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Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube
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We have analytically computed the energy-loss probability of a fast electron passing near a locally aniso-
tropic hollow nanotube, in the nonretarded approximation. Numerical simulations have been performed in the
low loss~below 50 eV! region, and a good agreement with experimental spatially resolved electron energy-loss
spectroscopy results is reported. We also show the importance of the surface coupling effect and of the local
anisotropy of the tubes for the plasmonic response, extending the conclusions previously reported for spherical
nano-objects.
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I. INTRODUCTION

The discovery of carbon nanotubes1 opened new fields in
physics. Due to their low dimensionality, they attracted
interest of many scientists for possible applications in na
technology and, from a more fundamental point of view, th
represent an ideal object to experimentally test the validity
models in physics of low dimensions. Besides carbon na
structures, a considerable effort has been done in the syn
sis of non-carbon-based layered nanotubes@e.g., BN~Ref. 2!
and WS2 ~Ref. 3!#. The electromagnetic response of the
particles requires a dedicated analysis because of their p
liar anisotropy.

On the experimental side, electron energy-loss spect
copy ~EELS! ~Ref. 4! is a very well adapted tool to study th
dielectric response of nano-objects, especially when c
bined with the high spatial resolution reached in a scann
transmission electron microscope. The interpretation of
EEL spectra in the 1–50-eV energy range is far from be
straightforward, and an adapted theoretical framework
then required. Among others~boundary element method5

discrete dipole approximation6!, the continuum dielectric
theory is the most popular approach~see Ref. 7 for a review!.

The EELS simulation is based on the knowledge of
dielectric response function of the nanoparticle, defined
the proportionality coefficient between an external excit
potential and the induced one. This dielectric response fu
tion in the low loss region~below 50 eV! is the signature of
the elementary excitations of valence electrons such as
interband transition excitations~excitation of an individual
electron from the valence band into the conduction band! and
the plasmon excitations~collective oscillation modes of the
valence electrons!. This paper presents an extension of t
study of dielectric response of nanoparticles to anisotro
cylindrical hollow nanoparticles. We restrict our work to th
nonretarded continuum approach.

At the nanoscale, the contribution to the loss spectra
the surface excitations~the surface plasmons! are of prime
importance. If the particle is hollow, the coupling betwe
the electromagnetic modes of the internal and external
face has moreover to be considered. For a very thin shell
validity of a continuum approach also has to be question
0163-1829/2002/66~23!/235419~10!/$20.00 66 2354
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The theoretical study of the excitation of surface plasm
by an external electron dates back to the pioneer work
Ritchie.8 In the 1980s, several authors9–11 developed and ap
plied the dielectric model to the spherical geometry in t
nonretarded limit. A relativistic approach has been given
Ref. 12. To our knowledge Chuet al. have been the first to
study the excitation of plasmons by an electron travelling
a cylindrical cavity.13 Since this problem was treated in se
eral studies,14–16as well as the problem of electrons passi
perpendicularly to a cylindrical rod.17,18 Surface plasmon
coupling in isotropic hollow nanosphere19 and
nanocylinders18,20was also been considered in the past yea

The peculiarity of carbon nanoparticles~and of related
objects! is their anisotropy. They can be considered uniax
particles with their optical axis locally oriented in the radi
direction. In order to account for this local anisotropy, t
dielectric model was extended to spherical anisotro
nanoparticles6,21 and tested by comparison with experimen
data.22,23Here we present a further extension of the dielec
theory to hollow anisotropic nanocylinders for an electr
travelling perpendicular to the tube axis. A first qualitati
approach at the same problem was given in the literature24

The paper is structured as follows. The analytical cal
lation is presented in detail in Sec. II. The dielectric respo
is calculated by expressing in an appropriate basis the e
trostatic potential in the different regions of space~Sec. II A!
and imposing boundary conditions~Sec. II B!. To calculate
the energy-loss~II C!, we first express in a cylindrical basi
the potential of the probe electron~Sec. II C 1!, because this
determines the induced potential~Sec. II C 2!, and because
the coefficients of its Fourier expansion are needed to ca
late theprobe factor~Sec. II C 3!. All the terms are collected
in Sec. II C 3 to give the total energy loss of the electro
Some limit cases of the dielectric response, that give an
sight into the peculiar role of coupling and anisotropy, a
also evaluated and compared to analogous expressions f
in the literature~Sec. II D!. Finally, in Sec. III, EELS simu-
lations for WS2 nanotubes are displayed and compared
experimental data, as well as to analogous simulations
spherical geometry. A detailed analysis of the contributio
of the different surface modes to the total loss is also p
sented.
©2002 The American Physical Society19-1
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II. ANALYTICAL CALCULATION

In this section we present the details of the calculation
the electron energy-loss spectrum of a high-energy elec
passing near a locally anisotropic tube. The electron is c
sidered as a nonquantum, nonrelativistic particle, as we
the field it generates. Its trajectory is assumed to be rect
ear and nonperturbed by the interaction with the nanop
ticle. This assumption is justified by the small wavelength
the fast electron~energy of the order of 100 keV andl
50.02 Å) as compared to the size of the investigated ob
and its high energy compared to the energy loss~less than 50
eV!. The dielectric response of the particle is considered
local @the local displacement field at pointr depends only on

the electric field at the same point,D(r )5 ē̄(r )E(r )]. Finally
a continuum assumption is made.

First we present the geometry of the modelled experim
and the form of the electrostatic potential. Then a compu
tion of the dielectric response function of a locally anis
tropic tube in obtained. Finally, we compute the energy-l
function.

A. Geometry and electrostatic potential

Figure 1 displays the geometry of the modelled expe
ment. The electron follows a rectilinear uniform trajecto
r8(t), parallel to they axis outside an hollow cylinder. Th
hollow cylinder has external radiusR, an internal radiusr
and its axis is alongz. The impact parameter bof the inci-
dent electron is defined as the distance between this rec
ear trajectory and the tube axis. A cylindrical coordina
system (r,f,z) centered on the tube axis is chosen. We
fine three regions—the internal region~1!, the shell~2!, and
the external region~3!—in which the nonretarded Maxwe
equations have to be solved to determine the potentials.

FIG. 1. Geometry of an EELS experiment for a hollow nanotu
of internal radiusr and external radiusR. The electron moves with
a speedv along a linear trajectory at distanceb ~impact parameter!
from the particle axis. The positions are expressed in cylindr
coordinates (r,u,z) with the z direction parallel to the tube axis.
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1. Regions (1) and (3)

In these regions, free of material, the dielectric constan
set equal to the unity for all energy range, and the n
retarded potential verifies the Poisson equation¹2V(1,3)

50. The general solution in cylindrical coordinates is25

V(1,3)~r,f,z!5 (
m52`

1` E
0

1`

dkRm,k
(1,3)~r!cos~kz!eimf, ~1!

with

Rm,k
(1,3)~r!5Fm,k

(1,3)I m~kr!1Gm,k
(1,3)Km~kr! ~2!

where I m and Km are modified Bessel functions,Fm,k and
Gm,k do not depend on the spatial coordinates, but only onm
andk. Thus for region~1!,

Rm,k
(1) 5Fm,k

(1) I m~kr! ~3!

becauseKm(x) diverges forx50. For region~3!,

Rm,k
(3) 5Fm,k

(3) I m~kr!1Gm,k
(3) Km~kr!, ~4!

where Fm,k
(3) I m(kr) describes the applied field an

Gm,k
(3) Km(kr) describes the cylinder response.

2. Region (2)

As already mentioned, due to the lamellar structure of
shell, the dielectric function is endowed with a tensor
character. The anisotropy axis is defined by the direct
perpendicular to the basal plane, that is the radial direc
for cylindrical particles.

Therefore, the component of the dielectric function in th
direction e i differs from the in-plane componente' . The
nonretarded Maxwell equations lead to

¹•~ ē̄¹V(2)!50, ~5!

with

ē̄5S e i 0 0

0 e' 0

0 0 e'

D , ~6!

where the tensorē̄ is expressed in the (r,f,z) basis~this is
the mathematical translation of the concept of local aniso
py!. Equation~5! gives @the explicit dependence ofV(2) on
the spatial coordinates (r,f,z) is omitted for clarity#.

]r
2V(2)1

1

r
]rV(2)1

1

l S 1

r2
]f

2 V(2)1]z
2V(2)D 50, ~7!

with

l5
e i~v!

e'~v!
. ~8!

The solutions can be factorized as in the previous case.
dependence in thef andz variable remains unchanged. O
the other hand, ther dependence is modified by the aniso
ropy. The general solution of Eq.~7! gives

e

l
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ELECTRON ENERGY-LOSS SPECTRUM OF AN . . . PHYSICAL REVIEW B66, 235419 ~2002!
V(2)5 (
m52`

1` E
0

1`

dk@Fm,k
(2) I n~z!1Gm,k

(2) Kn~z!#cos~kz!eimf,

~9!

with n5m/Al andz5rk/Al.

B. Dielectric response

In order to obtain the dielectric response function,
compute the coefficients (Fm,k

( i ) ,Gm,k
( i ) ) using the boundary

conditions at the interfaces region~1!/region ~2! (r5r ) and
region ~2!/region ~3! (r5R):

~D22D1!•n215s50, ~10!

V(1)~r5r ,f,z!5V(2)~r5r ,f,z!; ~11!

thus

e iEr
(2)~r !2Er

(1)~r !50, ~12!

V(1)~r5r !5V(2)~r5r !, ~13!

and similar relations for the interface~2/3!.
We then obtain four linearly independent equations for

five unknowns (Fm,k
(1) ,Fm,k

(2) ,Fm,k
(3) ,Gm,k

(2) ,Gm,k
(3) ). The decom-

position of the potential of the probe electron gives theFm,k
(3)

coefficient~see Sec. II C! and all the other unknowns can b
expressed as a function of this coefficient. The coefficien
the induced potential,Gm,k

(3) then defines the dielectric re
sponse of the nanocylinder:

am,k~v!52
Gm,k

(3)

Fm,k
(3)

. ~14!

For convenience, we define the dimensionless quant
j5kr/Al, W5kR/Al, x5kr, andX5kR. After some al-
gebra, we express

am,k~v!5
A1B

C1D
, ~15!

with ~the symbol8 means the derivative with respect to th
argument of the Bessel function!

A5~A11A2!I m8 ~x!, ~16a!

A15lI m8 ~X!@ I n~W!Kn~j!2I n~j!Kn~W!#, ~16b!

A25e iAlI m~X!@ I n~j!Kn8~W!2I n8~W!Kn~j!#, ~16c!

B5~B11B2!e iI m~x!, ~17a!

B15AlI m8 ~X!@ I n8~j!Kn~W!2I n~W!Kn8~j!#, ~17b!

B25e iI m~X!@ I n8~W!Kn8~j!2I n8~j!Kn8~W!#, ~17c!

C5~C11C2!, ~18a!

C15lI m8 ~x!Km8 ~X!@ I n~W!Kn~j!2I n~j!Kn~W!#,
~18b!
23541
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C25e i
2I m~x!Km~X!@ I n8~W!Kn8~j!2I n8~j!Kn8~W!#,

~18c!

D5Ale i~D11D2!, ~19a!

D15I m~x!Km8 ~X!@ I n8~j!Kn~W!2I n~W!Kn8~j!#,
~19b!

D25I m8 ~x!Km~X!@ I n~j!Kn8~W!2I n8~W!Kn~j!#.
~19c!

Note that the dielectric response depends on Bessel f
tions with both complex arguments and complex order.
any case,am,k(v) depends only on the characteristics of t
particle ~inner and outer radius, and dielectric tensor of t
corresponding lamellar material!.

C. Energy losses

For computing the energy losses, we follow the classi
procedure,7,10 i.e., we compute the time Fourier transform
the exciting potential~due to the probe electron!. We then
deduce the frequency dependent induced potential. The
energy loss is given by (q is the charge of the electron!

W~b!52qvE
2`

`

Eind@r5r8~ t !,t#•uydt

5E
0

`

d\v\v
dP

dE
~v,b!, ~20!

wheredP/dE is the energy-loss probability by energy uni

1. Potential created by a point charge moving along a
rectilinear uniform in a cylindrical coordinates basis

In this section, following Ref. 18, we express the potent
due to the probe electron in a basis adapted to cylindr
symmetry. Let us assume that an electron is moving alon
rectilinear uniform trajectory with velocityv ~see Fig. 1!. At
each time ~the quasistatic approximation!, the potential
V(r,r8) created at pointr by the electron placed inr8(t)
can be decomposed in cylindrical components as25

V~r,r8!5
q

2p2e0
(

m52`

1` E
0

1`

dkeim(f2f8)

3cos@k~z2z8!#I m~kr!Km~kr8!, ~21!

wheree0 is permittivity of vacuum. Note that the previou
expression is valid forr,r8(t) ~we are interested in the
potential in the region between the nanotube and the
electron! The chargeq follows the trajectory

r8~ t !5@r8~ t !,f8~ t !,z8~ t !#

5@Ab21v2t2,arctan~vt/b!,0#. ~22!

One can then rewrite the potential as a function of its Fou
components,
9-3
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V~r,r8!5
q

4p3e0
(

m52`

1` E
0

1`

dkE
2`

1`

dv eimf

3cos@kz#I m~kr!Cm,k~v!e2 ivt ~23!

with

Cm,k~v!5E
2`

1`

dtKm@kr8~ t !#e2 imf8(t)eivt ~24!

The evaluation of this last expression gives18

Cm,k~v!5
p

v

e2bAk21~v/v!2

Ak21S v

v D 2

SAk21S v

v D 2

1
v

v

k
D m

.

~25!

2. Applied and induced potentials

One can now evaluate the induced potential. We suppo
that the induced potential is linearly dependent on the
plied one, and their Fourier coefficients are related by
pression~14!. Therefore, we find

Vind~r,r8!5
2q

4p3e0
(

m52`

1` E
0

1`

dkE
2`

1`

dv eimf

3cos@kz#I m~kr!am,k~v!Cm,k~v!e2 ivt.

~26!

We finally have all the elements necessary to the calcula
of the energy loss.

3. Computation of the energy loss

As the electron trajectory is along they direction, from
Eq. ~20! and with Eind5¹r5r8Vind(r,t)5]y5y(t)Vind(r,t)
5(1/v)] tVind(r,t).

W~b!5
2q2v

4p3e0
(

m52`

1` E
0

1`

dkE
2`

1`

dvE
2`

1`

dt

3am,k~v!Cm,k~v!
1

v
] t@Km~kr~ t !!eimf(t)#e2 ivt.

~27!

We integrate by parts and, asKm goes asymptotically to zero
we find the limit

lim
t→6`

Km@kr~ t !#eimf(t)5 lim
t→6`

Km~kAb21v2t2!eimarctan(vt/b)

50. ~28!

We obtain the expression
23541
ed
-
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W~b!5
2q2v

4p3e0
(

m52`

1` E
0

1`

dkE
2`

1`

dvE
2`

1`

dt

3am,k~v!Cm,k~v!
iv

v
$Km@kr~ t !#eimf(t)%e2 ivt.

~29!

The integration over the time was already computed: it is
complex conjugate of the coefficientCm,k(v), which is real.
Then

W~b!5
2q2

4p3e0
(

m52`

1` E
0

1`

dkE
2`

1`

dvam,k~v!Cm,k
2 ~v!iv

~30!

In order to obtain the expression of the energy-loss proba
ity per energy unit we have to compare the last express
with Eq. ~20!. To this end, we write Eq.~30! as an integration
over positive frequencies and, by using the relatio
am,k(v)52am,k(2v) andCm,k(v,b)5C2m,k(2v,b), we
obtain

dP

dE
~v,b!5

q2

2p3e0\2

3 (
m52`

1` E
0

1`

dk Im@am,k~v!#Cm,k
2 ~v,b!

~31!

with Cm,k(v,b) given by Eq.~25! andam,k(v) by Eq. ~15!.
We now have the expression for the energy loss of

electron passing aloof a locally anisotropic tube at the d
tance~impact parameter! b. This classical expression is vali
for a single inelastic-scattering event, it does not account
multiple excitation processes, neither for energy gains
de-excitation transitions. Note that this energy-loss spect
is a sum over the momentum along the tube axis~k! and the
transferred azimuthal momentum~m! of a product of two
functions. The second one,Cm,k

2 (v,b), is directly related to
the probe electron field, and does not depend on the par
characteristics~provide it is cylindrical!, while the first one is
the dielectric response function, that characterizes the
ticle. Note also that, due to the exponential dependenc
expression~25!, the kinematic factorCm,k(v,b) acts as a
low-k and low-v filter. In particular, we find that the integra
tion overk in the previous expression~31! runs up to a cutoff
k, depending on the impact parameterb. In any case, this
classical treatment demandska!1, wherea is the inter-
atomic distance.

Maxima of P(v,b) are directly related to those o
Im@a(v)#, and then to the plasmon normal mode of t
nanotube. For isotropic compounds~planar slab,27

sphere,19,28 or cylinder27,29! the polarizability or response
function present two poles for real dielectric function and t
dispersion of those modes can be studied as a function okd
~plane!, l and r /R ~sphere!, or m and kzd ~cylinders!. For
anisotropic materials,a is imaginary even for real dielectric

function, because the factorl could be imaginary for realē̄.
9-4
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The number of modes is then not well defined~or normal
modes does not exist anymore! and the apparent number o
modes depends on the width of the resonance ine(v). This
has been already noted for a plane,30 sphere,22,31 and a cyl-
inder for kz50.32

D. Some limits

Here we give some limits of Eq.~31!, in order to compare
to previous works on the energy loss of a filled isotrop
tube18 and on the dielectric response of anisotropic tube
the k→0 limit.6 In this limit we further examined the effec
of the radius ratio Q5r /R on the coupling of electromag
netic surface modes, by analyzing the dielectric respo
when Q→1 andQ→0. r→0 andk→` are also obtained
and compared to the dielectric response of a thick anisotr
slab.

1. Energy loss for a filled isotropic tube

In their work, Bertschet al.18 did not explicitly use a di-
electric response/probe decomposition of the energy l
However, they deduced a very similar form. Translating f
mula ~19! of Ref. 18 to our convention~in particular, CGS to
MSKA unit systems!, the energy-loss probability per energ
unit for an electron travelling perpendicular to an isotrop
filled tube, at a distanceb from its axis, is expressed b
Bertschet al.18 as

dP

dE
~v,b!5

2q2

4pe0p2\2 (
m

E
0

1`

dkIm~kR!I m8 ~kR!kR

3Im@Pm,k~v!#Cm,k
2 ~v,b!, ~32!

with

Pm,k~v!5
12e

e1~e21!Km~kR!I m8 ~kR!kR
. ~33!

Then we can identify the dielectric response function of E
~31! to the previous expression if

lim
r→0,

e'5e i5e

am~k!5kRIm~kR!I m8 ~kR!Pm,k~v!. ~34!

To reach these limits, we remember that forr→0, and when
mÞ0,

I m~x!;
1

G~m11! S x

2D m

, ~35!

Km~x!;
G~m!

2 S 2

xD m

, ~36!

while for m50, I m(x)→1 andKm(x);2 ln(x). For all val-
ues ofm, we find

am,k~v!;
~12e!I m~kR!I m8 ~kR!

eKm~kR!I m8 ~kR!2I m~kR!Km8 ~kR!
, ~37!
23541
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and using the identityxIm(x)8Km(x)2xIm(x)Km(x)851,
we retrieve Bertschet al.’s expression.

2. Dielectric response for a hollow locally anisotropic cylinder
in the limit k\0

Taking into account the anisotropy, Henrard and Lamb6

calculated, in thek50 limit, the polarizability per unit length
of a hollow cylinder~inner and outer radii respectivelyr and
R),

gm~v!;4pe0R2m
~e ie'21!~12Q2n!

~Ae ie'21!2Q2n2~Ae ie'11!2
,

~38!

with Q5r /R and n5m/Al. The expression refers tok50
and is valid only formÞ0 ~if both k andm are strictly equal
to zero, there is no momentum transfer and the cylinde
not polarisable by an external charge!. By again using ap-
proximations~35! and ~36! we find the expression of the
dielectric response of the anisotropic tube,

am,k~v!;
2

G~m!G~m11! S kR

2 D 2m

3
~e ie'21!~12Q2n!

~Ae ie'21!2Q2n2~Ae ie'11!2
, ~39!

showing the dependence on the radius ratio previewed
Henrard and Lambin, but with a prefactor proportional to t
mth power of the dimensionless factorkR, as expected for a
multipolar polarizability. Thus we have found that our ge
eral expression can be reduced to limits previously publis
in the literature.

Moreover, we analyze Eq.~39! in the two limit cases of
the radius ratioQ. WhenQ→1, Eq. ~39! reads

am,k~v!;
2

G~m!G~m11!
3S kR

2 D 2m

m~12Q!S e'2
1

e i
D .

~40!

For long wavelengths and largeQ, the dielectric response o
an anisotropic cylinder is then similar to that of a slab in
regime where the two surface electromagnetic excitations
strongly coupled. Such limit has also been found for ani
tropic spheres.33 The importance of the local anisotropy
emphasized by the fact that, in this limit,a(v) is not invari-
ant by inversion of the parallel and perpendicular comp
nents of the dielectric tensor.

On the other hand, whenQ→0, Eq. ~39! gives

am,k~v!;
2

G~m!G~m11! S kR

2 D 2mAe ie'21

Ae ie'11
, ~41!

and we retrieve the dielectric response of an anisotropic
in the weak coupling regime, i.e., the surface response fu
tion of a semi-infinite anisotropic crystal.35 Therefore, for
small values ofk but nonzerom, the coupling regime be-
tween the plasmons of the inner and the outer surfaces o
9-5
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tube is strongly sensitive to the radius ratio. Ifk is small and
m50, the dielectric response can be approximated for alQ
by

a0,k~v!;2S kR

2 D 2

~12Q2!~e'21!, ~42!

showing no dispersion of the electromagnetic modes a
function of Q. We note that the last expression is similar
that of a thin anisotropic slab in the strong coupling regi
~as expected when all the components of the moment
transfer are very small!. In particular, we note that expressio
~42! is similar to Eq.~40! for what concerns thee' , but the
e i dependence has disappeared. In Ref. 33, it was shown
the e' dependence is related to the antisymmetric~radial!
mode, where thee i dependence is related to the symmet
~tangential! mode. Form50 and very smallk, the radial
mode is characterized by an uniform and opposite cha
distribution on the inner and outer surfaces and then to
absence of external induced field. Therefore, in these co
tions, such a radial mode cannot be excited by an exte
electron. Finally, asQ,1, at largem Eq. ~39! can again be
approximated by Eq.~41!, and we also find a dependence
(Ae ie'21)/(Ae ie'11) typical of the weak coupling re
gime.

3. Dielectric response for a hollow locally anisotropic cylinder
in the limit k\`

Another interesting limit is that of the very large values
k (k@1/R,1/r ), where the Bessel functions have the follow
ing asymptotic behavior26:

Km~x!;Ap

2x
e2x, ~43!

I m~x!;
ex

A2px
, ~44!

and the dielectric response of the locally anisotropic tube
be expressed as

am,k~v!;
e2kR

p S Ae ie'21

Ae ie'11
D . ~45!

Then, independently ofm andQ, for small wavelengths we
find the dielectric response of an anisotropic cylinder is si
lar to the one of a weakly coupled anisotropic slab. Wh
computing the energy-loss spectrum, the exponential di
gent factor in the response function@Eq. ~15!# is compen-
sated for by the probe term@Eq. ~31!#, that vanishes expo
nentially with kb ~in a nonpenetrating geometryb>R) and,
like in the sphere case,6 acts as ak-momentum filter.

III. NUMERICAL SIMULATIONS

We now turn to numerical simulations. The computatio
are based on the analytical expression of the energy-
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probability @Eq. ~31!#, depending on the probe factor@Eq.
~25!# and on the dielectric response@Eq. ~15!#. They are per-
formed by using the softwareMATHEMATICA ~by Wolfram
Research Inc.!, allowing the evaluation of complex Bess
functions of complex order.

In the present dielectric formalism, the internal~r! and
external~R! radii and the impact parameter~b! are param-
eters that can be varied at will, allowing the study of nan
tubes with different structures and the simulation ofline
spectra.36 The case of WS2 nanotubes was chosen for th
numerical simulation, because they were shown to be a g
experimental example for the study of the surface plasm
coupling in hollow anisotropic cylindrical nanoparticles.33

The dielectric tensor of lamellar WS2, which was used as
input data in the following calculations, is displayed in Fi
2. It was computedab initio in the local density approxima
tion ~LDA !37 using the commercial softwareCASTEP~by Mo-
lecular Simulations Inc.!.

Figure 3 displays the simulated results as well as th
experimental counterparts, for two tubes of different rad
ratios ~thick tube R520.5 nm andr 510.5 nm⇒Q50.51;
thin tubeR56.7 nm andr 56 nm⇒Q50.90) in a geometry
where the probe is at grazing incidence~see Ref. 33 for more
details on the experimental setup!. The simulations are in

FIG. 2. Ab initio computations of the dielectric constant of WS2.
Dotted lines: real parts; solid lines: imaginary parts. Top: para
component; bottom: perpendicular one.
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very good agreement with the experimental results, i.e.,
differences between the two situations~radius ratio Q
50.51 and 0.90! are accurately reproduced. The only d
crepancy between the experimental data and the simula
is the intensity of the 22-eV mode in Fig. 3~b! ~it appears as
a small bump on experimental data!. This peak is directly
related toe i ~see later!. The lack of accuracy in the LDA
calculation for out-of-plane excitations in layered system
plains this problem.

For these calculations, the contributions of the terms u
m57 andk514/b (50.7 and 1.8 nm21 respectively for the
thick and the thin tubes! have been considered for the lo
spectra@Eq. ~31!#. Larger transfer momenta have been fou
to make negligible contributions. Also note that these cu
values have to be compared to the experimental limit
posed by the collection angle at the entry of the spectrom
('3 nm21).

The calculations performed for a locally anisotropic c
inder and for a nanosphere with the same radius ratio~see
Ref. 21 for the theory for the spherical geometry! are surpris-
ingly close together. However, in the simulation for thi

FIG. 3. Comparison of simulations for WS2 nanotubes and
nanospheres and experimental spectra of WS2 nanotubes.A: the
thick shelled tube (R520.5 nm,r 510.5 nm⇒Q50.51; b
521.5 nm).B: thin shelled tube withQ50.90; solid lines: experi-
mental spectra, and simulations in cylindrical and spherical ge
etries for a tube ofR56.7 nm,r 56 nm with b57.7 nm; dashed
line: simulation in cylindrical geometry for a tube withR
520.5 nm andb521.5 nm.
23541
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tube the low energy modes are slightly more pronoun
~Fig. 3!. In contrast, the high energy mode of the thin tube
less intense in the cylindrical model than in the spheri
one. For both values of the radius ratio, however, the cy
drical geometry presents peaks slightly shifted toward hig
energy as compared to the spherical geometry and the m
eling in cylindrical geometry fits the experimental da
slightly better. These similarities rely on the fact that t
excitation along the circumference of a tube is similar to t
along the circumference of a sphere and to the fact that o
the mode of smallk significantly contributes to the loss o
nanocylinders. In Ref. 33, this argument was evoked to j
tify an interpretation of WS2 nanotube experimental los
spectra based on simulation in the spherical geometry.
present simulations dedicated to cylindrical geometry th
fully justify a posterioriour previous conclusions.

In Ref. 33 we attributed the striking difference betwe
the spectra obtained for different radius ratios to the reg
of the strong and weak coupling between electromagn
surface modes. In order to better illustrate the prime imp
tance of the radius ratio on the EEL spectra, in Fig. 3B
display a simulated curve forQ50.90 but with the sameR
and b than for Fig. 3A ~dashed curve!. The shape of the
energy loss is very similar between tubes with sameQ but
different absolute value ofr andR, and the differences in the
relative intensities can be attributed to the increase of
contribution weight of high momentum order modes as
external radius increases~see below!. For the thick tube, the
two surfaces do not couple, and the spectrum depends on
geometric average of the perpendicular and parallel com
nent of the dielectric tensor@see the analytical form of the
limit, Eqs. ~41! and ~45!#. At the opposite, for the thin tube
electromagnetic surface excitations do couple, leading t
clear splitting of the spectrum into two parts. The low-ener
part is related toe' , and is similar to tangential~or symmet-
ric! excitation of a virtual isotropic nanocylinder with a d
electric functione(v)5e'(v). The high-energy peak is re
lated toe i , and to the radial~or antisymmetric! excitation of
a virtual isotropic cylinder with a dielectric functione(v)
5e i(v). See Ref. 19 for more details on radial and tang
tial modes of isotropic nanoparticles.

From the previous discussion, it appears that both the
isotropy and the hollow character of the cylindrical nanop
ticles are of prime importance. A more systematic study
the variation of the EELS data as a function of the rad
ratio was presented elsewhere for carbon nanotubes.34 It is
also worth noting that, for a nanocylinder, them50 mode is
excitable by an external electron forkÞ0, as opposed to the
spherical geometry case where thel 50 mode is silent for a
non-penetrating electron.

We now analyze the contribution to the total spectrum
the different terms of Eq.~31!. Figure 4 gives them decom-
position of the total loss spectra for thick@Fig. 4~a!# and thin
@Fig. 4~b!# nanotubes, obtained by integrating overk. The
decreasing contribution of high multipolar orderm allows a
convergence of the sum. For thin tube modesm50 and 1
mainly contribute to the total spectra, while for thick tub
modes up tom57 have to be included. The kinematic fact

-

9-7
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@Eq. ~25!# being identical in both cases, this difference is d
to the response function@Eq. ~15!#. This shape variation o
the response function is dominated by the width of the sh
then by the possibility of surface excitation coupling~see
below!.

In Fig. 5, we analyze thek dispersion of them50 mode
for thick @Fig. 5~a!# and thin@Fig. 5~b!# nanotubes. To com
pensate for thek divergence of the dielectric response, t
curves are normalized to the same area. The curves repr
the response function@Eq. ~15!# and are then set free of th
filtering effect of the probe factor. For both shell thickne
the k50 mode presents the same aspect, following the a
lytical limit we found @Eq. ~42!#. In Fig. 5~a!, we emphasize
the rapid dispersion of them50 mode for thick tubes. It is
striking to note that, for largek, the m50 mode is very
similar to the highm mode@Fig. 4~a!#. On the other hand, in
the thin shell case, the dispersion is less pronounced and
convergence is only reached for very largek transfer@Fig.
5~b!, solid triangles#.

In Fig. 6 the response functions of Fig. 5 are multiplied
the probe factor in order to show the role of the probe fac
as a low-k filter. Due to the exponentialk divergence of the
dielectric response the excitations at very smallk modes
show a weaker probability, but this effect is compensated

FIG. 4. Contributions of the different multipolar~m! excitation
to the total spectrum of thick~A! and thin ~B! WS2 nanotubes.
Thick solid line: modem50. Dashed line: modem51. Empty
circles:m52. Triangles:m53. Thin solid lines: higher multipolar
excitations (m varying from 4 to 7!. See Fig. 3 forr, R, andb.
23541
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r

r

by the probe factor, and beyondk51/(2R) the high-k modes
become less and less intense. The exponentialv decay of the
probe factor leads to a variation of the relative intensities
the modes at a fixedk, as compared to the intensities di

FIG. 5. Dispersion of the dielectric response of the thick~A! and
thin ~B! nanotubes as a function of the momentum transferk, for
m50. See Fig. 3 for the definition ofr, R, andb. The curves have
been normalized with respect to their integrated area.A: the nor-
malization constant for the thick tube are:n(K0)5231025;
n(K1)50.007; n(K2)50.031; n(K3)50.300; n(K4)52.381. B:
the normalization constant for the thin tube aren(K0)5731027;
n(K1)50.002; n(K2)50.013; n(K3)50.148; n(K4)51.391;
n(K5)5231017.

FIG. 6. Excitation probability of them50 mode for various
momentum transferk. See Fig. 5 for the exactk values and Fig. 3
for r, R, andb parameters. Inset: same for them54 mode.
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played in the dielectric response@Fig. 5~a!#. The same spec
tra for m54 are shown in the inset. As previously explaine
the high-m modes do not disperse and already presen
weak coupling limit type of spectra~see the end of Sec
II D 2!. This point has been already noted for the isotro
filled cylinders in the pioneer work of Kliewer and Fuchs27

In order to qualitatively explain suchm andk dependence
of the spectra, we come back to the simplest surface coup
system, the planar film.27 The coupling in a planar geometr
depends on thekpd parameter (d being the thickness of the
film and kp the momentum transfer parallel to the surfac!:
for small kpd, the two surface modes are symmetric a
antisymmetric modes, denoting a strongly coupled syst
where at largekpd only a single degenerated surface mode
present. This is the weak coupling limit. Keeping in min
that the probe factor@Cm,k , Eq.~25!, in cylindrical geometry#
acts as a low pass filter ink ~or kp), only modes withk
(kp),kmax contribute to the total spectra. Ifkmaxd is small
~thin film! only strong coupling terms contribute to the tot
spectra. As soon asd increases, the largekpd term dominates
the total spectra and low coupling limit is reached.27

In the present cylindrical geometry, the coupling para
eterkpd has to be replaced bykRandm(12Q). The signa-
ture of the strong coupling then appears in terms where b
m andk are small. On the other hand, the similarity betwe
the shapes of the dielectric response at largem or largek, is
due to the weak coupling regime that is reached for high t
momentum transfers in both cases. However, a formal
quantitative discussion of the coupling with respect tom and
k is made very cumbersome due to the complexity of exp
sion ~15!. However, in theQ→0 limit @Eqs.~41! and ~45!#,
the Ae'e i dependence indicates a weak coupling betw
surfaces, while theQ→1 andk→0 limit presents two dis-
tinct surface modes, characteristic of a strong coupling.

As a last discussion point, we would like to show t
impact parameter dependence of the EELS spectra ofWS2
cylinders. Figure 7 shows this dependence for the thick t
example. Of course, as expected, the loss probability dr
rapidly with the impact parameter. A very striking point
the radical change of the shape of the loss spectra withb ~the

FIG. 7. Loss spectra of a thick tube~see Fig. 3 for parameters!
as a function of the impact parameterb. Inset: rescaledb
530.5 nm spectrum.
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b530.5 nm spectrum is rescaled in the inset for a be
comparison!. Such a strong dependence of the loss spectr
related to the strongm and k dispersive behaviors of the
nanotube. If the electron beam is at grazing incidence, la
m and k modes are excited. As the electron probe mov
away from the nanoparticle, the lowm andk modes become
predominant and the large dispersion explains the chang
the spectral shape. The same effect~but less pronounced! has
been previously reported for planar interfaces38 and for
spheres.22

IV. CONCLUSION

In this paper, we have presented an analytical calcula
of the electron energy-loss spectrum of a hollow and loca
anisotropic nanotube, when the probe is not crossing
tube. The continuum dielectric approach has been follow
in the nonretarded approximation.

The previous analysis of the energy loss of multilay
nanotubes relied on an isotropic model18 or on an anisotropic
nanosphere model.22,33But the recent and rapid developme
of the production capability of anisotropic nanocylinde
@made of C, BN,2 and WS2 ~Ref. 3!# as new classes of ma
terials increase the number and the quality of EELS exp
mental data available, and made a modelization adapte
the cylindrical anisotropic cylinder necessary.

Here we have presented a numerical application of
formalism to the energy loss of WS2 nanotubes in the
5–50-eV range, and a comparison with recent experime
data has been shown to be a success. In a parallel paper,34 we
also applied the present formalism to an interpretation
carbon nanotubes electron energy-loss data.

We have also explored analytic limit cases of the gene
expression. For example, small and large radius ratio lim
have been considered, as well as the small momentum tr
fer limit. We have numerically analyzed the surface plasm
coupling for thin and thick WS2 nanotubes for such limits.

We should also emphasize that, in the present formali
the probe factor@Eq. ~25!# and the response function of th
nanoparticle@Eq. ~15!# are distinct in the total loss expres
sion @Eq. ~31!#. More complex systems of cylindrical sym
metry, such as bundle of nanotubes, could then be possib
handle by adapting the response function term only.
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