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Floquet scattering in parametric electron pumps

Sang Wook Kim
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A Floquet scattering approach to parametric electron pumps is presented and compared with Brouwer’s
adiabatic scattering approach@Phys. Rev. B58, R10 135 ~1998!# for a simple scattering model with two
harmonically oscillatingd-function barriers. For small strength of oscillating potentials these two approaches
give exactly equivalent results while for large strength, these clearly deviate from each other. The validity of
the adiabatic theory is also discussed by using the Wigner delay time obtained from the Floquet scattering
matrix.
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I. INTRODUCTION

A parametric electron pump is a device that generates
current at zero-bias potential through cyclic change of s
tem parameters. The most direct way to create a dc cur
was originally proposed by Thouless,1 who considered a sys
tem subjected to a traveling wave potential. This can be
alized for example with the help of surface acoustic wave2

Another possibility is to utilize quantum dots. In closed sy
tems operating in the Coulomb blockade regime, inte
number of electric charge can be transferred by seque
changes of barriers like a turnstile,3 whereas in open system
the electron pumping can be driven by adiabatic sh
change in the confining potential or other parameters wh
affect the interference pattern of the coherent electrons in
device. After a cycle of the adiabatic shape change we re
to the initial configuration, but the wave function may ha
its phase changed from the initial wave function. This is
so-called geometric or Berry’s phase.4 This additional phase
is equivalent to some charges that pass through the qua
dot, namely, pumped charge.5,6 Recently, adiabatic charg
pumping in open quantum dots has attracted consider
attention.5–12

Switkes et al. report an experimental investigation o
electron pumping through an open quantum dot under
shape deformation controlled by two ac gate voltages.8 For
weak pumping the dc voltage induced by the pumped
current not only have a sinusoidal dependence on phase
ferencef of the two ac voltages applied to the gates, bu
also proportional to the square of the pumping strengthl.
Many aspects of the experimental results can be unders
in terms of Brouwer’s scattering approach.7 The change in
the charge of the dot in response to a small variation
external parameterdX is given bydQ5e(dXidn/Xi , where
dn/dX is the emissivity.13 The pumped charge during eac
cycle can be determined by integratingdQ along the closed
path in the parameter space$Xi% defined by one pumping
cycle. Then, the pumped chargeQ is rewritten as an integra
over the surface enclosed by the path by using Green’s t
rem, e.g., in the two parameter caseQ
5e*AdX1dX2P(X1 ,X2). Assuming P is constant over a
small area of (X1 ,X2), for weak pumping one can show th
pumping currentI p}vl2sinf, which exactly corresponds t
0163-1829/2002/66~23!/235304~6!/$20.00 66 2353
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what was observed in the experiment. For strong pump
however, the dc voltage generated by the pumped cur
deviates from the sinusoidal dependence onf, and also de-
parts from thel2 dependence. The nonsinusoidal depe
dence can be understood by taking into account thatP is no
longer constant over the integration area whenl is consid-
erably large. In Ref. 8 the anomalousl dependence was
ascribed to the occurrence of significant heating and dep
ing as a result of strong pumping.

The parametric electron pump is a time-dependent sys
driven by~at least! two different time periodic perturbation
with the same angular frequency and phase differencef.
One can deal with this problem using not only adiaba
approximation exploited by Brouwer but also Floqu
approach.14 An oscillating potential can transfer an incomin
electron of energyE to Floquet side bands atE6n\v,
wheren is an integer andv is the angular frequency of th
oscillation. A scattering matrix for a time-dependent syst
can be constructed from the interplay of these sidebands15,16

So far there have been relatively few works on nonadiab
parametric electron pumps,17,18 and the comparison betwee
the adiabatic and the Floquet approach is still missing.
show, using a simple scattering model with two harmonica
oscillating d-function barriers, that for smalll these two
approaches give exactly equivalent results for the pum
charge while for largel they are different. Even though th
pumped current as a function ofl obtained from these two
approaches shows qualitatively similar behavior, the phys
interpretation is completely different. This discrepancy
large l is not fully ascribed to the breakdown of adiaba
conditions since the Wigner delay times calculated by us
Floquet scattering matrix are still much smaller than an
cillation period of external pumping potentials.

In Sec. II, we introduce our model system and investig
the characteristics of the pumped current using Brouwe
scattering approach. In Sec. III, we study the Floquet
proach for parametric electron pumps and compare w
those of Sec. II. We also discuss the validity of adiaba
theory by using the Wigner delay time. Finally, we conclu
our paper in Sec. IV.

II. BROUWER’S SCATTERING MATRIX APPROACH

As a model system we consider one-dimensional~1D!
two harmonically oscillatingd-function barriers with the
©2002 The American Physical Society04-1
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SANG WOOK KIM PHYSICAL REVIEW B 66, 235304 ~2002!
strengths X15V11l1cosvt and X25V21l2cos(vt1f),
respectively, separated by a distanced. This is a simplified
model of the experiment by Switkeset al., but possesse
many important characteristics and can be easily hand
Wei et al.studied parametric charge pumping aided by qu
tum resonance using this model and found that the pum
current has large values near a resonance level.19 Due to the
double barrier geometry, resonant tunneling also plays
important role in charge pumping.

The 232 scattering matrix of the double barriers with th
strengthesX1 andX2 is given by

S5S r t 8

t r 8
D , ~1!

wherer and t are the reflection and the transmission amp
tudes, respectively, for modes incident from the left;r 8 and
t8 are similar quantities for modes incident from the rig
The charge emitted per cycle to the right is obtained from

Q15eE
0

Tp
dtS dn1

dX1

dX1

dt
1

dn1

dX2

dX2

dt D , ~2!

where

dn1

dXm
5ImS ]t

]Xm
t* 1

]r 8

]Xm
r 8* D ~3!

(m51,2), andTp(52p/v) is the period of the pumping
One can show that the emitted charge to the leftQ2 is equal
to 2Q1. Equation~2! can be rewritten in the following form
by using Green’s theorem:

Q15eE
A
dX1dX2P~X1 ,X2!, ~4!

where P(X1 ,X2)5](dn1 /dX2)/]X12](dn1 /dX1)/]X2.
The pumped current is easily obtained fromI 15Q1 /Tp .

We use the parametersd550 nm for the distance betwee
the two barriers, the effective massm50.067me of an elec-
tron in GaAs, andTp59.09 ps for the period of pumping
which corresponds to\v50.45 meV. Figure 1 shows th
pumped current as a function of the energy of an incid
electron with V15V25V, l15l25l, and f5p/2. We
present two examples; the first is a nearly open caseV
50) in Figs. 1~a! and ~b!, and the second is a closed ca
(V5225 meV nm) in Figs. 1~c! and ~d!. All of them show
interesting resonancelike structures. In the closed case
can directly see the relation between the pumped curr
and transmission resonances in Figs. 1~c! and~d!, where the
transmission poles are denoted by the filled circles (d). To
find these poles we considered a scattering problem w
staticdouble barriers of strengthV. The imaginary part of the
pole~denoted by the length of error bars attached to the fi
circles! is related to the lifetime of a resonant~or quasi-
bound! state, and determines the width of the transmiss
peaks. Peaks of the pumped current and their width are
described by the real and imaginary part of the resona
poles respectively, as shown in Fig. 1~c!. In Fig. 1~d!, how-
ever, the width of the pumped current is larger than
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imaginary part of the resonance energy due to the effec
strong oscillation. Moreover, in the open case@Figs. 1~a! and
~b!#, this analysis is no more relevant since there is no re
nance in the static double barrier model.

Figure 2 shows the pumped current as a function of
pumping strengthl for V50 ~the open case! with f
5p/2. Here for smalll the pumped current depends onl2

and has an exact sinusoidal dependence onf, while for
largerl the pumped current saturates and even decrease
l increases, and also deviates from the sinusoidal dep
dence onf. The decrease of the pumped current can
understood by considering the charge fluxP(X1 ,X2) in Fig.
3. For smalll, the integration area only contains the positi
P ’s ~the solid circle!. Hence asl increases*AP also be-
comes larger, which is roughly proportional to the area

FIG. 1. The pumped currentI 1 calculated by using Brouwer’s
approach~solid curves! and the Floquet approach~dotted curves!
with f5p/2 for ~a! l522.5 meV nm and~b! l5225 meV nm
with V50, and~c! l522.5 meV nm and~d! l5225 meV nm with
V5225 meV nm. In~c! and ~d! the transmission resonances a
denoted by the filled circles (d) obtained from considering stati
double barriers, whosey values are chosen arbitrarily. The attach
error bars represent the sizes of the imaginary energy of each
nance.

FIG. 2. The pumped currentI 1 as a function ofl with V1

5V250 and E56.005\v by using Brouwer’s approach forf
5p/2 ~the solid curve! and f51.1p ~the dashed curve!, and the
Floquet approach forf5p/2 (d) and f51.1p (s). 3 and 1
representI → andI ← for f5p/2, respectively. The inset shows th
pumped currentI 1 as a function off for ~a! l522.5 meV nm and
~b! l5675 meV nm by using Brouwer’s approach~the solid
curves! and the Floquet approach~the dotted curves!.
4-2
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FLOQUET SCATTERING IN PARAMETRIC ELECTRON PUMPS PHYSICAL REVIEW B66, 235304 ~2002!
closed by the circle, i.e., *AP}l2. Around l
5225 meV nm~the dashed circle in Fig. 3! the integration
area begins to include the region with both the positive a
the negativeP ’s, which means*AP no longer increases asl
increases. This explains why the pumped current satur
and even decreases abovel5225 meV nm as shown in Fig
2. From this we expect that the behavior of the saturation
the pumped current would depend onf since the shape o
the integration area is determined byf. For example, with
f51.1p the integration area denoted by the dashed do
curve in Fig. 3 is distorted from the original circular shap
so that even forl5675 meV nm the integration area co
tains only positiveP ’s. Figure 2 clearly shows that th
pumped current withf51.1p saturates much more slowl
in comparison with the pumped current withf5p/2. The
nonsinusoidal dependence of the pumped current onf for
largel is also ascribed to the loss of circular symmetry ofP
in (X1 ,X2).

III. FLOQUET APPROACH

Now we study the Floquet approach of the problem inv
tigated in Sec. II. Using the scattering matrix of a singled
function with sinusoidal time dependence~see the Appendix
for details!, we can obtain the total scattering matrix of th
oscillating doubled functions in the following form:

SFl5S r t 8

t r 8
D , ~5!

where r5rL1tL(I2QrRQrL)21QrRQtL , and t5tR(I
2QrLQrR)21QtL ; r 8 andt8 can also be obtained by repla
ing L by R in r and t, respectively. HererR(L) and tR(L) are
the reflection and the transmission matrices, respectively
the right ~left! delta function with time dependence fo
modes from the left, andI is an identity matrix. Due to the

FIG. 3. Contour plot of fluxP(X1 ,X2) for E56.005\v. The
solid and the dashed contours represent positive and neg
fluxes, respectively, in the range of20.016–0.016. The circles rep
resent the integration area forf5p/2 ~see the text for detail! with
l522.5 meV nm ~thick solid curve!, l5225 meV nm ~thick
dashed curve!, and l5675 meV nm ~thick dotted curve!. The
dashed-dotted curve represents the integration area withf51.1p
andl5675 meV nm.
23530
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reflection symmetry of each delta functionrR(L)8 5rR(L) , and
tR(L)8 5tR(L) . During each one-way trip an electron at ener
En5E1n\v picks up a phase factor exp(iknd), which is
represented by the diagonal matrixQmn5exp(ikmd)dmn.
From SFl we can obtain the total transmission coefficien
for the propagating mode entering in themth channel,

T→m~EFl !5 (
n50

`

utnmu2, ~6!

whereEFl is the Floquet energy. The total transmission c
efficient from the left to the right as a function of an ener
of an incident electron is given byT→(E)5T→m(EFl) where
E5EFl1m\v. The total transmission from the right to th
left T←(E) can also be determined in a similar way.

The pumped current to the right is given by17,20

I 15
2e

h E dEdE8@ t~E8,E! f L~E!2t8~E,E8! f R~E8!#,

~7!

where t(E8,E) represents the transmission probability f
scattering states incident from the left at energyE and
emerging to the right atE8, and t8(E,E8) is defined in a
similar manner for the reverse direction.f L ( f R) is the
Fermi-Dirac distribution in the left~right! reservoir. Since
the Floquet energy must be conserved during the scatte
process,E8 andE are given byEFl1n\v andEFl1m\v,
respectively (n and m are integers!. Using Eq.~6!, we can
derive the relation*dE8t(E8,E)5(nutnm(EFl)u25T→(E).
Without external bias (f L5 f R5 f ) Eq. ~7! can be rewritten
as

I 15
2e

h E
0

`

dE f~E!@T→~E!2T←~E!#. ~8!

At zero temperature it becomes

I 15
2e

h E
0

EF
dE@T→~E!2T←~E!#, ~9!

whereEF is the Fermi energy. Equation~9! can also be ex-
pressed asI 15I →2I ← . This is quite interesting becaus
from this point of view the pumped current merely corr
sponds to the difference of two currents having the oppo
directions through a scatterer.

Figure 1 shows that in the open case (V50) for smalll
@Fig. 1~a!# the pumped current obtained from the Floqu
approach is equivalent to that of Brouwer’s while for rath
larger l @Fig. 1~b!# they deviate from each other. WhenV
Þ0 ~the closed case!, even for smalll @Fig. 1~c!# they are
quantitatively different near the resonances. Figure 4 sh
T→ and T← in comparison with the pumped currentI 1. In
the closed case@Figs. 4~c! and ~d!# it is shown thatT→
'T← , and the transmission resonances are directly rela
to the maxima of the pumped currents. In the open c
@Figs. 4~a! and~b!#, however,T→ andT← considerably differ
from each other, and it is hard to determine the relation

ive
4-3
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SANG WOOK KIM PHYSICAL REVIEW B 66, 235304 ~2002!
tween the resonances and the pumped currents. In factT→
looks out of phase withT← , and their resonance structure
are quite complicated. In the open case the resona
assisted electron pumping19 seems unclear even though th
oscillatory behavior of transmission looks similar to that
the pumped current.

As l increases withV50, in Fig. 2, the pumped curren
obtained from the Floquet approach also saturates and
decreases although their exact values are different from th
of Brouwer’s. We also plotI → and I ← in Fig. 2, where it is
clear that in the Floquet approach the decrease ofI 1 for large
l is ascribed to the decrease of bothI → andI ← . Usually the
stronger the barrier strength, the smaller the transmiss
This interpretation differs from that of Brouwer’s, in whic
the decrease of the pumped current is explained by con
ering the structure ofP(X1 ,X2) ~Sec. II!. Since we cannot
define P(X1 ,X2) explicitly in the Floquet formalism, we
plot P integrated over small circular area with a radiusl
centered at (V1 ,V2). We consider only the case thatV1
5V25V. Figure 5 shows that the integratedP ’s obtained
from the two different approaches forl522.5 meV nm look
very similar to each other, and their overall structure
governed by the static double barrier resonances denote
the circles (s).

Brouwer’s approach is based upon the adiabatic appr
mation, which implies that any time scale of the proble
considered, especially the electron dwell time in a quant
dot ~or inside double barriers in our case!, must be much
smaller than the period of the oscillation of a external pum
ing Tp .7 Using the Floquet formalism we can calculate t
Wigner delay timetW , which is the interaction time of the
incident electron with the scattering potential21 ~see also
Refs. 22 and 23!. In this sensetW corresponds to the electro
dwell time in the quantum pump. To obtain the Wigner de
time we use the eigenvalues of the scattering matrixSFl .
Due to the unitarity ofSFl all the eigenvalues lie on the un
circle and can be written in the form exp(iua). The Wigner
delay time is defined by

FIG. 4. Pumped current~thick solid curves!, T→ ~thin solid
curves!, andT← ~dotted curves! with the same parameters as us
in Fig. 1. For clear comparison the unit and the scale of they axis
are arbitrarily chosen.
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a

dua

dE
u^knuua&u2, ~10!

where the eigenstate corresponding to the eigenvalueua and
an input propagating state~or channel! with momentumkn
are denoted byuua& and ukn&, respectively.24 It is worth not-
ing that the Wigner delay time is a function of the energy
the incident particleE (5EFl1n\v), andukn& anduua& are
determined byn andEFl , respectively. If̂ knuua& is ignored
in Eq. ~10! the Wigner delay timetW becomes trivial, i.e.,
tW(E1n\v)5tW(E). Thus we cannot observe any sign
ture of the double barrier resonances.

Figure 6 shows the Wigner delay time using the sa
parameters exploited in Fig. 5. The Wigner delay times
come smaller for both largerE and lowerV, which can be
understood when we take into account that usually the e
tron dwell time is short if the energy of an incident electr
is large or the scattering barrier is weak. The Wigner de
times have larger values near the resonances, which is
cribed to the fact that at the resonances an electron can
in the quantum dot for a long time. Near the resonances
adiabatic condition can break down. This explains the dev
tion between the pumped currents observed in Fig. 1~c!. In

FIG. 5. Contour plot of the pumped currentI 1 obtained from
integratingP with l522.5 meV nm~see the text for detail! by
using ~a! Brouwer’s approach and~b! the Floquet approach. The
solid and the dashed contours represent positive and negative
rents, respectively, in the range of20.2–0.2 nA. The open circles
(s) and the vertical lines represent the resonance energies of
sibound states of static doubled-function barriers and the resonanc
energies from the conditionp2\2m2/2md2 with an integerm (m
51,2,•••), respectively.

FIG. 6. Gray scale plot of the Wigner delay time. Black deno
times larger than 0.1Tp . The open circles (s) represent the reso
nance energies which are the same as in Fig. 5.
4-4
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FLOQUET SCATTERING IN PARAMETRIC ELECTRON PUMPS PHYSICAL REVIEW B66, 235304 ~2002!
the open case (V50) we also check the Wigner delay tim
for rather largerl ~up to 675 meV nm), and observe they a
smaller thanTp by two orders of magnitude except for sma
incident energyE ~not shown!, which means Brouwer’s ap
proach should be still applicable even for largel. This leads
us to conclude that the deviations of the pumped curr
observed in Figs. 1~a!, ~b!, and 2 for largel are not simply
ascribed to the breakdown of adiabatic condition. It is wo
noting that recently Entin-Wohlmanet al.presented a simila
observation: they found the validity regime of their adiaba
approximation is restricted by the strength of the modulat
potential.11 Let us just note that in Fig. 2 the discrepancy f
largel appears whenuI 1u/uI →u ~or uI 1u/uI ←u) is not so small.

One of the interesting consequences from Eq.~9! is that
the pumped current still exists even in the casesf50 or p
when l1Þl2.18 Since the integration area in parame
space is zero whenf50 or p, in Brouwer’s approach the
pumped current definitely vanishes. In contrast, even w
f50 or p, an asymmetry of the potential can lead to t
asymmetry of the currents,20 which is nothing but the
pumped current in Eq.~9!. Figure 7 shows the pumed curre
as a function of ratio of the strength of two barriersl2 /l1
with f50 or p, and E56.005\v. Note that the pumped
current is zero whenl15l2. The oscillatory behavior is also
related to the double barrier resonances.

IV. SUMMARY

We investigate the Floquet scattering in parametric e
tron pumps in comparison with Brouwer’s adiabatic scatt
ing approach exploiting two harmonically oscillatingd func-
tion barriers. In the Floquet approach the pumped curr
simply corresponds to the difference of two currents hav
the opposite direction through a scatterer. For small stren
of the oscillating potentials, these two kinds of approach g
exactly equivalent results while for large strength these sh
deviation. Even though for large strength we obtain qual
tively similar results for the pumped currents using both
proaches, the physical interpretation is completely differe
The validity of the adiabatic approximation is also discuss
by calculating Wigner delay time. For large strength of t
oscillating potentials although the adiabatic condition is w

FIG. 7. Pumped currentI 1 as a function of potential asymmetr
l2 /l1 with l1522.5 meV nm andE56.005\v at f50 ~solid
curve! andf5p ~dashed curve!, where the currents are normalize
to their values atf5p/2. The inset shows the magnification of
part of the plot.
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satisfied, a quantitative discrepancy between both approa
is still observed. In the Floquet approach, a nonzero pum
current can be obtained even whenf50 or p ~no current at
all in Brouwer’s approach!, if the spatial reflection symmetry
of the potential is broken.

Note added. Since submission of our work a closely re
lated preprint has appeared: M. Moskalets and M. Bu¨ttiker
develop the similar Floquet theory for quantum pumping
mesoscopic conductors.28
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APPENDIX: FLOQUET SCATTERING MATRIX
IN A SINGLE OSCILLATING d-FUNCTION IMPURITY

The scattering problem of a singled-function impurity
with sinusoidal time dependence has been investigated
several authors.25–27 We would like to summarize how to
construct its Floquet scattering matrix in this Appendix. T
system is described by the Hamiltonian

H~x,t !52
\2

2m

d2

dx2
1@Vs1Vdcos~vt1f!#d~x!,

~A1!

wherem is the mass of the incident particle, whileVs andVd
represent the strength of the static and the oscillating po
tial, respectively. Using the Floquet formalism the solution
this Hamiltonian can be expressed as

CEFl
~x,t !5e2 iEFl t/\ (

n52`

`

cn~x!e2 invt, ~A2!

whereEFl is the Floquet energy which take continuous v
ues in the interval 0,EFl<\v.

Since the potential is zero everywhere except atx50,
cn(x) is given by the following form

cn~x!5H Aneiknx1Bne2 iknx, x,0,

Cneiknx1Dne2 iknx, x.0,
~A3!

where kn5A2m(EFl1n\v)/\. The wave function
CEFl

(x,t) is continuous atx50,

An1Bn5Cn1Dn , ~A4!

and the derivative jumps by

dCEFl

dx
Ux5012

dCEFl

dx
U

x502

5
2m

\2
@Vs1Vdcos~vt1f!#CEFl

~0,t !. ~A5!

Using Eq.~A2! this leads to the condition
4-5
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ikn~Cn2Dn2An1Bn!5gs~An1Bn!1gd~e2 ifAn111eifAn211e2 ifBn111eifBn21!

5gs~Cn1Dn!1gd~e2 ifCn111eifCn211e2 ifDn111eifDn21!, ~A6!

wheregs52mVs /\2 andgd5mVd /\2. After some algebra we have the following equation from Eqs.~A4! and ~A6!:

S BW

CW
D 5S 2~ I 1G!21G ~ I 1G!21

~ I 1G!21 2~ I 1G!21G
D S AW

DW
D , ~A7!

where

G5S � � 0 0 0

gdeif/ ik21 gs / ik21 gde2 if/ ik21 0 0

0 gdeif/ ik0 gs / ik0 gde2 if/ ik0 0

0 0 gdeif/ ik1 gs / ik1 gde2 if/ ik1

0 0 0 � �

D , ~A8!
a

ffi
n

an

-

th
n

n
ft;

m

andI is an infinite-dimensional square identity matrix. Equ
tion ~A7! can also be expressed in the formuout&5M u in&,
whereM connects the input coefficients to the output coe
cients including the associated evanescent Floquet sideba
In order to construct the scattering matrix we multiply
identity to both sides,K21Kuout&5MK21Ku in&, where
Knm5Akndnm . Then we haveJWout5M̄JW in , whereJW repre-
sents the amplitude of probability flux andM̄[KMK21. It
should be mentioned thatM̄ is not unitary due to the evanes
cent modes included.

If we keep only the propagating modes, we obtain
unitary scattering matrixS,15,16 which can be expressed i
the following form:
rd

.M

c

B

23530
-

-
ds.

e

S5S r 00 r 01 ••• t008 t018 •••

r 10 r 11 ••• t108 t118 •••

A A � A A �

t00 t01 ••• r 008 r 018 •••

t10 t11 ••• r 108 r 118 •••

A A � A A �

D , ~A9!

where r nm and tnm are the reflection and the transmissio
amplitudes, respectively, for modes incident from the le
r nm8 and tnm8 are similar quantities for modes incident fro
the right.
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