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We report on a general method for the calculation of the frequency-dependent optical response of clusters
based upon time-dependent density functional thé®®DFT). The implementation is done using explicit
propagation in the time domain and a self-consistent program that uses a linear combination of atomic orbitals
(LCAO). Our actual calculations employ theesTA program, which is designed to be fast and accurate for
large clusters. We use the adiabatic local density approximation to account for exchange and correlation effects.
Results are presented for the imaginary part of the linear polarizabilityy(l3), and the dipole strength
function, S(w), of Cgg and Ng, and compared to previous calculations and to experiment. We also develop a
method for the calculation of the integrated frequency-dependent second-order nonlinear polarizability for the
case of a step function electric fieIT;lstep(w), and present results forgg:

DOI: 10.1103/PhysRevB.66.235416 PACS nuni®er78.70—-g, 78.67—n
I. INTRODUCTION om
S(w)= 5 o lma(w). (2
Although density functional theoty (DFT) is a very suc- meh

States caloulated within the Kohn-Sham scheme often. ariNe dipole strength functior(w). is proportional 0 the
much less successful in describing the optical response arm'lo_toabsorptlon cross section(w), _measured by most ex-
the excitation spectra. The solution to this problem, in prin_per!ments anda(;[hgreforr]e, .allows .d'reg comparison V\."th ex-
ciple, is the extension of DFT to the time-dependent system henment. In addition, the integration OVer energy gives
It is interesting to note that the first calculatfamsing time- e number of electrondJ (f-sum rulg, i.e.,
dependent DFTTDDFT) preceded any formal development .
and it relied heavily on the r_:malogy with the time-dependgnt f dE SE)= E f.=Ne, 3)
Hartree-Fock method. The first steps towards the formulation 0 i
of TDDFT were done by Deb and Gho$hwho focused on _ _ _
potentials periodic in time, and by Bartolott{,who focused ~Wheref; are the oscillator strengths. This sum rule is very
on adiabatic processes. Runge and Grasgtablished the important because it provides an internal consistency test for
foundations of TDDFT for a generic form of the time- the calculations, indicating the completeness and adequacy
dependent potential. TDDFT was further develop@do ac- of the basis set used for the computation of the optical re-
quire a structure that is very similar to that of the conven-SPONSe. _
tional DFT. A very interesting feature of TDDFT, that does  Optical probes are some of the most successful experi-
not appear in DFT, is the dependence of the density functionmental tools that allow access to the properties of clusters.
als on the initial state. For more information about TDDFT Consequently, there are many calculations of the optical re-
the reader is advised to read the authoritative reviews ofPonse of small atomic aggregatésn particular, there exist
Gross, Ullrich, and Gossmahnand Gross, Dobson, and Several theoretical studies of the examples chosen hegge, C
Petersilka? and Na. This allows us to calibrate the accuracy of our
The polarizability describes the distortion of the chargemethod in comparison with other computational schemes.
cloud caused by the application of an external field. It is oneTwo of the firstab initio calculations within TDDFT were
of the most important response functions because it is diperformed by Rubicet al'* and by Yabana and Berts¢h.
rectly related to electron-electron interactions and correlaRubio et al** calculated theab initio photoabsorption cross
tions. In addition, it determines the response to charged pafections of small silicon and alkali-metal clustéts, Na)
ticles and optical properties. A quantity of particular interestusing the time-dependent local density approximation
is the dipole strength functiorS(w), which is directly re- (TDLDA). Yabana and Bertsch performed calculations of
lated to the frequency-dependent linear polarizabititft), the dipole response of atomic clusters and studied large so-
by dium and lithium clusters and the g6 molecule using
TDLDA and a real-time and -space approach. Shortly after,
van Gisbergeret al® calculated the dynamic hyperpolariz-
e’t [*S(w')do’ ability of Cgo using TDDFT. For small Na clusters, Vasiliev
a(w)= m 0 T2 2 (1) et all” calculated the photoabsorption cross section using the
v T time-dependent density functional response the¢mD-
DFRT) developed by Casid4.Of particular interest are the
By taking the imaginary part of Eq1) we obtain recent calculations of Moselest al,'® who calculated the
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photoabsorption cross sections of small sodium cluster cagnd nanostructuréd. It is not obvious, however, that these
ions at various temperatures using TDLDA in conjuctionconfined basis sets will be also adequate for the TDDFT
with ab initio molecular dynamics. The calculated spectracalculation of the optical response. In this paper we show
are obtained without usingd hocline broadening or renor- that, at least for the two systems considered, the optical ab-
malization. sorption can be calculated quite accurately using a basis of
The purpose of this work is to propose a method that willNAOs with reasonable confinement radii and a moderate
have significant advantages for the calculation of the polarnumber of orbitals per atom. Our results are in reasonable
izability of large clusters, reducing considerably the compu-agreement with other TDDFT calculations using computa-
tation time while retaining a reasonable accuracy. This papeionally more demanding basis sets or real-space grids.
is organized as follows: In Sec. Il, we describe the method of Our approach is to carry out the calculations in the time
calculation. In Sec. lll, we present an overview of relevantdomain, explicitly evolving the wave functions. We consider
calculations and the results of our calculation fog@nd a bounded system in a finite electric field, i.e., the Hamil-
Nag. We compare our results with other calculations andtonian includes a perturbatioAH= —E-x. For the linear
experiments. In Sec. IV, we describe the calculation andesponse calculations in this paper we have set the value of
present the results for the imaginary part of the integratedhis field to 0.01 eV/A. The system is solved for the ground
frequency-dependent second-order nonlinear polarizabilitgtate using standard time-independent density functional

for the case of a Step function electric fie'd,’h}e;{w), for theory.Z7 Then we switch off the electric field at t|me=0,

Ceo. In Sec. V, we give the conclusions. and for every subsequent time step we propagate the occu-
pied Kohn-Sham eigenstates by solving the time-dependent
Il. METHOD OF CALCULATION Kohn-Sham equation/i(=1)
A. Electronic structure calculations g
Our method involves the description of the electronic iE:H\I" )

states using linear combination of atomic orbitdl€CAO).
Because the size of the LCAO basis is small, the TDDFT\NhereH is the time_dependent Hamiltonian given by
calculations can be done efficiently using the techniques de-
scribed below. The use of the LCAO basis leads to matrices ,
with size considerably smaller than when other basis sets are | — 1 V2 p(r',v)

. =— =Vt Vo r,t)+ dr’ +V,Jp](r,t).
used or when real-space grid methods are employed. Our 2 r—r’|
scheme is based on ttseesTA code?®~?? which is used to (5)
compute the initial wave functions and the Hamiltonian ma-
trix for each time stepsiESTAIs a general-purpose DFT code The calculation of the exchange-correlation potential is done
that uses a local basis, and has been specially optimized ttsing the adiabatic local density approximatiGALDA )
deal with large systems. As such, it represents an ideal toothereV, takes the form

for treating large clusters. Core electrons are replaced by

norm-conserving pseudopotentfdlsn the fully nonlocal 5E>'ZCDA[PJ

Kleinman-Bylandet* form, and the basis set is a general and Vid pl(r )= ———=VC [ p,](r). (6)
Sp(T)

flexible linear combination of numerical atomic orbitals Pt

(NAOs), constructed from the eigenstates of the atomi
pseudopotentias:?® The NAOs are confined, being strictly

zero beyond a certain radius. In addition, the electron wav . > .
y LDA is local both in time and space. For every time step

functions and density are projected onto a real-space grid i e Ea(4 df th functi
order to calculate the Hartree and exchange-correlation pd’ye solve Eq(4), and from the new wavefunctions we con-

tentials and their matrix elements. struct the new density matrix
The use of confined NAOs is very important for the effi-
ciency of thesiesTA code. With them, by exploiting the ex- v PR
plicit sparseness of the Hamiltonian and density matrices, the P (t)_iEOCC cr(ver(), @)
computational cost for the construction and storage of the
Hamiltonian and the electronic density can be made to scalﬁ,hereciﬂ(t) are the coefficients of the occupied wave func-

linearly with the number of atoms, in the limit of large sys- tions that correspond to the basis orbitals(r). p“*(t) has

tems. Therefore, a considerable effort has been devoted {8 he calculated and stored for overlapping orbitals only. The
obtain orbital bases that would meet the standards of precsigctron density is then obtained by

sion of conventional first-principles calculations, while keep-

ing their range as small as possible. A simple scheme for the

generation of transferable bases that satisfy both require- — wv

ments was presented in Refs. 21 and 26. These bases, which p(rb) sz P S,NET) ®

we utilize in this work, have been successfully applied to

study the ground state properties of very different systemsand used for the calculation of the Hamiltonian in the new
ranging from insulators to metals, and from bulk to surfacesycle.

CE)&E’*[pt] is the exchange-correlation energy of the homoge-
eous electron g&&.It is important to notice that th¥, in
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B. Calculation of the polarizabilities whereS is the overlap matrix between the orbitals ands
For every time step we calculate the dipole momie(it) i[he %Jlltjr?;nimﬁt?e dc?erﬁlueir\]/tsnof :hre;ﬂlocal r?fzblt?lii. T]hehoxer-
of the electrons in the cluster. This defines the response to av@g ha?/e to Scalcilatg a?dginsertaitoonﬁ/ ((:)Oncegu auon, hence
orders and the frequency-dependent response is found by the The formal solution of Eq(12) is

Fourier transform
c(t)zU(t,O)c(O)zTexp( —i ftslH(t’)dt’)c(O),
0

(13
In our case we Fourier transform the dipole moment only foryhere T is the time ordering operator. The most elementary
t>0. Itis necessary to include a damping facfdn orderto  solution is obtained by breaking the total evolution operator

perform the Fourier transform. This damping factor gives theinto evolution operators of small time durations
minimum width of the peaks of the imaginary part of the

response. Physically, it can be regarded as an approximate
way to account for broadening. To linear order the polariz-
ability is given byD(w) = a(w)E(w), so that

D(w)zf dt €<t=9D(t). 9)

N—1
U(t,O):HO U((n+1)At,nAt), (14)

whereAt=T,,;/N and
(10) U(t+At,t)=exd —iS™H(t)At]. (15)

Tt IS the total time for which we allow the system to evolve.
where the field is given byE(t)=E6&(—t). After Fourier  The differences among propagation schemes arise from the
transforming the dipole moment we obtain the elements ofvay the exponential in Eq15) is approximated. In our ap-
the frequency-dependent polarizability tenagi(w). We re- proach, we approximate the exponen'gia}l in Ep) with the
peat the calculation with the electric field along different Crank-Nicholson operatdf. The coefficients between the
axes unless the symmetry is high enough that this is nottepsn+1 andn are related by the equation
needed. The average linear polarizability is given b

g P yisg y C1-iSTMH(t)AY2 |

ReD(w)

IMma(w)=w E

Cn+1

1 T q14ig-1
(a(w))=3Tr{aij(w)}. (11) 1+iS™ H(ty) At/2
This method is unitary, strictly preserving the orthonormality
The choice of the coordinate system does not affect the awf the states for an arbitrary time evolution. For time-

erage polarizability because of the rotational invariance ofndependent Hamiltonians it is also explicitly time reversal
the trace. invariant and exactly conserves energy. In practice, with a

suitable choice ofAt, the energy is satisfactorily conserved
even when the Hamiltonian changes with time. For example,
in the calculations described below, the drift of the total en-
Efficient solution of the time-dependent Kohn-Shamergy at the end of the simulation~(20.7 fs in both cases
equation[Eq. (4)] is of particular interest because togetherwas only AE,q/E~3X10 7 for Cgo and ~8x10 8 for
with the calculation of the Hamiltonian, they are the mostNgg after Nc,,~6100 andNy,,~2800 time steps, respec-

time-consuming parts of the calculation. In this section wetjvely. The larger energy drift in the case of jia attributed

(16)

C. Solution of the time-dependent Kohn-Sham equation

describe our approach of solving E¢). to the use of larger time step. The method is stable when
In the LCAO formalism Eq(4) takes the form AtAE, <1, whereAE,.,is the range of the eigenstates of
S 1H. We can increase the stability of the solution if we
ia—C=S’1Hc (12) include more terms of the expansion in the numerator and
at ' denominator of the Crank-Nicholson operator, i.e.,

- 1—iSTIHAt/2— 1/2(S"*HAt/2)?+i (S THAt/2)3 ]
= Cc.
1+iS™HAt/2— 3(S THAt/2)2—i (S tHAt/2)3

(17

C

By including more terms in the expansion it is possible eithewill not be affected since it depends on the total time for
to increase the time step preserving the accuracy or to inahich we allow the system to evolve.

crease the accuracy of the dynamics and the energy conser- There are many advantages associated with the real-time
vation for a given time step. The main advantage of using dormulation of TDDFT used in this work. Only occupied
bigger time step is the saving of time because we have tetates are used in the calculation, in contrast to the perturba-
calculate the Hamiltonian fewer times. The energy resolutioriive approack:*®where there is a sum over the excited states
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of the system. The implementation is relatively simple, since 12
we use essentially the same operations as already used to find
the ground state properties. It is also advantageous that non-
linear effects can be included in a straightforward way as
shown in Sec. IV. The merit of the real-time approach be- 8t
comes more transparent in the case of the calculation of the
nonlinear polarizabilities because the perturbative approach
involves multiple sums over the excited states, something
which is computationally very demanding. One disadvantage
of the real-time approach is the calculation of the Hamil-
tonian for every time step. Although this is not an attractive
feature there is no other way to calculate the time evolution
of the system.
The method presented in this work has many similarities 0 1
with that described by Yabana and Bertselihe main dif- w(eV)
ference being our use of a LCAO basis set in the present case
compared to their method in the which the states are repre- FIG. 1. Dipole strength function of Navs energy.
sented on a regular grid in real space. Yabana and Bertsch
use the same real-space method as Vasiliev and co-wbfkersalculated the photoabsorption cross section of &fed pre-
in which the action of the Hamiltonian on a state is done bydicted the plasmon position at 2.82 eV.
approximating the Laplacian operator using a finite differ- Bounadc-Koutecky et al*® calculated the absorption
ence expression. Even though the operators are sparse aggectrum of Ng using the configuration-interaction method
easy to apply, the representation of the states requires mugll). Because the all-electron calculation is computationally
greater computer memory, especially for large systems andery demanding, they obtained the excited states by a non-
for systems with atoms that require finely spaced grids.  empirical effective core potential corrected for the core-
valence correlation using a core polarization potential. The
position of the plasmon was predicted-aR.55 eV. Rubio
IIl. DISCUSSION OF RESULTS et al!* calculated the photoabsorption cross section within
TDLDA. Their results are in excellent agreement with ex-
periment. In particular, the position of the plasmon was
The first calculation we performed is the optical responsdound at 2.55 eV. Vasilieet al!’ calculated the photoabsorp-
of Nag. The main purpose of this calculation was to investi-tion cross section using TD-DFR¥ Their calculations made
gate the accuracy of our method in the case of a small clugise of norm-conserving pseudopotentials and a real-space
ter, where the effects related to the confinement of the orbitgrid of points. The position of the plasmon agreed with the
als should be more noticeable and where the size of our basiotoabsorption experiments of Sellt al3* and Wang
is much smaller than that in previous calculations using realet al3? within 0.1-0.2 eV.
space grids! It has to be kept in mind that the calculation of  In our calculation we let the system evolve for the total
the optical response of Nais just a test case since the time of T=31.42 eVl The energy resolution, determined
method of calculation used is intended for large clusterdy Aw= /T, is, in consequence, equal to 0.1 eV. The time
where we benefit from the ordét-features ofsiESTA The  step is 11.02510 2 eV 1, and the damping factor used in
calculation of the optical response of Nis a difficult test the Fourier transform is 0.095 eV. Troullier-Martins
for codes that use localized orbitals, suchs&sTa because pseudopotentiadd including nonlinear partial  core
it has very delocalized wave functions and consequently gorrectiond’ for the exchange-correlation interaction be-
very delocalized density distribution. Nds the smallest tween valence and core electrons and an auxiliary real-space
closed shell Na cluster with an optical response that exhibitgrid®® equivalent to a plane-wave cutoff of 70 Ry are also
the presence of a plasmon experimentally observed at 2.33sed in this calculation. The basis set includes 13 NAOs per
eV313 The width of the plasmon is due to Landau atom: two radial shapes to represent the Sates plus a
damping® polarizatiod® p shell with confinement radiirs=rb”
Previous work can be grouped into two types: earlier=12.2 a.u. and two additionalp3and 3 shells with radii
work on jellium sphere§**~**that reproduces the qualita- r,=r,=10.0 a.u.
tive features but not the quantitative energies of the peaks, Figures 1 and 2 present, respectively, our results for the
and more recent wotk!"*°that takes into account the de- dipole strength function and the imaginary part of the linear
tailed atomic structure and is in general in very good agreepolarizability of Ng for energies up to 4 eV. The shape of
ment with experimerit-32In the first category are the calcu- these curves is in good agreement with both the calculations
lations of Selby and co-workef$;** who calculated the of Vasiliev et all” and the experiments of Wanet alZ?
photoabsorption cross section using the modified Mie theoryHowever, the results appear to be shifted to higher energies.
which is a classical theory. The plasmon was found to be aln fact, the maximum of the plasmon peak is obtained at 2.8
~2.76 eV. By using the self-consistent jellium model in theeV, which is 0.27 eV higher than the experimentally ob-
TDLDA, first introduced by Ekard® Yannouleaset al®*®  served value. This shift to higher energies seems to be related

)

S(%

A. Small metal clusters: Ng
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FIG. 3. Dipole moment of g vs number of time steps.
FIG. 2. Imaginary part of the linear polarizability of Nas

energy. . . . .
spherical averagingand for the electron interactidmeglect

to the extension of the LCAO basis: using more confinec®f screening effects or random phase approximatRRA)
orbitals we get a larger shift. The integrated dipole strength iéreatments We will compare our results with those of Wes-
equal to 6.97 out of 8, thus fulfilling 87.13% of the sum rule. fin et al** and Yabana and Bertschwho used large basis
The partial fulfillment of the sum rule signifies the incom- Sets and realistic carbon potentials. Westiral. used single-
pleteness of our basis set. The static linear polarizabilitparticle wave functions, determined from a local density ap-
«(0) can be obtained from standagstatio calculations of prOX|mat|on(ITDA) calculation, to evaluate the dipole matrix
the induced dipole as a function of the applied field. Usingeléments which combined with a sum over states approach
this approach we obtain a value of 13.3/Atom. An alter- yielded the unscreened frequency-dependent linear polariz-

native way to calculate(0) is provided by the formula ability..Screening was includgd in a RPA-like fashion b_y in—.
troducing an effective screening parameter. The polarizabil-

&4 (= Sw)do 2 [*Ima(w) ity calculated in the static_ limit was used fto evaluate this
a(0)= = 2 = ;fo ” do, (18 parameter for the calculation of the dynamic response. The

optical response and the sum rule for the low-energy part

were in reasonable agreement with the experiment of Leach

from which we obtain a value of 12.5%ktom.[This result 16 .
can also be derived from the fact that for the step perturba(-et al®® Yabana and Berts¢h used TDLDA, evolving the

tion D(t=0)= a(0)E.] The discrepancy between both esti- system in real space and time, to calculate the dipole strength

mations is probably related to the lack of energy resolutior{unCtIon Otf Q}% tghew cal_culatt|o|ndaiso ]9||\_/e;¢rrae|%§?nable
of the calculateda(w) to perform the integral in Eq(18) agreement wi € experimental daa of L€ o

with the required accuracy. Both results are in reasonabl e sum rule of the low-energy part although it misses many

agreement with the experimental value of 15 % dkom re- etails of the structure.

orted by de Hee of 14.9 A/atom computed by Rubio The total simulation time in our calculation of the polar-
gt all ﬁsing TDLDA .and of 14 g;&/atomy and izability and dipole strength of the g molecule is again

14.7 K/atom calculated by Vasiliewet all”*° using the 31.416 eV, and the corresponding energy resolution is 0.1
TDLDA and finite field methods, respectively. eV. The time step, however, which is set equal to 5.145

X102 eV, is smaller than the one used for jNa his is
because of the higher frequency range of the response of
Cso- The damping factor used in the Fourier transform is
The best known fullerenegis a very interesting system equal to 0.34 eV in this case. Troullier-Martins
with strong electron-electron interactions due to the confinepseudopotential€ a double¢ polarized basis set, and a real-
ment. There are quite a few calculations concerning the opspace grid cutoff of 70 Ry were used in this calculation.
tical properties of G, and in particular its optical response There are 13 NAOs per C atom: two different radial shapes
but only few of them areb initio. The main feature of the for the description of the 2 states, another two for thep?2
optical response of & is the presence of two collective ex- plus an additional shell ofl orbitals. The radii of confine-
citations (plasmong The low-energy plasmon can be asso-ment used are,=5.12 a.u. andp=r§°'=6.25 a.u.(corre-
ciated with ther electrons while the high-energy plasmon sponding to arenergy shift' of 50 me\). For G, the cal-
with both theo and 7 electrons, in analogy with the plas- culated spectra show a small dependence in these radii, at
mons in graphité®*! The plasmons have been observed in aleast as far as they are not selected to be very stringent.
plethora of experiment&-4 In Fig. 3, the dipole moment is shown as a function of the
The earliest theoretical wotk®®on Gy involved simpli-  time step number. The dipole strength function obtained
fying approximations for the electron statgight-binding or ~ from the time evolution of the dipole moment is shown in

B. Large molecules: Gg
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88.2 & given by Meth et al.®® 79.3 8 from uv

o 1 absorptior®? and 85.2 & from electron energy loss
"t ] spectra®>’
—_ 12}t
’:L% 1 IV. NONLINEAR POLARIZABILITIES
A Because of the nonperturbative nature of our method we
of 1 are able, for large values of the applied field, to obtain non-
o ] linear polarizabilities. In this section, we develop a method
.| ] for the calculation of the imaginary part of the integrated
\ . ‘ / ) R frequency-dependent second-order nonlinear polarizability,
K b ® ® ‘° ® 0 Im}steF(w), which is related to the response to a step func-
w(eV) t?on, and apply_it to G- Bgcau_s_e o is centrosymmetric the
first-order nonlinear polarizability3(w), and all other polar-
FIG. 4. Dipole strength function of g vs energy. izabilities invoIving an even number of fields vanish by sym-
metry.

The advantage of the explicit time method to study the
nlinear response is that we use exactly the same operations
- . . as in the linear case. It is also much simpler than the pertur-
the o andw electron transitions in the region Of 14-27 eV. bative approach, which involves multiplepsums over tr?e ex-
In the low-energy part of dipole Stref‘gth function we hav_ecited states, something extremely computationally demand-
peaks at 3.5, 44 5.4, and 5.8 eV, Wh'Ch agree very well W'thng, especially for large systems. The disadvantage is that
the ‘5’2”95 obtained by the experiments S?f Bauernschm%n"ke the linear case where each Fourier component is in-
et al>"and by the calculations of Westét al." By integrat- dependentthe nonlinear response depends upon the detailed

in? thf dipctJrI]e ﬁ_tl_r]en?tth Ifunction Iove: enetrﬁy Wgz%e;éhe Stur%pectrum of the applied field. Here we derive the nonlinear
rule strength. the total sum rule strength 1s /6 out 0 esponse of an electric field coupled tg,CGor the case

Zﬁ? '{h(;r]efo_re, we Is?t'Sfy thefsum tr)ule_ up tto 9?;12;1]%‘3 ;rh't here the field is the step function used before. A different
re ecds € mcom][)ti enes;t ?[. our ?hs'shseh’ whic a|st alculation would have to be done to find the nonlinear re-
reproduce some ot the excitations in the high-energy part o, ponse to a field with a different time dependence.

the spect;unl. The; p:?sthmonﬂ;leleroadelzneld:{_ but tjh's |sfa First we give the relation of our calculation to the general
common feature o all the calculations done Tor yafinition of second-order nonlinear response, as a function

Coo- f time, which i€°
In Fig. 5, the imaginary part of the polarizability is given of time, which i

as function of energy. By using Eql8), the static linear

Fig. 4 for energies up to 60 eV. Its main features are the;10
low-energy transitions that come from the electrons and

t t t
polarizability a(0) is found to be 91.1 A while our finite D(3)(t)=f dtlf ' dtzf ’ digy(t;ty,ty,t3)
field calculations produce a value of 87.3.AResults for ‘°° - -
«(0), from accurate finite-field calculations using fifteen X E(ty)E(t,)E(ts). (19)

values of the field, are given in Sec. IV. Both values are
higher than the lower limit estimation of 62.5°Afrom  For the case of a step function perturbation, iE(t)
quantum-mechanical calculatiorisand in reasonable agree- = EO(—t), it takes the form
ment with the value of 85 A obtained by Yabana and
Bertsch'® They also agree with the experimental values of

DC)(t)=iE® lim f

200 v - T + v 5i"0+

dowdw,dws
(2m)°

—i + + t .
e (@1t et edly(— ) — w,— w3 01,0y, 03)

~ (w1—161) (wr—16,)(w3—103)

(20)

We Fourier transform Eq.20) and obtain the second-order
nonlinear response as a function of frequency

Sa(4%)

dw,dw
D®)(w)=iE? lim J —=
‘ . ‘ ' 50" (277)
[ 10 20 30 40 50 80 :
w(eV) Y(— 00— 0w~ w3,0;,03)

X

FIG. 5. Imaginary part of the linear polarizability ofsCvs (0= wy—w3—161)(w—165)(w3—163)

energy. (21
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T T T T T

The quantity we calculate is the real part of the second-
order nonlinear response, R&)(w), from which we can
extract the imaginary part of the integrated second-order

nonlinear polarizability, Irfixste;(w). Explicit details are
given below and in analogy to E¢LO) Im'«}ster(w) is given
by

le-35~ -1

SHstep(esu)

°
T

-le-35- -1

f d(l)zd(l)g

IM Yetef @)= — o lim Im
')’steri (277)2

§—0"

o 10 20 30 4 50 0
w(eV)

—W,W— Wry— W3,Wy,® . . .
N ” 27 ¥3,02,03) FIG. 6. Imaginary part of the integrated second order nonlinear

(0= Wy~ w3=101)(w=18,)(w3=183) polarizability, IMygef ), of Cs Vs energy.

(3)
wM_ (220 nonlinear respons®$’)(w). The values of the field are in

= the same range as those used by Westial®! for the de-

. . ~ termination of the static second-order nonlinear polarizabil-
Just as in Eq(18) for the linear term, Imyg{w) can be ity. Using Eq.(10), we have
related to the static second-order nonlinear polarizability by '

the expression E,
Dy(w)=a(w)Ey(w)=a(w)— (25
2 (*do -~ ®
;jo jlm '}’ster(w): ¥(0;0,0,0. (23 and
Equation (23) can be trivially derived by realizing that Dy(w)— a()Ex(w)=Dw). (26)

D®)(t=0)=y(0:0,0,0E% when a step function perturba-
tion is applied. Alternatively, we can derive E@3) directly
from Eq.(21) by applying the Kramers-Kroning relations for

From Eq.(22) it follows that

V(= 01— 03— 03;01,0,,w3). In fact, with the help of the D)= Y2 s 27
Kramers-Kroning relations we can derive another interesting lw
equality for the integrated response, and from Eqs(25), (26), and(27) we obtain

1 .
: e @)= o - E
:J de1m Yaaf ) fd“’ my(ee00. @4 ystegw):—; Dy(w)~ . Da(w) | (28)

2

In order to determineyse{w) we calculate the response . a1 jation foryee(w) is quite straightforward in con-
OT the system .W'th step funcnon perturbations having tWotras'[ to the perturbativr(e method where it becomes computa-
different magnitudes. In this case we use a more completﬁOnally very demanding.
ba_S|s set tha_n for the Ilnef_:lr polarizability b_ecause th_e_calcu- In Fig. 6, we present the results, up to 60 eV, for
lation of nonlinear effects is more demanding. In addition to.  ~ ~ o
the 13 NAOs per C atom given previously, we have added™ Ysed@), where Imyge{w) is given by Eq.(22). As ex-
two orbitals per atom with different radial shagelouble¢)  pected, Imyge{w) has both positive and negative values.
having 3 characteksince we are using pseudopotentials thisThe reason why Irﬁzstep(w) does not vanish below some
really means orbitals with one radial nod&he radial con- finite frequency(as does the linear responss because the
finement is chosen to be;s=6.57 a.u. Other reasonable second-order nonlinear term represents many processes of
choices ofrzg do not change the results substantially. Theboth absorption and emission of photons and thg rdol-
inclusion of the 3 states does not lead to important changesecule can couple to a continuum of modes that extends to
the the absorption spectrum and the value of the static linearero frequency. This can also be seen in the integral expres-
polarizability, but it does change the static nonlinear polarizsion, Eq.(22). The value of the statig(0;0,0,0) satisfies Eq.
ability which is sensitive to the way the high-frequency part(23) and is found to be 6:8310 3¢ esu in our calculation.
of the spectrum changes with the field strength, as shown in The static nonlinear polarizability= y(0;0,0,0) can also
Eqg. (23). In the first calculation, the field used is equal to be calculated directly from the usual static self-consistent
E,;=0.10 V/A, and we assume that the respolsgw) is  calculations performed for a range of finite fields. This value
linear with respect to the field. This assumption was verifieccan be compared to similar calculations in the literature and
at o=0 where the nonlinear contribution to the responseit provides an internal consistency test for our calculation of
only 5.13x 10 3%. The contribution is of the same order of the integrated frequency-dependent second-order nonlinear
magnitude foro#0. In the second calculation the field is polarizability. We have followed here a procedure similar to
equal toE,=1.00 V/A, and we assume that the responsethat used in Ref. 59, performing LDA calculations of the
D,(w) consists of the linear response and the second-ordéotal energy and electric dipole of thesddmolecule for fif-
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teen different values of an external static electric field spectra(above the ionization energywhich also has an im-
ranging from 0.005 V/A to 2.0 V/A. The results of the total portant effect upon the real part of the second-order nonlin-
energy were then fitted using the expressioN,, ear polarizability y. Incomplete treatment of delocalized
=W,-1aE2-1 yE*, wherea is the linear polarizability and States is a limitation of the basis set used in this work. We
y the second-order nonlinear polarizability. The values ob€MPhasize, however, that the major conclusions of our work
tained for « and y are, respectively, 89.5%and 6.5 &€ the spectra given forggin F|g§. 5 and 6. The important

X 1038 esu. The results for the dipole moment were fitted tolOW-€Nnergy features are essentially unchanged by the ex-
the expressiorD = «E+ yE3, leading to 89.6 A and 5.9 tended orbitals so that the small basis used here is sufficient.
X 10 36 esu. These values of are in reasonable agreement

with the value of 6.% 10~ 6 esu obtained using E3) and V. CONCLUSION

provide an estimate of the consistency and accuracy of our e presented a method for the calculation of the optical

calculations. , _ response of atoms and clusters. The main features of the
Our results fory are in generally good agreement with ethod are the description of the wave functions in terms of

previous static LDA calculations, al'géough our results areyn efficient local orbitalLCAO) basis and the explicit evo-
somewhat smaller. Quong and Pederseeported values of | ion of the system in time. This approach is designed for

3 — 36 H H
82.7 K and 7.0¢10"*° esu, fora andy, respectively, using large clusters and in fact it gives good results fgp.Qt is

an all-electron method with a Gaussian expansion as a basigs, shown to work reasonably well even for small systems,
set. \,g\aém GlsbergergagGal. reported very similar values, ¢,ch as Na Our approach has the desirable features that
82.5 A" and 7.3<10 " esu, using a computational scheme oy occupied states are needed and that the most computa-
based on a frozen-core approximation and a basis set @f,nq)ly intensive operations are essentially the same as those
Slater functions. In the latter work special care was taken 1Q,seq 1o calculate the ground state properties. In addition,
add delocalized orbitals. Larger values are found in calculagqnjinear effects can be included in a straightforward way.
. H — 36 .
tions that use more complete ba5|§3$69t§>< 10"**esu(Ref.  \e developed a method for the calculation of the nonlinear
61)] and real-space gridsl0.4< 10" *" esu) (Ref. 62]. Re-  yagnonse, which is considerably simpler than the perturbative
sults obtained using simplified tight-binding models within approach which involves multiple sums over the excited

an independent electron picture, where the effects of screeRaes. We also presented results from the calculation of the
ing are neglected, lead to much larger valuesyobf the  ¢ocond-order nonlinear response gf C

order of 200k 1026 esu®3-%The experimental value is not
known, but an experimental upper bound of 8170 % esu
has been proposed by Geng and Writhiyhich is larger
than all the theoretical estimates. We would like to thank Professor L. Cooper for useful

We conclude that the small value ¢ffrom our calcula-  discussions, and Dr. |. Vasiliev for reading the manuscript.
tion can be attributed tG) the incompleteness of our basis This material is based upon work supported by the U.S. De-
set and(ii) the fact that the major contribution to the optical partment of Energy, Division of Material Sciences under
absorption spectrum of g comes from the higher excited Award No. DEFG02-91ER45439, through the Frederick
states’® The role of the extended orbitals is to complete theSeitz Materials Research Laboratory at the University of II-
basis set and provide a better description of the high-energynois at Urbana-Champaign.
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