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We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with
mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata,
exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density
matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon
interaction on the general dynamical behavior of the charge distrib(gmarizatior) of such systems. We find
that the system response to the driving field is improved at low temperdandfr weak phonon coupling
before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of
polarization, we explore the linear entropy of the system in order to gain further insights into the competition
between coherent evolution and dissipative processes.
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[. INTRODUCTION not, and only Coulomb interaction from cell to cell is pos-
sible. Elemental cell designs have been experimentally real-
The size reduction of devices in microelectronics, and thdézed using metal islands, and logic operations AND, OR, and
fundamental limitations encountered or anticipated due tdNOT have been implemented using arrays of such cells suit-
quantum mechanical effects, have turned attention to undepbly arranged=°®Also, a clever implementation of QCA us-
standing nanometer scale structures. Systems where intrindRd magnetic elements has been recently repdrted.
quantum mechanical effects can play an important role and_Although originally proposed as “classical” and near dis-
could even be used to advantage are under intense scrutirfjPationless bit operators, QCA could in principle also be
One recent prominent example of such systems are quantui$ed to implement a quantum computer, as discussed
dot cellular automata. recenthy? if the entire array system is coherent enoughd
The original concept of “cellular automata” was intro- for sufficiently long timeg In either the classical or quantum
duced asw-dimensional arrays containing a finite amplitude OPeration mode, QCA computer@s well as any othgr
(information per cell (or site) and connected to one another should.keep errors to a manageable limit. Of_ sp_ecw_;ll signifi-
according to certain rules. This simple definition, however.cance in these systems, decoherence and dissipation are ex-
governs the evolution of the entire array in rather complexernal sources of “error” originating in the coupling between
ways! Quantumcellular automata are a natural generaliza-the system and its surroundings. Other aspects that have to
tion of this concept, where each site contains a quanturR® considered as possible sources of loss of control or desir-
mechanical probability amplitudfeln 1993, Lentet al2 pro- able operation are imperfections in the_ do_t fab_rlcat|on, stray
posed the use of cellular automata architectures, composé@iarged impurities, and the role of switching fields or driv-
of nanometer-scaled quantum devicéguantum dots  ©rs. Itis then of interest to study the Qyn§m|9al gvolutlon of
coupled through carefully chosen hopping and Coulomb inthe QCA and monitor the charge density dlstrlbgtlon over t_he
teractions, to encodelassicalbinary information in the dif- basic cell elements under the influence of a driver cell, with
ferent charge configurations of the system. The typical basi@n emphasis on the effects of imperfections and dissipation.
element in thesguantum-dot cellular automatéQCA) is a The charge conﬁgur_ano_n |§ convenlently m_onltored through
cell consisting of four quantum dots located at the vertices ok-entet al's cell polarization® which is essentially a measure
a square and connected via tunneling barriers to their neigtf the degree of alignment of the charges along the diagonals
bors[see Fig. 1a)]. For two mobile electrons in each four- ©Of the square cell,
dot cell, Coulomb repulsion between the electrons causes the
charge in the cell, in the ground state, to align along either of P p1tp3—(p2tpa)
the two diagonals. The symmetrlpal arrangement of the sys- p1+patpstps’
tem means that these two “polarization” states are degener-
ate and can be used to represent logic 0 and 1 as the bits Wwherep; is the charge density at sit¢see Fig. 1a)], and the
this system. The degeneracy is split by an appropriately deaumbering of the sites is in clockwise order. In previous
signed driver field which allows the control of the polariza- works, the effect of dissipation on QCA has been included in
tion of the ground statéand typically implemented as a sec- the quantum equations of motion in a phenomenological
ond identical cell with externally controlled polarization way, through a damping parameter. This model is shown to
Tunneling barriers between dots are designed in such a wagive qualitatively correct results only in the low temperature
that intracell tunneling is possible, bintercell tunneling is  limit, as will be evident in our calculations. Also, the tem-
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1.2 S = e b v coherence in these and general quantum systems. As such,
1 o o o o e A A A AAD-B-O A-A-A-A- QCA then provide a model condensed matter system where
i A &_%%_Q_Q_Q_%_Q_Q&_é:g:z:z: dynamics and decoherence can be explored in detail. To this
g ‘2:2‘2‘O‘?r‘f‘i’ﬁ:i:i:o‘o_o_o'o_ effect, we use a quantum open systems appréach®to
B e | study the dynamical evolution of theduced density matrix
E)S(t) of the system, and evaluate the competition between

g

0.6 4-0-0-0-0~0-0-0-0-0~0-0-~0-0-0-0-0-0-g O
~H-0-0-

1 target driver coherent(driver cel) and incoherenfthermal bath field ef-
047 4 1 0 e fects in the response of the basic cell. We study the effects of
0.2_' al I:I P, =+1 (a) temperature, electron-phonon coupling intensity, and struc-
| 36792 @ O tural asymmetry on the behavior of the polarization as a
0.0 : : —C : : : function of time. In particular, we discuss the asymptotic
0.00 0.02 0.04 0.08 0.08 polarization after switching events, and once the driver is in
t a stationary configuration, for different temperatures and
structure parameters. An analysis of asymptotic fixed points
in the resulting dynamics provides information on the sys-
tem, as we will explicitly demonstrate and discuss later on.
1.0 SR AT AT A A A A A A e A A A B A measure of the mixed character of a system described
0.8 :,:?;9;O~§:é:é:§:§—><—x—><—><—><—><—><—><-><—><—><— by a density matrixp is provided by thelinear entropy
] T +“O‘O~o -0 s[p]=Tr{p—p?}.1" This quantity, which can be thought of
" 0.6 ) NE ey - ~O-o oo as the lowest order approximation to the von Neumann en-
] D\D‘E\\D\ T N O~ tropy, is also called thelempotency defear the purity of a
0.4 5 D\D\D\D\D\ T state. Notice that the linear entropy is zero for a pure state,
02d (b) D\D\D\D\D\D since T{p}=Tr{p? =1 in that case. Nonzero valuessjp]
) t=0.03 ~O~o_g, then provide a quantitative measure of the nonpurity of the
0.0 r T r T r T r T T state of a system. When monitored in time, the linear entropy
0.0 0.1 0.2 0.3 0.4 0.5 provides a convenient measure of how fast the loss of quan-
S tum purity occurs in a system in contact with a bath, or the

increasein coherence under appropriate “pumping” condi-

tions, as we will discuss below. Other usess{)ﬁ] include
the study of quantum manifestations of chaotic behavior in a

FIG. 1. (a) Energy level structure vt for a target cell with a
driver at +1. The energy is in units o¥/=1 meV, and§=0.

Sketch at bottom: model QCA with four quantum dots per cell. TwoCom lex svsterm® We explore the influence of temperature
charges are allowed to tunnel between nearest neighbors, with P y ' P P '

probability t. The driver cell on the right indicates a state with é’]ectron-phonon coupling intensity, and driver cell switching

polarizationPg;;,e,= +1. (b) Level structure vs dot size asymme- times ons[p], in order to understand the process of dissipa-
try 8. Notice the anticrossings fa?=0.1 and 0.2 in excited states. tion in the QCA system.
Separation to drivec=a in both panels. We find in all cases that high dissipation and asymmetry
influence adversely the response of the basic cell, as one
perature dependence of the cell polarization was studied fowould intuitively anticipate. However, the behavior with
the case of a cell composed of two Coulomb-coupled doubléemperature is quite subtle. For example, low temperature
dots!® and the contribution of relaxation processes to theresults in better switching and more faithful following of the
speed of the cell response was discussed using stochastldver by the target cell. Higher temperatures eventually pro-
equations for the population differences and dipole momentduce quenching of the polarization and a dynamical evolu-
of the double dots. The effects of imperfections were considtion which basically ignores the driver. On the other hand,
ered before, with~*3and without* dissipation, and found to size defects in the dots result in a lagging of the switching
have strong effects in the dynamical response, by delaying drehavior with respect to the driver, and a faster switching
slowing down the response of the target cell, and producingvindow. This is produced by the pinning of a given polar-
a less than optimal desired polarization. In this paper, weézation state by the energetics of the size defect, so that the
include the important effect of the environment through adriver potential has to apply a strong force before the target
microscopic model of electron-phonon interactions. The thereell can follow. A similar lag and/or pinning, as well as a
mal bath is modeled with phonons in equilibrium at a givensudden switch of the polarization, is seen in the case of two
temperature, and structural asymmetries are introduced viarget cells being driven by a single cell. A given cell in the
size variations of the quantum dots. middle of a chain would clearly have to deal with the influ-
We should point out that in addition to their relevance asence of more than one cell, resulting in a more complex
a computational paradigm, QCA arrays provide a conceptupotential landscape and corresponding dynamical behavior.
ally simple, yet intricate and subtle, quantum mechanicaWe also find for a single cell that in the case of low tempera-
system in which to study fundamental coherence and dissture or weak dissipation the ceattcoversdynamical coher-
pative processes. The parametrical requirements to makance, due to the “pumping” of the driver, clearly overpow-
practical QCA devices yield a finite set of two-particle statesering the thermal bath. Other regimes will be discussed in
which can be manipulated to yield insights into the loss ofdetail.
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The behavior of the polarization of the basic cell as aat sitej, V;; is the Coulomb interaction between siieand;j
function of time when the polarization of the driver is fixed, in the target cell, andlV;; is that between sitein the driver
as well as when it changes linearly, was briefly discussedell [with charge densityn(t), which in general changes in
recently'” There we studied the symmetiioo defect case, time] and sitej in the target cell. A generalization to multiple
but taking account of dissipation in the system. In what fol-cells is straightforwardly given by intercell interactiols.
lows, we present a full report of the QCA dynamical behav-Following the notation of Lenet al.* the distance between
ior under different electron-phonon and temperature condinearest-neighbor dotéength of the square siflés a, while
tions, and analyze the linear entropy of the system duringhe separation between the target and driver cells, located
these processes. side by side, is [see the inset of Fig.(&)]. Notice that we

The paper is organized as follows. In Sec. Il we describeonsider spinless electrons, although considering two-
the model for the entire system, composed of the QCA angarticle states with given total spin is also possible in our
the thermal bath. We use an extended Hubbard Hamiltoniaformalism.
to describe the Coulomb interactions present in the system The Hamiltonian for the reservoir is given by a set of
[target cells) plus driver cell. The thermal bath is repre- h5rmonic oscillators of frequencywy, Hr=Sfwbiby,

sented by a set of harmonic oscillators, and the electron-h Bt (b tion (annihilation o ¢ f
phonon interaction enters as emission and absorption oynere k (b are creation (annihilatio perators o

phonons during electron tunneling events between quantur;l')]honons. Finally, the electron-phonon interaction is given by

dots in the system. A Markovian approach to the dynamicaf’1 general expression

evolution of the reduced density matrix is presented in Sec.

I, where the transition rates for the electron-phonon interac- Vsr= 2 X aiclc;(bi+by), 3

tion in this system are explicitly obtained. In Sec. Il we ke (i

present and discuss the behavior of the polarization and “I"torresponding to emission or absorption of a phonon for
ear entropy, as function of relevant parameters, with speciajectron tunneling events and with matrix elements given by
emphasis on effects of dissipation and asymmetry. Here wehe coefficientsy;; . Notice that the physics of the phonon
also discuss the dynamics of multiple cells, as the QCA ulinteractions in the system is well described by the model
timate devices involve multiple cell geometries. Finally, wechosen here. Although phonons are in principle present ev-

summarize and discuss our results in Sec. IV. erywhere, and not only during tunneling events, they only
provide an “on-site” energy renormalization/shift and broad-
Il. MODEL ening, which will be ignored here, as it yields a uniform

A correction to the entire cell. In contrast, the phonon-assisted
Consider a problem described by the Hamiltonien  tunneling events described Bysg significantly affect the

=Hgs+Hg+Vsg, where the subscripSandR stand for the ~ dynamics of the cell, as they provide an effective coupling
system and reservoir, respectively. In our cd$edescribes mechanism among the different levels in the spectrum and

the target cell in the presence of a driver cell which providedloW for energy relaxation processes.
external driving fields on the system. The interactions are V& @ssume, as in Ref. 19, that the quantum dots have a
introduced via an extended Hubbard Hamiltonian with bothcharacteristic sizé=50 nm defined on a GaAs/fGa, _,As

intracell and intercell Coulomb repulsion terms, as well agheterostructure, with an effective mass =0.067. The typi-
intracell tunneling: cal distance between nearest-neighbor dota3s100 nm,

and the dielectric constant of the medium=sl2. These
A A L o values give an estimate of the Coulomb repulsion between
Hs=2 €nj— X (t;clc;+c.c)+ > Vinin nearest-neighbor dots af~1 meV, which is taken as the
] (i = unit of energy in this paper. One should notice that the first
) excited single-particle state in each dot lies at quite a high
+ 2, Wynf(on; . (2)  energy,A~(%2/2m*)(2=/d)?~9 me\sV, so that one can
h safely consider a single orbital per site, although additional
single-particle levels in each dot could in principle be in-
luded. Also notice that the on-site Coulomb energy is quite
igh and prevents the double occupation of the dot, so that
our basis set of states ignores that possibility. We should

nally controlled. Hereg; is the confinement energy level in ! '
. . . comment that successful implementations of QCA elements
the jth quantum dot(QD) in the target cell. In this term, . L . . - . .
usingmetallicislands are in a multiple-orbital regime, since

ﬂgﬁi‘?é% dbo; gﬁgrr?gr?nesrl;z oernlgrcga;l ﬁ]ofgﬁwaggtlzns_ire Ini'n that caseA <V for typical 1-um-size islands. The condi-
_ 5 wheres is the measure of the imperfection (,julc(a o dif- tion of overall electrical neutrality of the targénd drivejy
ferént dot size or a change in the Iocalpenvironment aigl cell is included in the calculation by distributing a uniform
the energy of the othaidentica) dots. The amplitudé~ i positive background charge 2e throughout the cell€/2 in

. i

the tunneling matrix element between nearest neightipfs each doy, which results in multipolar fields from/at each cell.
9 gnog Notice that we study the behavior of the target cell inter-

ot “ i ihilati : i . . ) . .
on the same cellcj and ¢; are creation and annihilation acting with the driver via Coulomb interaction onfgio in-
operators for sitg, n,—=cJ-ch is the electron number operator tercell tunneling is allowed This interaction is described by

The first three terms describe ttaggetor active cell, and the
last term describes the Coulomb interaction between th
electrons in the target cell anddriver cell which is exter-
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the last term in the HamiltoniaH g [Eq. (2)], and assumed The first term on the right represents reversible dynamics
to be time dependent vin’(t). For a fixed driver and no (“coherent” effects, in terms of the transition frequencies
dissipation, the solution can be found by a direct numericalss =(Es— Eg)/#A, while the second term describes relax-
diagonalization ofHg. In this case, the effect of various ation (irreversible dynamigs In this part, therelaxation ten-
parameters on the polarization was studied to show that thgor”Rss,mn can be written explicitly as

energy spectrum is strongly influenced by even small de-

fects, which affect the bistability of the céfl.In the case of

a time-dependent driver, we have to take into account that ~
the driver promotes transitions to intermediate excited states.

In fact, the dynamical competition between the driyeo-
herent terms in the equation of motjoand the bathdissi-

pative term$ causes a nontrivial time evolution of the sys-
tem. We have studied different “driving schemes” but will

5nm(1_ 5ms)\7vsm_ 5ms‘snsgs \7Vks (s= S,)

(s#s').
(6)

HereW,, aretransition ratesfrom state/m) to |n), which,

~ ¥ss OmsOns’

mostly consider here the case of a driver with a lineardn terms of the properties of bath and target cell, can be

switching of its polarizationP ye(t) =1—2t/7, for times

O0=<t=<r, wherer is the switching time. This corresponds to
the configuration of charge densities in the driver cell of ~

nd(t)=n3(t)=1—t/r and n3(t)=nj(t)=t/7. For the four-
dot cell arranged on a square, we take=V for nearest-
neighbor dots, while all others scale with thdinverse

separation. We also set d|| equal to a constaritbetween
nearest neighbors onlyot to be confused with time

Markovian master equation

In the interaction picturel(, the evolution of the total
density matrix is given by

ap(t)
ot

- —%[\“/Sé(txﬁ“)(on

1t - N .
_ﬁfodt’[VS)R(t),[vga(t’>,p<'><t'>]], (4

expressed as

W =2—7TD2 2D Sl 2N(
mn 72 |g(wmn)| (wmn){| nml N(wmp)

+| S L1+ N(@m 1}, @)

where S, are matrix elements of the electronic part of the
target cell interacting with the phonon reservoir, Eg);
n(w)=(b'(w)b(w))=(ef**—~1)"1 is the average phonon
number in the reservoir at temperature- 1/kgB. The first
term (ocﬁ) describes the absorption of phonons, while the

second ¢n+1) describes phonon emission, both at a fre-
quency given by the system'’s transition enedgy,,. Notice

that the matrix elementS,,, embody the appropriate selec-
tion rules for the different states involved in the transitions.
For simplicity, we consider a model where the amplitude of
the interaction does not depend on the electronic states of the
target cell, and has the form;;=Dg,, whereD is the
constant prefactor of the electron-phonon interaction and is

where V) is the cell-bath interaction operator, and the ex-determined from the deformation potential motfelwe

pansion is valid up to second order W)

Our approach uses a closed and time-local equation f

the reduced density matrixRDM), p<"(t)=Trr{p" (1)},

or

should emphasize that this model introduces dissipation ef-
fects only at a finite temperature, and cannot account for
elastic decoherence effeéfs.Here g,=g(wy) ~wi? de-

scribes the frequency dependent amplitude of the electron-

where the trace is carried out over the degrees of freedom (Hhonon interaction in the deformation potential model:

the reservoirR. The following fundamental assumptions are

made in this approacl{l) the systenfs and reservoiR are
initially uncorrelated, which impliesp(0)= ps(0)pr(0)
=p((0); (2) a stationary reservoir at temperatuFewith
equilibrium density matrix pr(0)=exp(-Hg/ksT)/Tr{exp
><(—|3|R/kBT)}, exists at all times; an(B) the correlation time

7. in the reservoir is much shorter than characteristic time
for the RDM system to change appreciably, meaning thaf

D(w)~ w? is the density of states in a Debye model, and
omn is the transition frequency between staies and|n).

It is clear that other phonon channels with different disper-
sion relations and/or matrix elements exist, but we believe
that other modes would not be as effective in introducing
dissipation in this systerte.g., optical phonons occur at en-

grgies too high to couple effectively nor qualitatively

hange the results discussed here. In @&}. ys¢ iS a so-
called nonadiabatic parameter whose real part gives a contri-

5Dt~ 5M ift — i 2 . . . . .
ps(t')~ps (1), if ' —t=7., while the state of the reser- , \1jo 15 the time decay of the off-diagonal density matrix

voir at timet’ has already no correlation with the state atgiements, and is then directly responsible for the loss of co-
time t (the Markov approximation Thus one arrives at the porence. These parameters can be written in terms of the
time evolution equation for the RDM elemeritietails of the

derivation can be found in the literatdfé9, which in the
Schralinger picture is given by

transition rates by Re&ey = (S: Wist Z2e Wi )/2. The

imaginary part ofysy is an intrinsic relaxation rate for each

transition, which we assume negligible, s =0, as it

could be incorporated in the transition frequenciegy .°

;’S(t)ss’: _iwss’;’S(t)ss"l'z T?ss’mnz’s(t)mn- (5) . It is interesting to point out that Ed5), written for the
mn diagonal elements, takes the form
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A ~ A - ~ the system araw; =1 meV, so thath/w,,=1 ps. This
PS(t)Sszg Wsmos(t) mm— PS(t)SS% Wins, ®  would requirer to be a few nanoseconds for the adiabatic
switching regime to be valid.

The numerical solution of the RDM is used to calculate
the dynamics of the polarization in the target cell, as the
physical observable of interest here. The dynamical behavior
of P(t), calculated from the charge density in each site as

pi(t)=Tr{ps(t)n;}, and of the linear entropsg{ ps], are then
oA ) determined for a given set of parameters. In order to obtain
Also note that the conditiops(t)sy =0 in Eq.(5) corre-  petter insights in the problem, we also carry out a calculation
sponds to “fixed points” of the dynamics of the system, asof the fully coherent dynamics, ignoring the phonon thermal
both the terms related to coherenceg)ss for s#s’, as  bath [settingD=0 in Eq. (7)]. In the coherent limit, the
well as the diagonal terms which determine the population irelevant parameters for the dynamical evolution are those
each state, do not change in time. These fixed point valuegefining the structure, including the tunneling amplitugle
depend only on the properties of the transition rates and thghe separation of target and driver cellthe switching time
energy spectrum of the systeias the external drive reaches of the linear driverr, and the size of the dot asymmey if
a stationary configurationand provide a direct determina- any. For the dissipative problem, on the other hand, it is clear
tion of the dissipation times produced by the thermal bath. Ithat in addition to the structure features, the important pa-

which has a simple interpretation: the probability of finding

the level|s) occupied at timet, pg(t)ss, increases due to
transitions from all other levelgm) to |s) (first term) and
decreases due to transitiofiem |s) to all other levelsm)
(second term

can be seen from E@7) that the transition rates satisfy rameters are the temperature of the thermal Fatand the
amplitude of the electron-phonon interactibn Of course,
W, o thg phqnon density of states, as we!l as the interaction de-
= =exr{ - ) , (9) tails, will also play a role in the evolution of the system. Our
Winn keT model parameters provide an adequate and realistic descrip-

tion of these systems in semiconducting Q&A.
which guarantees the detailed balance condition. It is impor-
tant to emphasize that we have derived an explicit expression

for the transition ratedV,,,, which would behave at low . RESULTS AND DISCUSSION
temperaturesT —0 and/or low dissipatiorismall D?) like
the form used by Zozoulenket al, in a qualitative way?*
Notice, however, that the normalization condition in Ref. 11
is an added requirement in their phenomenological approac
while it is included naturally in our treatment. We should

also mention that the detailed balance ratio in E). will o -
. , . - ditional level splittings, as one would expect. We should
determine the fixed point values p§ and all the correspond- 5int ot that the polarization of the ground state follows that

ing physical properties, including the different state popula- - d_ ; ; ;
tiognsp. éince 'E)hege will in genergl be asymmetric thg golarpf the driver,Pcg’~1, t.)Ut increasing hoppingreduces that
ization value of the QCA is reduced, and, as we will see Iatervalue somewhat. The first excited state Rdg=—1, and is

this also results in a limiting value for the linear entropy. Aéeparated from the ground state by a gap-.2 in the

detailed analysis of the asymptotic fixed points in terms ofange shown(our energy units ar&/=1 meV). The four

the structure parameters will also shed light on the dynamica{l1Igher states have vgnlshmg polar|zat|on,. as the charges are
evolution of the system, as we will discuss. ocated on neighboring sites along the sides of the square.

The solution of master equatidh) for the time evolution ;I'he baS|cloper2t|on of (;het (?C,tb\ rtehquwtehs ad@:ﬁatlc evc_)tlutlon
of the RDM is carried out numerically using a Runge-Kutta rom a pofarized ground state to the other with opposite po-

fourth order algorithm. We ensure, by a proper choice of théarization. Transitions to higher excited states allow for nona-
integration step, that the gener:al normalization propert iabatic terms which yield to depolarization of the target cell.

~ ) L ) ) Figure Xb) shows the influence of a “defect” in dot size.
Tr{f_’S}_l for the RDM 1S Sfat'Sf'Ed at all times. Notice t_hat Here the dot at site 1 has an energy lower than the others by
an instantaneous basis is incorporated in the calculation t

; . ; n amounts (corresponding to a larger dotincreasing this
take into account the evolution of the ground state induce ( P g ger d g

; : . . ) symmetry produces a strong shift of the spectrum, and per-
by the time-dependent driver configuration. The basis funcf1aps most important for QCA operation, a change of the

tions are then defined by the eigenvalue/eigenvector problem, |, ization of the first excited state. This is apparent in the
of the coherent Hamiltonian of the target ceflg(t)|m)  anticrossing seen in Fig(t) for 5~0.1, where an opposite
=E(t)|m), for a given timet while the driver is in the polarization state takes over as the first excited e
process of switching, and the instantaneous energy in theefect then will produce a pinning of the polarization when
target cell iSES(t). Also notice that the characteristic time operating the QCA if thes is small, and even prevent the
variation of the driverr is long compared with the target switching of the target cell altogether & is large.

cell's natural frequencies,;:, so that™>#%/w, . This is When the polarization of the driver cell changes linearly
effectively the requirement for an adiabatic switching of thewith time, the polarization of the target cell evolves as well,
driver. As is clear in Fig. 1, the characteristic frequencies ofas presented in Fig.(@ for the nondissipative case, and for

Figure Xa) shows the level spectrum in the target cell for
a fixed driver polarizationP y,,e,= 1, as shown in the inset.

e see that the fourfold symmetry of the structure and con-
sequent degeneracy is broken by the driver, even=a.2°
Moreover, increasing the intra-cell tunnelihgroduces ad-
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FIG. 3. Time evolution of the target cell polarization with a
linear switch drive,7=2.5 ns, for different asymmetry. () No

=25 ns, for different temperature&) Symmetric cell with four ~ dissipation D=0). (b) At temperaturel =T,. Notice that the tar-

identical dots §=0). (b) Asymmetric cell with one lower energy 9€t cell 1agging the switch of the driver increases watt(c) Long-
dot, 5=0.1, at site 1. In all plots;=0.03 andD?=0.05. time asymptotic polarizatior?, vs temperaturd for different §

values. In all panels,=0.03 andD?=0.05.

FIG. 2. Time evolution of the target cell polarization as the
driver cell switches linearly fronP g;e=+1 to —1 in a timer

different temperatures. One can see that the polarization ghore symmetric level populations, more equal electron prob-
the target cell follows the driver very well, and switches apilities in all dots, and consequently the depolarization of
smoothly over a short time window~(7/5) centered about the target cell. It is somewhat surprising that even this low
the time whenPg;e~=0. This general behavior is not af- temperature would yield such strong quenching of the QCA
fected for different values of the switching timewe tested polarizability[a value which of course depends also on how
(over a wide range within the adiabatic regime; results nostrongD is in Eq.(7)]. Figure Zb) shows an example of the
shown.? We see that the response of the target cell deterioeffects of asymmetrya quantum dot at site 1 has lower
rates for increasing temperature. At low temperathireT energy than the restfor the same parameter values and
=1 K, the target cell has a slightly decreased polarizatiortemperatures as in Fig.(&. We observe that, at low tem-
after the driver is fully switched, and the switching time of peratures, the response of the target cell lags behind the
the cell is not greatly affected. However, for=5T,, the  driver, although the switching time is not affected substan-
target cell polarization is quenched after 0.5 ns and ignoresally. However, the target cell reaches asymptotic values of
even a fully polarized drivei(Notice that the natural unit of the polarization which are smallén absolute valugthan in
temperature in this problem is the difference in energy bethe ideal symmetric case. In this case too, changionger a
tween the first and second excited states, when the driver igide range does not affect this lagging behavior. It is evident
fixed atPg,e= 1 [Fig. 1(@)], as this transition has one of the that for T=5T, the target cell is almost completely depo-
smallest natural frequencies;;, and it produces depolar- larized, despite the “help” of the larger dot which pins the
ization of the cell, as discussed above. In particular, we tak@olarization of the ground and excited statesste-1 (and

as characteristic its value for=0.03 in the symmetric case, induces the lag seen at low temperatiires

T,=0.0862<1 K. Temperatures are compared to this natu- Figure 3 shows more of the effects of asymmetry and
ral scale in the problemThe deterioration of the response of temperature on the response of the target cell. Figéag 3
the cell with temperature is consistent with E§), where  shows the results for no dissipation, and Fi¢h)3hose for

the different rates at low temperature would favor transitionsT =T,. From these figures, we see again that the important
to the ground state, while, as temperature increases, trangffect of asymmetry is to produce a lag or delay in the re-
tions up and down become equally probable. This results isponse of the target cell as asymmetry increases. On the

235305-6



QUANTUM DYNAMICS, DISSIPATION, AND . ..

PHYSICAL REVIEW B66, 235305 (2002

1.0 -0.6
(a) o e
074 L L e -
. ~. T = T1 ________ //
0.5 —t=0003 | | ST .
1S I RS 1=0.03
) [ (s 1=0.10 0.8
\
c \
.0 .
T 0.0 ™ -0.9
N .
= N\
© b
© v,
o 1 ~, -1.0 4
i N
-0.5 4 \ N T T T T T T T T T
\ e
N
|~~~ - _——-———| 04 B
' 1 o
1.0 T , T -0.5 P B
0 1 2 3 4 1 =1 - - L7
time (ns) 067 T il
' ' N _ _ 0.7 7
FIG. 4. Time evolution of the polarization in a linear switch n_ i -
driver, 7= 2.5 ns(see the arroy Increasing tunneling between the -0.8 L7
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other hand, the effect of temperature is to decrease the T y T y T y T y T

asymptotic polarization in absolute value associated with the
delocalization of electrons within the cell. Also notice in Fig. 1
3(b) that for finite T, the polarization of the target cell con-
tinues evolving in timgdeteriorating, even after the driver
is fully polarized. In all cases, the polarization reache
asymptotic valuesP, (long after the driver has stopped
changing which are a manifestation of “fixed points” of the
system dynamics for the quantum dot populations. These
long-time values of the polarization depend on temperaturexcited states become more likely. Asncreases substan-
(and indirectly on structure parameters and energy Igwasls tially, the polarization decreasés absolute valuedue to
shown in Fig. &), for different asymmetries. The nearly full the delocalizing effects of both tunneling and dissipation, as
depolarization of the target cell at high temperature is evi-expected. However, far<0.02, the possibility of transitions
dent and anticipated. What is somewhat counterintuitive isvhich in fact populate the ground state increases, and there-
the fact that the depolarization increases with asymmetry, a®re slightly improves the asymptotic polarization of the sys-
the pinning that yields the lag now assists in the depolarizatem. Qualitatively similar results are obtained in the asym-
tion by favoring the population of the states with the largermetric casgFig. 5(b)], although with lower absolute values
dot. of the asymptotic polarization in this case, as discussed
Figure 4 shows the effects of tunneling coupling intensityabove(Fig. 2 and 3, and a shallower oscillation.
t on the time evolution of the polarization for a symmetric ~ We have also studied the dynamics of two target cells and
cell system ¢=0). We see that increasing hopping betweendriver in line (Fig. 6). There are a number of interesting
dots first introduces a smoother transition following the lin-features in this case. We notice first that the switching for
ear driver (-=2.5 ns) and a better polarization. Increasing both target cells lags behind the driver considerably, as the
however, delocalizes the charges in the quantum dots ancklls switch only afterP g, =75%. Moreover, the switch
reduces the polarization of the target cell, as one can sesccurs over a much shorter time scale than for the single
from the long time limits in the figure. In order to look more target cell & 7/25). This change is understandable if one
closely at the nonmonotonic behavior®f, we analyze this thinks that the target cell closest to the driveell 1) is in
guantity as a function of the tunneling couplinip Fig. 5a). essence between two cells with different polarization and has
We find that, forT=T,, P, attains a minimum value &t its wrong polarization somewhat pinnéthis is behavior
~0.02. From this figure we can see that the drop in polaralso seen in other wotk. Increasing the temperature 1o
ization at small values of is due to dissipation processes: =T; makes the switching a bit smoother although still with
We expect that at lowvalues the electrons would tend to be a sudden change, and with not as good final polarization.
well localized at the corners of the céfjround statg giving  Notice in particular that the asymptotic polarization of target
P==1, depending on the driver. This is indeed what iscell 2 is poorer than that of cell 1. As the temperature in-
observed at low temperatures. However, as temperatures inreases tdl = 2T, the target cells barely follow the drive,
crease, depolarization transitions from the ground state tand the polarization of cell 2 is basically zero at long times.

FIG. 5. Long-time asymptotic polarizatioR, vs hoppingt at
Sdifferent temperatures, as in Fig. 4. The nonmonotonic behavior is
seen only forT~T;. (a8) Symmetric cell §=0). (b) Asymmetric
case,6=0.1. In both panelsD?=0.05.
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FIG. 7. Time evolution of the linear entropy or purity of the
system in a linear switchy=2.5 ns at different temperature®)
Weak coupling,D?=0.05, t=0.03. (b) Strong couplingD?=0.5,
t=0.03. Notice the entropdrop after 7/2 at intermediate dissipa-
tion.

FIG. 6. Polarization of two active cells and a linear driver, as
shown in the inset of pandb). (a) Coherent dynamicgb) At T
=T;. (c) At T=2T,. Notice that cells lag the driver, except at
higher temperatures. The more distant ¢&)l switches more sud-
denly than cell 1, and has a smalleg. In all plots,t=0.03 and

D?=0.05. N A
electron-phonon couplingFig. 7(b)], s[pg] first increases

and then decreases. In these cases, we see a maximum in the

It is clear that control of the tunneling process as the “sig-linear entropy curve at /2, when the polarization of the
nal” is transmitted down the line would be essential in driver cell goes through zero. Notice, in fact, that whenever
proper operation of QCA arrays. Such “clocked switching” P, .~0, the level spectrum in the target cell shows a great
was discussed by Lent and co-workers as a solution to steeleal of degeneracies. As the driver turns negatfee time
cells into better complianc®.Coherent simulations of such after 712) the splittings are reinstated and the effect of the
steering}* as well as experiments in metallic QCAyerify  driver seems to be one of a coherent “pump” which pro-
that this is a good operating scheme. duces a drop in the purity, even as dissipative transitions are

Knowing the time evolution of the density matrix we can present. In other words, the thermal dissipation seems to de-
also calculate the linear entropy of the QCA sys&#mg], to  crease with respect to the coherent transitions induced by the
monitor the degree of non-purity introduced during thedriver, producing a drop in the linear entropy of the system.
switching process by the thermal bath. In Fig. 7 we show théAfter the driver is stationary, after a time, the thermal
results for different temperatures, for the case of weak antransitions quickly produce the steady state in the density
strong electron-phonon interactions, as measured by thaatrix (or level populationsgiven by the detailed balance
value of D2 in Eq. (7). As in previous cases, the polarization equation(7). For stronger phonon coupling)?=0.5, and
of the driver cell is switched linearly from-1 to —1 in a  high temperaturefFig. 7(b)], the purity of the system dete-
time 7=2.5 ns. In Fig. 7a), the case of “weak” electron- riorates further and the driver is not able to “push” the sys-
phonon couplingD?=0.05, we see that at low temperaturestem back into a more coherent state. Notice that the state of

s[ps] increases monotonically until it reaches a final stable‘maximal delocalization” would be achieved gss;i=1/n,
value. It is interesting to see that &,e=0 Or Pgiver  Wheren is the size of the basis, so that{f}=1/n. In this
=—1 (at 1.25 and 2.5 ns, respectivglpne can see kinks in case, one would obtais=1—1/n, giving 5/6 in our case.
the entropy curve, indicating the switch off of driving forces. This value is still higher than the asymptotic valuesdior
The long time asymptotic value increaseoherence de- the highest temperatures in Figby, so that even then the
creasepwith increasing temperature, as one would expectsystem is not “fully” decoherent.

However, at still higher temperatures and/or for strong Let us explore this competition between dissipation and
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coherent evolution in more detail. Since{gg} =1 is a gen- 3 4
eral property of the density matrix in any representation, one time (ns)
can instead investigate the behavior o{ﬁlﬁ}: 1-9[ps] di-
rectly as a function of the relevant parametérslotice, in FIG. 9. Time evolution for a smoother driver switaa) Trace
fact, that this trace has two contributions of p2 at intermediate temperatur&=T,, showing diagonal and

nondiagonal contributiongb) Trace contributions foil =T,/10.
R R R R (c) Driver (solid curve and target cell polarizations for different
T"Pézz (pé)n :Z (Psn)z"‘; |PSij|2, (10 temperatures. In all panels=0.03 andD?=0.05.
namely, the diagonal and nondiagonal elements of the den-
sity matrix. Comparing the two terms as a function of time,contribution shows even more substantialind less intu-
for example, would give one further insights into the overallitively) in the diagonal terms, which one would expect to be

complex processes, since the behavior of the nondiagon?éss affected perhaps. Since[ﬁ}zl, the drop in the diag-

elements gives information on the evolution of coherence in | TE2 hat th lati f each level
the system. Figure 8 shows the trace as function of time foPn@l terms of Typ?} means that the population of each leve

two values of the temperature, explicitly showing the contri-(psii) has been redistributed and made somewhat more equal

butions from the diagonal and non-diagonal elementfssof (although still much higher than Ehe “maximal delocaliza-
In Fig. 8(2) we see an increase in the contribution from thetion” state discussed above with {’}=1/6).
nondiagona[“coherent") e|ementsy with a maximum 312, It is also interesting to investigate the influence of switch-
exactly compensated for by a decrease in the contributiof'd time and of the function controlling the switching. Figure
from the diagonal elements, as the driver and the bath ar@ shows results for {p3} for a smoother driver transition. In
promoting transitions. Also notice that the values of the di-this case, the driver has no rapid offsets and onsets and the
agonal components before and afté2 are approximately evolution of Py, iS more adiabatic near the ends of the
the samdwith a similar behavior for the nondiagonal teoms  sweep than beforfgFig. 9(c)]. Figure 9b) shows the trace at
Thus for low temperature§=T,/10 [Fig. 8@)], the sum low temperatures, which shows a similar rigkop) in non-
remains approximately constant, equal to 1, and the systewiagonal(diagona) density matrix elements as in Fig(e.

is close to the pure limit witls~0. However, forT=T,, we  However, as the time during whidPy,e,=0 is shorter now
see that this sum decreases with time, due essentially to théhe effectively larger slope in Fig.(8], the window of
corresponding decrease in the diagonal elements. Notice thaariation is also reduced. The higher temperature in Rig. 9
as the driver switches and “pumps” the target cell systemalso shows a narrower time window variation, but an identi-
the off-diagonal coherent terms contribute less to the sum asal amplitude as in Fig.(®). Other runs with different driver
the temperature increasgiss peak value is smaller ifb)  switching slopes follow this behavior too: narrower windows
than in(a), so that the system is less coherent indeadd  for larger slopes neaP;,e~0 (not shown. This would
their contribution for longer times is lower than at the start ofsuggest that the amplitude variation of the diagonal/off-
the switch(time zerg. This gradual decay in the coherent diagonal components is only a function of temperature, while
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the time window over which they vary is a function of how be required for a faithful operation of a chain, so that the
long the driver is close to zero polarization. polarization information is not degraded down the line. We
have also analyzed dissipation effects on the response of the
basic cell through calculation of the linear entropy or purity
. . o of the system. We find that the study of this quantity is a
We have studied the behavior of the polarization of agood tool in furthering the understanding of a quantum sys-
square array of quantum dots with two mobile electrons. Thgem as relatively simple, but still quite subtle, as the QCA
quantum dynamical evolution, in response to a driver cellychitecture. Apart from providing insights as a function of
whose polarization is changing with time in a prescribediime and driver characteristics, the entropy also clearly
manner, has been shown to depend strongly on the switchinghows that, at high temperatures, the basic cell is no longer
or driver characteristics, the symmetry of the cell, and thq, the required or desired final state but in one where the

temperature. Our results show that the asymptotic values Qfp|arization tends to zero and maximizes the entropy.
the polarization in a stationary driver are fixed points of the

system that change with temperature, tunneling probabilities,
and imperfections, but not on driving schemes. The optimal
response of the QCA arrays is affected adversely by tempera-
ture and imperfections, with a strong tendency toward depo- This work was supported in part by CONACYT Project
larization as the temperature or asymmetry increases. O@7702—E. S.E.U. was supported in part by U.S. DOE Grant
calculations indicate that good control of the QCA is only No. DE-FG02-91ER45334. We acknowledge support from
achieved for temperatures of at most a few K. From our twahe Condensed Matter and Surface Sciences Program at Ohio
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