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Floquet scattering in parametric electron pumps
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A Floquet scattering approach to parametric electron pumps is presented and compared with Brouwer’s
adiabatic scattering approa¢Rhys. Rev. B58, R10135(1998] for a simple scattering model with two
harmonically oscillatings-function barriers. For small strength of oscillating potentials these two approaches
give exactly equivalent results while for large strength, these clearly deviate from each other. The validity of
the adiabatic theory is also discussed by using the Wigner delay time obtained from the Floquet scattering
matrix.
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I. INTRODUCTION what was observed in the experiment. For strong pumping,
however, the dc voltage generated by the pumped current
A parametric electron pump is a device that generates a ddeviates from the sinusoidal dependencedgrand also de-
current at zero-bias potential through cyclic change of sysparts from thex” dependence. The nonsinusoidal depen-
tem parameters. The most direct way to create a dc currei€nce can be understood by taking into accountlthé no
was originally proposed by ThouleSsyho considered a sys- longer constant over the integration area whers consid-
tem subjected to a traveling wave potential. This can be re€rably large. In Ref. 8 the anomalous dependence was
alized for example with the help of surface acoustic waves.ascribed to the occurrence of significant heating and dephas-

Another possibility is to utilize quantum dots. In closed sys-iNg s @ result of strong pumping.
tems operating in the Coulomb blockade regime, integer The parametric electron pump is a time-dependent system

number of electric charge can be transferred by sequenti&‘r.iven by (at leas) two different time periodic perturbations
changes of barriers like a turnstileyhereas in open systems With the same angular frequency and phase differehce
One can deal with this problem using not only adiabatic

the electron pumping can be driven by adiabatic Shalo‘i‘lolpproximation exploited by Brouwer but also Floquet

change in_ the confining potential or other parameters Whicgpproacﬁ.“An oscillating potential can transfer an incoming
affect the interference pattern of the coherent electrons in thglectron of energyE to Floquet side bands & +nfiw

device: After a cyple of'the adiabatic shape ch_ange we returiparen is an integer and is the angular frequency of the
to the initial configuration, but the wave function may have ogijjation. A scattering matrix for a time-dependent system
its phase changed from the initial wave function. This is thecan pe constructed from the interplay of these sideb&hifs.
so-called geometric or Berry's phas&his additional phase s far there have been relatively few works on nonadiabatic
is equivalent to some charges that pass through the quantugarametric electron pump$ and the comparison between
dot, namely, pumped chargé.Recently, adiabatic charge the adiabatic and the Floguet approach is still missing. We
pumping in open quantum dots has attracted considerablshow, using a simple scattering model with two harmonically
attention> 2 oscillating s-function barriers, that for smalk these two
Switkes et al. report an experimental investigation of approaches give exactly equivalent results for the pumped
electron pumping through an open quantum dot under theharge while for large. they are different. Even though the
shape deformation controlled by two ac gate voltdhEsr  pumped current as a function af obtained from these two
weak pumping the dc voltage induced by the pumped d@pproaches shows qualitatively similar behavior, the physical
current not only have a sinusoidal dependence on phase difaterpretation is completely different. This discrepancy in
ference¢ of the two ac voltages applied to the gates, but islarge A is not fully ascribed to the breakdown of adiabatic
also proportional to the square of the pumping strength ~conditions since the Wigner delay times calculated by using
Many aspects of the experimental results can be understoddoduet scattering matrix are still much smaller than an os-
in terms of Brouwer’s scattering approacfihe change in cillation period of external pumping potentials. _
the charge of the dot in response to a small variation of N Sec. ll, we introduce our model system and investigate
external parametesX is given bysQ=eS 5X,dn/X; , where the chgracterlstlcs of the pumped current using Brouwer’s
dn/dX is the emissivity"® The pumped charge during each scattering approach._ln Sec. lll, we study the Floquet ap-
cycle can be determined by integratin@ along the closed Proach for parametric electron pumps and compare with
path in the parameter spa¢¥;! defined by one pumping those of Sec;. 1. We _also dlscuss the v_alldlty of adiabatic
cycle. Then, the pumped char@eis rewritten as an integral theory by using the Wigner delay time. Finally, we conclude
over the surface enclosed by the path by using Green’s the@UI Paper in Sec. IV.
rem, e.g., Iin the two parameter caseQ
=efdXdXI1(X4,X,). Assumingll is constant over a
small area of X1,X5), for weak pumping one can show the  As a model system we consider one-dimensiofid))
pumping currentpocw}\zsinqs, which exactly corresponds to two harmonically oscillatings-function barriers with the

Il. BROUWER'S SCATTERING MATRIX APPROACH
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strengths X;=V;+\,c0swr and X,=V,+\,C0ST+ ), 0.2 @
respectively, separated by a distartteThis is a simplified ol
model of the experiment by Switkest al, but possesses

many important characteristics and can be easily handled -0:2
Wei et al. studied parametric charge pumping aided by quan-~ 4
tum resonance using this model and found that the pumpe(g

current has large values near a resonance [@\@le to the 0.06
double barrier geometry, resonant tunneling also plays ar
important role in charge pumping. 0.03
The 2X 2 scattering matrix of the double barriers with the ’
strengthesX; and X, is given by 0
0
rot’
S= , 1
. @

. L . FIG. 1. The pumped current calculated by using Brouwer’s
wherer andt are the reflection and the transmission amp"'approach(solid curves and the Floquet approadidotted curves
tudes, respectively, for modes incident from the leftand  \ith =ml2 for (8 A=22.5 meVnm andb) =225 meVnm
t" are similar quantities for modes incident from the right. with V=0, and(c) A =22.5 meV nm andd) A =225 meV nm with
The charge emitted per cycle to the right is obtained from v=225 meVvnm. In(c) and (d) the transmission resonances are

denoted by the filled circles®) obtained from considering static
Q= epr 7'( ﬂ % 4 ﬂ %) 2 double barriers, whosgvalues are chosen arbitrarily. The attached
1 0 Xm dT dX2 dT ’
nance.
where
, imaginary part of the resonance energy due to the effect of
dny =Im< at o r’*) (3)  strong oscillation. Moreover, in the open c4Bgs. 1a) and
dXm X Xy (b)], this analysis is no more relevant since there is no reso-
(m=1,2), andT,(=27/w) is the period of the pumping.

nance in the static double barrier model.
One can show that the emitted charge to the@ftis equal

Figure 2 shows the pumped current as a function of the
to —Q;. Equation(2) can be rewritten in the following form pumping strengthh for V=0 (the open cadewith ¢
by using Green'’s theorem:

= /2. Here for small\ the pumped current depends bh
and has an exact sinusoidal dependencegonwhile for

error bars represent the sizes of the imaginary energy of each reso-

larger\ the pumped current saturates and even decreases as
Q1=ef dX;dX11(Xq,X5), (4) X\ increases, and also deviates from the sinusoidal depen-
A dence ong¢. The decrease of the pumped current can be

where  TI(Xy,X,)=a(dny /dX,)/dX;— d(dny /dX,)/dXs. understood by considering the charge ﬂIﬁ((Xll,Xz) in Fig._ '
The pumped current is easily obtained from=Q, /T,,. 3. For small\, the integration area only contains the positive
We use the parameteds= 50 nm for the distance between 1I's (the solid circle. Hence as\ increasesfAl1 also be-
the two barriers, the effective mags=0.067n, of an elec- comes larger, which is roughly proportional to the area en-
tron in GaAs, andl,=9.09 ps for the period of pumping, . . . .
which corresponds té »=0.45 meV. Figure 1 shows the XX X X X % ox
pumped current as a function of the energy of an incident 10
electron withV,;=V,=V, N;=\,=\, and ¢==/2. We E
present two examples; the first is a nearly open case ( -
=0) in Figs. Xa) and (b), and the second is a closed case E
(V=225 meV nm) in Figs. () and (d). All of them show —
interesting resonancelike structures. In the closed case one 107¢
can directly see the relation between the pumped currents E }
and transmission resonances in Figg) And(d), where the 10° . . 0 o .
transmission poles are denoted by the filled circi®9.(To 10 10' 10° 10
find these poles we considered a scattering problem with A (meV nm)
staticdouble barriers of streng¥i The imaginary part of thg FIG. 2. The pumped currerl, as a function ofn with V,
pole (denoted by the length of error bars attached to the filledL\/,— g and E=6.005i» by using Brouwer's approach foi
circles is related to the lifetime of a resonafr quasi- = /2 (the solid curvg and ¢=1.17 (the dashed curyeand the
bound state, and determines the width of the transmissionioquet approach forr= /2 (®) and ¢=1.1r (O). X and +
peaks. Peaks of the pumped current and their width are als@present . and|._ for ¢= /2, respectively. The inset shows the
described by the real and imaginary part of the resonancgumped current, as a function ofg for (a) A =22.5 meV nm and
poles respectively, as shown in Figcll In Fig. 1(d), how-  (b) A=675 meVnm by using Brouwer’s approadfhe solid
ever, the width of the pumped current is larger than thecurves and the Floquet approadthe dotted curves
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6004, “~_ . reflection symmetry of each delta functiofy y=rg,, and

- t,;(L)ztR(L). During each one-way trip an electron at energy
E,=E+nfhw picks up a phase factor exk(d), which is
represented by the diagonal matri®,,=expk,d)Smn-
From S, we can obtain the total transmission coefficients
for the propagating mode entering in theth channel,

X, (meV nm)
g

g =

Lm<EF|>=n§0 |taml %, (6)

~

600 300 O 300 600 whereEg, is the Floquet energy. The total transmission co-
X, (meV nm) efficient from the left to the right as a function of an energy
of an incident electron is given by, (E) =T_, ,(Eg|) Where
FIG. 3. Contour plot of fluxI(X;,X;) for E=6.005%iw. The  E=Eg +mhw. The total transmission from the right to the
solid and the dashed contours represent positive and negativeft T_(E) can also be determined in a similar way.

fluxes, respectively, in the range 6f0.016—0.016. The circles rep- The pumped current to the right is given%&O
resent the integration area fgr= /2 (see the text for detailwith

AN=22.5 meV nm (thick solid curve, A=225 meV nm (thick

dashed curye and A=675 meV nm (thick dotted curve The |12EJ' dEJE[t(E’,E)f (E)—t'(E,E')fr(E")]
dashed-dotted curve represents the integration areadwith.lsm h ’ ’ '
and\ =675 meV nm. (7)

where t(E’,E) represents the transmission probability for
closed by the circle, ie., fallA® Around N  scattering states incident from the left at enefgyand
=225 meV nm(the dashed circle in Fig.)3he integration emerging to the right aE’, andt’(E,E’) is defined in a
area begins to include the region with both the positive angimilar manner for the reverse directiof, (fg) is the
the negativdl’s, which meand AI1 no longer increases as  Fermi-Dirac distribution in the lef{right) reservoir. Since
increases. This explains why the pumped current saturatele Floquet energy must be conserved during the scattering
and even decreases above 225 meV nm as shown in Fig. processE’ andE are given byEg +nfw andEg + miw,
2. From this we expect that the behavior of the saturation ofespectively 6 andm are integers Using Eq.(6), we can
the pumped current would depend gnsince the shape of derive the relationfdE't(E’,E) == |tam(Er)|2=T . (E).
the integration area is determined By For example, with  Without external bias f( =fg="f) Eq. (7) can be rewritten
¢=1.17 the integration area denoted by the dashed dotteds
curve in Fig. 3 is distorted from the original circular shape,
so that even foik =675 meV nm the integration area con- 26 (=
tains only positivell’s. Figure 2 clearly shows that the ll:Ff dEf(E)[T_(E)-T_(E)]. 8
pumped current withp=1.17 saturates much more slowly 0
in comparison with the pumped current with=7/2. The At zero temperature it becomes
nonsinusoidal dependence of the pumped currentpdior
large\ is also ascribed to the loss of circular symmetnyjlof

: 2e (Er
in (Xg,X3). == dE[T_(E)=T_(E)], 9
0
. FLOQUET APPROACH whereEg is the Fermi energy. Equatiai®) can also be ex-

pressed ad,;=1_—I_. This is quite interesting because
from this point of view the pumped current merely corre-
sponds to the difference of two currents having the opposite
directions through a scatterer.

Figure 1 shows that in the open ca3é<0) for smalli
[Fig. 1(@)] the pumped current obtained from the Floquet
approach is equivalent to that of Brouwer’s while for rather
rot’ larger \ [Fig. 1(b)] they deviate from each other. Whéh
t '/ ©) #0 (the closed cageeven for small\ [Fig. 1(c)] they are

quantitatively different near the resonances. Figure 4 shows

where r=r +t (I—QrgQr. ) 'QrgQt,, and t=tg(l T_, andT_ in comparison with the pumped current In
—Qr_ Qrg) 0t ; r" andt’ can also be obtained by replac- the closed cas¢Figs. 4c) and (d)] it is shown thatT_,
ing L by Rin r andt, respectively. Hereg ) andtg) are ~T_, and the transmission resonances are directly related
the reflection and the transmission matrices, respectively, fao the maxima of the pumped currents. In the open case
the right (left) delta function with time dependence for [Figs. 4a) and(b)], however,T_ andT_ considerably differ
modes from the left, ant is an identity matrix. Due to the from each other, and it is hard to determine the relation be-

Now we study the Floquet approach of the problem inves
tigated in Sec. Il. Using the scattering matrix of a single
function with sinusoidal time dependen(sze the Appendix
for detail9, we can obtain the total scattering matrix of the
oscillating doubles functions in the following form:

o
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FIG. 5. Contour plot of the pumped curreht obtained from

integrating Il with A=22.5 meV nm(see the text for detailby

0 2'0 20 0 2'0 4‘0 using (@) Brouwer’s approach an¢b) the Floquet approach. The
E solid and the dashed contours represent positive and negative cur-
E/ﬁ(’) rents, respectively, in the range 6f0.2—0.2 nA. The open circles

. . ) . (O) and the vertical lines represent the resonance energies of qua-
FIG. 4. Pumped currentthick solid curveg T_. (thin solid  gjpnq states of static doubffunction barriers and the resonance
curves, andT_ (dotted curveswith the same parameters as used energies from the conditiom?42m2/2,d? with an integerm (m
in Fig. 1. For clear comparison the unit and the scale ofythais =1,2;-.), respectively.

are arbitrarily chosen.

tween the resonances and the pumped currents. InTact, - =ﬁ2 %Kk 16,)]2 (10)
looks out of phase witi_, and their resonance structures W dE "N rel e

are quite complicated. In the open case the resonance-

assisted electron pumpitigseems unclear even though the Where the eigenstate corresponding to the eigenvg|end
oscillatory behavior of transmission looks similar to that of @n input propagating stat@r channel with momentumk,

the pumped current. are denoted byd,) and|k,), respectively?* It is worth not-

As \ increases with/=0, in Fig. 2, the pumped current ing that the Wigner delay time is a function of the energy of
obtained from the Floquet approach also saturates and evéhe incident particlée (=Eg,+n4 o), and|k,) and|6,) are
decreases although their exact values are different from thogtetermined byr andEg, , respectively. Ifk,|6,) is ignored
of Brouwer’s. We also plot . andl_ in Fig. 2, where itis in Eq. (10) the Wigner delay timer,, becomes trivial, i.e.,
clear that in the Floquet approach the decreadg tfr large ~ 7w(E+nfiw) =y (E). Thus we cannot observe any signa-

\ is ascribed to the decrease of bothandl._ . Usually the  ture of the double barrier resonances.

stronger the barrier strength, the smaller the transmission. Figure 6 shows the Wigner delay time using the same
This interpretation differs from that of Brouwer’s, in which parameters exploited in Fig. 5. The Wigner delay times be-
the decrease of the pumped current is explained by consi¢ome smaller for both largelf and lowerV, which can be
ering the structure ofI(X;,X,) (Sec. I). Since we cannot Uunderstood when we take into account that usually the elec-
define H(X]_vXZ) exp||c|t|y in the F|0quet forma]ism, we tron dwell time is short if the energy of an incident electron
plot IT integrated over small circular area with a radius IS large or the scattering barrier is weak. The Wigner delay
centered at \{;,V,). We consider only the case that times have larger values near the resonances, which is as-
=V,=V. Figure 5 shows that the integratéHs obtained prlbed to the fact that at the resonances an electron can stay
from the two different approaches far=22.5 meV nm look  in the quantum dot for a long time. Near the resonances the
very similar to each other, and their overall structure ar@dlabatm condition can break down. This explz_;uns the devia-
governed by the static double barrier resonances denoted N between the pumped currents observed in Fg). In

the circles ©).

Brouwer’s approach is based upon the adiabatic approxi-
mation, which implies that any time scale of the problem
considered, especially the electron dwell time in a quantum
dot (or inside double barriers in our casenust be much
smaller than the period of the oscillation of a external pump-
ing T, . Using the Floquet formalism we can calculate the
Wigner delay timer,,, which is the interaction time of the
incident electron with the scattering poterfttalsee also
Refs. 22 and 28 In this sense, corresponds to the electron ] 5 , ,
dwell time in the quantum pump. To obtain the Wigner delay 0 10 ZOEm(D 30 40
time we use the eigenvalues of the scattering maBdx.

Due to the unitarity ofS, all the eigenvalues lie on the unit  FIG. 6. Gray scale plot of the Wigner delay time. Black denotes
circle and can be written in the form exg(). The Wigner times larger than 0Tl,. The open circles®) represent the reso-
delay time is defined by nance energies which are the same as in Fig. 5.

loar

H‘-

V (meV nm)
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satisfied, a quantitative discrepancy between both approaches
is still observed. In the Floquet approach, a nonzero pumped
current can be obtained even whér-0 or 7 (no current at

all in Brouwer’s approach if the spatial reflection symmetry

of the potential is broken.

Note addedSince submission of our work a closely re-
lated preprint has appeared: M. Moskalets and MttiBer
develop the similar Floquet theory for quantum pumping in
mesoscopic conductof§.
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part of the plot. APPENDIX: FLOQUET SCATTERING MATRIX

IN A SINGLE OSCILLATING é-FUNCTION IMPURITY
the open caseM=0) we also check the Wigner delay time
for rather largei (up to 675 meV nm), and observe they are
smaller thanT, by two orders of magnitude except for small

incident energ)E (not shown, which means Brouwer’s ap- ; . o . .
proach should be still applicable even for ladgeThis leads construct its Floquet scattering matrix in this Appendix. The
system is described by the Hamiltonian

us to conclude that the deviations of the pumped curren

observed in Figs. &), (b), and 2 for largexn are not simply

ascribed to the breakdown of adiabatic condition. It is worth

noting that recently Entin-WohIimaet al. presented a similar HXD =~ ﬂ @ HLVstVgcodwt+ ¢)]18(x),

observation: they found the validity regime of their adiabatic (A1)

approximation is restricted by the strength of the modulation

potential'! Let us just note that in Fig. 2 the discrepancy for Whereu is the mass of the incident particle, whilg andVy

large\ appears whefi|/[I | (or|1,]/]I_|) is not so small. ~represent the strength of the static and the oscillating poten-
One of the interesting consequences from @.is that  tial, respectively. Using the Floquet formalism the solution of

the pumped current still exists even in the cages0 or =  this Hamiltonian can be expressed as

when N\ ;#\,.18 Since the integration area in parameter

space is zero whegp=0 or 7, in Brouwer’s approach the

pumped current definitely vanishes. In contrast, even when

¢=0 or 7, an asymmetry of the potential can lead to the

asymmetry of the current8, which is nothing but the whereEg, is the Floquet energy which take continuous val-

pumped current in EQ9). Figure 7 shows the pumed current ues in the interval € Epj<fiw.

as a function of ratio of the strength of two barriérs/\ Since the potential is zero everywhere excepkatO,

with ¢=0 or 7, and E=6.005% w. Note that the pumped ,(x) is given by the following form

current is zero wheik; =\ ,. The oscillatory behavior is also . _

related to the double barrier resonances. A, ek + B e kX, x<0,

Pn(X)= C.ek D ek x>0,

) . o ) where k,=V2u(Eg +nhw)/h. The wave function
We investigate the Floquet scattering in parametric elecys_ (x t) is continuous ak=0
FINTY '

tron pumps in comparison with Brouwer’s adiabatic scatter-
ing approach exploiting two harmonically oscillatidgunc- _
tion barriers. In the Floquet approach the pumped current AntBp=CntDn, (A4)
simply corresponds to the difference of two currents havingyng the derivative jumps by

the opposite direction through a scatterer. For small strength

The scattering problem of a singl&function impurity
with sinusoidal time dependence has been investigated by
several author®=2" We would like to summarize how to

2d2

\PEFl(X,t):efiEHt/h Z lpn(x)efinwt, (A2)

(A3)
IV. SUMMARY

of the oscillating potentials, these two kinds of approach give dw dw
exactly equivalent results while for large strength these show " N F
deviation. Even though for large strength we obtain qualita- dx dx | _o-

tively similar results for the pumped currents using both ap-
proaches, the physical interpretation is completely different.
The validity of the adiabatic approximation is also discussed
by calculating Wigner delay time. For large strength of the
oscillating potentials although the adiabatic condition is wellUsing Eq.(A2) this leads to the condition

= ;—T[V# Vgcod wt+¢)]We, (01). (A5)
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ikn(Cn_ Dn_An+ Bn): ')’S(An+Bn)+ Vd(e_i¢An+1+ei¢An—1+e_i¢Bn+l+ei¢Bn—1)

=7s(CrtDp)+ Yd(e_i¢cn+1+eid)Cn—l"'e_i¢Dn+1+ei¢Dn—1)a (AB)
where ys=2uV/%? and yg= uV4/#2. After some algebra we have the following equation from E4d.) and (A6):
B —-(+D)7r g+t (A
= A7
é 1+~ —a+0)7Ir/\p (A7)
where
. 0 0 0
va€?lik_1  yslik_y  yqe ' ?lik_, 0 0
= 0 ya€'?liko vs!iKg ye€ "likg 0 ; (A8)
0 0 vq€' ?lik, vsliky  yqe "liky
0 0 0 ) )
|
andl is an infinite-dimensional square identity matrix. Equa- roo Toi --- tog t
. . . 00 01
tion (A7) can also be expressed in the fofouty=M|in), .,
whereM connects the input coefficients to the output coeffi- fio0 T~ tp I
cients including the associated evanescent Floquet sidebands. : : : :
In order to construct the scattering matrix we multiply an S= ¢ ¢ T K (A9)
identity to both sides,K ™~ *K|outy=MK~*K|in), where 0o to1 00 o1
Knm= VKnOnm. Then we havel,,=MJ;,, whereJ repre- tio tin -+ T Iy

sents the amplitude of probability flux aM=KMK L. It

should be mentioned thM is not unitary due to the evanes-

cent modes included. wherer,, and t,,, are the reflection and the transmission
If we keep only the propagating modes, we obtain theamplitudes, respectively, for modes incident from the left,

unitary scattering matrix§>*® which can be expressed in r},, andt,, are similar quantities for modes incident from

the following form: the right.
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