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Exciton polariton including continuum states: Microscopic versus additional boundary conditions
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An exact method, based on microscopic boundary conditions, is developed for calculation of the optical
properties of exciton polaritons with spatial dispersion. The method is formulated in a general manner for an
arbitrary electron-hole potential and probed in the approximation of the one-dimensional contact interaction, in
half-space and slab geometries. Another approach, based on approximate boundary conditions applied to all
exciton bound and scattering states, generalizes the concept of additional boundary conditions. This approach
yields analytical results for semi-infinite semiconductors and semiconductor slabs and allows us to extract and
analyze the contribution of the exciton continuum states to the optical spectra of semiconductors. A correlation
between reflectivity and transmission calculated in two different approaches demonstrates the crucial role of
the strict boundary conditions in the correct computation of optical spectra.
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I. INTRODUCTION

For more than 40 years the exciton polariton probl
originally formulated by Pekar1 and Hopfield2 has been of
permanent interest for intensive investigations3–20 with a
strong revival in recent years due to novel theoretical a
experimental studies.21–24

In bulk semiconductors, the exciton center-of-mass a
relative motions are decoupled, so that the exciton-pho
interaction leaves unchanged the states of the excit
hydrogen-like spectrum, on the one hand, and results in
dependent propagation of each polariton wave, on the o
This picture drastically changes as soon as one comes c
to the realistic situation, where the semiconductor surf
influences the formation of excitonic states. Due to the br
of translational symmetry at the interfaces, all bound a
scattering exciton states are now mixed, and the macrosc
optical field in semiconductors is not only coupled to t
ground state, but strongly influenced by higher bound sta
and especially by the excitonic continuum.

However, in early works1–3,5–8and in most recent paper
~see, e.g., Refs. 17 and 24! the polariton problem has bee
treated in terms of 1S bulk excitons only, thus neglecting th
contribution of all higher bound and scattering states. Wit
such a treatment one needs so-called additional boun
conditions ~ABC’s!, since Maxwell’s boundary condition
alone are insufficient to determine the amplitudes of t
polariton waves propagating in the same direction.

Within the framework of the full microscopic approac
the correct microscopic boundary conditions~BC’s! consist
in a vanishing electron-hole amplitude on the semicondu
surfaces.9 However, this exact solution of the polariton pro
lem is an extremely complicated task and most of the mic
scopic approaches were based on additional assumption
simplifications:~i! an analytical approximation of the excito
wave function neglecting the contribution of scatteri
states,12 ~ii ! neglect of the electron-hole interaction,14,20 ~iii !
neglect of the spatial dispersion15 in the surface region, and
so on. Only neglect of the recently have supercomputer a
0163-1829/2002/66~23!/235319~14!/$20.00 66 2353
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ties allowed one to attack the full problem by means of dir
methods, solving a four-dimensional integro-differential m
terial equation coupled with Maxwell’s equation.23 These
calculations, however, have not been applied to frequen
above the band gap.

In the present paper we develop an approach to
exciton-polariton problem based on the microsco
framework9,10 and strict BC’s, expanding the electron-ho
coherent amplitude into all bound and scattering exci
states. Here we present calculations for half-space and
geometries in the simplest case of a one-dimensional~1D!
contact potential, where most of the work can be done a
lytically. Further, results for semi-infinite semiconducto
can be compared with existing calculations using anot
strict approach.16 However, our method is formulated i
quite a general manner and can be applied to realistic
Coulomb electron-hole interactions or to any other poten
without too much additional complexities, compared to p
vious approaches.

In this work we also present a theory which generaliz
the concept of ABC’s. This concept introduced by Pekar1 as
macroscopic exciton polarization vanishing on the bound
P50 ~Pekar’s ABC’s! was later used by Ting, Frankel, an
Birman6 in the form of a zero slope of the polarization on th
surfaceP850 ~TFB ABC’s! and by Kiselevet al.7 in the
mixed formP85aP, wherea stands for a model paramete
~mixed ABC’s!. In the literature, all kinds of ABC’s were
applied to the 1S excitonic polarization only. We explicitly
include in the ABC theory the contribution of all other boun
and continuum states. Our theory, based on the approxim
center-of-mass BC’s for the microscopic exciton polariz
tion, yields exact analytical solutions~for half-space and
slab! which show a much more realistic behavior of the r
flectivity and transmission than the standard 1S ABC model
~which is the special case of our result!. The calculations can
be improved significantly by adding a finite dead laye3

wherein the exciton polarization vanishes. In particular, w
the full 3D Coulomb dielectric function, it allowed us25 to
reproduce well-resolved oscillations far in the continuum
©2002 The American Physical Society19-1
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the differential transmission of the high-quality 500-n
GaAs slab.24

Comparing results of calculations for the 1D contact p
tential obtained within strict and ABC models, we demo
strate the weak points of the latter, even improved by
inclusion of the Sommerefeld-enhanced continuum, a
show the leading role of the exact BC’s in an adequate
scription of the experimental results. At the same time
analyze the contribution of the exciton continuum states
the optical spectra and demonstrate its significance, e
cially at photon frequencies above the semiconductor b
gap.

The paper is organized as follows. In Sec. II we deve
an exact approach to the polariton problem in half-space
slab geometries; the details of the calculations are give
Appendixes A and B. Section III and Appendix C are d
voted to the generalization of the ABC model to all bou
and scattering states. In Sec. IV, in the example of the
contact electron-hole interaction, we analyze the contribu
of the excitonic continuum as well as the strict BC’s to t
optical spectra of semi-infinite crystals and finite slabs a
reevaluate the concept of the dead layer.

II. EXCITON POLARITON: STRICT APPROACH

Within the density matrix framework of the linear re
sponse theory and the two-band effective mass approx
tion, the exciton polariton problem in the case of norm
incidence of light~the in-plane excitonic momentaQx5Qy
50) is described by the coupled material and Maxwe
equations10

F2
\2

2M

]2

]Z2
1Ĥex~r !1Eg2\v2 igGY~Z,r !

5Md~r !E~Z!, ~1!

]2

]Z2
E~Z!1q0

2«bE~Z!52q0
2MY~Z,0!, ~2!

where E(Z) is the electric field,Ỹ(re ,rh)5Y(Z,r ) is the
electron-hole coherent amplitude,Md(r ) is the transition
dipole density within the point dipole approximatio
MY(Z,0)5P(Z) is the macroscopic exciton polarizatio
Ĥex(r ) is the Hamiltonian of the bulk exciton relative mo
tion,

Ĥex~r !52
\2

2m
D r1Veh~r !,

Veh(r ) is the electron-hole potential,r and Z are, respec-
tively, the relative and center-of-mass coordinates,r5re
2rh , Z5(meze1mhzh)/M , M5me1mh , m5memh /M ,
and me(h) is the electron~hole! effective mass alongz; q0
5v/c, wherev is the photon frequency,g is a phenomeno-
logical damping,Eg is the semiconductor gap energy, and«b
is the background dielectric constant. In the following w
assume an isotropic potentialVeh(r ). However, our approach
can be easily generalized to any anisotropic interaction.
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The full solution of Eqs.~1! and ~2!, E(Z) and Y(Z,r ),
should satisfy certain BC’s. According to the Maxwell
BC’s, both E(Z) and E8(Z) should be continuous every
where. We assume an idealized infinite barrier at
semiconductor-vacuum interface, so that the correct BC’s
the polarization should be its vanishing, if the electron
hole coordinate lies outside semiconductor,

Ỹ~re ,rh!50,

if ze,0, zh,0 ~half space!,

if ze,0, zh,0, ze.L, zh.L ~slab!,

whereL is the slab thickness, or in the relative and cent
of-mass notation,

Y„Zs~r !,r …50, ~3!

where the functionZs(r ) is properly defined below~see
Secs. II A and II C!. We have not included into Eq.~1! any
surface potential, bearing in mind an abrupt boundary.
also neglect image potentials near semiconductor/vacuum
semiconductor/insulator interfaces because of its w
influence26 on polariton properties, due to the exciton ele
troneutrality and quick~exponential! vanishing of the carrier
wave functions in the vicinity of the interface.

A. Half-space geometry: Expansion into bulk eigenstates

In case of semi-infinite crystals the microscopic BC’s E
~3!, are applied on the semiconductor surface

Zs~z!5H me

M
z, z.0,

2
mh

M
z, z,0.

~4!

Maxwell’s BC’s take the form~the amplitude of the incom-
ing wave is taken to be unity!

E~0!1
E8~0!

iq0
52, ~5!

where we assume a semiconductor/vacuum interface for
plicity. The reflection is described as follows:

r 5E~0!21.

Let us expand the electric field and the electron-hole
herent amplitude into Fourier series

E~Z!5(
j

Eje
ik jZ, ~6!

Y~Z,r !5(
j

Yj~r !eik jZ, ~7!

where Rekj.0 and Imkj.0 due to decay and propagatio
conditions, explicitly related to each other due to finiteg.

Substituting Eqs.~6! and ~7! into Eqs. ~1! and ~2! we
obtain
9-2
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F\2kj
2

2M
1Ĥex~r !1Eg2\v2 igGYj~r !5Md~r !Ej , ~8!

Ej~2kj
21q0

2«b!52q0
2MYj~0!. ~9!

We solve the system of equations~8! and~9! with the help of
the bulk exciton one-coordinate Green’s function which s
isfies the following equation:

@Ĥex~r !2E#G̃~E;r !5d~r !,

with G̃(E;r )[G̃(E;r ,r 850). The BC’s for the Green’s func
tion are the absence of exponentially growing terms inG̃ at
r→`. At the same time,G̃ has the asymptotic behavior

G̃~E;r !}e2¸r, r→`,

where

¸5A2
2m

\2
E5Am

M
k21

2m

\2
~Eg2\v2 ig!. ~10!

Then

Re¸>0. ~11!

The presence of the square root, Eq.~10!, in the Green’s
function means the existence of a cut in the complexk plane,
starting from the poinţ 50 and going to infinity. As allk
points of the cut contribute to the Fourier expansions Eqs.~6!
and ~7! ~see below!, the trajectory of the cut is unambigu
ously determined by the BC’s forG̃ and Eq.~11! as follows:

¸5¸c
656 il, 0<l,`, ~12!

with the real parameterl. Note that the ‘‘plus’’ or ‘‘minus’’
in Eq. ~12! corresponds to different values of the Gree
function ~as well aş ) defined on different sides of the cu
As E is one and the same for two different¸ ’s, it is better to
switch fromE to ¸ in the argument of the Green’s function
in order to distinguish its two different values on the cut,

G~¸;r ![G̃~E;r !.

After such an analysis we conclude that there are th
possibilities forkj contributing to Eqs.~6! and ~7!.

~i! Isolated poleskp ( j 5p) satisfying the dispersion rela
tion of the bulk polariton,

kp
25q0

2«~kp ,v!,

where the bulk exciton dielectric function«(k,v) is related
to the Green’s function in the standard way,

«~k,v!5«b1M 2G~¸;0!; ~13!

¸(k,v) is given by Eq.~10!. The solution takes the form

Yp~r !5EpMG~¸p ;r !. ~14!

~ii ! Points on the cut (j 5c). The wave vector is deter
mined by Eqs.~10! and ~12! as follows:
23531
t-

e

kc5A2M

\2
~\v1 ig2Eg!2

M

m
l2.

On the cut two different values ofG correspond to one and
the sameEc ~andkc). Thus, the solution of Eqs.~8! and~9!
is a linear combination

Yc~r !5EcM@hG~¸c
1 ;r !1~12h!G~¸c

2 ;r !#. ~15!

Equation~9! now yields the condition for the coefficienth,
instead of the dispersion relation.

~iii ! Optically inactive ~non-S) states (j 5n). For these
states

En5Yn~0!50

and

Yn~r !5Cnwn~r !, ~16!

wherewn(r ) is the wave function of a non-S exciton state
~bound or scattering! which satisfies the Schro¨dinger equa-
tion

Ĥex~r !wn~r !5Enwn~r !. ~17!

The wave vector is again determined by Eq.~10! as follows:

kn5A2M

\2
~\v1 ig2Eg2En!. ~18!

Note that for the continuum non-S states the wave vecto
takes the same values as on the cut,kn5kc .

Finally, combining Eqs.~14!, ~15!, and ~16!, the full
electron-hole amplitude and the electric field have the fo

Y~Z,r !5(
p

EpeikpZMG~¸p ;r !

1E
cut

dkcB~kc!e
ikcZMF G~¸c

1 ;r !

D1~kc ,v!
2

G~¸c
2 ;r !

D2~kc ,v!
G

1X
n

CneiknZwn~r !, ~19!

E~Z!5(
p

EpeikpZ1E
cut

dkcB~kc!e
ikcZF 1

D1~kc ,v!

2
1

D2~kc ,v!
G , ~20!

where

D6~kc ,v!5q0
2«6~kc ,v!2kc

2 , ~21!

and«6 is defined by Eq.~13! with ¸5¸c
6 ; Ec is renormal-

ized toB(kc) for convenience@cf. Eqs.~15! and ~19!#.
9-3
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B. Microscopic boundary conditions: Minimization of the
exciton polarization on the boundary

In Sec. II A we have Fourier-expandedY(Z,r ) andE(Z),
expressing ther -dependent factors inY in terms of bulk ex-
citon eigenfunctions~for S states combined into the Green
function!. However, the coefficientsEp , B(kc), andCn are
still unknown and should be determined applying the BC
Eqs.~3!–~5!.

To satisfy the BC’s, Eq.~3!, let us require thatuY(Z,r )u2

reach its minimum on the boundaryZ5Zs(r ). In other
words, we minimize the form

W5E dr uY~Zs~r !,r !u25~jW ,ŴjW !, ~22!

quadratic in

jW5F Ep

B~kc!

Cn

G
and subjected to the additional condition

~jW ,aW !51, ~23!

resulting from Maxwell’s BC’s, Eq.~5!. The scalar products
in Eqs. ~22! and ~23! contain the necessary summation a
integration, according to Eqs.~19! and ~20!, The integral
operatorŴ and the vectoraW are defined in Appendix A.

Finally, the minimum problem

dW
djW

50

with the condition Eq.~23! leads to the integral-matrix equa
tion

ŴjW5saW , ~24!

wheres is the Lagrange multiplier. The latter can be set
s51 in the first stage, the vectorjW being finally adjusted~by
the proper factor! to the normalization condition, Eq.~23!.

We have reduced the polariton problem to the first-or
Fredholm equation~24! with the index of summation and
integration running through the poles, the cut, and all noS
eigenstates of the bulk exciton. A similar but slightly mod
fied procedure is applied to the slab geometry in Sec.
~see below!. Although Eq. ~24! has a rather simple linea
form, it may be prone to numerical instabilities and compl
loss of information since the kernel is not diagonally dom
nated. By discretizing the continuous variables we conv
the integral equation~24! into a matrix equation, which is
subsequently solved via Gauss-Jordan elimination with p
oting ~see, e.g., Ref. 27!.

The integrated square modulus of the polarization m
match minimized on the boundary,Wmin , is plotted in Fig. 1
as a function of the excitation energy\v. In order to check
the relative accuracy, we have chosen to divide this value
the maximum of the amplitudeY(Z,z) in the form
maxuY(Z,z)u2aB* . The normalized quantity serves as a meas
23531
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to which degree the boundary condition, Eq.~3!, is fulfilled.
The calculations are made within the 1D model with t
contact electron-hole interaction~for details see Appendix
B!. At energies below the band gap,\v,Eg (E,0 in Fig.
1!, the numerical solution of Eq.~24! is quite stable and doe
not depend on the number of discretization points in
continuum,N, for N.50 ~cf. solid thick and dotted curves!.
At increasing energy, the solution becomes more and m
unstable, so that a larger frequency requires a largerN to
provide satisfactory accuracy. In fact, near the band
Wmin grows suddenly, and convergency is not achieved e
at the rather fine discretization ofN5250 points. We believe
that more sophisticated numerical algorithms could be
vised which work in the continuum as well.

The minimization of the wave function on the bounda
~in order to satisfy the microscopic BC’s! has been already
used in Ref. 11 for the 3D Coulomb half-space polarit
problem. However, the contribution of the scattering sta
has been neglected there completely. As argued in Ref.
these contributions are expected to be of minor importa
for CdS semi-infinite crystals. However, as seen from Fig
in GaAs structures they play an important role. In fact, bel
the band gap, the dashed curve~bound states only! lies far
above all other curves where the continuum is taken i
account. Such a qualitative difference between CdS
GaAs parameters might be due to the larger exciton B
radius and the larger difference between electron and h
effective masses in GaAs. Above the band gap, the das
curve finally crosses the solid thick curve, and the 1S ap-
proximation gives even better accuracy~still of the order of
20%! than our calculation including the continuum. Th
might be related to the above-mentioned convergency p
lems.

FIG. 1. Wmin divided by maxuY(Z,z)u2aB* , calculated for a semi-
infinite crystal with parameters equal to bulk GaAs (g
50.05 meV) with an account for only the 1S state~dashed curve!,
all even states~dash-dotted curve!, and all bound and scatterin
states, using different numbers of discretization points in the c
tinuum N ~dotted and solid curves!.
9-4
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The dash-dotted curve in Fig. 1 is the result of a calcu
tion which accounts for even states only, i.e., the sum o
poles and the integral over the cut in Eq.~19!. Surprisingly,
the accuracy of this calculation turns out to be even wo
than for 1S only. However, the comparison with the full ca
culation ~solid thick curve! reveals another basic featur
Whereas in bulk semiconductors the non-S exciton states are
optically inactive, in real systems with boundaries their ro
becomes crucial for optical properties. In fact, although n
S states do not appear in the expression for the electric fi
Eq. ~20!, they contribute indirectly toE(Z) through the BC’s
for Y(Z,r ). The latter, in turn, depends onEp , B(kc), and
Cn and is minimized with respect to all of them simult
neously.

C. Slab geometry

Consider a semiconductor slab occupying the area 0<Z
<L (L is the slab thickness!. The interface where the micro
scopic BC’s, Eq.~3!, should be satisfied now takes the for

Zs~z!5H 2bhz or L1bez, if z,0,

bez or L2bhz, if z.0, ~25!

where be,h5me,h /M . Compared to semi-infinite crystals
there are both copropagating and contrapropagating wav
the slab. The simplest way to solve the slab problem is
divide the electric field and polarization inside the slab in
even and odd parts,

E~Z!5Ee~Z!1Eo~Z!,

Y~Z,r !5Ye~Z,r !1Yo~Z,r !,

and to apply the procedure described in Secs. II A and II B
even and odd problems separately. As follows from the sy
metry properties,

Ee,o~Z!5sEe,o~L2Z!,

Ye,o~Z,r !5sYe,o~L2Z,2r !,

where

s5H 11, even,

21, odd.
~26!

The expressions forY andE take the form

Ye,o~Z,r !5(
p

Ep@eikpZ1seikp(L2Z)#MG~¸p ;r !

1E
cut

dkcB~kc!@eikcZ

1seikc(L2Z)#MF G~¸c
1 ;r !

D1~kc ,v!
2

G~¸c
2 ;r !

D2~kc ,v!
G

1X Cn@eiknZ2seikn(L2Z)#wn~r !, ~27!

n

23531
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Ee,o~Z!5(
p

Ep@eikpZ1seikp(L2Z)#1E
cut

dkcB~kc!@eikcZ

1seikc(L2Z)#F 1

D1~kc ,v!
2

1

D2~kc ,v!
G . ~28!

If the slab is surrounded by vacuum on both sides, Mawxe
BC’s have the form@cf. with Eq. ~5!#

Ee,o~0!1
Ee,o8 ~0!

iq0
51, ~29!

the reflection and transmission being described as

r 5Ee~0!1Eo~0!21,

t5Ee~0!2Eo~0!.

The matrix elements ofŴ can be found in the same wa
as in half-space geometry. Their analytical expressions
given in Appendix B for the special case of the 1D conta
potential, calculated for both half-space and slab geomet

III. ABC MODEL

In this section we develop an approach based on the
proximate center-of-mass~c.o.m.! boundary condition in-
stead of the exact one: The functionZs(r ) in Eq. ~3! is as-
sumed to be r independent. At first glance, thi
approximation is equivalent to the ABC’s introduced b
Pekar,1 namelyP50, whereP is the macroscopic polariza
tion. However, in our approach this condition is applied n
only to the ground state of the bulk exciton, as it is usua
used, but to all parts of polarization produced by bound a
scattering states.

Let us expand the electron-hole coherent amplitude i
bulk exciton states

Y~Z,r !5A2M

\2 X
n

Pn~Z!wn~r !, ~30!

where the eigenfunctionswn(r ) satisfy Eq.~17! and consti-
tute a complete set;n takes all possible quantum numbers
both S and non-S states. From Eqs.~1! and ~2! we get

Pn9~Z!1kn
2Pn~Z!52Mn* E~Z!, ~31!

E9~Z!1q0
2«bE~Z!52q0

2
X

n

MnPn~Z!, ~32!

where

Mn5A2M

\2
wn~0!M,

andkn is given by Eq.~18!.
The BC’s for the c.o.m. motion take the form

Y~Zs ,r !50. ~33!

As Zs does not depend onr , Eq. ~33! can be satisfied only if
9-5
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Pn~Zs!50 ~34!

for eachn. In other words, it is assumed that the polarit
c.o.m. and relative motions are decoupled on the bound

One should note that the non-S states@with Mn5wn(0)
50] do not produce the macroscopic polarizationP(Z)
5MY(Z,0) and thus are neglected in the present model.
the other hand, as is shown in Sec. II, even in the st
approach, the contribution ofS states can be combined int
the Green’s function; see Eqs.~19! and ~20!. Thus, it is ex-
pected~and we show it below! that the final results depen
only on the bulk exciton dielectric function, Eq.~13!, all the
material information being concentrated in.

First, we consider a semiconductor slab and derive
exciton polarization, expanding it into slab eigenmodes. T
expressions for half-space geometry follow automatically
a limiting case of infinitely wide slab.

A. Slab geometry

For a semiconductor slab, occupying the area 0<Z<L,
the BC’s, Eq.~34!, read

Pn~0!5Pn~L !50. ~35!

Let us expandPn(Z) into slab eigenmodes as

Pn~Z!5(
n

Pnnun~Z!, ~36!

where the orthonormal functions

un~Z!5
2i sin~knZ!

A2L
, kn5

pn

L
, n51,2, . . . ,

satisfy the differential equation

un9~Z!1kn
2un~Z!50,

the same boundary conditions as Eq.~35!, un(0)5un(L)
50, and thus constitute a complete set for the class of fu
tions specified by Eq.~35!. Being a solution of inhomoge
neous differential equation~32!, the electric field can be
expressed as a superposition of homogeneous and inh
geneous parts,

E~Z!5A1eiq1Z1A2e2 iq1Z1(
n

En
inhun~Z!, q15q0A«b,

~37!

with the inhomogeneous part also satisfying Eq.~35!,
whereas the coefficientsA6 of the homogeneous part ar
fixed by Maxwell’s BC’s. From Eqs.~31! and ~32! we get

En
inh52

q0
2

q0
2«b2kn

2 X
n

MnPnn , ~38!

Pnn52
Mn*

kn
22kn

2 ~En
hom1En

inh!, ~39!
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where the coefficients of the homogeneous part are form
defined as

En
hom5E

0

L

~A1eiq1Z1A2e2 iq1Z!un* ~Z!dZ. ~40!

On the boundaries we have

E~0!5A11A2 ,

E~L !5A1eiq1L1A2e2 iq1L. ~41!

Finally, combining Eqs.~38!–~41! and taking into accoun
the fact that

«~k,v!5«b1X
n

uM nu2

k22kn
2

@cf. with Eq. ~13!#, we arrive at

E~Z!5
i

L (
n52`

`
E~0!2~21!nE~L !

q0
2«~kn ,v!2kn

2
kneiknZ. ~42!

The series in Eq.~42! describes the electric field within
the slab. It converges everywhere exceptZ50 and Z5L,
where the equation should give identity and thus is pra
cally useless. To complete the use of Maxwell’s BC’s and
calculate reflection and transmission one should also c
siderE8 on the boundaries. Taking the derivative of Eq.~42!
and using a regularization procedure~see Appendix C!, we
obtain

E8~Z!52
1

L (
n52`

`

@E~0!2~21!nE~L !#

3
q0

2«~kn ,v!

q0
2«~kn ,v!2kn

2
eiknZ,

where the series is now convergent both inside the inte
0,Z,L and on the boundariesZ50 andZ5L.

B. Half-space geometry

Treating the half-space problem as a limiting case of
extremely wide slabL→` and switching to integrals(n
→(L/p)*dk, we deduce from Eq.~42!

E~Z!5E
2`

`

dk
B~k!eikZ

q0
2«~k,v!2k2

, ~43!

with

B~k!5
i

p
E~0!k. ~44!

In Appendix C we consider a more general case of mix
ABC’s, Eq. ~C1!, which, compared to Pekar’s ABC’s, Eq
~33!, contains bothP and P8, connected via the model pa
rametera. If a→`, Eq. ~C1! reproduces Pekar’s ABC’s
9-6
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whereasa50 results in ABC’s, suggested by Ting, Franke
and Birman6 and, being applied to all bound and scatteri
states, yields Eq.~43! with

B~k!5
1

p
E8~0!.

This result exactly coincides with that obtained in rece
paper by Henneberger21 on the basis of anad hocassumption
that the nonlocal part of the exciton polarization is localiz
within a thin surface layer, so that the inhomogeneous c
rent on the boundary can be approximated by ad function. It
can be shown, however, that in most semiconductors
thickness of the surface layer is of the order of the exci
Bohr radius aB* ~see also Sec. IV!, so that the long-
wavelength limitkaB* !1 assumed in Ref. 21 cannot be fu
filled. Moreover, the model of two independentd layers on
the boundaries,d(Z) andd(Z2L), proposed in Ref. 21 for
calculation of the electric field in a slab means in reality
correlations between the boundaries and gives a result c
pletely different from Eqs.~42! and ~C6!, where the infinite
sum has the physical meaning of multiple reflections of
lariton waves from the interfaces.

C. Comparison with the strict method

Although the strict and ABC approaches are based
different BC’s, the results, Eq.~20! and Eq.~43!, are closely
correlated. In fact, the poleskp in Eq. ~20! are the solutions
of

D~k,v!50,

whereD(k,v) is defined by Eq.~21! and coincides with the
denominator of the integrand in Eq.~43!. Further, the inte-
gral along the real axisk in Eq. ~43! can be transformed into
a sum of residua atk5kp with

2p iB~kp!

Dk8~kp ,v!
5Ep

and the integral along a contour surrounding the cut,
latter being equal to the integral in Eq.~20!. The same thing
can be done with the polarizationP(Z). Thus, we bring the
expressions forE(Z) and P(Z) obtained in two different
models to one and the same form. Obviously,B(k) is differ-
ent in two approaches. Also, it has the analytical form, E
~44!, in the ABC model, whereas in the exact treatment i
found numerically from the matrix equation~24!. However,
the case of Pekar’s ABC’s, Eq.~44! can be also reproduce
within the strict method, setting in the model assumption

be5bh50,

which means a nonrealistic condition ofme5mh50 together
with finite M andm at the same time.

We would like to note that the most explicit disadvanta
of the ABC model is the neglect of non-S states, which fol-
lows automatically from the approximate BC’s. It is know
however, that the contribution of these states to the opt
properties of real systems is very important. For instance
23531
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semi-infinite semiconductors, in the limit ofM→`, the ex-
citon wave function of the ground state is purely ofP type
strictly on the boundary.29 The importance of the non-S
states is also confirmed by our calculations based on
exact theory of Sec. II.

IV. RESULTS AND DISCUSSIONS

The two different approaches developed in Secs. II and
are tested with the help of a simple 1D model with t
electron-hole interaction of contact type. Within such
model, the Green’s function and the matrix elements app
ing in the strict approach can be derived analytically~see
Appendix B!. Corresponding results for the 3D Coulomb i
teraction within the ABC model have been publish
elsewhere.25

The dielectric function, Eq.~13!, which is the essentia
building block in both approaches, depends on two mate
parameters, the background dielectric constant«̃b and the
longitudinal-transverse splittingD̃LT ~proportional toM 2).
Being effective adjustable parameters, they depend on
many states are taken in the bulk exciton susceptibility, si
they have to account for the the contribution of the r
which is not treated explicitly. We relate these parameter
the measured quantities«b andDLT using the following con-
ditions:

Re@«~0,v t1 ig/\!#5«b ,

Re@«~0,v t1DLT /\!#50,

where\v t is the ~transverse! exciton 1S energy.
The calculations of reflectivity and transmission are do

for finite slabs and the semi-infinite case with parameters
bulk GaAs: «b512.66, DLT50.086 meV, Eg
51519.0 meV, \v t51514.8 meV, me50.0667m0 , mh
50.45m0, andg50.05 meV.

For half-space geometry we have found an excell
agreement with the results by Victoret al.,16 where specific
properties of the 1D contact potential together with the po
dipole approximation led to substantial simplifications in t
analytical part of their approach. However, the method
Ref. 16 turns out to be extremely hard when applied to
slab geometry and is practically impossible for the realis
3D Coulomb electron-hole interaction.

Figure 2 shows the polarization amplitudeuP(Z)u
5MuY(Z,0)u in a semi-infinite crystal, calculated within th
strict approach and the ABC model with Pekar’s BC’s~thick
and thin curves, respectively!, for different frequencies of the
external electromagnetic field.30 In order to compare the re
sults of both approaches we have chosen to shift the P
polarization by a proper distanceD l which lines up approxi-
mately the maxima and minima in both curves. This is at
heart of the exciton dead-layer concept proposed by Hopfi
and Thomas3 and used in several succeeding papers. Furt
we introduce into this model a new adjustable parame
which is the dielectric constant of the dead layer«D l . This
parameter effectively accounts for some finite contribution
9-7
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the actual exciton polarization within this layer and shou
be, in principle, larger than the background dielectric co
stant«b .

As seen from the polarization plots in Fig. 2, Peka
ABC’s, even augmented by a dead layer, give only qual
tive agreement with the exact result. Moreover, the de
layer thicknessD l has to depend on frequency. The reason
that the oscillations in the polarization originate from t
mismatch between the resonant exciton and the photon e
gies. The oscillation frequency vanishes atv5v t @panel~a!#
and grows with the detuningv2v t @panels~b! and ~c!#.
Consequently,D l decreases as the frequency of the excit
photon beating increases. Note, however, that within a
able frequency region around the exciton resonance,D l is of
the order of the exciton effective Bohr radiusaB* and char-
acterizes the depth of polarization inhomogeneity near
semiconductor surface. As soon asD l is small ~due to pa-
rameters of a particular semiconductor! compared to the
characteristic length where the polarization changes sig
cantly, aB* !(A«bv/c)21, the difference between the Pek

FIG. 2. Polarization amplitudeuP(Z)u of a semi-infinite crystal,
calculated in exact~thick curves! and ABC ~thin curves! ap-
proaches. The amplitude of the electric field in the incident beam
taken to be unity. The photon energy and the dead-layer thick
are, respectively,~a! \v2Eg52Ry* , D l 50.9aB* ; ~b! \v2Eg

520.5 Ry* , D l 50.65aB* ; ~c! \v2Eg50, D l 50.5aB* .
23531
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and exact polarizations becomes unimportant and the us
the Pekar ABC model is justified.

Having introduced the mixed ABC model governed by t
mixing constanta ~Appendix C!, we have studied the behav
ior of the optical response for any complexa.31 We found
that among all ABC’s, Pekar’s ABC’s give results which a
closest to the exact ones~cf. thin and thick solid curves in
Fig. 3!, whereas TFB~Henneberger’s! ABC’s ~Fig. 3, dashed
curves! lead to reflectivity and phase spectra which are clo
to the limit M→`, i.e., without spatial dispersion. At th
same time, the TFB spectra deviate strongly from the ex
ones. Mixed ABC’s with finitea give either results some
where between Pekar’s and TFB ABC’s or turn out to
completely unrealistic.

Looking closer we have to ascertain that in half-spa
geometry, Pekar’s ABC’s give an optical response which
still far from the exact one. Even with the improvement o
dead layer~dotted curves!, there is no way to matchreflec-
tivity and phase simultaneouslywith the exact results, in
agreement with the findings in Ref. 23. We conclude that
ABC can give fully satisfactory results, and the strict micr
scopic BC’s should be used for an adequate description

is
ss

FIG. 3. Reflectivity ur u2 ~a! and phase arg(r ) ~b! of a semi-
infinite crystal, calculated within the 1D contact potential with p
rameters equal to bulk GaAs~see the text!, in the exact approach
~thick curves! and in ABC models: Pekar~solid curves!, TFB
~dashed curves!, and Pekar with dead layer~dotted curves!. The
parameters of the dead layer are taken asD l 50.85aB* , «D l513.5.
The photon energy is measured in Ry* .
9-8
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EXCITON POLARITON INCLUDING CONTINUUM . . . PHYSICAL REVIEW B66, 235319 ~2002!
polaritons and their optical properties in bounded semic
ductors.

To analyze the influence of the continuum we plot in F
4 reflectivity and phase calculated within the exact appro
and Pekar’s ABC’s, with and without a continuum~no dead
layer!. The 1D contact potential has only one bound st
(1S exciton state!, being energetically well separated fro
the continuum onset, which reduces the importance of
scattering states.32 However, Pekar’s ABC’s applied to a
states or to 1S only lead to qualitatively different results~the
difference is quite visible in the inset to Fig. 4, solid a
dashed curves!: Near the continuum onset, the scatteri
states cause a break in slope, in particular in reflection@panel
~a!#, whereas the 1S curves are completely smooth. Th
break, however, is an artifact and does not appear in
exact calculation~thick curves!, which accounts properly fo
the scattering states.

As we have already mentioned, our numerical schem
not well converged at energies above 0.5 Ry* ~see the inset
to Fig. 4!. This calls for more sophisticated numerical me
ods to solve Eq.~24! than used in the present work. How
ever, note that in the calculations, we have taken an
tremely small broadening g50.05 meV, being
approximately 1% of the effective Rydberg. Larger broad
ing moves the convergence limit further into the continuu
with a significant improvement of the results. For a slab c

FIG. 4. The same as in Fig. 2, calculated in the exact appro
~thick curves! and in Pekar’s ABC model with~solid curves! and
without scattering states~dashed curves!.
23531
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culation, however, this tends to wash out any structure in
continuum. Recent experiments24 on high-quality GaAs
samples have shown very-well-resolved oscillations in d
ferential transmission way up in the continuum. This impli
a rather small homogeneous damping.

Transmission spectra of a 600 nm slab calculated w
bulk GaAs parameters are displayed in Fig. 5. The m
characteristic features in the polariton spectra of a slab
the oscillations due to the quantization of the exciton cen
of-mass motion.8,14,17 Qualitatively, the transmission is ex
pected to have structures at the energies

En5\v t1
\2p2n2

2ML2
, ~45!

which describe the slab quantization of theQx5Qy50 ex-
citon, neglecting its relative motion. As follows from th
analytical form of the electric field in a slab, Eq.~42!, calcu-
lated with Pekar’s ABC’s, the maxima and minima ofE(Z)
are expected near the frequenciesv satisfying

«~kn ,v!50.

Neglecting the contribution of all exciton states other th
1S leads to\v5En from Eq. ~45!. However, the transmis
sion maxima or minima do not follow strictly Eq.~45!, even
in the 1S-only Pekar model, but dipslay systematic shifts

As a rule, the discrepancies between the different mod
are more striking in the slab geometry and especially in
continuum. Compared to the half-space geometry, the P
transmission spectra calculated with and without scatte
states significantly differ from each other above the band
~cf. solid and dashed curves in Fig. 5!. Both curves, however
deviate strongly from the exact one~thick curve!. Only the
inclusion of a 5 nm dead layer with«D l518.5 ~much larger
than in half-space! into Pekar’s ABC model~Fig. 5, dotted
curve! gives reasonable agreement with the exact resu

ch

FIG. 5. Transmissionutu2 of a 600 nm slab calculated within th
1D contact potential with parameters equal to bulk GaAs, in
exact approach~thick curve! and in Pekar’s ABC model with~solid
and dotted curves! and without~dashed curve! scattering states. The
parameters of the dead layer are taken asD l 55 nm,«D l518.5.
The photon energy is measured in Ry* .
9-9
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E. A. MULJAROV AND R. ZIMMERMANN PHYSICAL REVIEW B 66, 235319 ~2002!
both in overall slope and positions of extrema. Neverthele
the oscillation amplitude is a factor of 2.5 too small, and
detailed shape is still unsatisfactory. We would like to str
that the TFB ABC’s and Henneberger’s model~being com-
pletely different in the slab geometry! fail to give any oscil-
lations in the transmission for any reasonable nonzerog.

V. CONCLUSIONS

We have developed an exact method which allows on
calculate reflection and transmission spectra of exciton
laritons. The microscopic boundary conditions have be
converted into a minimization problem leading to
integral-matrix equation. Within the 1D contact potential, t
kernel could be derived analytically, and the subsequent
merical solution was possible. This method can be appl
without too much effort, to the Coulomb or any other pote
tial, and including an anisotropic kinetic energy.

On the basis of approximate boundary conditions app
to the exciton center-of-mass motion, we have generali
the ABC model to include all bound and scattering stat
and have obtained analytical results for half-space and
geometries. The model has been extended to the general
ation of mixed ABC’s.

We have shown that the calculations within the ABC
and the exact approach lead to results which differ in p
ciple. The inclusion of an exciton dead layer into the AB
23531
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to
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model is an improvement. However, serious discrepan
still remain between exact and ABC spectra, such as diffe
oscillation amplitudes in the slab transmission or differe
background values in the half-space reflectivity. Moreov
two adjustable parameters, the dead-layer thickness an
dielectric constant, have to be added to the ABC mod
These additional parameters are usually unknown and
quency dependent. Thus, for a correct evaluation of the
lariton optical spectra it is necessary to account for the ex
microscopic boundary conditions.

In both approaches the continuum states of the excito
spectrum contribute to the microscopic polarization in
explicit way. Analyzing the fraction of the continuum in th
excitonic polarization, we have demonstrated its signific
role in the optical properties, especially above the semic
ductor band edge.
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APPENDIX A: MINIMIZATION OF THE EXCITONIC POLARIZATION ON THE SEMICONDUCTOR BOUNDARY

To satisfy the boundary conditions~3! let us minimize the following form, quadratic inEp , B(kc), andCn :

W5 (
p,p8

Ep* W11~kp ,kp8!Ep81(
p
E

cut
dkc8Ep* W12~kp ,kc8!B~kc8!1(

p
X

n8
Ep* W13~kp ,kn8!Cn8

1E
cut

dkc(
p8

B* ~kc!W21~kc ,kp8!Ep81E
cut

dkcE
cut

dkc8B* ~kc!W22~kc ,kc8!B~kc8!1E
cut

dkcX

n8

B* ~kc!W23~kp ,kn8!Cn8

1X
n

(
p8

Cn* W31~kn ,kp8!Ep81X
n

E
cut

dkc8Cn* W32~kn ,kc8!B~kc8!1X
n
X

n8
Cn* W33~kn ,kn8!Cn8 , ~A1!
W13~kp ,kn8!5V01~¸p ,¸n8!,
where

W11~kp ,kp8!5V00~¸p ,¸p8!,

W12~kp ,kc8!5
V00~¸p ,il8!

D1~kc8!
2

V00~¸p ,2 il8!

D2~kc8!
,

W22~kc ,kc8!5
V00~ il,il8!

D1* ~kc!D
1~kc8!

2
V00~ il,2 il8!

D1* ~kc!D
2~kc8!

2
V00~2 il,il8!

D2* ~kc!D
1~kc8!

1
V00~2 il,2 il8!

D2* ~kc!D
2~kc8!

,

9-10
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W23~kc ,kn8!5
V01~ il,¸n8!

D1* ~kc!
2

V01~2 il,¸n8!

D1* ~kc!
,

W33~kn ,kn8!5V11~¸n ,¸n8!,

Wj i ~k2 ,k1!5Wi j* ~k1 ,k2!. ~A2!

For the half-space problem the matrix elements have
form

V00~¸1 ,¸2!5M 2E dr G* ~¸1 ;r !G~¸2 ;r !e2 i (k1* 2k2)Zs(z),

V01~¸,¸n!5ME dr G* ~¸;r !wn~r !e2 i (k* 2kn)Zs(z),

V11~¸n ,¸n8!5E dr wn* ~r !wn8~r !e2 i (kn* 2kn8)Zs(z),

~A3!

where

k5A2M

\2
~\v1 ig2Eg!1

M

m
¸2, ~A4!

¸n5A2
2mE n

\2
.

Maxwell’s BC’s yield
r-

gy

23531
e

(
p

11kp /q0

2
Ep1E

cut
dkc

11kc /q0

2 F 1

D1~kc!

2
1

D2~kc!
GB~kc!51. ~A5!

The minimum problem results in Eq.~24!, where the opera-
tor Ŵ has the matrix elements, Eq.~A2!, and contains nec-
essary summations and integrations, in accordance with
~A1!. The vectoraW constituting the normalization condition
Eq. ~23!, takes the form

aW 5F 11kp* /q0

2

11kc* /q0

2 H 1

D1* ~kc!
2

1

D2* ~kc!
J

0

G . ~A6!

In the slab problem the matrix elements are analogou
Eq. ~A3!, the only difference being in the exponential facto
coming from the coexistence of copropagating and con
propagating waves, Eq.~27! ~we do not show the expression
due to their obvious form!. The vector appearing in the no
malization condition for even and odd parts, Eqs.~23! and
~29!, has the form
aW e,o5F 11
kp*

q0
1seikp* LS 12

kp*

q0
D

H 11
kc*

q0
1seikc* LS 12

kc*

q0
D J H 1

D1* ~kc!
2

1

D2* ~kc!
J

0

G , ~A7!
,

ands is given by Eq.~26!.

APPENDIX B: MATRIX ELEMENTS IN THE EXACT
APPROACH: 1D CONTACT POTENTIAL

In this section we derive the matrix elementsVs1s2
, Eq.

~A3!, within the model of the 1D contact electron-hole inte
action,

Ĥex~z!52
\2

2m

]2

]z2
2Vd~z!, ~B1!

whereV52aB* Ry* , aB* and Ry* 5\2/(2maB*
2) are, respec-

tively, the exciton effective Bohr radius and Rydberg ener
The exciton Green’s function has the form
.

G~¸;z!5V21
1

¸aB* 21
e2¸uzu, ~B2!

where¸ is given by Eq.~10!. The odd~non-S) eigenstates of
the Hamiltonian, Eq.~B1!, appear only in the continuum
having the wave functions

wl~z!52i sin~lz!, 0<l,`, ~B3!

and the eigenenergies

El5
\2l2

2m
.

In half-space geometry, the matrix elements take the form
9-11
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V00~¸1 ,¸2!5M 2V22~¸1* aB* 21!21

3~¸2aB* 21!21U00~¸1 ,¸2!,

V01~¸1 ,¸2!5MV21~¸1* aB* 21!21@U01~¸1 ,¸2!

2U01~¸1 ,2¸2!#,

V11~¸1 ,¸2!5U11~¸1 ,¸2!2U11~¸1 ,2¸2!2U11~2¸1 ,¸2!

1U11~2¸1 ,2¸2!, ~B4!

where

Us1s2
~¸1 ,¸2!5

1

¸1* 1¸21 ibe~k1* 2k2!

1~21!s11s2
1

¸1* 1¸21 ibh~k1* 2k2!
,

~B5!

whereki and¸ i are related to each other through Eq.~10! or
~A4!, be,h5me,h /M .

In slab geometry the matrix elements ofŴ and Vs1s2

have the same form as defined in Eqs.~A2! and ~B4!, but
Us1s2

are different,

Us1s2
~¸1 ,¸2!52@Js1s2

~be ;¸1 ,¸2!

1~21!s11s2Js1s2
~bh ;¸1 ,¸2!#,

~B6!

where

Js1s2
~b;¸1 ,¸2!5K~b;¸1 ,¸2 ,k1 ,k2!1~21!s11s2

3e2 i (k1* 2k2)LK~b;¸1 ,¸2 ,2k1 ,2k2!

1s@~21!s1e2 ik1* LK~b;¸1 ,¸2 ,2k1 ,k2!

1~21!s2eik2LK~b;¸1 ,¸2 ,k1 ,2k2!#,

~B7!

K~b;¸1 ,¸2 ,k1 ,k2!5
12e2 i [¸1* 1¸21 ib(k1* 2k2)]L

¸1* 1¸21 ib~k1* 2k2!
. ~B8!

Note that the factor of 2 appears in Eqs.~A7!, ~B6!, and~29!
due to artificial separation of the slab problem into evens
51) and odd (s521) parts.

APPENDIX C: THEORY WITH MIXED ABC’S

In this section we derive the electric field in a semico
ductor 0<Z<L ~slab! or Z>0 ~half space!, postulating
mixed ABC’s in generalized symmetric form

Pn8~0!5aPn~0!,

Pn8~L !52aPn~L !, ~C1!
23531
-

wherea is a state-independent complex parameter. Note
a5` yields Pekar’s ABC’s, considered in Sec. III, whilea
50 leads to TFB ABC’s.

Following Kiselev et al.8 we introduce the eigenvalu
problem

u9~Z!1k2u~Z!50, 0<Z<L, ~C2!

with the following BC’s:

u8~0!5au~0!,

u8~L !52au~L !. ~C3!

A complete set of orthonormal functions

uk~Z!5
~a1 ik !eikZ2~a2 ik !e2 ikZ

A2@2a1L~a21k2!#
~C4!

and discrete eigenvaluesk5k6 , satisfying the dispersion
equation

eik6L56
a2 ik6

a1 ik6
, k6>0, ~C5!

is the solution of the problem, Eqs.~C2! and~C3!. Note that
k̃52k also satisfies Eq.~C5! but corresponds to the sam
wave functionũ(Z)5u* (Z)52u(Z), so we consider only
k>0.

ExpandingPn(Z) into slab eigenmodes as in Eq.~36! and
decomposingE(Z) into homogeneous and inhomogeneo
parts as in Eq.~37!,

E~Z!5Ehom~Z!1Einh~Z!,

with

Ehom~Z!5A1eiq1Z1A2e2 iq1Z,

Einh~Z!5(
k

Ek
inhuk~Z!,

we arrive at Eqs.~38!–~40!. The coefficientsA6 are found
from the following set of equation@cf. with Eq. ~41!#:

E~0!5A11A21Einh~0!,

E~L !5A1eiq1L1A2e2 iq1L1Einh~L !,

E8~0!5 iq1~A12A2!1aEinh~0!,

E8~L !5 iq1~A1eiq1L2A2e2 iq1L!2aEinh~L !,

where we have used Eq.~C1!. Excluding Einh(0) and
Einh(L) we find

A15
xL~a1 iq1!2x0~a2 iq1!e2 iq1L

~a1 iq1!2eiq1L2~a2 iq1!2e2 iq1L
,

A25
x0~a1 iq1!eiq1L2xL~a2 iq1!

~a1 iq1!2eiq1L2~a2 iq1!2e2 iq1L
,
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where

x05aE~0!2E8~0!,

xL5aE~L !1E8~L !,

x65x07xL .

The electric field takes the form

E~Z!5A1eiq1Z1A2e2 iq1Z

2(
k6

x6

ik6

q1
22k6

2

q0
2«~k6 ,v!2q1

2

q0
2«~k6 ,v!2k6

2

3
~a1 ik6!eik6Z

2a1L~a21k6
2 !

,

where we have extendedk6 to all possible values, both pos
tive and negative@cf. with Eq. ~C5!#, using the antisymmet
ric form of uk , Eq. ~C4!. Ehom(Z) can be also expanded int
uk(Z) according to Eq.~40!. Then,

E~Z!5(
k6

x6

ik6

q0
2«~k6 ,v!2k6

2

~a1 ik6!eik6Z

2a1L~a21k6
2 !

.

~C6!

Note that in the special cases of Pekar’s (a5`) and TFB
(a50) ABC’s, the expansion, Eq.~C6!, is nothing else than
the standard Fourier series, the eigenvalues having sim
analytical form

k150, 62
p

L
, 64

p

L
, . . .

k256
p

L
, 63

p

L
, . . .

J Pekar,

k156
p

L
, 63

p

L
, . . .

k250, 62
p

L
, 64

p

L
, . . .

J TFB.

The series in Eq.~C6! is well behaved everywhere 0<Z
<L, for any finitea. However, its derivative has discont
nuities atZ50 and Z5L which show as divergent serie
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These peculiarities come from the fact thatE(Z) together
with E8(Z) satisfy some BC’s other than those for the ba
functionsuk , Eq. ~C3!. To remove these discontinuities w
subtract fromE8(Z) the following term:

(
k6

x6

~a1 ik6!eik6Z

2a1L~a21k6
2 !

,

which vanishes everywhere 0,Z,L except two points on
the boundaries,33 where it has the same discontinuities as
Eq. ~C6!. After such a regularization we arrive at the serie

E8~Z!52(
k6

x6

q0
2«~k6 ,v!

q0
2«~k6 ,v!2k6

2

~a1 ik6!eik6Z

2a1L~a21k6
2 !

,

~C7!

which is now well behaved everywhere and can be us
together with Eq.~C6!, for calculations ofE andE8 on the
boundaries, necessary for Maxwell’s BC’s and evaluation
the reflectivity and transmission.

As soon as the slab is getting wider, the roots of the d
persion equation~C5! locate closer to the real axis,k
5pn/L, with n integer, for any finitea. However, if
Re(a),0, there are two ‘‘additional’’ roots neark56 ia.
Switching to integrals in Eqs.~C6! and~C7! and taking into
account thatxL→`50, we find for half-space geometry

E~Z!5x0

i

pE2`

`

dk
keikZ

~a2 ik !@q0
2«~k,v!2k2#

1x0R~Z!,

E8~Z!52x0

1

pE2`

`

dk
q0

2«~k,v!eikZ

~a2 ik !@q0
2«~k,v!2k2#

1x0R1~Z!,

where the termsR andR8 are responsible for the additiona
roots,

R~Z!5R1~Z!50, Re~a!>0,

R~Z! 5
2aeaZ

a21q0
2«~ ia,v!

R1~Z! 5 2
2q0

2«~ ia,v!eaZ

a21q0
2«~ ia,v!

6 Re~a!,0.

.

7V.A. Kiselev, B.S. Razbirin, and I.N. Uraltsev, Phys. Status So
B 72, 161 ~1975!; I.V. Makarenko, I.N. Uraltsev, and V.A.
Kiselev, ibid. 98, 773 ~1980!.

8V.A. Kiselev, I.V. Makarenko, B.S. Razbirin, and I.N. Uraltse
Fiz. Tverd. Tela~Leningrad! 19, 1348~1977! @Sov. Phys. Solid
State19, 1374~1977!#.

9A. Stahl, Phys. Status Solidi B94, 221 ~1979!; I. Balslev and A.
Stahl, ibid. 111, 531 ~1982!; A. Stahl and I. Balslev,ibid. 113,
583 ~1982!.

10A. Stahl and I. Balslev,Electrodynamics of the Semiconduct
9-13



oc

r

d G

n

nk

D.S.

r,

N.

ry,
d,

the
-

n is
the

the

E. A. MULJAROV AND R. ZIMMERMANN PHYSICAL REVIEW B 66, 235319 ~2002!
Band Edge~Springer-Verlag, Berlin, 1987!.
11A. D’Andrea and R. Del Sole, Phys. Rev. B25, 3714~1982!.
12A. D’Andrea and R. Del Sole, Phys. Rev. B41, 1413~1990!; K.

Cho, A. D’Andrea, R. Del Sole, and H. Ishihara, J. Phys. S
Jpn.55, 1853~1990!.

13L. Gotthard, A. Stahl, and G. Czajkowski, J. Phys. C17, 4865
~1984!.

14G. Czajkowski and P. Schillak, Phys. Status Solidi B140, 273
~1987!.

15V.M. Axt and A. Stahl, Solid State Commun.77, 189 ~1991!.
16K. Victor, V.M. Axt, and A. Stahl, Z. Phys. B: Condens. Matte

92, 35 ~1993!.
17A. Tredicucci, Y. Chen, F. Bassani, J. Massies, C. Deparis, an

Neu, Phys. Rev. B47, 10 348~1993!.
18F. Bassani, G. Czajkowski, and A. Tredicucci, Z. Phys. B: Co

dens. Matter98, 39 ~1995!.
19Y. Chen, A. Tredicucci, and F. Bassani, Phys. Rev. B52, 1800

~1995!.
20G. Czajkowski, F. Bassani, and A. Tredicucci, Phys. Rev. B54,

2035 ~1996!.
21K. Henneberger, Phys. Rev. Lett.80, 2889~1998!.
22D.F. Nelson and B. Chen, Phys. Rev. Lett.83, 1263 ~1999!; R.

Zeyher, ibid. 83, 1264 ~1999!; K. Henneberger,ibid. 83, 1265
~1999!.

23J. Tignon, T. Hasche, D.S. Chemla, H.C. Schneider, F. Jah
23531
.

.

-

e,

and S.W. Koch, Phys. Rev. Lett.84, 3382 ~2000!; H.C.
Schneider, F. Jahnke, S.W. Koch, J. Tignon, T. Hasche, and
Chemla, Phys. Rev. B63, 045202~2001!.
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