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Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays
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We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with
mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata,
exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density
matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon
interaction on the general dynamical behavior of the charge distribution~polarization! of such systems. We find
that the system response to the driving field is improved at low temperatures~and/or weak phonon coupling!,
before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of
polarization, we explore the linear entropy of the system in order to gain further insights into the competition
between coherent evolution and dissipative processes.
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I. INTRODUCTION

The size reduction of devices in microelectronics, and
fundamental limitations encountered or anticipated due
quantum mechanical effects, have turned attention to un
standing nanometer scale structures. Systems where intr
quantum mechanical effects can play an important role
could even be used to advantage are under intense scru
One recent prominent example of such systems are quan
dot cellular automata.

The original concept of ‘‘cellular automata’’ was intro
duced asn-dimensional arrays containing a finite amplitu
~information! per cell~or site! and connected to one anoth
according to certain rules. This simple definition, howev
governs the evolution of the entire array in rather comp
ways.1 Quantumcellular automata are a natural generaliz
tion of this concept, where each site contains a quan
mechanical probability amplitude.2 In 1993, Lentet al.3 pro-
posed the use of cellular automata architectures, comp
of nanometer-scaled quantum devices~quantum dots!
coupled through carefully chosen hopping and Coulomb
teractions, to encodeclassicalbinary information in the dif-
ferent charge configurations of the system. The typical ba
element in thesequantum-dot cellular automata~QCA! is a
cell consisting of four quantum dots located at the vertices
a square and connected via tunneling barriers to their ne
bors @see Fig. 1~a!#. For two mobile electrons in each fou
dot cell, Coulomb repulsion between the electrons causes
charge in the cell, in the ground state, to align along eithe
the two diagonals. The symmetrical arrangement of the s
tem means that these two ‘‘polarization’’ states are dege
ate and can be used to represent logic 0 and 1 as the b
this system. The degeneracy is split by an appropriately
signed driver field which allows the control of the polariz
tion of the ground state~and typically implemented as a se
ond identical cell with externally controlled polarization!.
Tunneling barriers between dots are designed in such a
that intracell tunneling is possible, butintercell tunneling is
0163-1829/2002/66~23!/235305~10!/$20.00 66 2353
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not, and only Coulomb interaction from cell to cell is po
sible. Elemental cell designs have been experimentally r
ized using metal islands, and logic operations AND, OR, a
NOT have been implemented using arrays of such cells s
ably arranged.4–6 Also, a clever implementation of QCA us
ing magnetic elements has been recently reported.7

Although originally proposed as ‘‘classical’’ and near di
sipationless bit operators, QCA could in principle also
used to implement a quantum computer, as discus
recently,8 if the entire array system is coherent enough~and
for sufficiently long times!. In either the classical or quantum
operation mode, QCA computers~as well as any other!
should keep errors to a manageable limit. Of special sign
cance in these systems, decoherence and dissipation ar
ternal sources of ‘‘error’’ originating in the coupling betwee
the system and its surroundings. Other aspects that hav
be considered as possible sources of loss of control or d
able operation are imperfections in the dot fabrication, st
charged impurities, and the role of switching fields or dr
ers. It is then of interest to study the dynamical evolution
the QCA and monitor the charge density distribution over
basic cell elements under the influence of a driver cell, w
an emphasis on the effects of imperfections and dissipat
The charge configuration is conveniently monitored throu
Lentet al.’s cell polarization,3 which is essentially a measur
of the degree of alignment of the charges along the diago
of the square cell,

P5
r11r32~r21r4!

r11r21r31r4
, ~1!

wherer i is the charge density at sitei @see Fig. 1~a!#, and the
numbering of the sites is in clockwise order. In previo
works, the effect of dissipation on QCA has been included
the quantum equations of motion in a phenomenolog
way,9 through a damping parameter. This model is shown
give qualitatively correct results only in the low temperatu
limit, as will be evident in our calculations. Also, the tem
©2002 The American Physical Society05-1
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perature dependence of the cell polarization was studied
the case of a cell composed of two Coulomb-coupled dou
dots,10 and the contribution of relaxation processes to
speed of the cell response was discussed using stoch
equations for the population differences and dipole mome
of the double dots. The effects of imperfections were cons
ered before, with11–13and without14 dissipation, and found to
have strong effects in the dynamical response, by delayin
slowing down the response of the target cell, and produc
a less than optimal desired polarization. In this paper,
include the important effect of the environment through
microscopic model of electron-phonon interactions. The th
mal bath is modeled with phonons in equilibrium at a giv
temperature, and structural asymmetries are introduced
size variations of the quantum dots.

We should point out that in addition to their relevance
a computational paradigm, QCA arrays provide a concep
ally simple, yet intricate and subtle, quantum mechan
system in which to study fundamental coherence and d
pative processes. The parametrical requirements to m
practical QCA devices yield a finite set of two-particle sta
which can be manipulated to yield insights into the loss

FIG. 1. ~a! Energy level structure vst for a target cell with a
driver at 11. The energy is in units ofV.1 meV, andd50.
Sketch at bottom: model QCA with four quantum dots per cell. T
charges are allowed to tunnel between nearest neighbors, w
probability t. The driver cell on the right indicates a state wi
polarizationPdriver511. ~b! Level structure vs dot size asymme
try d. Notice the anticrossings ford.0.1 and 0.2 in excited states
Separation to driverc5a in both panels.
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coherence in these and general quantum systems. As s
QCA then provide a model condensed matter system wh
dynamics and decoherence can be explored in detail. To
effect, we use a quantum open systems approach12,15,16 to
study the dynamical evolution of thereduced density matrix

r̂S(t) of the system, and evaluate the competition betwe
coherent~driver cell! and incoherent~thermal bath! field ef-
fects in the response of the basic cell. We study the effect
temperature, electron-phonon coupling intensity, and str
tural asymmetry on the behavior of the polarization as
function of time. In particular, we discuss the asympto
polarization after switching events, and once the driver is
a stationary configuration, for different temperatures a
structure parameters. An analysis of asymptotic fixed po
in the resulting dynamics provides information on the s
tem, as we will explicitly demonstrate and discuss later o

A measure of the mixed character of a system descri
by a density matrixr̂ is provided by thelinear entropy

s@ r̂#5Tr$r̂2 r̂2%.17 This quantity, which can be thought o
as the lowest order approximation to the von Neumann
tropy, is also called theidempotency defector thepurity of a
state. Notice that the linear entropy is zero for a pure st
since Tr$r̂%5Tr$r̂2%51 in that case. Nonzero values ofs@ r̂#
then provide a quantitative measure of the nonpurity of
state of a system. When monitored in time, the linear entr
provides a convenient measure of how fast the loss of qu
tum purity occurs in a system in contact with a bath, or t
increasein coherence under appropriate ‘‘pumping’’ cond
tions, as we will discuss below. Other uses ofs@ r̂# include
the study of quantum manifestations of chaotic behavior i
complex system.18 We explore the influence of temperatur
electron-phonon coupling intensity, and driver cell switchi
times ons@ r̂#, in order to understand the process of dissip
tion in the QCA system.

We find in all cases that high dissipation and asymme
influence adversely the response of the basic cell, as
would intuitively anticipate. However, the behavior wit
temperature is quite subtle. For example, low tempera
results in better switching and more faithful following of th
driver by the target cell. Higher temperatures eventually p
duce quenching of the polarization and a dynamical evo
tion which basically ignores the driver. On the other han
size defects in the dots result in a lagging of the switch
behavior with respect to the driver, and a faster switch
window. This is produced by the pinning of a given pola
ization state by the energetics of the size defect, so that
driver potential has to apply a strong force before the tar
cell can follow. A similar lag and/or pinning, as well as
sudden switch of the polarization, is seen in the case of
target cells being driven by a single cell. A given cell in th
middle of a chain would clearly have to deal with the infl
ence of more than one cell, resulting in a more comp
potential landscape and corresponding dynamical beha
We also find for a single cell that in the case of low tempe
ture or weak dissipation the cellrecoversdynamical coher-
ence, due to the ‘‘pumping’’ of the driver, clearly overpow
ering the thermal bath. Other regimes will be discussed
detail.
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The behavior of the polarization of the basic cell as
function of time when the polarization of the driver is fixe
as well as when it changes linearly, was briefly discus
recently.12 There we studied the symmetric~no defect! case,
but taking account of dissipation in the system. In what f
lows, we present a full report of the QCA dynamical beha
ior under different electron-phonon and temperature con
tions, and analyze the linear entropy of the system dur
these processes.

The paper is organized as follows. In Sec. II we descr
the model for the entire system, composed of the QCA
the thermal bath. We use an extended Hubbard Hamilton
to describe the Coulomb interactions present in the sys
@target cell~s! plus driver cell#. The thermal bath is repre
sented by a set of harmonic oscillators, and the electr
phonon interaction enters as emission and absorption
phonons during electron tunneling events between quan
dots in the system. A Markovian approach to the dynam
evolution of the reduced density matrix is presented in S
II, where the transition rates for the electron-phonon inter
tion in this system are explicitly obtained. In Sec. III w
present and discuss the behavior of the polarization and
ear entropy, as function of relevant parameters, with spe
emphasis on effects of dissipation and asymmetry. Here
also discuss the dynamics of multiple cells, as the QCA
timate devices involve multiple cell geometries. Finally, w
summarize and discuss our results in Sec. IV.

II. MODEL

Consider a problem described by the HamiltonianĤ

5ĤS1ĤR1V̂SR, where the subscriptsSandR stand for the
system and reservoir, respectively. In our case,ĤS describes
the target cell in the presence of a driver cell which provid
external driving fields on the system. The interactions
introduced via an extended Hubbard Hamiltonian with b
intracell and intercell Coulomb repulsion terms, as well
intracell tunneling:

ĤS5(
j

e j n̂ j2(̂
i j &

~ t i j ĉi
†ĉ j1c.c.!1(

i . j
Vi j n̂i n̂ j

1(
i , j

Wi j ni
d~ t !n̂ j . ~2!

The first three terms describe thetargetor active cell, and the
last term describes the Coulomb interaction between
electrons in the target cell and adriver cell which is exter-
nally controlled. Here,e j is the confinement energy level i
the j th quantum dot~QD! in the target cell. In this term
possible dot asymmetries or local potential variations are
troduced by changing the energy in a givenkth QD, ek→e
2d, whered is the measure of the imperfection due to d
ferent dot size or a change in the local environment, ande is
the energy of the other~identical! dots. The amplitudet i j is
the tunneling matrix element between nearest neighbors^ i j &
on the same cell,ĉ j

† and ĉ j are creation and annihilatio

operators for sitej, n̂ j5 ĉ j
†ĉ j is the electron number operato
23530
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at sitej, Vi j is the Coulomb interaction between sitesi and j
in the target cell, andWi j is that between sitei in the driver
cell @with charge densityni

d(t), which in general changes in
time# and sitej in the target cell. A generalization to multipl
cells is straightforwardly given by intercell interactions.14

Following the notation of Lentet al.,3 the distance between
nearest-neighbor dots~length of the square side! is a, while
the separation between the target and driver cells, loca
side by side, isc @see the inset of Fig. 1~a!#. Notice that we
consider spinless electrons, although considering tw
particle states with given total spin is also possible in o
formalism.

The Hamiltonian for the reservoir is given by a set
harmonic oscillators of frequencyvk , ĤR5(k\vkb̂k

†b̂k ,

where b̂k
† (b̂k) are creation ~annihilation! operators of

phonons. Finally, the electron-phonon interaction is given
a general expression

V̂SR5(
k

(̂
i j &

aki j ĉi
†ĉ j~ b̂k

†1b̂k!, ~3!

corresponding to emission or absorption of a phonon
electron tunneling events and with matrix elements given
the coefficientsaki j . Notice that the physics of the phono
interactions in the system is well described by the mo
chosen here. Although phonons are in principle present
erywhere, and not only during tunneling events, they o
provide an ‘‘on-site’’ energy renormalization/shift and broa
ening, which will be ignored here, as it yields a unifor
correction to the entire cell. In contrast, the phonon-assis
tunneling events described byVSR significantly affect the
dynamics of the cell, as they provide an effective coupli
mechanism among the different levels in the spectrum
allow for energy relaxation processes.

We assume, as in Ref. 19, that the quantum dots hav
characteristic sized.50 nm defined on a GaAs/AlxGa12xAs
heterostructure, with an effective massm* 50.067. The typi-
cal distance between nearest-neighbor dots isa*100 nm,
and the dielectric constant of the medium is'12. These
values give an estimate of the Coulomb repulsion betw
nearest-neighbor dots ofV'1 meV, which is taken as the
unit of energy in this paper. One should notice that the fi
excited single-particle state in each dot lies at quite a h
energy,D'(\2/2m* )(2p/d)2'9 meV@V, so that one can
safely consider a single orbital per site, although additio
single-particle levels in each dot could in principle be i
cluded. Also notice that the on-site Coulomb energy is qu
high and prevents the double occupation of the dot, so
our basis set of states ignores that possibility. We sho
comment that successful implementations of QCA eleme
usingmetallic islands are in a multiple-orbital regime, sinc
in that caseD!V for typical 1-mm-size islands. The condi
tion of overall electrical neutrality of the target~and driver!
cell is included in the calculation by distributing a unifor
positive background charge12e throughout the cell (e/2 in
each dot!, which results in multipolar fields from/at each ce

Notice that we study the behavior of the target cell int
acting with the driver via Coulomb interaction only~no in-
tercell tunneling is allowed!. This interaction is described b
5-3
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the last term in the HamiltonianHS @Eq. ~2!#, and assumed
to be time dependent viani

d(t). For a fixed driver and no
dissipation, the solution can be found by a direct numer
diagonalization ofHS . In this case, the effect of variou
parameters on the polarization was studied to show that
energy spectrum is strongly influenced by even small
fects, which affect the bistability of the cell.20 In the case of
a time-dependent driver, we have to take into account
the driver promotes transitions to intermediate excited sta
In fact, the dynamical competition between the driver~co-
herent terms in the equation of motion! and the bath~dissi-
pative terms! causes a nontrivial time evolution of the sy
tem. We have studied different ‘‘driving schemes’’ but w
mostly consider here the case of a driver with a line
switching of its polarization,Pdriver(t)5122t/t, for times
0<t<t, wheret is the switching time. This corresponds
the configuration of charge densities in the driver cell
n1

d(t)5n3
d(t)512t/t and n2

d(t)5n4
d(t)5t/t. For the four-

dot cell arranged on a square, we takeVi j 5V for nearest-
neighbor dots, while all others scale with their~inverse!
separation. We also set allt i j equal to a constantt between
nearest neighbors only~not to be confused with time!.

Markovian master equation

In the interaction picture (I ), the evolution of the total
density matrix is given by

]r̂ (I )~ t !

]t
52

i

\
@V̂SR

(I )~ t !,r̂ (I )~0!#

2
1

\2E0

t

dt8@V̂SR
(I )~ t !,@V̂SR

(I )~ t8!,r̂ (I )~ t8!##, ~4!

whereV̂SR
(I ) is the cell-bath interaction operator, and the e

pansion is valid up to second order inV̂SR
(I ) .16

Our approach uses a closed and time-local equation
the reduced density matrix~RDM!, r̂S

(I )(t)5TrR$r̂ (I )(t)%,
where the trace is carried out over the degrees of freedom
the reservoir,R. The following fundamental assumptions a
made in this approach:~1! the systemS and reservoirR are
initially uncorrelated, which impliesr̂(0)5 r̂S(0)r̂R(0)
5 r̂ (I )(0); ~2! a stationary reservoir at temperatureT with
equilibrium density matrix r̂R(0)5exp(2ĤR/kBT)/Tr$exp
3(2ĤR/kBT)%, exists at all times; and~3! the correlation time
tc in the reservoir is much shorter than characteristic tim
for the RDM system to change appreciably, meaning t
r̂S

(I )(t8)'r̂S
(I )(t), if t82t&tc , while the state of the reser

voir at time t8 has already no correlation with the state
time t ~the Markov approximation!. Thus one arrives at the
time evolution equation for the RDM elements~details of the
derivation can be found in the literature12,16!, which in the
Schrödinger picture is given by

ṙ̂S~ t !ss852 ivss8r̂S~ t !ss81(
mn

R̃ss8mnr̂S~ t !mn . ~5!
23530
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The first term on the right represents reversible dynam
~‘‘coherent’’ effects!, in terms of the transition frequencie
vss85(Es2Es8)/\, while the second term describes rela
ation ~irreversible dynamics!. In this part, therelaxation ten-

sor R̃ss8mn can be written explicitly as

R̃ss8mn5H dnm~12dms!W̃sm2dmsdns(
kÞs

W̃ks ~s5s8!

2gss8dmsdns8 ~sÞs8!.
~6!

HereW̃nm are transition ratesfrom stateum& to un&, which,
in terms of the properties of bath and target cell, can
expressed as

W̃mn5
2p

\2
D2ug~vmn!u2D~vmn!$uSnmu2n̄~vmn!

1uSmnu2@11n̄~vmn!#%, ~7!

whereSmk are matrix elements of the electronic part of t
target cell interacting with the phonon reservoir, Eq.~3!;
n̄(v)5^b̂†(v)b̂(v)&5(eb\v21)21 is the average phonon
number in the reservoir at temperatureT51/kBb. The first
term (}n̄) describes the absorption of phonons, while t
second (}n̄11) describes phonon emission, both at a f
quency given by the system’s transition energyvmn . Notice
that the matrix elementsSmn embody the appropriate selec
tion rules for the different states involved in the transition
For simplicity, we consider a model where the amplitude
the interaction does not depend on the electronic states o
target cell, and has the formaki j5Dgk , where D is the
constant prefactor of the electron-phonon interaction an
determined from the deformation potential model.21 We
should emphasize that this model introduces dissipation
fects only at a finite temperature, and cannot account
elastic decoherence effects.22 Here gk5g(vk);vk

1/2 de-
scribes the frequency dependent amplitude of the elect
phonon interaction in the deformation potential mod
D(v);v2 is the density of states in a Debye model, a
vmn is the transition frequency between statesum& and un&.
It is clear that other phonon channels with different disp
sion relations and/or matrix elements exist, but we belie
that other modes would not be as effective in introduc
dissipation in this system~e.g., optical phonons occur at en
ergies too high to couple effectively!, nor qualitatively
change the results discussed here. In Eq.~6!, gss8 is a so-
called nonadiabatic parameter whose real part gives a co
bution to the time decay of the off-diagonal density mat
elements, and is then directly responsible for the loss of
herence. These parameters can be written in terms of
transition rates by Regss85((kÞsW̃ks1(kÞs8W̃ks8)/2. The
imaginary part ofgss8 is an intrinsic relaxation rate for eac
transition, which we assume negligible, Imgss850, as it
could be incorporated in the transition frequencies,vss8 .16

It is interesting to point out that Eq.~5!, written for the
diagonal elements, takes the form
5-4
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QUANTUM DYNAMICS, DISSIPATION, AND . . . PHYSICAL REVIEW B66, 235305 ~2002!
ṙ̂S~ t !ss5(
m

W̃smr̂S~ t !mm2 r̂S~ t !ss(
m

W̃ms, ~8!

which has a simple interpretation: the probability of findi
the level us& occupied at timet, r̂S(t)ss, increases due to
transitions from all other levelsum& to us& ~first term! and
decreases due to transitionsfrom us& to all other levelsum&
~second term!.

Also note that the conditionṙ̂S(t)ss850 in Eq. ~5! corre-
sponds to ‘‘fixed points’’ of the dynamics of the system,
both the terms related to coherence, (r̂S)ss8 for sÞs8, as
well as the diagonal terms which determine the population
each state, do not change in time. These fixed point va
depend only on the properties of the transition rates and
energy spectrum of the system~as the external drive reache
a stationary configuration!, and provide a direct determina
tion of the dissipation times produced by the thermal bath
can be seen from Eq.~7! that the transition rates satisfy

W̃nm

W̃mn

5expS 2
\vnm

kBT D , ~9!

which guarantees the detailed balance condition. It is imp
tant to emphasize that we have derived an explicit expres
for the transition ratesW̃mn , which would behave at low
temperaturesT→0 and/or low dissipation~small D2) like
the form used by Zozoulenkoet al., in a qualitative way.11

Notice, however, that the normalization condition in Ref.
is an added requirement in their phenomenological appro
while it is included naturally in our treatment. We shou
also mention that the detailed balance ratio in Eq.~9! will
determine the fixed point values ofr̂S and all the correspond
ing physical properties, including the different state popu
tions. Since these will in general be asymmetric, the po
ization value of the QCA is reduced, and, as we will see la
this also results in a limiting value for the linear entropy.
detailed analysis of the asymptotic fixed points in terms
the structure parameters will also shed light on the dynam
evolution of the system, as we will discuss.

The solution of master equation~5! for the time evolution
of the RDM is carried out numerically using a Runge-Ku
fourth order algorithm. We ensure, by a proper choice of
integration step, that the general normalization prope
Tr$r̂S%51 for the RDM is satisfied at all times. Notice th
an instantaneous basis is incorporated in the calculatio
take into account the evolution of the ground state indu
by the time-dependent driver configuration. The basis fu
tions are then defined by the eigenvalue/eigenvector prob
of the coherent Hamiltonian of the target cell,ĤS(t)um&
5Em

S(t)um&, for a given timet while the driver is in the
process of switching, and the instantaneous energy in
target cell isEm

S(t). Also notice that the characteristic tim
variation of the drivert is long compared with the targe
cell’s natural frequenciesv l l 8 , so thatt@\/v l l 8 . This is
effectively the requirement for an adiabatic switching of t
driver. As is clear in Fig. 1, the characteristic frequencies
23530
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the system arev l l 8&1 meV, so that\/v l l 8*1 ps. This
would requiret to be a few nanoseconds for the adiaba
switching regime to be valid.

The numerical solution of the RDM is used to calcula
the dynamics of the polarization in the target cell, as
physical observable of interest here. The dynamical beha
of P(t), calculated from the charge density in each site
r i(t)5Tr$r̂S(t)n̂i%, and of the linear entropys@ r̂S#, are then
determined for a given set of parameters. In order to ob
better insights in the problem, we also carry out a calculat
of the fully coherent dynamics, ignoring the phonon therm
bath @setting D50 in Eq. ~7!#. In the coherent limit, the
relevant parameters for the dynamical evolution are th
defining the structure, including the tunneling amplitudet,
the separation of target and driver cellc, the switching time
of the linear drivert, and the size of the dot asymmetryd, if
any. For the dissipative problem, on the other hand, it is cl
that in addition to the structure features, the important
rameters are the temperature of the thermal bathT, and the
amplitude of the electron-phonon interactionD. Of course,
the phonon density of states, as well as the interaction
tails, will also play a role in the evolution of the system. O
model parameters provide an adequate and realistic des
tion of these systems in semiconducting QCA.21

III. RESULTS AND DISCUSSION

Figure 1~a! shows the level spectrum in the target cell f
a fixed driver polarization,Pdriver51, as shown in the inset
We see that the fourfold symmetry of the structure and c
sequent degeneracy is broken by the driver, even fort50.20

Moreover, increasing the intra-cell tunnelingt produces ad-
ditional level splittings, as one would expect. We shou
point out that the polarization of the ground state follows th
of the driver,Pcell

grnd.1, but increasing hoppingt reduces that
value somewhat. The first excited state hasPcell

exc.21, and is
separated from the ground state by a gap of.0.2 in the
range shown~our energy units areV.1 meV). The four
higher states have vanishing polarization, as the charges
located on neighboring sites along the sides of the squ
The basic operation of the QCA requires adiabatic evolut
from a polarized ground state to the other with opposite
larization. Transitions to higher excited states allow for non
diabatic terms which yield to depolarization of the target ce
Figure 1~b! shows the influence of a ‘‘defect’’ in dot size
Here the dot at site 1 has an energy lower than the other
an amountd ~corresponding to a larger dot!. Increasing this
asymmetry produces a strong shift of the spectrum, and
haps most important for QCA operation, a change of
polarization of the first excited state. This is apparent in
anticrossing seen in Fig. 1~b! for d.0.1, where an opposite
polarization state takes over as the first excited state.20 The
defect then will produce a pinning of the polarization wh
operating the QCA if thed is small, and even prevent th
switching of the target cell altogether ifd is large.

When the polarization of the driver cell changes linea
with time, the polarization of the target cell evolves as we
as presented in Fig. 2~a! for the nondissipative case, and fo
5-5
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different temperatures. One can see that the polarizatio
the target cell follows the driver very well, and switch
smoothly over a short time window ('t/5) centered abou
the time whenPdriver50. This general behavior is not a
fected for different values of the switching timet we tested
~over a wide range within the adiabatic regime; results
shown!.23 We see that the response of the target cell dete
rates for increasing temperature. At low temperatureT5T1
.1 K, the target cell has a slightly decreased polarizat
after the driver is fully switched, and the switching time
the cell is not greatly affected. However, forT55T1, the
target cell polarization is quenched after 0.5 ns and igno
even a fully polarized driver.„Notice that the natural unit o
temperature in this problem is the difference in energy
tween the first and second excited states, when the driv
fixed atPdriver51 @Fig. 1~a!#, as this transition has one of th
smallest natural frequenciesv l l 8 , and it produces depolar
ization of the cell, as discussed above. In particular, we t
as characteristic its value fort50.03 in the symmetric case
T150.0862'1 K. Temperatures are compared to this na
ral scale in the problem.… The deterioration of the response
the cell with temperature is consistent with Eq.~9!, where
the different rates at low temperature would favor transitio
to the ground state, while, as temperature increases, tra
tions up and down become equally probable. This result

FIG. 2. Time evolution of the target cell polarization as t
driver cell switches linearly fromPdriver511 to 21 in a timet
52.5 ns, for different temperatures.~a! Symmetric cell with four
identical dots (d50). ~b! Asymmetric cell with one lower energy
dot, d50.1, at site 1. In all plots,t50.03 andD250.05.
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more symmetric level populations, more equal electron pr
abilities in all dots, and consequently the depolarization
the target cell. It is somewhat surprising that even this l
temperature would yield such strong quenching of the Q
polarizability @a value which of course depends also on h
strongD is in Eq. ~7!#. Figure 2~b! shows an example of the
effects of asymmetry~a quantum dot at site 1 has lowe
energy than the rest!, for the same parameter values a
temperatures as in Fig. 2~a!. We observe that, at low tem
peratures, the response of the target cell lags behind
driver, although the switching time is not affected substa
tially. However, the target cell reaches asymptotic values
the polarization which are smaller~in absolute value! than in
the ideal symmetric case. In this case too, changingt over a
wide range does not affect this lagging behavior. It is evid
that for T55T1, the target cell is almost completely dep
larized, despite the ‘‘help’’ of the larger dot which pins th
polarization of the ground and excited states to.11 ~and
induces the lag seen at low temperatures!.

Figure 3 shows more of the effects of asymmetry a
temperature on the response of the target cell. Figure~a!
shows the results for no dissipation, and Fig. 3~b! those for
T5T1. From these figures, we see again that the impor
effect of asymmetry is to produce a lag or delay in the
sponse of the target cell as asymmetry increases. On

FIG. 3. Time evolution of the target cell polarization with
linear switch drive,t52.5 ns, for different asymmetryd. ~a! No
dissipation (D50). ~b! At temperatureT5T1. Notice that the tar-
get cell lagging the switch of the driver increases withd. ~c! Long-
time asymptotic polarization,Pa vs temperatureT for different d
values. In all panels,t50.03 andD250.05.
5-6
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other hand, the effect of temperature is to decrease
asymptotic polarization in absolute value associated with
delocalization of electrons within the cell. Also notice in Fi
3~b! that for finiteT, the polarization of the target cell con
tinues evolving in time~deteriorating!, even after the driver
is fully polarized. In all cases, the polarization reach
asymptotic valuesPa ~long after the driver has stoppe
changing! which are a manifestation of ‘‘fixed points’’ of the
system dynamics for the quantum dot populations. Th
long-time values of the polarization depend on tempera
~and indirectly on structure parameters and energy levels! as
shown in Fig. 3~c!, for different asymmetries. The nearly fu
depolarization of the target cell at high temperature is e
dent and anticipated. What is somewhat counterintuitive
the fact that the depolarization increases with asymmetry
the pinning that yields the lag now assists in the depolar
tion by favoring the population of the states with the larg
dot.

Figure 4 shows the effects of tunneling coupling intens
t on the time evolution of the polarization for a symmet
cell system (d50). We see that increasing hopping betwe
dots first introduces a smoother transition following the l
ear driver (t52.5 ns) and a better polarization. Increasingt,
however, delocalizes the charges in the quantum dots
reduces the polarization of the target cell, as one can
from the long time limits in the figure. In order to look mor
closely at the nonmonotonic behavior ofPa , we analyze this
quantity as a function of the tunneling couplingt in Fig. 5~a!.
We find that, forT5T1 , Pa attains a minimum value att
'0.02. From this figure we can see that the drop in po
ization at small values oft is due to dissipation processe
We expect that at lowt values the electrons would tend to b
well localized at the corners of the cell~ground state!, giving
P561, depending on the driver. This is indeed what
observed at low temperatures. However, as temperature
crease, depolarization transitions from the ground state

FIG. 4. Time evolution of the polarization in a linear switc
driver, t52.5 ns~see the arrow!. Increasing tunneling between th
dots first improves (t50.03) and then deteriorates (t50.1) the final
polarization.D250.05, T5T1, andd50 in all plots.
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excited states become more likely. Ast increases substan
tially, the polarization decreases~in absolute value! due to
the delocalizing effects of both tunneling and dissipation,
expected. However, fort&0.02, the possibility of transitions
which in fact populate the ground state increases, and th
fore slightly improves the asymptotic polarization of the sy
tem. Qualitatively similar results are obtained in the asy
metric case@Fig. 5~b!#, although with lower absolute value
of the asymptotic polarization in this case, as discus
above~Fig. 2 and 3!, and a shallower oscillation.

We have also studied the dynamics of two target cells
driver in line ~Fig. 6!. There are a number of interestin
features in this case. We notice first that the switching
both target cells lags behind the driver considerably, as
cells switch only afterPdriver*75%. Moreover, the switch
occurs over a much shorter time scale than for the sin
target cell (.t/25). This change is understandable if o
thinks that the target cell closest to the driver~cell 1! is in
essence between two cells with different polarization and
its wrong polarization somewhat pinned~this is behavior
also seen in other work11!. Increasing the temperature toT
5T1 makes the switching a bit smoother although still w
a sudden change, and with not as good final polarizat
Notice in particular that the asymptotic polarization of targ
cell 2 is poorer than that of cell 1. As the temperature
creases toT52T1, the target cells barely follow the drive
and the polarization of cell 2 is basically zero at long time

FIG. 5. Long-time asymptotic polarizationPa vs hoppingt at
different temperatures, as in Fig. 4. The nonmonotonic behavio
seen only forT'T1. ~a! Symmetric cell (d50). ~b! Asymmetric
case,d50.1. In both panels,D250.05.
5-7
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F. ROJAS, E. COTA, AND S. E. ULLOA PHYSICAL REVIEW B66, 235305 ~2002!
It is clear that control of the tunneling process as the ‘‘s
nal’’ is transmitted down the line would be essential
proper operation of QCA arrays. Such ‘‘clocked switchin
was discussed by Lent and co-workers as a solution to s
cells into better compliance.24 Coherent simulations of suc
steering,14 as well as experiments in metallic QCA,25 verify
that this is a good operating scheme.

Knowing the time evolution of the density matrix we ca
also calculate the linear entropy of the QCA systems@ r̂S#, to
monitor the degree of non-purity introduced during t
switching process by the thermal bath. In Fig. 7 we show
results for different temperatures, for the case of weak
strong electron-phonon interactions, as measured by
value ofD2 in Eq. ~7!. As in previous cases, the polarizatio
of the driver cell is switched linearly from11 to 21 in a
time t52.5 ns. In Fig. 7~a!, the case of ‘‘weak’’ electron-
phonon coupling,D250.05, we see that at low temperatur
s@ r̂S# increases monotonically until it reaches a final sta
value. It is interesting to see that asPdriver50 or Pdriver
521 ~at 1.25 and 2.5 ns, respectively!, one can see kinks in
the entropy curve, indicating the switch off of driving force
The long time asymptotic value increases~coherence de-
creases! with increasing temperature, as one would expe
However, at still higher temperatures and/or for stro

FIG. 6. Polarization of two active cells and a linear driver,
shown in the inset of panel~b!. ~a! Coherent dynamics.~b! At T
5T1. ~c! At T52T1. Notice that cells lag the driver, except
higher temperatures. The more distant cell~2! switches more sud-
denly than cell 1, and has a smallerPa . In all plots, t50.03 and
D250.05.
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electron-phonon coupling@Fig. 7~b!#, s@ r̂S# first increases
and then decreases. In these cases, we see a maximum
linear entropy curve at't/2, when the polarization of the
driver cell goes through zero. Notice, in fact, that whene
Pdriver.0, the level spectrum in the target cell shows a gr
deal of degeneracies. As the driver turns negative~for time
after t/2) the splittings are reinstated and the effect of t
driver seems to be one of a coherent ‘‘pump’’ which pr
duces a drop in the purity, even as dissipative transitions
present. In other words, the thermal dissipation seems to
crease with respect to the coherent transitions induced by
driver, producing a drop in the linear entropy of the syste
After the driver is stationary, after a timet, the thermal
transitions quickly produce the steady state in the den
matrix ~or level populations! given by the detailed balanc
equation~7!. For stronger phonon coupling,D250.5, and
high temperatures@Fig. 7~b!#, the purity of the system dete
riorates further and the driver is not able to ‘‘push’’ the sy
tem back into a more coherent state. Notice that the stat
‘‘maximal delocalization’’ would be achieved asr̂Sii.1/n,
wheren is the size of the basis, so that Tr$r̂2%.1/n. In this
case, one would obtains.121/n, giving 5/6 in our case.
This value is still higher than the asymptotic value ofs for
the highest temperatures in Fig. 7~b!, so that even then the
system is not ‘‘fully’’ decoherent.

Let us explore this competition between dissipation a

FIG. 7. Time evolution of the linear entropy or purity of th
system in a linear switch,t52.5 ns at different temperatures.~a!
Weak coupling,D250.05, t50.03. ~b! Strong coupling,D250.5,
t50.03. Notice the entropydrop after t/2 at intermediate dissipa
tion.
5-8
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QUANTUM DYNAMICS, DISSIPATION, AND . . . PHYSICAL REVIEW B66, 235305 ~2002!
coherent evolution in more detail. Since Tr$r̂S%51 is a gen-
eral property of the density matrix in any representation, o
can instead investigate the behavior of Tr$r̂S

2%512s@ r̂S# di-
rectly as a function of the relevant parameters.26 Notice, in
fact, that this trace has two contributions

Trr̂S
25(

i
~ r̂S

2! i i 5(
i

~ r̂Sii!
21(

iÞ j
ur̂Si ju2, ~10!

namely, the diagonal and nondiagonal elements of the d
sity matrix. Comparing the two terms as a function of tim
for example, would give one further insights into the over
complex processes, since the behavior of the nondiag
elements gives information on the evolution of coherence
the system. Figure 8 shows the trace as function of time
two values of the temperature, explicitly showing the con
butions from the diagonal and non-diagonal elements ofr̂S .
In Fig. 8~a! we see an increase in the contribution from t
nondiagonal~‘‘coherent’’! elements, with a maximum att/2,
exactly compensated for by a decrease in the contribu
from the diagonal elements, as the driver and the bath
promoting transitions. Also notice that the values of the
agonal components before and aftert/2 are approximately
the same~with a similar behavior for the nondiagonal terms!.
Thus for low temperaturesT5T1/10 @Fig. 8~a!#, the sum
remains approximately constant, equal to 1, and the sys
is close to the pure limit withs'0. However, forT5T1, we
see that this sum decreases with time, due essentially to
corresponding decrease in the diagonal elements. Notice
as the driver switches and ‘‘pumps’’ the target cell syste
the off-diagonal coherent terms contribute less to the sum
the temperature increases@its peak value is smaller in~b!
than in ~a!, so that the system is less coherent indeed#, and
their contribution for longer times is lower than at the start
the switch~time zero!. This gradual decay in the cohere

FIG. 8. Trace ofr̂2 vs time during a linear switch of the drive
cell, t52.5 ns, and different temperatures.~a! T5T1/10. ~b! T
5T1. Both diagonal and nondiagonal sums are shown, as we
the total trace, as in Eq.~10!. In both panels,t50.03 andD2

50.05.
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contribution shows even more substantially~and less intu-
itively! in the diagonal terms, which one would expect to

less affected perhaps. Since Tr$r̂%51, the drop in the diag-

onal terms of Tr$r̂2% means that the population of each lev
( r̂Sii) has been redistributed and made somewhat more e
~although still much higher than the ‘‘maximal delocaliz
tion’’ state discussed above with Tr$r̂2%.1/6).

It is also interesting to investigate the influence of switc
ing time and of the function controlling the switching. Figu
9 shows results for Tr$r̂S

2% for a smoother driver transition. In
this case, the driver has no rapid offsets and onsets and
evolution of Pdriver is more adiabatic near the ends of th
sweep than before@Fig. 9~c!#. Figure 9~b! shows the trace a
low temperatures, which shows a similar rise~drop! in non-
diagonal~diagonal! density matrix elements as in Fig. 8~a!.
However, as the time during whichPdriver.0 is shorter now
@the effectively larger slope in Fig. 9~c!#, the window of
variation is also reduced. The higher temperature in Fig. 9~a!
also shows a narrower time window variation, but an iden
cal amplitude as in Fig. 8~b!. Other runs with different driver
switching slopes follow this behavior too: narrower window
for larger slopes nearPdriver.0 ~not shown!. This would
suggest that the amplitude variation of the diagonal/o
diagonal components is only a function of temperature, wh

as

FIG. 9. Time evolution for a smoother driver switch.~a! Trace

of r̂S
2 at intermediate temperature,T5T1, showing diagonal and

nondiagonal contributions.~b! Trace contributions forT5T1/10.
~c! Driver ~solid curve! and target cell polarizations for differen
temperatures. In all panels,t50.03 andD250.05.
5-9
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F. ROJAS, E. COTA, AND S. E. ULLOA PHYSICAL REVIEW B66, 235305 ~2002!
the time window over which they vary is a function of ho
long the driver is close to zero polarization.

IV. CONCLUSIONS

We have studied the behavior of the polarization o
square array of quantum dots with two mobile electrons. T
quantum dynamical evolution, in response to a driver c
whose polarization is changing with time in a prescrib
manner, has been shown to depend strongly on the switc
or driver characteristics, the symmetry of the cell, and
temperature. Our results show that the asymptotic value
the polarization in a stationary driver are fixed points of t
system that change with temperature, tunneling probabilit
and imperfections, but not on driving schemes. The optim
response of the QCA arrays is affected adversely by temp
ture and imperfections, with a strong tendency toward de
larization as the temperature or asymmetry increases.
calculations indicate that good control of the QCA is on
achieved for temperatures of at most a few K. From our t
target cell results, it is likely that ‘‘clocked switching’’ would
.
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be required for a faithful operation of a chain, so that t
polarization information is not degraded down the line. W
have also analyzed dissipation effects on the response o
basic cell through calculation of the linear entropy or pur
of the system. We find that the study of this quantity is
good tool in furthering the understanding of a quantum s
tem as relatively simple, but still quite subtle, as the QC
architecture. Apart from providing insights as a function
time and driver characteristics, the entropy also clea
shows that, at high temperatures, the basic cell is no lon
in the required or desired final state but in one where
polarization tends to zero and maximizes the entropy.
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