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Calculation of the optical response of atomic clusters using time-dependent density functiona
theory and local orbitals
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We report on a general method for the calculation of the frequency-dependent optical response of clusters
based upon time-dependent density functional theory~TDDFT!. The implementation is done using explicit
propagation in the time domain and a self-consistent program that uses a linear combination of atomic orbitals
~LCAO!. Our actual calculations employ theSIESTA program, which is designed to be fast and accurate for
large clusters. We use the adiabatic local density approximation to account for exchange and correlation effects.
Results are presented for the imaginary part of the linear polarizability, Ima(v), and the dipole strength
function,S(v), of C60 and Na8, and compared to previous calculations and to experiment. We also develop a
method for the calculation of the integrated frequency-dependent second-order nonlinear polarizability for the

case of a step function electric field,g̃step(v), and present results for C60.
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I. INTRODUCTION

Although density functional theory1,2 ~DFT! is a very suc-
cessful theory for the ground state properties, the exc
states calculated within the Kohn-Sham scheme often
much less successful in describing the optical response
the excitation spectra. The solution to this problem, in pr
ciple, is the extension of DFT to the time-dependent syste
It is interesting to note that the first calculation3 using time-
dependent DFT~TDDFT! preceded any formal developme
and it relied heavily on the analogy with the time-depend
Hartree-Fock method. The first steps towards the formula
of TDDFT were done by Deb and Ghosh,4,5 who focused on
potentials periodic in time, and by Bartolotti,6,7 who focused
on adiabatic processes. Runge and Gross8 established the
foundations of TDDFT for a generic form of the time
dependent potential. TDDFT was further developed9,10 to ac-
quire a structure that is very similar to that of the conve
tional DFT. A very interesting feature of TDDFT, that do
not appear in DFT, is the dependence of the density funct
als on the initial state. For more information about TDDF
the reader is advised to read the authoritative reviews
Gross, Ullrich, and Gossmann11 and Gross, Dobson, an
Petersilka.12

The polarizability describes the distortion of the char
cloud caused by the application of an external field. It is o
of the most important response functions because it is
rectly related to electron-electron interactions and corre
tions. In addition, it determines the response to charged
ticles and optical properties. A quantity of particular intere
is the dipole strength function,S(v), which is directly re-
lated to the frequency-dependent linear polarizability,a(v),
by

a~v!5
e2\

m E
0

`S~v8!dv8

v822v2
. ~1!

By taking the imaginary part of Eq.~1! we obtain
0163-1829/2002/66~23!/235416~9!/$20.00 66 2354
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S~v!5
2m

pe2\
v Im a~v!. ~2!

The dipole strength function,S(v), is proportional to the
photoabsorption cross section,s(v), measured by most ex
periments and, therefore, allows direct comparison with
periment. In addition, the integration ofS over energy gives
the number of electrons,Ne ( f -sum rule!, i.e.,

E
0

`

dE S~E!5(
i

f i5Ne , ~3!

where f i are the oscillator strengths. This sum rule is ve
important because it provides an internal consistency tes
the calculations, indicating the completeness and adequ
of the basis set used for the computation of the optical
sponse.

Optical probes are some of the most successful exp
mental tools that allow access to the properties of clust
Consequently, there are many calculations of the optical
sponse of small atomic aggregates.13 In particular, there exist
several theoretical studies of the examples chosen here60
and Na8. This allows us to calibrate the accuracy of o
method in comparison with other computational schem
Two of the firstab initio calculations within TDDFT were
performed by Rubioet al.14 and by Yabana and Bertsch.15

Rubio et al.14 calculated theab initio photoabsorption cross
sections of small silicon and alkali-metal clusters~Li, Na!
using the time-dependent local density approximat
~TDLDA !. Yabana and Bertsch15 performed calculations o
the dipole response of atomic clusters and studied large
dium and lithium clusters and the C60 molecule using
TDLDA and a real-time and -space approach. Shortly af
van Gisbergenet al.16 calculated the dynamic hyperpolariz
ability of C60 using TDDFT. For small Na clusters, Vasilie
et al.17 calculated the photoabsorption cross section using
time-dependent density functional response theory~TD-
DFRT! developed by Casida.18 Of particular interest are the
recent calculations of Moseleret al.,19 who calculated the
©2002 The American Physical Society16-1
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photoabsorption cross sections of small sodium cluster
ions at various temperatures using TDLDA in conjucti
with ab initio molecular dynamics. The calculated spec
are obtained without usingad hocline broadening or renor
malization.

The purpose of this work is to propose a method that w
have significant advantages for the calculation of the po
izability of large clusters, reducing considerably the comp
tation time while retaining a reasonable accuracy. This pa
is organized as follows: In Sec. II, we describe the method
calculation. In Sec. III, we present an overview of releva
calculations and the results of our calculation for C60 and
Na8. We compare our results with other calculations a
experiments. In Sec. IV, we describe the calculation a
present the results for the imaginary part of the integra
frequency-dependent second-order nonlinear polarizab
for the case of a step function electric field, Img̃step(v), for
C60. In Sec. V, we give the conclusions.

II. METHOD OF CALCULATION

A. Electronic structure calculations

Our method involves the description of the electron
states using linear combination of atomic orbitals~LCAO!.
Because the size of the LCAO basis is small, the TDD
calculations can be done efficiently using the techniques
scribed below. The use of the LCAO basis leads to matri
with size considerably smaller than when other basis sets
used or when real-space grid methods are employed.
scheme is based on theSIESTA code,20–22 which is used to
compute the initial wave functions and the Hamiltonian m
trix for each time step.SIESTA is a general-purpose DFT cod
that uses a local basis, and has been specially optimize
deal with large systems. As such, it represents an ideal
for treating large clusters. Core electrons are replaced
norm-conserving pseudopotentials23 in the fully nonlocal
Kleinman-Bylander24 form, and the basis set is a general a
flexible linear combination of numerical atomic orbita
~NAOs!, constructed from the eigenstates of the atom
pseudopotentials.21,25 The NAOs are confined, being strictl
zero beyond a certain radius. In addition, the electron w
functions and density are projected onto a real-space gri
order to calculate the Hartree and exchange-correlation
tentials and their matrix elements.

The use of confined NAOs is very important for the ef
ciency of theSIESTA code. With them, by exploiting the ex
plicit sparseness of the Hamiltonian and density matrices,
computational cost for the construction and storage of
Hamiltonian and the electronic density can be made to s
linearly with the number of atoms, in the limit of large sy
tems. Therefore, a considerable effort has been devote
obtain orbital bases that would meet the standards of pr
sion of conventional first-principles calculations, while kee
ing their range as small as possible. A simple scheme for
generation of transferable bases that satisfy both requ
ments was presented in Refs. 21 and 26. These bases, w
we utilize in this work, have been successfully applied
study the ground state properties of very different syste
ranging from insulators to metals, and from bulk to surfac
23541
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and nanostructures.22 It is not obvious, however, that thes
confined basis sets will be also adequate for the TDD
calculation of the optical response. In this paper we sh
that, at least for the two systems considered, the optical
sorption can be calculated quite accurately using a basi
NAOs with reasonable confinement radii and a moder
number of orbitals per atom. Our results are in reasona
agreement with other TDDFT calculations using compu
tionally more demanding basis sets or real-space grids.

Our approach is to carry out the calculations in the tim
domain, explicitly evolving the wave functions. We consid
a bounded system in a finite electric field, i.e., the Ham
tonian includes a perturbationDH52E•x. For the linear
response calculations in this paper we have set the valu
this field to 0.01 eV/Å. The system is solved for the grou
state using standard time-independent density functio
theory.27 Then we switch off the electric field at timet50,
and for every subsequent time step we propagate the o
pied Kohn-Sham eigenstates by solving the time-depend
Kohn-Sham equation (\51)

i
]C

]t
5HC, ~4!

whereH is the time-dependent Hamiltonian given by

H52
1

2
¹21Vext~r ,t !1E r~r 8,t !

ur2r 8u
dr 81Vxc@r#~r ,t !.

~5!

The calculation of the exchange-correlation potential is do
using the adiabatic local density approximation~ALDA !
whereVxc takes the form

Vxc@r#~r ,t !>
dExc

LDA@r t#

dr t~r !
5Vxc

LDA@r t#~r !. ~6!

Exc
LDA@r t# is the exchange-correlation energy of the homo

neous electron gas.28 It is important to notice that theVxc in
ALDA is local both in time and space. For every time st
we solve Eq.~4!, and from the new wavefunctions we con
struct the new density matrix

rmn~ t !5 (
i occ

ci
m~ t !ci

n~ t !, ~7!

whereci
m(t) are the coefficients of the occupied wave fun

tions that correspond to the basis orbitalsfm(r ). rmn(t) has
to be calculated and stored for overlapping orbitals only. T
electron density is then obtained by

r~r ,t !5(
m,n

rmn~ t !fm~r !fn~r ! ~8!

and used for the calculation of the Hamiltonian in the n
cycle.
6-2
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CALCULATION OF THE OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 66, 235416 ~2002!
B. Calculation of the polarizabilities

For every time step we calculate the dipole momentD(t)
of the electrons in the cluster. This defines the response t
orders and the frequency-dependent response is found b
Fourier transform

D~v![E dt eivt2dtD~ t !. ~9!

In our case we Fourier transform the dipole moment only
t.0. It is necessary to include a damping factord in order to
perform the Fourier transform. This damping factor gives
minimum width of the peaks of the imaginary part of th
response. Physically, it can be regarded as an approxim
way to account for broadening. To linear order the polar
ability is given byD(v)5a(v)E(v), so that

Im a~v!5v
ReD~v!

E
, ~10!

where the field is given byE(t)5Eu(2t). After Fourier
transforming the dipole moment we obtain the elements
the frequency-dependent polarizability tensora i j (v). We re-
peat the calculation with the electric field along differe
axes unless the symmetry is high enough that this is
needed. The average linear polarizability is given by

^a~v!&5
1

3
Tr $a i j ~v!%. ~11!

The choice of the coordinate system does not affect the
erage polarizability because of the rotational invariance
the trace.

C. Solution of the time-dependent Kohn-Sham equation

Efficient solution of the time-dependent Kohn-Sha
equation@Eq. ~4!# is of particular interest because togeth
with the calculation of the Hamiltonian, they are the mo
time-consuming parts of the calculation. In this section
describe our approach of solving Eq.~4!.

In the LCAO formalism Eq.~4! takes the form

i
]c

]t
5S21Hc, ~12!
he
i

ns
g

io
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whereS is the overlap matrix between the orbitals andc is
the column of the coefficients of the local orbitals. The ov
lap matrix is fixed for a given atomic configuration; hen
we have to calculate and invert it only once.

The formal solution of Eq.~12! is

c~ t !5U~ t,0!c~0!5T expS 2 i E
0

t

S21H~ t8!dt8D c~0!,

~13!

whereT is the time ordering operator. The most elementa
solution is obtained by breaking the total evolution opera
into evolution operators of small time durations

U~ t,0!. )
n50

N21

U„~n11!Dt,nDt…, ~14!

whereDt5Ttot /N and

U~ t1Dt,t !5exp@2 iS21H~ t !Dt#. ~15!

Ttot is the total time for which we allow the system to evolv
The differences among propagation schemes arise from
way the exponential in Eq.~15! is approximated. In our ap
proach, we approximate the exponential in Eq.~15! with the
Crank-Nicholson operator.29 The coefficients between th
stepsn11 andn are related by the equation

cn115
12 iS21H~ tn!Dt/2

11 iS21H~ tn!Dt/2
cn. ~16!

This method is unitary, strictly preserving the orthonormal
of the states for an arbitrary time evolution. For tim
independent Hamiltonians it is also explicitly time revers
invariant and exactly conserves energy. In practice, wit
suitable choice ofDt, the energy is satisfactorily conserve
even when the Hamiltonian changes with time. For exam
in the calculations described below, the drift of the total e
ergy at the end of the simulation (;20.7 fs in both cases!
was only DEtot /Etot;331027 for C60 and ;831026 for
Na8 after NC60

;6100 andNNa8
;2800 time steps, respec

tively. The larger energy drift in the case of Na8 is attributed
to the use of larger time step. The method is stable w
DtDEmax!1, whereDEmax is the range of the eigenstates
S21H. We can increase the stability of the solution if w
include more terms of the expansion in the numerator
denominator of the Crank-Nicholson operator, i.e.,
cn115
12 iS21HDt/221/2~S21HDt/2!21 i 1

6 ~S21HDt/2!3

11 iS21HDt/22 1
2 ~S21HDt/2!22 i 1

6 ~S21HDt/2!3
cn. ~17!
for

time
d
rba-
tes
By including more terms in the expansion it is possible eit
to increase the time step preserving the accuracy or to
crease the accuracy of the dynamics and the energy co
vation for a given time step. The main advantage of usin
bigger time step is the saving of time because we have
calculate the Hamiltonian fewer times. The energy resolut
r
n-
er-
a
to
n

will not be affected since it depends on the total time
which we allow the system to evolve.

There are many advantages associated with the real-
formulation of TDDFT used in this work. Only occupie
states are used in the calculation, in contrast to the pertu
tive approach18,30where there is a sum over the excited sta
6-3
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TSOLAKIDIS, SÁNCHEZ-PORTAL, AND MARTIN PHYSICAL REVIEW B66, 235416 ~2002!
of the system. The implementation is relatively simple, sin
we use essentially the same operations as already used to
the ground state properties. It is also advantageous that
linear effects can be included in a straightforward way
shown in Sec. IV. The merit of the real-time approach b
comes more transparent in the case of the calculation of
nonlinear polarizabilities because the perturbative appro
involves multiple sums over the excited states, someth
which is computationally very demanding. One disadvant
of the real-time approach is the calculation of the Ham
tonian for every time step. Although this is not an attract
feature there is no other way to calculate the time evolut
of the system.

The method presented in this work has many similarit
with that described by Yabana and Bertsch,15 the main dif-
ference being our use of a LCAO basis set in the present
compared to their method in the which the states are re
sented on a regular grid in real space. Yabana and Ber
use the same real-space method as Vasiliev and co-work17

in which the action of the Hamiltonian on a state is done
approximating the Laplacian operator using a finite diff
ence expression. Even though the operators are sparse
easy to apply, the representation of the states requires m
greater computer memory, especially for large systems
for systems with atoms that require finely spaced grids.

III. DISCUSSION OF RESULTS

A. Small metal clusters: Na8

The first calculation we performed is the optical respon
of Na8. The main purpose of this calculation was to inves
gate the accuracy of our method in the case of a small c
ter, where the effects related to the confinement of the or
als should be more noticeable and where the size of our b
is much smaller than that in previous calculations using re
space grids.17 It has to be kept in mind that the calculation
the optical response of Na8 is just a test case since th
method of calculation used is intended for large clust
where we benefit from the order-N features ofSIESTA. The
calculation of the optical response of Na8 is a difficult test
for codes that use localized orbitals, such asSIESTA, because
it has very delocalized wave functions and consequent
very delocalized density distribution. Na8 is the smallest
closed shell Na cluster with an optical response that exhi
the presence of a plasmon experimentally observed at
eV.31,32 The width of the plasmon is due to Landa
damping.33

Previous work can be grouped into two types: ear
work on jellium spheres31,33–35 that reproduces the qualita
tive features but not the quantitative energies of the pe
and more recent work14,17,36 that takes into account the de
tailed atomic structure and is in general in very good agr
ment with experiment.31,32 In the first category are the calcu
lations of Selby and co-workers,31,34 who calculated the
photoabsorption cross section using the modified Mie the
which is a classical theory. The plasmon was found to be
;2.76 eV. By using the self-consistent jellium model in t
TDLDA, first introduced by Ekardt,33 Yannouleaset al.35
23541
e
nd
n-
s
-
he
ch
g
e
-

n

s

se
e-
ch
s
y
-
and
ch

nd

e
-
s-
it-
sis
l-

s

a

ts
53

r

s,

-

y,
at

calculated the photoabsorption cross section of Na8 and pre-
dicted the plasmon position at 2.82 eV.

Bounačić-Koutecký et al.36 calculated the absorption
spectrum of Na8 using the configuration-interaction metho
~CI!. Because the all-electron calculation is computationa
very demanding, they obtained the excited states by a n
empirical effective core potential corrected for the co
valence correlation using a core polarization potential. T
position of the plasmon was predicted at;2.55 eV. Rubio
et al.14 calculated the photoabsorption cross section wit
TDLDA. Their results are in excellent agreement with e
periment. In particular, the position of the plasmon w
found at 2.55 eV. Vasilievet al.17 calculated the photoabsorp
tion cross section using TD-DFRT.18 Their calculations made
use of norm-conserving pseudopotentials and a real-sp
grid of points. The position of the plasmon agreed with t
photoabsorption experiments of Selbyet al.31 and Wang
et al.32 within 0.1–0.2 eV.

In our calculation we let the system evolve for the to
time of T531.42 eV21. The energy resolution, determine
by Dv5p/T, is, in consequence, equal to 0.1 eV. The tim
step is 11.02531023 eV21, and the damping factor used i
the Fourier transform is 0.095 eV. Troullier-Martin
pseudopotentials23 including nonlinear partial core
corrections37 for the exchange-correlation interaction b
tween valence and core electrons and an auxiliary real-sp
grid20 equivalent to a plane-wave cutoff of 70 Ry are al
used in this calculation. The basis set includes 13 NAOs
atom: two radial shapes to represent the 3s states plus a
polarization21 p shell with confinement radii r s5r p

pol

512.2 a.u. and two additional 3p and 3d shells with radii
r p5r d510.0 a.u.

Figures 1 and 2 present, respectively, our results for
dipole strength function and the imaginary part of the line
polarizability of Na8 for energies up to 4 eV. The shape
these curves is in good agreement with both the calculat
of Vasiliev et al.17 and the experiments of Wanget al.32

However, the results appear to be shifted to higher energ
In fact, the maximum of the plasmon peak is obtained at
eV, which is 0.27 eV higher than the experimentally o
served value. This shift to higher energies seems to be rel

FIG. 1. Dipole strength function of Na8 vs energy.
6-4
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CALCULATION OF THE OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 66, 235416 ~2002!
to the extension of the LCAO basis: using more confin
orbitals we get a larger shift. The integrated dipole strengt
equal to 6.97 out of 8, thus fulfilling 87.13% of the sum ru
The partial fulfillment of the sum rule signifies the incom
pleteness of our basis set. The static linear polarizab
a(0) can be obtained from standard~static! calculations of
the induced dipole as a function of the applied field. Us
this approach we obtain a value of 13.2 Å3/atom. An alter-
native way to calculatea(0) is provided by the formula

a~0!5
e2\

m E
0

` S~v!dv

v2
5

2

pE0

` Im a~v!

v
dv, ~18!

from which we obtain a value of 12.5 Å3/atom. @This result
can also be derived from the fact that for the step pertur
tion D(t50)5a(0)E.] The discrepancy between both es
mations is probably related to the lack of energy resolut
of the calculateda(v) to perform the integral in Eq.~18!
with the required accuracy. Both results are in reasona
agreement with the experimental value of 15.4 Å3/atom re-
ported by de Heer,38 of 14.9 Å3/atom computed by Rubio
et al.14 using TDLDA, and of 14.6 Å3/atom and
14.7 Å3/atom calculated by Vasilievet al.17,39 using the
TDLDA and finite field methods, respectively.

B. Large molecules: C60

The best known fullerene C60 is a very interesting system
with strong electron-electron interactions due to the confi
ment. There are quite a few calculations concerning the
tical properties of C60 and in particular its optical respons
but only few of them areab initio. The main feature of the
optical response of C60 is the presence of two collective ex
citations ~plasmons!. The low-energy plasmon can be ass
ciated with thep electrons while the high-energy plasmo
with both thes and p electrons, in analogy with the plas
mons in graphite.40,41The plasmons have been observed i
plethora of experiments.42–46

The earliest theoretical work47–50on C60 involved simpli-
fying approximations for the electron states~tight-binding or

FIG. 2. Imaginary part of the linear polarizability of Na8 vs
energy.
23541
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spherical averaging! and for the electron interaction@neglect
of screening effects or random phase approximation~RPA!
treatments#. We will compare our results with those of We
tin et al.51 and Yabana and Bertsch,15 who used large basis
sets and realistic carbon potentials. Westinet al. used single-
particle wave functions, determined from a local density a
proximation~LDA ! calculation, to evaluate the dipole matr
elements which combined with a sum over states appro
yielded the unscreened frequency-dependent linear pola
ability. Screening was included in a RPA-like fashion by i
troducing an effective screening parameter. The polariza
ity calculated in the static limit was used to evaluate t
parameter for the calculation of the dynamic response.
optical response and the sum rule for the low-energy p
were in reasonable agreement with the experiment of Le
et al.46 Yabana and Bertsch15 used TDLDA, evolving the
system in real space and time, to calculate the dipole stre
function of C60. Their calculation also gives reasonab
agreement with the experimental data of Leachet al.46 for
the sum rule of the low-energy part although it misses ma
details of the structure.

The total simulation time in our calculation of the pola
izability and dipole strength of the C60 molecule is again
31.416 eV21, and the corresponding energy resolution is 0
eV. The time step, however, which is set equal to 5.1
31023 eV21, is smaller than the one used for Na8. This is
because of the higher frequency range of the respons
C60. The damping factor used in the Fourier transform
equal to 0.34 eV in this case. Troullier-Martin
pseudopotentials,23 a double-z polarized basis set, and a rea
space grid cutoff20 of 70 Ry were used in this calculation
There are 13 NAOs per C atom: two different radial shap
for the description of the 2s states, another two for the 2p,
plus an additional shell ofd orbitals. The radii of confine-
ment used arer s55.12 a.u. andr p5r d

pol56.25 a.u.~corre-
sponding to anenergy shift21 of 50 meV!. For C60, the cal-
culated spectra show a small dependence in these rad
least as far as they are not selected to be very stringent

In Fig. 3, the dipole moment is shown as a function of t
time step number. The dipole strength function obtain
from the time evolution of the dipole moment is shown

FIG. 3. Dipole moment of C60 vs number of time steps.
6-5
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TSOLAKIDIS, SÁNCHEZ-PORTAL, AND MARTIN PHYSICAL REVIEW B66, 235416 ~2002!
Fig. 4 for energies up to 60 eV. Its main features are
low-energy transitions that come from thep electrons and
the s andp electron transitions in the region of 14–27 e
In the low-energy part of dipole strength function we ha
peaks at 3.5, 4.4, 5.4, and 5.8 eV, which agree very well w
the ones obtained by the experiments of Bauernsch
et al.52 and by the calculations of Westinet al.51 By integrat-
ing the dipole strength function over energy we get the s
rule strength. The total sum rule strength is 223.78 out
240. Therefore, we satisfy the sum rule up to 93.24%. T
reflects the incompleteness of our basis set, which fails
reproduce some of the excitations in the high-energy par
the spectrum. Thes plasmon is broadened, but this is
common feature of all the TDDFT calculations done f
C60.15

In Fig. 5, the imaginary part of the polarizability is give
as function of energy. By using Eq.~18!, the static linear
polarizability a(0) is found to be 91.1 Å3, while our finite
field calculations produce a value of 87.3 Å3. Results for
a(0), from accurate finite-field calculations using fiftee
values of the field, are given in Sec. IV. Both values a
higher than the lower limit estimation of 62.5 Å3 from
quantum-mechanical calculations,53 and in reasonable agree
ment with the value of 85 Å3 obtained by Yabana an
Bertsch.15 They also agree with the experimental values

FIG. 4. Dipole strength function of C60 vs energy.

FIG. 5. Imaginary part of the linear polarizability of C60 vs
energy.
23541
e

h
itt

f
is
to
of

e

f

88.2 Å3 given by Meth et al.,54 79.3 Å3 from uv
absorption,55 and 85.2 Å3 from electron energy loss
spectra.56,57

IV. NONLINEAR POLARIZABILITIES

Because of the nonperturbative nature of our method
are able, for large values of the applied field, to obtain n
linear polarizabilities. In this section, we develop a meth
for the calculation of the imaginary part of the integrat
frequency-dependent second-order nonlinear polarizab
Im g̃step(v), which is related to the response to a step fun
tion, and apply it to C60. Because C60 is centrosymmetric the
first-order nonlinear polarizability,b(v), and all other polar-
izabilities involving an even number of fields vanish by sym
metry.

The advantage of the explicit time method to study t
nonlinear response is that we use exactly the same opera
as in the linear case. It is also much simpler than the per
bative approach, which involves multiple sums over the
cited states, something extremely computationally dema
ing, especially for large systems. The disadvantage is
~unlike the linear case where each Fourier component is
dependent! the nonlinear response depends upon the deta
spectrum of the applied field. Here we derive the nonlin
response of an electric field coupled to C60 for the case
where the field is the step function used before. A differe
calculation would have to be done to find the nonlinear
sponse to a field with a different time dependence.

First we give the relation of our calculation to the gene
definition of second-order nonlinear response, as a func
of time, which is58

D (3)~ t !5E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3g~ t;t1 ,t2 ,t3!

3E~ t1!E~ t2!E~ t3!. ~19!

For the case of a step function perturbation, i.e.,E(t)
5Eu(2t), it takes the form

D (3)~ t !5 iE3 lim
d i→01

E dv1dv2dv3

~2p!3

3
e2 i (v11v21v3)tg~2v12v22v3 ;v1 ,v2 ,v3!

~v12 id1!~v22 id2!~v32 id3!
.

~20!

We Fourier transform Eq.~20! and obtain the second-orde
nonlinear response as a function of frequency

D (3)~v!5 iE3 lim
d i→01

E dv2dv3

~2p!2

3
g~2v;v2v22v3 ,v2 ,v3!

~v2v22v32 id1!~v22 id2!~v32 id3!
.

~21!
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The quantity we calculate is the real part of the seco
order nonlinear response, ReD (3)(v), from which we can
extract the imaginary part of the integrated second-or
nonlinear polarizability, Img̃step(v). Explicit details are
given below and in analogy to Eq.~10! Im g̃step(v) is given
by

Im g̃step~v!52v lim
d i→01

Im E dv2dv3

~2p!2

3
g~2v;v2v22v3 ,v2 ,v3!

~v2v22v32 id1!~v22 id2!~v32 id3!

5v
ReD (3)~v!

E3
. ~22!

Just as in Eq.~18! for the linear term, Img̃step(v) can be
related to the static second-order nonlinear polarizability
the expression

2

pE0

`dv

v
Im g̃step~v!5g~0;0,0,0!. ~23!

Equation ~23! can be trivially derived by realizing tha
D (3)(t50)5g(0;0,0,0)E3 when a step function perturba
tion is applied. Alternatively, we can derive Eq.~23! directly
from Eq.~21! by applying the Kramers-Kroning relations fo
g(2v12v22v3 ;v1 ,v2 ,v3). In fact, with the help of the
Kramers-Kroning relations we can derive another interes
equality for the integrated response,

1

3E dv Im g̃step~v!5E dv Im g~2v;v,0,0!. ~24!

In order to determineg̃step(v) we calculate the respons
of the system with step function perturbations having t
different magnitudes. In this case we use a more comp
basis set than for the linear polarizability because the ca
lation of nonlinear effects is more demanding. In addition
the 13 NAOs per C atom given previously, we have add
two orbitals per atom with different radial shapes~double-z)
having 3s character~since we are using pseudopotentials t
really means orbitals with one radial node!. The radial con-
finement is chosen to ber 3s56.57 a.u. Other reasonab
choices ofr 3s do not change the results substantially. T
inclusion of the 3s states does not lead to important chang
the the absorption spectrum and the value of the static lin
polarizability, but it does change the static nonlinear pola
ability which is sensitive to the way the high-frequency p
of the spectrum changes with the field strength, as show
Eq. ~23!. In the first calculation, the field used is equal
E150.10 V/Å, and we assume that the responseD1(v) is
linear with respect to the field. This assumption was verifi
at v50 where the nonlinear contribution to the respon
only 5.1331023%. The contribution is of the same order
magnitude forvÞ0. In the second calculation the field
equal toE251.00 V/Å, and we assume that the respon
D2(v) consists of the linear response and the second-o
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nonlinear responseD2
(3)(v). The values of the field are in

the same range as those used by Westinet al.51 for the de-
termination of the static second-order nonlinear polariza
ity. Using Eq.~10!, we have

D1~v!5a~v!E1~v!5a~v!
E1

iv
~25!

and

D2~v!2a~v!E2~v!5D2
(3)~v!. ~26!

From Eq.~22! it follows that

D2
(3)~v!5

g̃step~v!

iv
E2

3 , ~27!

and from Eqs.~25!, ~26!, and~27! we obtain

g̃step~v!5
iv

E2
3 S D2~v!2

E2

E1
D1~v! D . ~28!

Our calculation forg̃step(v) is quite straightforward in con-
trast to the perturbative method where it becomes comp
tionally very demanding.

In Fig. 6, we present the results, up to 60 eV, f
Im g̃step(v), where Img̃step(v) is given by Eq.~22!. As ex-
pected, Img̃step(v) has both positive and negative value
The reason why Img̃step(v) does not vanish below som
finite frequency~as does the linear response! is because the
second-order nonlinear term represents many processe
both absorption and emission of photons and the C60 mol-
ecule can couple to a continuum of modes that extend
zero frequency. This can also be seen in the integral exp
sion, Eq.~22!. The value of the staticg(0;0,0,0) satisfies Eq
~23! and is found to be 6.3310236 esu in our calculation.

The static nonlinear polarizabilityg[g(0;0,0,0) can also
be calculated directly from the usual static self-consist
calculations performed for a range of finite fields. This val
can be compared to similar calculations in the literature a
it provides an internal consistency test for our calculation
the integrated frequency-dependent second-order nonli
polarizability. We have followed here a procedure similar
that used in Ref. 59, performing LDA calculations of th
total energy and electric dipole of the C60 molecule for fif-

FIG. 6. Imaginary part of the integrated second order nonlin

polarizability, Img̃step(v), of C60 vs energy.
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teen different values of an external static electric fieldE
ranging from 0.005 V/Å to 2.0 V/Å. The results of the tot
energy were then fitted using the expressionWtot

5W0-1
2 aE2-1

4 gE4, wherea is the linear polarizability and
g the second-order nonlinear polarizability. The values
tained for a and g are, respectively, 89.5 Å3 and 6.5
310236 esu. The results for the dipole moment were fitted
the expressionD5aE1gE3, leading to 89.6 Å3 and 5.9
310236 esu. These values ofg are in reasonable agreeme
with the value of 6.3310236 esu obtained using Eq.~23! and
provide an estimate of the consistency and accuracy of
calculations.

Our results forg are in generally good agreement wi
previous static LDA calculations, although our results a
somewhat smaller. Quong and Pederson59 reported values of
82.7 Å3 and 7.0310236 esu, fora andg, respectively, using
an all-electron method with a Gaussian expansion as a b
set. van Gisbergenet al.16 reported very similar values
82.5 Å3 and 7.3310236 esu, using a computational schem
based on a frozen-core approximation and a basis se
Slater functions. In the latter work special care was taken
add delocalized orbitals. Larger values are found in calcu
tions that use more complete basis sets@9.6310236 esu~Ref.
61!# and real-space grids@10.4310236 esu) ~Ref. 62!#. Re-
sults obtained using simplified tight-binding models with
an independent electron picture, where the effects of scr
ing are neglected, lead to much larger values ofg of the
order of 200310236 esu.63–65The experimental value is no
known, but an experimental upper bound of 3.7310235 esu
has been proposed by Geng and Wright,60 which is larger
than all the theoretical estimates.

We conclude that the small value ofg from our calcula-
tion can be attributed to~i! the incompleteness of our bas
set and~ii ! the fact that the major contribution to the optic
absorption spectrum of C60 comes from the higher excite
states.56 The role of the extended orbitals is to complete t
basis set and provide a better description of the high-ene
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