is endowed with a tensorial
passing near a locally anisotropic tube. The electron is corcharacter. The anisotropy axis is defined by the direction
sidered as a nonquantum, nonrelativistic particle, as well agerpendicular to the basal plane, that is the radial direction
the field it generates. Its trajectory is assumed to be rectilinfor cylindrical particles.
ear and nonperturbed by the interaction with the nanopar- Therefore, the component of the dielectric function in this
ticle. This assumption is justified by the small wavelength ofdirection ¢, differs from the in-plane componert . The
the fast electronfenergy of the order of 100 keV and  honretarded Maxwell equations lead to
=0.02 A) as compared to the size of the investigated object =
and its high energy compared to the energy lésss than 50 V- (eVV®)=0, 6)
eV). The dielectric response of the particle is considered ag;;,
local [the local displacement field at poindepends only on

the electric field at the same poim(r)=e(r)E(r)]. Finally g O

a continuum assumption is made. e=| 0 € 0], (6)
First we present the geometry of the modelled experiment

and the form of the electrostatic potential. Then a computa-

tion of the dielectric response function of a locally aniso-

tropic tube in obtained. Finally, we compute the energy-los

function.

where the tensoe is expressed in thep(¢,z) basis(this is
Ihe mathematical translation of the concept of local anisotro-
py). Equation(5) gives[the explicit dependence &f?) on

the spatial coordinates(¢,z) is omitted for clarity.

A. Geometry and electrostatic potential

Figure 1 displays the geometry of the modelled experi- Pv@ 4 E(y v+ E ié)(sz(z)_{_ agv(z) =0, (7)
ment. The electron follows a rectilinear uniform trajectory, ’ p’ M p?
p' (1), parallel to they axis outside an hollow cylinder. The with
hollow cylinder has external radiug, an internal radius
and its axis is along@. Theimpact parameter of the inci- €(w)
dent electron is defined as the distance between this rectilin- = (8)

ear trajectory and the tube axis. A cylindrical coordinates e(w)
system p,¢,z) centered on the tube axis is chosen. We de-The solutions can be factorized as in the previous case. The
fine three regions—the internal regi¢t), the shell(2), and  dependence in the andz variable remains unchanged. On
the external regiort3)—in which the nonretarded Maxwell the other hand, thge dependence is modified by the anisot-
equations have to be solved to determine the potentials. ropy. The general solution of E¢7) gives
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e Co= el (X)) K X[ (W)K(E) =1 1(£)K(W)],
Vo S AKFCL (0)+ GRUK(2) oot ko, 2= €] 1 m(X) Kn(X)[1 L (W)K(8) =1L (H)K(W)] (18
m=-« Jo
9

D=\¢|(D;+Dy), (199
with v=m/ X and = pk/JX. Eare

D1 =1 m(X)Kn(X)[1L, (K, (W) =1 (WK (],

B. Dielectric response (19b)
In order to obtain the dielectric response function, we ,
compute the coefficientsF(y, ,G{),) using the boundary D=1 () Km(X)[1(EKL(W) =1 (W)K,(£)].
conditions at the interfaces regidh)/region(2) (p=r) and (199

region (2)/region (3) (p=R):
gion(2)/region (3) (p=R) Note that the dielectric response depends on Bessel func-

(Dy,—Dy)-ny=0=0, (10)  tions with both complex arguments and complex order. In
any caseqp, () depends only on the characteristics of the
VD(p=r,¢,2)=V®(p=r,¢,2); (11)  particle (inner and outer radius, and dielectric tensor of the
corresponding lamellar materjal
thus
EHEE)Z)(I’) - Eﬁ,l)(r)zo, (12 C. Energy losses
VO(p=1)=V@(p=r), (13 For computing the energy losses, we follow the classical

procedure;'%i.e., we compute the time Fourier transform of
and similar relations for the interfacg/3). the exciting potentialdue to the probe electrpnWe then

We then obtain four linearly independent equations for thededuce the frequency dependent induced potential. The total
five unknowns EG),F@) L FE) GEL,GE)). The decom- energy loss is given byg(is the charge of the electrpn
position of the potential of the probe electron gives Iﬂﬁ,@k
coefficient(see Sec. Il €and all the other unknowns can be ” /
expressed(as a functio(); of this coefficient. The coefficient of W(b)=—qu J—mEi“d[p_p (0).t]-u,dt
the induced potentia\IGﬁf)k then defines the dielectric re-

; . o dP
sponse of the nanocylinder: :f
. dﬁwﬁwdE(w,b), (20

Gc®
amp(@)=— F(—n;)k (14 wheredP/dE is the energy-loss probability by energy unit.
m,k

1. Potential created by a point charge moving along a

For convenience, we define the dimensionless quantities - . ) N . .
rectilinear uniform in a cylindrical coordinates basis

E=kr/JN, W=KR/\\, x=kr, andX=KkR. After some al-

gebra, we express In this section, following Ref. 18, we express the potential
due to the probe electron in a basis adapted to cylindrical
A+B symmetry. Let us assume that an electron is moving along a
m @) = C+D’ (15 rectilinear uniform trajectory with velocity (see Fig. 1 At

) , o ) each time (the quasistatic approximatipnthe potential
with (the symbol’ means the derivative with respect to the V(p,p') created at poinp by the electron placed ip’ (t)

argument of the Bessel functipn can be decomposed in cylindrical components as

A=(A;+A)I(X), (163 q e s
o im(¢—¢')
A= N OO0 WK ()= 1 (OK,(W)], (16D V)= e e Jo 9K€
A= e\ (X)L (OK W)~ 1 L(W)K,(£)], (169 xcogk(z=2)]m(kp)Kn(kp), (21
B=(By+By) el n(X) (173 where € is permittivity of vacuum. Note that the previous

expression is valid fop<<p’(t) (we are interested in the
potential in the region between the nanotube and the fast

B.= VI n(XLOK W) =T, WK(H], 17 electron The chargeg follows the trajectory

C=(Cy+Cy), (183 =[Vb%+v?t? arctartvt/b),0]. (22

C1=M (XKLL (WK (&) =1, (K, (W)], One can then rewrite the potential as a function of its Fourier
(18b) components,
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' |m¢
V(ip.p')= pyc eom_xf d"f do
X co§ kZ]l (kp)Cpp (w)e ™t 23
with
Cm,k(w):erwdth[kp’(t)]e—imqﬁ'(t)eiwt 24)

The evaluation of this last expression gitfes

2 m
5 w w
\/ K+ —| +—
e bVKE+(wlv)? k v v

Cmk(@)=— - ”

w
k2+| —
v

(29

2. Applied and induced potentials
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_qzv
dkf dwf dt
47T €p m—foo

Xam(w)Ch(w) I?w{Km[kr(t)]eimd)(t)}efiwt.

W(b)=

(29

The integration over the time was already computed: it is the
complex conjugate of the coefficie@Y;,  (w), which is real.
Then

— q2

473 €9 M=—

W(b)= f dkf dwamk(w)Cm w)io

(30

In order to obtain the expression of the energy-loss probabil-
ity per energy unit we have to compare the last expression
with Eq. (20). To this end, we write Eq(30) as an integration
over positive frequencies and, by using the relations
i (@) = = @ — @) ANACpy(@,b) = C_n(— w,b), we
obtain

One can now evaluate the induced potential. We supposed dp q?

that the induced potential is linearly dependent on the ap-
plied one, and their Fourier coefficients are related by ex-

pression(14). Therefore, we find

|nd(p P

+ o 4+ .
E dkf do €M
0 — o0

€p M=—=

—iwt

(26)

X cogkz]l m(kp) am (@) Cr (w)e

—(0,b)= ———
E( ) 27T3€Oﬁ2

+ o0
x

m=-—x JO0

+ oo

dKIM[ (@) 1C7 (@, b)

(3D
with Cp, (w,b) given by Eq.(25 anday, (@) by Eq.(15).
We now have the expression for the energy loss of an

electron passing aloof a locally anisotropic tube at the dis-
tance(impact parameteib. This classical expression is valid

We finally have all the elements necessary to the calculatiofPr a single inelastic-scattering event, it does not account for

of the energy loss.

3. Computation of the energy loss

As the electron trajectory is along thedirection, from
Eq. (200 and with Ejng=V 5 5 Vina(p,t) = dy—y(t) Vina(p,1)

= (1) dVina(p,t).
_qzv

W(b) dkf dwj dt
4’7T €p m—*°°

1 : .
X am’k(w)Cmyk(w) ;at[Km(kp(t))e'md’(t)]eilwt_

(27)

We integrate by parts and, Ks, goes asymptotically to zero,

we find the limit

lim Kp[kr(t)]e™O= lim Kpy(kyb2+p2t?)emarciantt/o)

t—+o t—*+oo

=0. (28)

We obtain the expression

multiple excitation processes, neither for energy gains by
de-excitation transitions. Note that this energy-loss spectrum
is a sum over the momentum along the tube @kisand the
transferred azimuthal momentufm) of a product of two
functions. The second oneﬁq’k(w,b), is directly related to

the probe electron field, and does not depend on the particle
characteristicgéprovide it is cylindrical, while the first one is

the dielectric response function, that characterizes the par-
ticle. Note also that, due to the exponential dependence in
expression(25), the kinematic factoiC,, ((w,b) acts as a
low-k and loww filter. In particular, we find that the integra-
tion overk in the previous expressid81) runs up to a cutoff

k, depending on the impact parameterin any case, this
classical treatment demands<1, wherea is the inter-
atomic distance.

Maxima of P(w,b) are directly related to those of
Imla(w)], and then to the plasmon normal mode of the
nanotube. For isotropic compoundgplanar slaty’
spheret®?8 or cylindef”?9 the polarizability or response
function present two poles for real dielectric function and the
dispersion of those modes can be studied as a functidéu of
(plang, | andr/R (spherg, or m and k,d (cylinders. For
anisotropic materialsy is imaginary even for real dielectric

function, because the factarcould be imaginary for read.
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The number of modes is then not well defingdt normal and using the identityxl,(X)'Kn(X) = XIn(X)Kmn(X) =1,
modes does not exist anymprend the apparent number of we retrieve Bertsclet al’s expression.

modes depends on the width of the resonance(i). This
has been already noted for a plafiespheré?3!and a cyl-
inder fork,=0.%?

2. Dielectric response for a hollow locally anisotropic cylinder
in the limit k—0

Taking into account the anisotropy, Henrard and Larhbin
D. Some limits calculated, in thé&=0 limit, the polarizability per unit length
Here we give some limits of E431), in order to compare ©f & hollow cylinder(inner and outer radii respectivetyand
to previous works on the energy loss of a filled iSOtrOpiCR)a
tube'® and on the dielectric response of anisotropic tube in
the k— 0 limit.® In this limit we further examined the effect
of the radius ratio ® =r/R on the coupling of electromag-
netic surface modes, by analyzing the dielectric response
when®—1 and®—0. r—0 andk— are also obtained
and compared to the dielectric response of a thick anisotropigith ®=r/R and v=m/\\. The expression refers to=0

(GHEL_ l)(1_®21/)

(\/EHGL—l)2®2V—(\/6”6L+ 1)2' .

(38)

Ym( @)~ 47e R

slab.

1. Energy loss for a filled isotropic tube

In their work, Bertsctet al® did not explicitly use a di-
electric response/probe decomposition of the energy los
However, they deduced a very similar form. Translating for-
mula(19) of Ref. 18 to our conventiofin particular, CGS to
MSKA unit systemy the energy-loss probability per energy
unit for an electron travelling perpendicular to an isotropic
filled tube, at a distancé from its axis, is expressed by

Bertschet al*® as

dP 29 +oe ,
E(w,b)—m% JO dkln(kR)1/ (KR)KR
XIM[ T, (@) 1CF (@,b), (32
with
1—€
M (@)= (33

e+(e—1)Kn(kR)I! (KRKR'

~— X
Then we can identify the dielectric response function of Eq. *mk(@) r(mI'(m+1)

(31) to the previous expression if

im (k) =KR (KR (KR) T ().
r—0,
€ =€ =€

(34

To reach these limits, we remember thatifer 0, and when
m=+#0,

X m
ImO)~ Fime D) E) : (39
T(m)[2|™
Km(x)~T 3 (36)

while for m=0, | ,(x)—1 andK,(x) ~ —In(x). For all val-
ues ofm, we find

(1= )l (kR 1(KR)
eK (KR (KR) — 1 (KR)K/(kR)’

37

am,k(w)

and is valid only foom# 0 (if both k andm are strictly equal

to zero, there is no momentum transfer and the cylinder is
not polarisable by an external charg8y again using ap-
proximations(35) and (36) we find the expression of the

gielectric response of the anisotropic tube,

2
) Fmm1)

« (e, —1)(1-02)
(Veje, —1)202"— (Veje, + 1)’

showing the dependence on the radius ratio previewed by
Henrard and Lambin, but with a prefactor proportional to the
mth power of the dimensionless factoR as expected for a
multipolar polarizability. Thus we have found that our gen-
eral expression can be reduced to limits previously published
in the literature.

Moreover, we analyze Eq39) in the two limit cases of
the radius ratid®. When®—1, Eq.(39) reads

(] maola-d
7 m(1-0) Q'_E_H.
(40

2

kR) 2m

(39

For long wavelengths and larg®, the dielectric response of
an anisotropic cylinder is then similar to that of a slab in a
regime where the two surface electromagnetic excitations are
strongly coupled. Such limit has also been found for aniso-
tropic spheres® The importance of the local anisotropy is
emphasized by the fact that, in this limii( ) is not invari-
ant by inversion of the parallel and perpendicular compo-
nents of the dielectric tensor.

On the other hand, whe®—0, Eq.(39) gives

kR)Zm VEHfL_l
2 VGHGL"']-’

and we retrieve the dielectric response of an anisotropic slab
in the weak coupling regime, i.e., the surface response func-
tion of a semi-infinite anisotropic crystil. Therefore, for
small values ofk but nonzerom, the coupling regime be-
tween the plasmons of the inner and the outer surfaces of the

2

am,k(w)Nm (41)
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tube is strongly sensitive to the radius ratioklis small and
m=0, the dielectric response can be approximated fo®all

by

kR\?2
ao,k(w>~2(7) (1-0%)(e, —1), (42)
showing no dispersion of the electromagnetic modes as a
function of ®. We note that the last expression is similar to
that of a thin anisotropic slab in the strong coupling regime
(as expected when all the components of the momentum-
transfer are very smallln particular, we note that expression
(42) is similar to Eq.(40) for what concerns the, , but the
€| dependence has disappeared. In Ref. 33, it was shown that
the €, dependence is related to the antisymmetradial
mode, where the dependence is related to the symmetric
(tangential mode. Form=0 and very small, the radial
mode is characterized by an uniform and opposite charge
distribution on the inner and outer surfaces and then to an
absence of external induced field. Therefore, in these condi-
tions, such a radial mode cannot be excited by an external

electron. Finally, a® <1, at largem Eq. (39) can again be
approximated by Eq41), and we also find a dependence on

(Veje, —1)/(Veje, +1) typical of the weak coupling re-
gime.

3. Dielectric response for a hollow locally anisotropic cylinder
in the limit k—

Another interesting limit is that of the very large values of
k (k>=1/R,1/r), where the Bessel functions have the follow-
ing asymptotic behavid?:

T
Km0~ \/ 7€ %

X

(43

I m(X)~ (44)

27X

10
Energy (eV)

15 20 25 30

FIG. 2. Ab initio computations of the dielectric constant of YS
Dotted lines: real parts; solid lines: imaginary parts. Top: parallel
component; bottom: perpendicular one.

probability [Eq. (31)], depending on the probe factpEq.
(25)] and on the dielectric responfgq. (15)]. They are per-
formed by using the softwar®ATHEMATICA (by Wolfram
Research Ing, allowing the evaluation of complex Bessel
functions of complex order.

and the dielectric response of the locally anisotropic tube can In the present dielectric formalism, the interria) and

be expressed as

eZkR

am (@)~ —

Then, independently ah and®, for small wavelengths we
find the dielectric response of an anisotropic cylinder is simi

(49)

lar to the one of a weakly coupled anisotropic slab. When

computing the energy-loss spectrum, the exponential dive
gent factor in the response functipkqg. (15)] is compen-
sated for by the probe terfitqg. (31)], that vanishes expo-
nentially with kb (in a nonpenetrating geometb=R) and,
like in the sphere cageacts as &-momentum filter.

Ill. NUMERICAL SIMULATIONS

external (R) radii and the impact parametéo) are param-
eters that can be varied at will, allowing the study of nano-
tubes with different structures and the simulation lioie
spectra®® The case of W§ nanotubes was chosen for the
numerical simulation, because they were shown to be a good
experimental example for the study of the surface plasmon
coupling in hollow anisotropic cylindrical nanoparticf&s.
The dielectric tensor of lamellar WSwhich was used as
dnput data in the following calculations, is displayed in Fig.
2. It was computedb initio in the local density approxima-
tion (LDA)*” using the commercial softwarmasTer(by Mo-
lecular Simulations Ing.

Figure 3 displays the simulated results as well as their
experimental counterparts, for two tubes of different radius
ratios (thick tube R=20.5 nm andr=10.5 nm=0=0.51;
thin tubeR=6.7 nm and =6 nm=®=0.90) in a geometry

We now turn to numerical simulations. The computationswhere the probe is at grazing incider(see Ref. 33 for more
are based on the analytical expression of the energy-logietails on the experimental sejudhe simulations are in
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tube the low energy modes are slightly more pronounced
(Fig. 3. In contrast, the high energy mode of the thin tube is
less intense in the cylindrical model than in the spherical
one. For both values of the radius ratio, however, the cylin-
drical geometry presents peaks slightly shifted toward higher
energy as compared to the spherical geometry and the mod-
eling in cylindrical geometry fits the experimental data
slightly better. These similarities rely on the fact that the
excitation along the circumference of a tube is similar to that
e along the circumference of a sphere and to the fact that only
— the mode of smalk significantly contributes to the loss of
nanocylinders. In Ref. 33, this argument was evoked to jus-
tify an interpretation of W$ nanotube experimental loss
spectra based on simulation in the spherical geometry. The
present simulations dedicated to cylindrical geometry then
fully justify a posterioriour previous conclusions.
In Ref. 33 we attributed the striking difference between
the spectra obtained for different radius ratios to the regime

Experimental

Cylinder
Simulation™

Intensity (arb. units)

T T T T T 1
5 10 15 20 25 30eV

Energy Loss (eV)

Experimental

Cylinder . .
Simulation of the strong and weak coupling between electromagnetic

Cylinder surface modes. In order to better illustrate the prime impor-
/ T N simulation tance of the radius ratio on the EEL spectra, in Fig. 3B we
’ ) display a simulated curve fd® =0.90 but with the sam®
and b than for Fig. 3A(dashed curve The shape of the
energy loss is very similar between tubes with sathéut
different absolute value afandR, and the differences in the
relative intensities can be attributed to the increase of the
contribution weight of high momentum order modes as the
FIG. 3. Comparison of simulations for WSnanotubes and €xternal radius increasgésee below For the thick tube, the

nanospheres and experimental spectra of, W&notubesA: the two surfaces do not couple, and the spectrum depends on the
thick shelled tube R=20.5nmr=105nm=0=051;, b geometric average of the perpendicular and parallel compo-
=21.5 nm).B: thin shelled tube witl® =0.90; solid lines: experi- nent of the dielectric tensdisee the analytical form of the
mental spectra, and simulations in cylindrical and spherical geomlimit, Egs. (41) and (45)]. At the opposite, for the thin tube,
etries for a tube oR=6.7 nmy =6 nm with b=7.7 nm; dashed electromagnetic surface excitations do couple, leading to a
line: simulation in cylindrical geometry for a tube witlR  clear splitting of the spectrum into two parts. The low-energy
=20.5 nm ancb=21.5 nm. part is related t&, , and is similar to tangentigbr symmet-
ric) excitation of a virtual isotropic nanocylinder with a di-

very good agreement with the experimental results, i.e., thglectric functione(w)=e¢, (w). The high-energy peak is re-
differences between the two situatiorigadius ratio ® lated toe), and to the radiafor antisymmetrig excitation of

=0.51 and 0.9Dare accurately reproduced. The only dis- & virtual isotropic cylinder with a dielectric functioa( w)
crepancy between the experimental data and the simulation €I(«)- See Ref. 19 for more details on radial and tangen-

is the intensity of the 22-eV mode in Fig(t8 (it appears as t|aIFmodetf] of iso'gropicdpanopgrtic!(tats. that both th
a small bump on experimental datdhis peak is directly rom the previous discussion, it appears that bo € an-

related toe| (see latex. The lack of accuracy in the LDA isotropy and the hollow character of the cylindrical nanopar-

lculation for out-of-nlane excitations in lavered svstem Xticles are of prime importance. A more systematic study of
caiculation for out-of-plane excitations in layered Ssystem €X5,o  ariation of the EELS data as a function of the radius
plains this problem.

) o ratio was presented elsewhere for carbon nanottfbisis

For these calculations, the COI’ItI’I?thIOI’lS of _the terms up Q55 worth noting that, for a nanocylinder, thie=0 mode is
m=7 andk=14hb (=0.7 and 1.8 nm" respectively for the gy itaple by an external electron flor: 0, as opposed to the
thick and the thin tubgshave been considered for the loss spherical geometry case where he0 mode is silent for a
spectrd Eq. (31)]. Larger transfer momenta have been foundnon_penetrating electron.
to make negl|g|b|e Contl‘ibutions. A|SO note that these Cu'[Of'f We now ana'yze the contribution to the total Spectrum of
values have to be compared to the experimental limit imthe different terms of Eq(31). Figure 4 gives then decom-
posed by the collection angle at the entry of the spectrometgjosition of the total loss spectra for thifkig. 4a)] and thin
(=3 nm ). [Fig. 4(b)] nanotubes, obtained by integrating overThe

The calculations performed for a locally anisotropic cyl- decreasing contribution of high multipolar orderallows a
inder and for a nanosphere with the same radius @& convergence of the sum. For thin tube modes 0 and 1
Ref. 21 for the theory for the spherical geometaye surpris- mainly contribute to the total spectra, while for thick tubes
ingly close together. However, in the simulation for thick modes up tan=7 have to be included. The kinematic factor

Intensity (arb.units)

5 10 15 20 25 30eV
Energy Loss (eV)
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FIG. 5. Dispersion of the dielectric response of the thigkand
thin (B) nanotubes as a function of the momentum trankfeor
m=0. See Fig. 3 for the definition of R, andb. The curves have
been normalized with respect to their integrated afeathe nor-
malization constant for the thick tube arex(Ky)=2x10"5;
n(K;)=0.007; n(K,)=0.031; n(K3)=0.300; n(K,)=2.381. B:
the normalization constant for the thin tube aw@,)=7x10"";
n(K;)=0.002; n(K,)=0.013; n(K3)=0.148; n(K,)=1.391;
[Eg.(25)] being identical in both cases, this difference is duen(Kg)=2x 10"
to the response functiofiEq. (15)]. This shape variation of

the response function is dominated by the width of the shellby the probe factor, and beyoke- 1/(2R) the highk modes
then by the possibility of surface excitation couplifgge become less and less intense. The exponeatidgcay of the

below. probe factor leads to a variation of the relative intensities of

In Fig. 5, we analyze th& dispersion of then=0 mode  the modes at a fixe#t, as compared to the intensities dis-
for thick [Fig. 5@)] and thin[Fig. 5b)] nanotubes. To com-

pensate for thé divergence of the dielectric response, the

FIG. 4. Contributions of the different multipoldém) excitation
to the total spectrum of thickA) and thin (B) WS, nanotubes.
Thick solid line: modem=0. Dashed line: moden=1. Empty
circles:m=2. Triangles:m= 3. Thin solid lines: higher multipolar
excitations (n varying from 4 to 7. See Fig. 3 for, R, andb.

curves are normalized to the same area. The curves represent T Dielectric response x Probe
the response functiofEg. (15)] and are then set free of the
filtering effect of the probe factor. For both shell thickness, 7 k=0
the k=0 mode presents the same aspect, following the ana- @ m=4
lytical limit we found[Eq. (42)]. In Fig. 5a), we emphasize 5 - k=3/R
the rapid dispersion of thenx=0 mode for thick tubes. It is E
striking to note that, for largé, the m=0 mode is very Z - k7R
similar to the highm mode[Fig. 4@)]. On the other hand, in g 6 5 10 15 20 25
the thin shell case, the dispersion is less pronounced and the A Energy Loss (sV)
convergence is only reached for very lafgeransfer[Fig.
5(b), solid triangle$. 4 - .

In Fig. 6 the response functions of Fig. 5 are multiplied by Y 5 10 15 20 25
the probe factor in order to show the role of the probe factor Energy (V)
as a lowk filter. Due to the exponentid divergence of the FIG. 6. Excitation probability of then=0 mode for various

dielectric response the excitations at very snalinodes  momentum transfek. See Fig. 5 for the exadt values and Fig. 3
show a weaker probability, but this effect is compensated fofor r, R, andb parameters. Inset: same for the=4 mode.
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- b=30.5 nm spectrum is rescaled in the inset for a better
b=30.5 nm comparisoi Such a strong dependence of the loss spectra is
b =21.5nm related to the strongn and k dispersive behaviors of the
nanotube. If the electron beam is at grazing incidence, large
——————— m and k modes are excited. As the electron probe moves
Senongy Lassove. b=255nm away from the nanoparticle, the low andk modes become
predominant and the large dispersion explains the change in
b=230.5nm the spectral shape. The same effgxtt less pronouncedias
\ been previously reported for planar interfatesnd for

sphere$?

Intensity (arb. units)

5 10 15 20 25 30 IV. CONCLUSION

Energy Loss (eV) . . .
In this paper, we have presented an analytical calculation

FIG. 7. Loss spectra of a thick tutisee Fig. 3 for parameters  of the electron energy-loss spectrum of a hollow and locally
as a function of the impact parametér Inset: rescaledo  anjsotropic nanotube, when the probe is not crossing the
=30.5 nm spectrum. tube. The continuum dielectric approach has been followed

. . : . in the nonretarded approximation.
played in the dielectric respon$Eig. @) The same spec- " tpe previous analysis of the energy loss of multilayer

tra form=4 are shown in the inset. As previously explained, ,,,hes relied on an isotropic modair on an anisotropic
the highm modes do not disperse and already present @,n05phere modét33But the recent and rapid development
weak coupling limit type of spectrésee the end of Sec. o the production capability of anisotropic nanocylinders
[I D 2). This point has been already noted for the |sotrop|c[made of C, BN and WS (Ref. 3] as new classes of ma-
filled cylinders in the pioneer work of Kliewer and FucHs. terials increase the number and the quality of EELS experi-

In order to qualitatively explain suam andk dependence ,oia| data available, and made a modelization adapted to
of the spectra, we come back to the simplest surface coupllnghe cylindrical anisotropic cylinder necessary.

system, the planar filrfl. The couplir\g ina plgnar geometry Here we have presented a numerical application of the
depends on th&,d parameter ¢ being the thickness of the formalism to the energy loss of WSnanotubes in the

film and k,, the momentum transfer parallel to the surface 5_gg_ ey range, and a comparison with recent experimental
for small kyd, the two surface modes alre symrlnetnc andyata has been shown to be a success. In a parallel Faper,
antisymmetric modes, denoting a strongly coupled systemy s, applied the present formalism to an interpretation of
where at largek,d only a single degenerated surface mode iS.5rh0n nanotubes electron energy-loss data.

present. This is the weak coupling limit. Keeping in mind \yg have also explored analytic limit cases of the general
that the probe factdiCp,, Eq(25), in cylindrical geometry  gypression. For example, small and large radius ratio limits
acts as a low pass filter ik (or kp), only modes withk  paye peen considered, as well as the small momentum trans-
(Kp) <kmax contribute to the total spectra. k., is small e jimit. We have numerically analyzed the surface plasmon
(thin film) only strong coupling terms contribute to 'ghe total coupling for thin and thick WSnanotubes for such limits.
spectra. As soon asincreases, the lardg,d term dominates e should also emphasize that, in the present formalism,
the total spectra and low coupling limit is reacﬁé_d. the probe factofEq. (25)] and the response function of the

In the present cylindrical geometry, the coupling param-nanoparticlg Eq. (15)] are distinct in the total loss expres-
eterkpd has to be replaced lkRandm(1—-0). The signa-  gjon [Eq. (31)]. More complex systems of cylindrical sym-

ture of the strong coupling then appears in terms where bothetry, such as bundle of nanotubes, could then be possible to
m andk are small. On the other hand, the similarity betweenyangle by adapting the response function term only.

the shapes of the dielectric response at larger largek, is
due to the weak coupling regime that is reached for high total
momentum transfers in both cases. However, a formal and
guantitative discussion of the coupling with respecirtand
kis made very cumbersome due to the complexity of expres- The authors are grateful to O. $tean for stimulating
sion (15). However, in the® — 0 limit [Eqgs.(41) and (45)], discussions and to Ph. Lambin and C. Colliex for their sup-
the Ve, ) dependence indicates a weak coupling betweemort during this work. We thank E. Saredfor providing us
surfaces, while th&) —1 andk—0 limit presents two dis- theab initio dielectric function of W$. D.T. was supported
tinct surface modes, characteristic of a strong coupling. by EU-TMR “Ultra-Hard Materials” and JST/CNRS ICORP
As a last discussion point, we would like to show the Nanotubolites Project. L.H. was supported by the Belgian
impact parameter dependence of the EELS spect 8f  National FundFNRS. This work was also partly funded by
cylinders. Figure 7 shows this dependence for the thick tubéhe Belgian Interuniversity Research Project on quantum size
example. Of course, as expected, the loss probability dropaffects in nanostructured materigdRAI-UAP P5-1). The au-
rapidly with the impact parameter. A very striking point is thors acknowledge support from the french-belgian coopera-
the radical change of the shape of the loss spectralwithe  tion program Tournesol 2002.
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