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Exciton polariton including continuum states: Microscopic versus additional boundary conditions
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An exact method, based on microscopic boundary conditions, is developed for calculation of the optical
properties of exciton polaritons with spatial dispersion. The method is formulated in a general manner for an
arbitrary electron-hole potential and probed in the approximation of the one-dimensional contact interaction, in
half-space and slab geometries. Another approach, based on approximate boundary conditions applied to all
exciton bound and scattering states, generalizes the concept of additional boundary conditions. This approach
yields analytical results for semi-infinite semiconductors and semiconductor slabs and allows us to extract and
analyze the contribution of the exciton continuum states to the optical spectra of semiconductors. A correlation
between reflectivity and transmission calculated in two different approaches demonstrates the crucial role of
the strict boundary conditions in the correct computation of optical spectra.
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I. INTRODUCTION ties allowed one to attack the full problem by means of direct
For more than 40 years the exciton polariton problemmethods, solving a four-dimensional integro-differential ma-

originally formulated by Pekrand Hopfield has been of terial equation coupled with Maxwell's equatiéh.These
permanent interest for intensive investigatbie with a  calculations, however, have not been applied to frequencies

strong revival in recent years due to novel theoretical an@b?vet;he band gtap. devel H 1o th
experimental studied-—2* n the present paper we develop an approach to the

X . vy xciton-polariton problem based on the microscopic
In bulk semiconductors, the exciton center-of-mass andy no\or@.10 ang strict BC's, expanding the electron-hole
relative motions are decoupled, so that the exciton-photo

it ton | h d the stat £ th toni oherent amplitude into all bound and scattering exciton
Interaction leaves unchanged e stales of n€ exclloniGiyiag Here we present calculations for half-space and slab

hydrogen-like spectrum, on the one hand, and results in iNgeometries in the simplest case of a one-dimensi¢ta)
dependent propagation of each polariton wave, on the otheggntact potential, where most of the work can be done ana-
This picture drastically changes as soon as one comes closgfically. Further, results for semi-infinite semiconductors
to the realistic situation, where the semiconductor surfac@an be compared with existing calculations using another
influences the formation of excitonic states. Due to the breaktrict approach® However, our method is formulated in
of translational symmetry at the interfaces, all bound andjuite a general manner and can be applied to realistic 3D
scattering exciton states are now mixed, and the macroscopoulomb electron-hole interactions or to any other potential
optical field in semiconductors is not only coupled to thewithout too much additional complexities, compared to pre-
ground state, but strongly influenced by higher bound stategious approaches.
and especially by the excitonic continuum. In this work we also present a theory which generalizes
However, in early works3°-8and in most recent papers the concept of ABC's. This concept introduced by Pélear
(see, e.g., Refs. 17 and 2the polariton problem has been macroscopic exciton polarization vanishing on the boundary
treated in terms of $ bulk excitons only, thus neglecting the P=0 (Pekar’s ABC’s was later used by Ting, Frankel, and
contribution of all higher bound and scattering states. WithinBirmar? in the form of a zero slope of the polarization on the
such a treatment one needs so-called additional boundasurfaceP’=0 (TFB ABC'’s) and by Kiselevet al.’ in the
conditions (ABC's), since Maxwell's boundary conditions mixed formP’=«P, wherea stands for a model parameter
alone are insufficient to determine the amplitudes of two(mixed ABC’9). In the literature, all kinds of ABC’s were
polariton waves propagating in the same direction. applied to the $ excitonic polarization only. We explicitly
Within the framework of the full microscopic approach, include in the ABC theory the contribution of all other bound
the correct microscopic boundary conditiofC’s) consist and continuum states. Our theory, based on the approximate
in a vanishing electron-hole amplitude on the semiconductocenter-of-mass BC'’s for the microscopic exciton polariza-
surfaces. However, this exact solution of the polariton prob- tion, yields exact analytical solutiondor half-space and
lem is an extremely complicated task and most of the microslaly which show a much more realistic behavior of the re-
scopic approaches were based on additional assumptions afielctivity and transmission than the standaslABC model
simplifications:(i) an analytical approximation of the exciton (which is the special case of our resulthe calculations can
wave function neglecting the contribution of scatteringbe improved significantly by adding a finite dead layer
states'? (i) neglect of the electron-hole interacti&h?® (i)  wherein the exciton polarization vanishes. In particular, with
neglect of the spatial dispersibrin the surface region, and the full 3D Coulomb dielectric function, it allowed %¥sto
so on. Only neglect of the recently have supercomputer abilireproduce well-resolved oscillations far in the continuum in
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the differential transmission of the high-quality 500-nm  The full solution of Eqs(1) and (2), E(Z) and Y(Z,r),
GaAs slal’? should satisfy certain BC's. According to the Maxwell's
Comparing results of calculations for the 1D contact po-BC's, both E(Z) and E’(Z) should be continuous every-
tential obtained within strict and ABC models, we demon-where. We assume an idealized infinite barrier at the
strate the weak points of the latter, even improved by thesemiconductor-vacuum interface, so that the correct BC’s for
inclusion of the Sommerefeld-enhanced continuum, andhe polarization should be its vanishing, if the electron or
show the leading role of the exact BC’s in an adequate dehole coordinate lies outside semiconductor,
scription of the experimental results. At the same time we

analyze the contribution of the exciton continuum states to Y(re,rn)=0,
the optical spectra and demonstrate its significance, espe- _
cially at photon frequencies above the semiconductor band if  z,<0, z,<<0 (half space,
gap. )
The paper is organized as follows. In Sec. Il we develop if  z,<0, z,<0, z>L, z,>L (slab,

an exact approach to the polariton problem in half-space anghere | is the slab thickness, or in the relative and center-
slab geometries; the details of the calculations are given iR mass notation

Appendixes A and B. Section Il and Appendix C are de-

voted to the generalization of the ABC model to all bound Y(Zy(r),r)=0, 3)
and scattering states. In Sec. IV, in the example of the 1D
contact electron-hole interaction, we analyze the contributio ; .
of the excitonic continuum as well as the strict BC's to the >€¢S- A and Il §. We have not included into Eq1) any

optical spectra of semi-infinite crystals and finite slabs anc?urface pote_ntlal, beanng_ in mind an "’.‘b“"pt boundary. We
reevaluate the concept of the dead layer. also neglect image potentials near semiconductor/vacuum or

semiconductor/insulator interfaces because of its weak

influencé® on polariton properties, due to the exciton elec-

troneutrality and quickexponential vanishing of the carrier
Within the density matrix framework of the linear re- wave functions in the vicinity of the interface.

sponse theory and the two-band effective mass approxima-

tion, the exciton polariton problem in the case of normal A. Half-space geometry: Expansion into bulk eigenstates

incidence of light(the in-plane excitonic moment@,=Q, In case of semi-infinite crystals the microscopic BC'’s Eq.

=0) is dggscribed by the coupled material and Maxwell's(3) are applied on the semiconductor surface
equation '

here the functionZg(r) is properly defined below(see

II. EXCITON POLARITON: STRICT APPROACH

A ) %z, z>0,
_mﬁ-l—Hex(r)'f—Eg—ﬁw—l’y Y(Z,r) Z(2)= N 4)
— —hz, z<O0.
=MSE(r)E(2), (1) M
7 Maxwell's BC's take the formthe amplitude of the incom-
@E(Z)Jrqgst(z): —qSMY(Z,O), 2 ing wave is taken to be unity
E'(0)
where E(Z) is the electric field,Y(re,rpn)=Y(Z,r) is the E(0)+ iqo =2, ®)

electron-hole coherent amplitudd 5(r) is the transition
dipole density within the point dipole approximation,
MY(Z,0)=P(2) is the macroscopic exciton polarization,
I:|ex(r) is the Hamiltonian of the bulk exciton relative mo- r=E(0)—1.
tion,

where we assume a semiconductor/vacuum interface for sim-
plicity. The reflection is described as follows:

Let us expand the electric field and the electron-hole co-

2 herent amplitude into Fourier series

“ fi
Helr)=— ﬂAr"'Veh(r)y

Ven(r) is the electron-hole potentiat, and Z are, respec-
tively, the relative and center-of-mass coordinates,r,
—rn, Z=(MgZe+mpzy)/M, M=mg+m,, p=msmy/M, ,
and myy is the electron(hole) effective mass along; qq Y(Z,r)=2 Yj(r)ek?, (7)

= wl/c, wherew is the photon frequencyy is a phenomeno- !

logical dampingE, is the semiconductor gap energy, and ~ where Re;>0 and Imk;>0 due to decay and propagation
is the background dielectric constant. In the following weconditions, explicitly related to each other due to finjte
assume an isotropic potenthd}(r). However, our approach Substituting Eqs(6) and (7) into Egs. (1) and (2) we
can be easily generalized to any anisotropic interaction.  obtain

E(Z)=2 E;e?, (6)
I
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21,2
2 _ 2M M
i Hel 1)+ Eg=ho—iy|Y(N=M3DE;, (®) ko= \/?(haﬂriy— Eg)—;xz.

Ej(—K’+a5ep) = — dpMY;(0). (9)  On the cut two different values @ correspond to one and

We solve the system of equatiot® and(9) with the help of f[he sames, (and_kc) : Thus, the solution of Eq¢8) and (9)
is a linear combination

the bulk exciton one-coordinate Green'’s function which sat-
isfies the following equation: _
9¢a Yo =EM7G (% i1)+(1- 9)G(x iN]. (15

[Hedr) —E1G(Er) = 4(r), Equation(9) now yields the condition for the coefficient,
RN R o , ; instead of the dispersion relation.
with G(&;r)=G(&;r,r'=0). The BC's for the Green’s func- inste . X .
~ Opticall t S) stat =v). For th
tion are the absence of exponentially growing term&iat (ii)) Optically inactive (non<S) states {=v). For these

- _ . states
r—oo, At the same time has the asymptotic behavior

- E,=Y,(0)=0
G(&rnxe ™, r—w,
and
where

Y (N)=C,e,(r), (16)

2 M 2u .
x= \/_ ?g: \/Mk2+ ﬁ(Eg_ﬁ‘”_W)- (10 where ¢,(r) is the wave function of a noB-exciton state
(bound or scatteringwhich satisfies the Schdinger equa-
Then tion

Rex=0. Y Aled 1) @,(1) = E,0,(1). (17
The presence of the square root, Ef0), in the Green’s
function means the existence of a cut in the comgiglane,
starting from the pointc=0 and going to infinity. As alk
points of the cut contribute to the Fourier expansions Eg)s. _ \/ZM .
and (7) (see below, the trajectory of the cut is unambigu- k,= ?(f“"“y_ Eg—&)-

ously determined by the BC's f& and Eq.(11) as follows:

The wave vector is again determined by Et0) as follows:

(18

N Note that for the continuum no8-states the wave vector
x=x;=%*iN, O0s\<o, (12)  takes the same values as on the &tk .
Finally, combining Egs.(14), (15), and (16), the full

with the real parametex. Note that the “plus” or “minus” . -
in Eq. (12 corresponds to different values of the Green,Selectron hole amplitude and the electric field have the form

function (as well asx) defined on different sides of the cut.

As £ is one and the same for two differes, it is betterto  y(z,r)=>, EpeikpZMG(%p )
switch from€ to x in the argument of the Green’s function, P

in order to distinguish its two different values on the cut, n _
G(x, ;r) G(x ;1)

[of ;

D*(ke,w) D (kg,)

ikeZ
G(x;r)=G(&Er). +qutdkcB(kc)e M

After such an analysis we conclude that there are three _
possibilities fork; contributing to Eqs(6) and (7). +$ C,e%%e,(1), (19

(i) Isolated polesk, (j=p) satisfying the dispersion rela-
tion of the bulk polariton,

ko= a5z Ky, ), E(Z)= Eeikpz+fd|3keikc2—
2= 26 (Kp, ) (2) % . _ dkBke) o ()
where the bulk exciton dielectric functiafn(k, ) is related
to the Green'’s function in the standard way, B 1 1 (20
e(k, ) =&yt M2G(x,0); (13 D™ (ke )
x(Kk, ) is given by Eq.(10). The solution takes the form ~ Where
Yo(r) =EpMG(5p;r). (14 D*(ke,®)=qde ™ (K, ) —kZ, (22)

(i) Points on the cutj=c). The wave vector is deter- ande* is defined by Eq(13) with %= x_ ; E. is renormal-
mined by Eqs(10) and(12) as follows: ized toB(k.) for conveniencdcf. Egs.(15) and(19)].
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B. Microscopic boundary conditions: Minimization of the 10" g : : : ; 5
exciton polarization on the boundary ; 'S o B avs
----1Sonly s
In Sec. Il Awe have Fourier-expand®dZ,r) andE(Z), 10° £~ Ewenstaies //
expressing the-dependent factors il in terms of bulk ex- > 1. 4
citon eigenfunctiongfor S states combined into the Green'’s g 3 3
function). However, the coefficientg,, B(k.), andC, are 3 i
still unknown and should be determined applying the BC's, 8 3
Egs.(3)-(5). c C
To satisfy the BC’s, Eq(3), let us require thatY(Z,r)|? ._g : 3
reach its minimum on the bounda®=Z4(r). In other ) i A
L = e All states:
words, we minimize the form o 10¢ e Anet0
® fe e N25O
2 2z O 1p° L —e— N=250
W=fdr|Y(Zs(r),r)| =(&W9), (22) R 3
o 10° ¢
quadratic in E E
Ep 1.5 -1.0 -0.5 0.0 0.5 1.0
k
=| B(ke) Energy (Ry*)
C, FIG. 1. Wi, divided by maxy(Z,2)[%a% , calculated for a semi-
. . . infinite crystal with parameters equal to bulk GaAsy (
and subjected to the additional condition =0.05 meV) with an account for only theSistate(dashed curve
- - all even stategdash-dotted curye and all bound and scatterin
(£a)=1, (23 .

states, using different numbers of discretization points in the con-

resulting from Maxwell’s BC's, Eq(5). The scalar products tinuumN (dotted and solid curves

in Egs. (22 and(23) contain the necessary summation and
integration, according to Eqg19) and (20), The integral

operator and the vector are defined in Appendix A.

to which degree the boundary condition, E8), is fulfilled.
The calculations are made within the 1D model with the

Finally, the minimum problem

contact electron-hole interactioffor details see Appendix
B). At energies below the band galpw<Ey (E<O in Fig.

SW 1), the numerical solution of Eq24) is quite stable and does
==0 not depend on the number of discretization points in the
2 continuum,N, for N>50 (cf. solid thick and dotted curves
with the condition Eq(23) leads to the integral-matrix equa- At increasing energy, the solution becomes more and more
tion unstable, so that a larger frequency requires a lahyéo
provide satisfactory accuracy. In fact, near the band gap
Wé=oa, (24)  Whin 9rows suddenly, and convergency is not achieved even

) o at the rather fine discretization bf= 250 points. We believe
whereo is the Lagrange multiplier. The latter can be set t0that more sophisticated numerical algorithms could be de-
o=1 in the first stage, the vectdrbeing finally adjustedby  vised which work in the continuum as well.
the proper factgrto the normalization condition, E¢23). The minimization of the wave function on the boundary

We have reduced the polariton problem to the first-ordefin order to satisfy the microscopic Bg'sias been already
Fredholm equatior(24) with the index of summation and used in Ref. 11 for the 3D Coulomb half-space polariton
integration running through the poles, the cut, and all 8on- problem. However, the contribution of the scattering states
eigenstates of the bulk exciton. A similar but slightly modi- has been neglected there completely. As argued in Ref. 28,
fied procedure is applied to the slab geometry in Sec. Il Ghese contributions are expected to be of minor importance
(see below Although Eq.(24) has a rather simple linear for CdS semi-infinite crystals. However, as seen from Fig. 1,
form, it may be prone to numerical instabilities and completein GaAs structures they play an important role. In fact, below
loss of information since the kernel is not diagonally domi-the band gap, the dashed curimund states on)ylies far
nated. By discretizing the continuous variables we convertbove all other curves where the continuum is taken into
the integral equatiorf24) into a matrix equation, which is account. Such a qualitative difference between CdS and
subsequently solved via Gauss-Jordan elimination with pivGGaAs parameters might be due to the larger exciton Bohr
oting (see, e.g., Ref. 27 radius and the larger difference between electron and hole

The integrated square modulus of the polarization miseffective masses in GaAs. Above the band gap, the dashed
match minimized on the boundai¥p,, is plotted in Fig. 1 curve finally crosses the solid thick curve, and tig dp-
as a function of the excitation energy». In order to check proximation gives even better accuragyill of the order of
the relative accuracy, we have chosen to divide this value b20%) than our calculation including the continuum. This
the maximum of the amplitudeY(Z,z) in the form  might be related to the above-mentioned convergency prob-
maxY(Z,2)%a% . The normalized quantity serves as a measurdems.
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The dash-dotted curve in Fig. 1 is the result of a calcula- _ , _
tion which accounts for even states only, i.e., the sum over Eeo(Z)=2, E [e %+ SékP(L_Z)]ﬁLJ dk.B(k)[e'e?
poles and the integral over the cut in E@9). Surprisingly, P out
the accuracy of this calculation turns out to be even worse 1
than for 1S only. However, the comparison with the full cal- +sdkeb=2)] - .
culation (solid thick curve reveals another basic feature. D" (ks,®) D (k¢ o)
Whereas in bulk semiconductors the nBiexciton states are f the sjab is surrounded by vacuum on both sides, Mawxell's
optically inactive, in rea_l systems Wlth boundaries their rolegc’s have the fornicf. with Eq. (5)]
becomes crucial for optical properties. In fact, although non-

S states do not appear in the expression for the electric field, E¢o(0)

Eq. (20), they contribute indirectly t&(Z) through the BC'’s Eeo(0) + i’q =1, (29
for Y(Z,r). The latter, in turn, depends d#,, B(k.), and 0

C, and is minimized with respect to all of them simulta- the reflection and transmission being described as

neously. r=E¢(0)+Ey(0)—-1,

(28)

C. Slab geometry t= Ee(O) _ EO(O) .
Consider a semiconductor slab occupying the are&0

<L (L is the slab thicknegsThe interface where the micro- ~ The matrix elements ofV can be found in the same way

scopic BC’s, Eq(3), should be satisfied now takes the form as in half-space geometry. Their analytical expressions are
given in Appendix B for the special case of the 1D contact

—Bnz or L+pBz if z<O, potential, calculated for both half-space and slab geometries.

Zy(2)= z or L—Bz if z>0 (29
Be P IIl. ABC MODEL

where B, n=me /M. Compared to semi-infinite crystals,  In this section we develop an approach based on the ap-
there are both copropagating and contrapropagating waves proximate center-of-maséc.0.m) boundary condition in-

the slab. The simplest way to solve the slab problem is t&tead of the exact one: The functi@g(r) in Eq. (3) is as-
divide the electric field and polarization inside the slab intosumed to ber independent. At first glance, this

even and odd parts, approximation is equivalent to the ABC's introduced by
Pekart namelyP=0, whereP is the macroscopic polariza-
E(Z)=E«(2)+Eo(2), tion. However, in our approach this condition is applied not
only to the ground state of the bulk exciton, as it is usually
Y(Z,r)=Ye(Z,r)+Yo(Z,1), used, but to all parts of polarization produced by bound and

and to apply the procedure described in Secs. Il A and Il B tg°cattering states.

even and odd problems separately. As follows from the sym- L€t us expand the electron-hole coherent amplitude into
metry properties, bulk exciton states

Eeol2)=SEeolL-2), vzn-\3E P@em o

YeolZ,1)=8YeolL—=2Z,—71),
where the eigenfunctiong,(r) satisfy Eq.(17) and consti-
where tute a complete set; takes all possible quantum numbers of

{ +1, even, both S and nonS states. From Egg1) and(2) we get
S:

“1. odd. (26) P"(Z)+K2P,(Z) = — M*E(2), (31)

The expressions foY and E take the form

E"<Z)+qést<Z>:—qéi MPLD., (32

YeolZ,1)=2 E [e*0?+sd s DIMG(x,;r) v
P

where
+ | dkB(k.)[e™e? 2M
J st M=\ e 0M,
+sdkeL-D7 A G(x 1) _ G(x; ;1) andk, is given by Eq.(18).
S ! D" (ke,w) D7 (K¢, o) The BC's for the c.o.m. motion take the form
Y(Zs,r)=0. (33
+$ C [e* —se " D]p (1), (27 As z, does not depend an Eq.(33) can be satisfied only if
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P.(Zy)=0 (34  where the coefficients of the homogeneous part are formally

o ~ defined as
for eachv. In other words, it is assumed that the polariton

c.0.m. and relative motions are decoupled on the boundary. hom_ [[- 4,2 iqyzys
One should note that the n@statesfwith M, = ¢,(0) En= fo (A eMf+A_e 9ur(2)dZ. (40
=0] do not produce the macroscopic polarizati®Z)
= MY(Z,0) and thus are neglected in the present model. O®n the boundaries we have
the other hand, as is shown in Sec. I, even in the strict

approach, the contribution @& states can be combined into E(0O)=A,+A_,
the Green's function; see Egd.9) and (20). Thus, it is ex- ) )
pected(and we show it belowthat the final results depend E(L)=A,e%t+A_e ot (41)
only on the bulk exciton dielectric function, E@L3), all the Finally, combining Eqs(38)—(41) and taking into account
material information being concentrated in. the fac,t that
First, we consider a semiconductor slab and derive the
exciton polarization, expanding it into slab eigenmodes. The IM,|2
expressions for half-space geometry follow automatically as s(k,w)=8b+$ v
a limiting case of infinitely wide slab. k- ki

[cf. with Eq. (13)], we arrive at
A. Slab geometry

For a semiconductor slab, occupying the areazZb<L, i <« E0)—(—1)"E(L) 7
the BC's, Eq.(34), read BD)= & 2 — 5 kg™t (42
n=-x QOS(kn ,0) —Kg

P,(0)=P,(L)=0. (39 The series in Eq(42) describes the electric field within

the slab. It converges everywhere exc@ptO andZ=L,
where the equation should give identity and thus is practi-
cally useless. To complete the use of Maxwell's BC’s and to

Let us expand®,(Z) into slab eigenmodes as

PV(Z)zz P, nun(2), (36 calculate reflection and transmission one should also con-
. siderE’ on the boundaries. Taking the derivative of E4p)
where the orthonormal functions and using a regularization proceduisee Appendix ¢ we
obtain

2i sin(k,2) n
u,(Z —T, Kn L

satisfy the differential equation

L
E'(Z)=—— > [E(0)—(—1)"E(L)]

n=—o

2 XM iknZ
Un(Z) ki (2)=0, Belkn,0) K2

the same boundary conditions as H85), un(0)=un(L) \yhere the series is now convergent both inside the interval
=0, and thus constitute a complete set for the class of funcy_ > | 21d on the boundariezg=0 andZ=L.

tions specified by Eq(35). Being a solution of inhomoge-
neous differential equatioit32), the electric field can be
expressed as a superposition of homogeneous and inhomo-
geneous parts, Treating the half-space problem as a limiting case of an
extremely wide slabl—o and switching to integral&,,
—(L/7)fdk, we deduce from Eq42)

B. Half-space geometry

E(Z)=A €92+ A_e 92+ > EMu(2), g1=doVen,
n

3 . B(k eikZ
37 E(Z)zf dk————— 1 5 (43)
with the inhomogeneous part also satisfying E§5), -=  goe(k,w)—k
whereas the coefficientd.. of the homogeneous part are with
fixed by Maxwell's BC’s. From Eqs(31) and (32) we get
i
2
: B(k)=—E(0)k. 44
gm____% 2$Mvpm, - (k)=—E(0) (44)
qOSb_kn v
In Appendix C we consider a more general case of mixed
M* _ ABC’s, Eg. (C1), which, compared to Pekar’s ABC's, Eq.
n=— ——— (ER™+EN), (39  (33), contains bothP and P’, connected via the model pa-
ki —kn rametera. If a—, Eq. (C1) reproduces Pekar's ABC's,
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whereasa=0 results in ABC’s, suggested by Ting, Frankel, semi-infinite semiconductors, in the limit M —o, the ex-

and Birmaf and, being applied to all bound and scatteringciton wave function of the ground state is purelyRtype

states, yields Eq43) with strictly on the boundar§® The importance of the noS-
states is also confirmed by our calculations based on the

1
B(k)= ;E’(O). exact theory of Sec. Il.

This result exactly coincides with that obtained in recent IV. RESULTS AND DISCUSSIONS

paper by Hennebergeron the basis of aad hocassumption The two different approaches developed in Secs. Il and 11l

that the nonlocal part of the exciton polarization is Iocallzedare tested with the help of a simple 1D model with the

within a thin surface layer, so that the inhomogeneous CUlSlectron-hole interaction of contact type. Within such a

model, the Green’s function and the matrix elements appear-

thickness of the surface layer is of the order of the excitonﬁ1g In the strict approach can be derived analyticalige

Bohr radius a% (see also Sec. IV so that the long- Appendix B. Corresponding results for the 3D Coulomb in-

B . teraction within the ABC model have been published
wavelength limitkag <1 assumed in Ref. 21 cannot be ful- 5sewheré®

filled. Moreover, the model of two independeftiayers on The dielectric function, Eq(13), which is the essential
the boundariesj(Z) and §(Z—L), proposed in Ref. 21 for  pyiding block in both approaches, depends on two material

calculat]on of the electric field in a slab means in reality no arameters, the background dielectric constptand the
correlations between the boundaries and gives a result com-

pletely different from Eqs(42) and(C6), where the infinite longitudinal-transverse splitting .+ (proportional toM 2).
sum has the physical meaning of multiple reflections of po-B€ing effective adjustable parameters, they depend on how
lariton waves from the interfaces. many states are taken in the bulk exciton susceptibility, since

they have to account for the the contribution of the rest
which is not treated explicitly. We relate these parameters to

the measured quantities, andA 1 using the following con-
Although the strict and ABC approaches are based onlitions:

different BC's, the results, Eq20) and Eq.(43), are closely
correlated. In fact, the polds, in Eq. (20) are the solutions R e(0,m+iy/h)]=¢,
Of 1 1

C. Comparison with the strict method

D(k,w)=0, R e(0.0+Ar/1)]=0,
whereD (k,w) is defined by Eq(21) and coincides with the

denominator of the |r_1te_grand in EG3). Further, the Inte- The calculations of reflectivity and transmission are done
gral along th? real axik in Eq. (43) can be transformed into for finite slabs and the semi-infinite case with parameters of
a sum of residua st=k with buk GaAs: &,=12.66, A;=0086meV, E,
27iB(k.) =1519.0 meV, fw;=1514.8 meV, m,=0.0667,, my
T M E =0.45m, andy=0.05 meV.
Dy(kp, ) P For half-space geometry we have found an excellent
. . agreement with the results by Victet al,'® where specific
and the_lntegral along a contour surrounding the cut, th‘?)roperties of the 1D contact potential together with the point-
latter being equ_al to the '”t?g“’?" in EQO). The same thing dipole approximation led to substantial simplifications in the
can be (_jone with the polarlzatld?n(Z)_. ThL.'S’ we br!ng the analytical part of their approach. However, the method of
expressions folE(Z) and P(Z) obtained in two different  pat 16 turns out to be extremely hard when applied to the

models to one and the same form. ObviouBl{k) is differ- 51, geometry and is practically impossible for the realistic
ent in two approaches. Also, it has the analytical form, Ed3p coulomb electron-hole interaction.

f(44),din the A_BC”m?deI, vr\:hereag in the gx;ct treatment it is Figure 2 shows the polarization amplitudg®(Z)|
ﬁun num;egci y’ roArg t, € gatzx equstld |4)' Howedver, d =M|Y(Z,0)| in a semi-infinite crystal, calculated within the
the case of Pekar's ABC's, E¢44) can be also reproduced i+ annroach and the ABC model with Pekar’s B@sick

within the strict method, setting in the model assumption and thin curves, respectivalyfor different frequencies of the
Bo=Br=0 external electromagnetic fief.In order to compare the re-

e Ph ™ sults of both approaches we have chosen to shift the Pekar
which means a nonrealistic conditionmf=m,= 0 together  polarization by a proper distanad which lines up approxi-
with finite M and u at the same time. mately the maxima and minima in both curves. This is at the

We would like to note that the most explicit disadvantageheart of the exciton dead-layer concept proposed by Hopfield
of the ABC model is the neglect of ndstates, which fol- and Thoma$and used in several succeeding papers. Further,
lows automatically from the approximate BC's. It is known, we introduce into this model a new adjustable parameter,
however, that the contribution of these states to the opticalvhich is the dielectric constant of the dead laygf. This
properties of real systems is very important. For instance, iparameter effectively accounts for some finite contribution of

wheref w, is the (transversgexciton 1S energy.
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1
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Energy (Ry*)
0.0 1 1 1 L
0 8 10 FIG. 3. Reflectivity|r|? (@) and phase arg] (b) of a semi-

4 wn O
z (aB ) infinite crystal, calculated within the 1D contact potential with pa-
FIG. 2. Polarization amplitudP(Z)| of a semi-infinite crystal, '@meters equal to bulk GaAsee the tejt in the exact approach

calculated in exactithick curves and ABC (thin curves ap-  (thick curves and in ABC models: Pekatsolid curves, TFB

proaches. The amplitude of the electric field in the incident beam i$d@shed curves and Pekar with dead Iaye{dotted* curves The
taken to be unity. The photon energy and the dead-layer thickneg@@rameters of the dead layer are tf‘kemag 0.8%5 , £4/=13.5.

are, respectively(a fo—Ey=—Ry*, Al=0.%%; (b) iw—E, | ne Pphoton energy is measured in"Ry

——05 Ry, Al=0.6%% ; (c) iw—E4=0, Al=0.5a% .

and exact polarizations becomes unimportant and the use of

the actual exciton polarization within this layer and shouldthe Pekar ABC model is justified.
be, in principle, larger than the background dielectric con- Having introduced the mixed ABC model governed by the
stantey, . mixing constantr (Appendix O, we have studied the behav-

As seen from the polarization plots in Fig. 2, Pekars!Or Of the optical response for any complex®! We found

ABC's, even augmented by a dead layer, give only qualita 2 S8 BLC0CS, Tt Ll BN e
ti t with th t It. M the dead:. ) -
Ve agreemen: Wi © exact resu oreover, the ded Fig. 3), whereas TFERHenneberger)sABC’s (Fig. 3, dashed

layer thicknesa\| has to depend on frequency. The reason is - X
N . o 2 curves lead to reflectivity and phase spectra which are close
that the oscillations in the polarization originate from the

mismatch between the resonant exciton and the photon eneto— the !Imlt M=z, i, without §pat|al dispersion. At the

. I . dame time, the TFB spectra deviate strongly from the exact
gies. The oscillation frequency vanishesiat w [panel@]  ;nes Mixed ABC's with finitea give either results some-
and grows with the detuning—w; [panels(b) and (©)].  \yhere between Pekar's and TFB ABC’s or turn out to be
ConsequentlyAl decreases as the frequency of the eXCitO”'completely unrealistic.
photon beating increases. Note, however, that within a siz- Looking closer we have to ascertain that in half-space
able frequency region around the exciton resonan¢es of  geometry, Pekar’'s ABC'’s give an optical response which is
the order of the exciton effective Bohr radia§ and char-  siill far from the exact one. Even with the improvement of a
acterizes the depth of polarization inhomogeneity near thelead layendotted curveg there is no way to matcteflec-
semiconductor surface. As soon As is small (due to pa- tivity and phase simultaneouslyith the exact results, in
rameters of a particular semicondugt@ompared to the agreement with the findings in Ref. 23. We conclude that no
characteristic length where the polarization changes signifiABC can give fully satisfactory results, and the strict micro-
cantly, a§<(\/;bw/c)*l, the difference between the Pekar scopic BC’s should be used for an adequate description of
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-1.5 -1.0 -0.5 0.0 0.5 1.0 0.0
Energy (Ry*) 15 1.0 05 0.0 0.5
-0.95 . . . ; Energy (Ry”)
I (b) FIG. 5. Transmissiofit|? of a 600 nm slab calculated within the
-0.96 1 1D contact potential with parameters equal to bulk GaAs, in the
o7l 09995 7,«»’% exact approackthick curve and in Pekar's ABC model witksolid
™ -0.97 :—: y 1 and dotted curvesand without(dashed curjescattering states. The
~ I | N e I parameters of the dead layer are takenAds-5 nm,e,,=18.5.
@ -098 41,0000 [T e 4 . .
177] The photon energy is measured in*Ry
[+ r 0.5 0.0 0.5
T 099 ;
a - | culation, however, this tends to wash out any structure in the
1.00 : ] continuum. Recent experimefitson high-quality GaAs
I r samples have shown very-well-resolved oscillations in dif-
-1.01 . . . . . ferential transmission way up in the continuum. This implies

-1.5 -1.0 -0.5 0.0 0.5 1.0 a rather small homogeneous damping.
Energy (Ry*) Transmission spectra of a 600 nm slab calculated with
o ) bulk GaAs parameters are displayed in Fig. 5. The most
FIG. 4. The same as in Fig. 2, calculated in the exact approacRparacteristic features in the polariton spectra of a slab are
(thick curves and in Pekar's ABC model witlsolid curves and e oscillations due to the quantization of the exciton center-
without scattering statelashed curvgs of-mass motiof:**7 Qualitatively, the transmission is ex-

. . . . . __pected to have structures at the energies
polaritons and their optical properties in bounded semicon-

ductors. h2m?n?
To analyze the influence of the continuum we plot in Fig. E,=fo+ > (45)
4 reflectivity and phase calculated within the exact approach ML

o oL 028 i descrbe the slab quanizaton of €50, -0 ex.
(1S éxciton statp, being energetically well separated from citon, _neglectlng its relatlv_e motion. As follows from the
the continuum onset, which reduces the importance of thanalyucal form of the electric field in a slab, He2), calcu-
. ’ . , . fated with Pekar’s ABC'’s, the maxima and minima®BfZ)

scattering state¥. However, Pekar’s ABC’s applied to all are expected near the frequenciesatisfying
states or to § only lead to qualitatively different resultghe
difference is quite visible in the inset to Fig. 4, solid and e(K,,w)=0.
dashed curves Near the continuum onset, the scattering n
states cause a break in slope, in particular in refle¢pamel  Neglecting the contribution of all exciton states other than
(@], whereas the & curves are completely smooth. This 1S leads toiw=E, from Eq. (45). However, the transmis-
break, however, is an artifact and does not appear in theion maxima or minima do not follow strictly E¢45), even
exact calculatiorithick curve$, which accounts properly for in the 1S-only Pekar model, but dipslay systematic shifts.
the scattering states. As a rule, the discrepancies between the different models

As we have already mentioned, our numerical scheme iare more striking in the slab geometry and especially in the
not well converged at energies above 0.5 Rgee the inset continuum. Compared to the half-space geometry, the Pekar
to Fig. 4). This calls for more sophisticated numerical meth-transmission spectra calculated with and without scattering
ods to solve Eq(24) than used in the present work. How- states significantly differ from each other above the band gap
ever, note that in the calculations, we have taken an extcf. solid and dashed curves in Fig. Both curves, however,
tremely small  broadening y=0.05 meV, being deviate strongly from the exact orthick curve. Only the
approximately 1% of the effective Rydberg. Larger broadeninclusion of a 5 nm dead layer witk,,=18.5 (much larger
ing moves the convergence limit further into the continuum,than in half-spaceinto Pekar's ABC modelFig. 5, dotted
with a significant improvement of the results. For a slab cal-curve gives reasonable agreement with the exact results,
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both in overall slope and positions of extrema. Neverthelesanodel is an improvement. However, serious discrepancies
the oscillation amplitude is a factor of 2.5 too small, and thestill remain between exact and ABC spectra, such as different
detailed shape is still unsatisfactory. We would like to stres®scillation amplitudes in the slab transmission or different
that the TFB ABC’s and Henneberger’'s modbking com-  background values in the half-space reflectivity. Moreover,
pletely different in the slab geomejrfail to give any oscil- two adjustable parameters, the dead-layer thickness and its
lations in the transmission for any reasonable nonzero dielectric constant, have to be added to the ABC model.
These additional parameters are usually unknown and fre-
V. CONCLUSIONS quency dependent. Thus, for a correct evaluation of the po-
lariton optical spectra it is necessary to account for the exact
We have developed an exact method which allows one tehicroscopic boundary conditions.
calculate reflection and transmission spectra of exciton po- | poth approaches the continuum states of the excitonic
laritons. The microscopic boundary conditions have beempectrum contribute to the microscopic polarization in an
converted into a minimization problem leading to an explicit way. Analyzing the fraction of the continuum in the
integral-matrix equation. Within the 1D contact potential, theexcitonic polarization, we have demonstrated its significant

kernel could be derived analytically, and the subsequent nuypie in the optical properties, especially above the semicon-
merical solution was possible. This method can be appliedyyctor band edge.

without too much effort, to the Coulomb or any other poten-
tial, and including an anisotropic kinetic energy.
On the pasis of approximate bogndary conditions app.lied ACKNOWLEDGMENTS
to the exciton center-of-mass motion, we have generalized
the ABC model to include all bound and scattering states, One of us(E.A.M.) has been supported by Deutscher
and have obtained analytical results for half-space and slaBkademischer Austauschdien®ATO Grant No. 325-A/99/
geometries. The model has been extended to the general sifd2854, INTAS (Grant No. YSF 00-40 and in part by the
ation of mixed ABC'’s. Russian Foundation for Basic Research and by the Russian
We have shown that the calculations within the ABC’s Ministry of Science. The authors are thankful to A. Stahl, G.
and the exact approach lead to results which differ in prinGoger, K. Henneberger, and S. G. Tikhodeev for useful dis-
ciple. The inclusion of an exciton dead layer into the ABC cussions.

APPENDIX A: MINIMIZATION OF THE EXCITONIC POLARIZATION ON THE SEMICONDUCTOR BOUNDARY

To satisfy the boundary conditiori8) let us minimize the following form, quadratic i, , B(k.), andC,:

w=> E;Wll(kp,kp,)Ep/—i—Ep: fcutdkc,E;;le(kp,kc,)B(kc,)+§p‘, j: E} Wid(Kp.k,/)C,
p'pl V’

+ ]S B ke ko Byt | dke [ dkeB* (kWatke e Bk + | akE B owisth, K1
cu p’ cu cu cu

v

+$ D c:wgl(kv,kp,)Ep,+$ f dkc,C’;Wsz(kV,kc,)B(kc,)Jri j: C* Wk, K, )C,r (A1)
v P v cut v v

where o . L,
Voo(iN,iN") Voo(iN,—IN")

Wil e ko) = —— oo ST
D *(kc)D (kc') D *(kc)D (kc’)

Wll(kplkp’):VOO(%p:%p’)v Voo(_|)\,|)\,) +VOO(_|)\:_I)\,)

D *(k))D" (k) D *(ko)D (k¢)'

VOO(%pai)\’) _ VOO(%pa_i)\,)

D+(kc’) D_(kc’) W13(kp,kyr):V01(%p,%Vr),

WlZ(kp Ker)=
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Voi(iN,2,)  Vor(—iN,x,) 1+k,/ 1+k./ 1
Witk ) = i) JolZho) > e | gkl
D**(ke) D** (Ke) P2 cut 2 |[D*(k)
W. kv,ky/ =V viXyr),
33 )=Vii(2,,%,) B — B(ky)=1. (A5)
Wji(k21k1):VVﬁ(klyk2)- (A2) ¢
For the half-space problem the matrix elements have th&he minimum problem results in ER4), where the opera-
form tor W has the matrix elements, EGA2), and contains nec-
essary summations and integrations, in accordance with Eq.
Vool %1 ,%5) = M zf dr G* (51:1)G (1) (K ~k)Zs(@) (Al). The vectora constituting the normalization condition,
Eq. (23), takes the form
_ . —i(K* —k,)Zg
vm(x,xy)—Mfer*(x,r)qoyme k202, - 1+K5 /0 -
2
Vu(%y,%w)=f dr @} (r)e,(r)e” (o k2l a=| 1+ki/qo| 1 1 . (A6)
(A3) 2 [D™*(ky) D *(ko)
where 0
2M _ M .
k= -5 (hot+iy—Ey+ — 2, (A4) In the slab problem the matrix elements are analogous to
h M Eq. (A3), the only difference being in the exponential factors
coming from the coexistence of copropagating and contra-
2ué, propagating waves, ER7) (we do not show the expressions
%)= - 22 due to their obvious form The vector appearing in the nor-
malization condition for even and odd parts, E¢&3) and
Maxwell’'s BC's yield (29), has the form

— k* . k* -
1+ —p+se'kp"< 1- —p)
0 Jo

k* ok k* 1 1
1+_C+SékcL(1__C>] _ ) (A?)
do o/ J | D**(ky) D *(ke)

0

g0~

ands is given by Eq.(26). 1
G(x;2)=0 "t ————e 7, (B2
xag—1
APPENDIX B: MATRIX ELEMENTS IN THE EXACT
APPROACH: 1D CONTACT POTENTIAL wherex is given by Eq(10). The odd(non-S) eigenstates of
the Hamiltonian, Eq(B1), appear only in the continuum,

In this section we derive the matrix elemer‘vt§102, Eq. having the wave functions

(A3), within the model of the 1D contact electron-hole inter-

action, o
o\(2)=2isin(\z), O0=<\<o, (B3)
- h? 9 and the eigenenergies
Aed )= 5 ——03(2), (B1) Jenene
M 9z
%
&= .
whereQ =2a%Ry*, a% and Ry =#2/(2uaj?) are, respec- Mo 2u
tively, the exciton effective Bohr radius and Rydberg energy.
The exciton Green’s function has the form In half-space geometry, the matrix elements take the form
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Voo #1,%2) = M?Q ?(xfaf—1)"*
X (285 —1) " Uoo 21, %2),
Voi(1,%) = MQ ™ (5] af —1) " Ugy( 1, %)
—Uo(x1,—%2)],

Via(21,%2) =Uqa(51,%2) —=Uqa(1, = %2) —=Uqs(— %1, %5)

FU (=21, — %), (B4)
where
Us. o ) !
g40. % ’% = .
72 TR et 1 Bk — k)
1
+H(—1)7te— : " :
%] + %o+ 1Bp(ky —ky)
(B5)

wherek; and x; are related to each other through E0) or
(A4), Be,h: me‘h/M .

In slab geometry the matrix elements ¥f and Voo,
have the same form as defined in E¢42) and (B4), but

U, are different,
Ugo,(%1,22) = 2[ 1y o, (Bei 21, %2)
+(=1)7723, o (Bnix1,%2)],
(B6)
where

Joy0,(Bi 21, 22) = K(Bi %1, %5, Ky Ko) + (= 1) 71772
Xe_i(kz_kz)LK(ﬁi%l,%z,_kly_kz)
+S[(_1)Uleiik*{LK(,3;%1,%2,_kl,kz)

+(_1)ozeik2LK(B;%11%2!k11_k2)]a
(B7)

1— e ilx] +xa+i Bk —kp)IL

K(B;%1,%2,K1,Kp) = . (B8)

Note that the factor of 2 appears in E¢A7), (B6), and(29)
due to artificial separation of the slab problem into even (
=1) and odd §=—1) parts.

APPENDIX C: THEORY WITH MIXED ABC'S

In this section we derive the electric field in a semicon-
ductor 0<Z<L (slab or Z=0 (half spacg postulating
mixed ABC'’s in generalized symmetric form

P(0)=aP,(0),

PL(L)==aP,(L), (CD

PHYSICAL REVIEW B 66, 235319(2002

wherea is a state-independent complex parameter. Note that
a=» yields Pekar's ABC'’s, considered in Sec. Ill, white
=0 leads to TFB ABC'’s.

Following Kiselev et al® we introduce the eigenvalue
problem

u”(Z)+k?u(Z2)=0, 0<Zz<L, (C2)
with the following BC's:
u’(0)=au(0),
u'(L)=—au(L). (C3
A complete set of orthonormal functions
(a+ik)e*?—(a—ik)e 'Kz
u(2)= (C4)

V2[2a+L(a’+k?)]

and discrete eigenvaluds=k. , satisfying the dispersion
equation

okl +oz—lki
Tatiky’

is the solution of the problem, Eq&C2) and(C3). Note that

k.=0, (C5)

k=—k also satisfies Eq(C5) but corresponds to the same

wave functionu(Z) =u*(Z)=—u(Z), so we consider only
k=0.

ExpandingP,(Z) into slab eigenmodes as in E§6) and
decomposinge(Z) into homogeneous and inhomogeneous
parts as in Eq(37),

E(2)=E"™™MZ)+E"™(Z),
with

EfMZ)=A, 917+ A_e 1017

Ei““<Z>=2k Eu(2),

we arrive at Eqs(38)—(40). The coefficientsA.. are found
from the following set of equatiofcf. with Eq. (41)]:

E(0)=A,+A_+E"(0),
E(L)=A,e%t+A_e 10t EM(L),
E'(0)=iq.(A, —A_)+aE™(0),

E'(L)=ig.(A, et —A_e i) —oEM(L),
where we have used EqC1). Excluding E™(0) and
E™(L) we find

_ xL(a+iq;)— xo(@—iq,)e "9t
T (a+igy)2eit—(a—igy)Ze it

_ Xola+idqy)e91t =y (a—iqy)
- (atigy’e™t—(a—igy)eTt
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where These peculiarities come from the fact tHatZ) together
with E’(Z) satisfy some BC's other than those for the basic
xo=aE(0)—E'(0), functionsuy, Eq. (C3). To remove these discontinuities we
subtract fromE’(Z) the following term:

xL=aE(L)+E'(L),
= +ik,)elk=2
X==Xo+ XL - > X+2(“ - —)2 o
[
The electric field takes the form * atL(a®+ki)

which vanishes everywhere<dZ <L except two points on
the boundarie® where it has the same discontinuities as in
Eq. (C6). After such a regularization we arrive at the series

E(Z)=A e W+ A_g '0?

ik. Qle(k.,w)—0q?
gx

otk ggee 0) kS e (2) Gk @) (atiko)ek?
(a+ik.)e =2 ke X 9o (k= ,0)— k2 2a+L(a?+k2)’
X et L2t k)" (e7)
2a+L(a?+k2)

) ~which is now well behaved everywhere and can be used,
where we have extendéd to all possible values, both posi- together with Eq(CB), for calculations ofE andE’ on the
tive and negativgcf. with Eq. (C5)], using the antisymmet- poundaries, necessary for Maxwell’s BC's and evaluation of
ric form of u,, Eq.(C4). E™"(Z) can be also expanded into the reflectivity and transmission.

u(2) according to Eq(40). Then, As soon as the slab is getting wider, the roots of the dis-
] ] .7 persion equation(C5) locate closer to the real axik
E2)= y. ik (atik.)e™= . =an/L, with n integer, for any finitea. However, if
ro qgg(ki ,w)_th 2a+L(a?+ kZi) Re(a) <0, there are two “additional” roots nedt= *ia.
(C6) Switching to integrals in EqC6) and(C7) and taking into

Note that in the special cases of Pekars=>) and TFB account thak ... =0, we find for half-space geometry
(a¢=0) ABC's, the expansion, EqC6), is nothing else than KkekZ
the standard Fourier series, the eigenvalues having simple g(z)= _f

+XoR(2),
analytical form (a—|k [g3s(k, ) —k?]
T T 2 ikz
- +9_ 44— 1 (> goe(k,w)e
Ke=0 =27, =40 E%ZFD—O—J dk——— —+xoRu(2),
Pekar, T == (a—ik)[qpe(k,@) —k]
a
k= L 3 where the term® andR’ are responsible for the additional
roots,
a aw
k+:if’ i3f’ R(Z)=R4(Z)=0, R€a)=0,
TFB. .
o aa a
k_=0, x2—, *4—, ... R(Z)ZL
L L 20 N2, (i
a‘+qpe(ia,w)
L . Re a)<0.
The series in Eq(C6) is well behaved everywheres0Z 202¢ (i @, w) €%
<L, for any finite «. However, its derivative has disconti- Ri(Z)= ————5———
nuities atZ=0 andZ=L which show as divergent series. a“+ope(ia,w)
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