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Dynamical control of correlated states in a square quantum dot
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In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states
termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in
space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory
electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find
that, for certain combinations of frequency and strength of the applied field, the tunneling between various
charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anti-
crossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location
of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured
in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled
states in mesoscopic devices.
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I. INTRODUCTION curately using a perturbational method. This significantly

clarifies how time-dependent electric fields can affect the

The study of quantum coherent effects in mesoscopic syssharge distribution inside a strongly correlated QD, and how
tems, such as quantum dd@Ds), is a subject of great cur- they can be used for quantum control. _

rent interest, both from the theoretical point of view, and Al th'e low electron densities typlcally present in QD$’

because of a growing number of possible experimental a correlations produced by the Coulomb interaction can sig-

plications. One of the most notable of these is the swiftlyn'f'cantly influence the electronic structure. Such strongly

developing field of quantum computation, in which the CO_correlated problems are notoriously difficult to treat, and the

addition of a time-dependent field complicates the problem

herent manipulation of entangled quantum states is an esselan further. When the mean interelectron separation ex-

tial component. Recent experimental successes in detectingeqs a certain critical value, however, a considerable sim-
Rabi oscillations in QD systems driven by ac-fidldwave plification occurs, as the Coulomb interaction dominates the
spurred interest in the use of intense ac-fields to coherentlyjnetic energy and drives a transition to a quasi-crystalline
manipulate the time development of electronic staté&  arrangement which minimizes the total electrostatic energy.
exciting possibility is to make use the phenomenordfer-  |n analogy to the phenomenon of Wigner crystallization in
ent destruction of tunnelingCDT),% in which the tunneling  bulk two-dimensional systems, such a state is termed a
dynamics of a quantum system become suppressed at certaivigner moleculeAs the electrons in the Wigner state are
parameters of the field. Tuning the driving field thus providessharply localized in space, the system can be naturally and
a simple mechanism to localize or move charge within theefficiently discretized by placing lattice points just at these
QD on a rapid time-scale by destroying or restoring the tunspatial locations. A many-particle basis can then be con-
neling between regions of the device, so allowing ac-fields tstructed by taking Slater determinants of single-particle
be used as “electron tweezers.” states defined on these lattice sites, from which an effective
In this article we study the use of ac-fields for this pur- Hamiltonian of Hubbard type can be generated to describe

pose, by investigating the time-dependent behavior of electhe low-energy dynamics of the syfstém..me%'_or advantage

etry, under the influence of a strong driving field. We use anvhich a very large number of lattice points is taken to ap-

effective model of Hubbard type to describe the systemProximate the continuum limit, is that the dimension of the

which gives a considerable computational advantage ove‘?ﬁem've Hamll_tonlan IS much smalle{t_ypmal_ly by many
rders of magnitude which permits the investigation of sys-

standard numerical approaches, and also allows us to ea5|t hich Id otherwise b hibitivel lex. Thi
include the important effects of the electron correlations pro- ms which would othérwise be prohibitively compiex. 1iS

duced by the Coulomb interaction. By integrating the Sehro approach has.proven to be_ extre_mely sucgessfu! in treating a
dinger equation in time, we find that, for certain values of theVarety of static problems, including one-dimensional QDs,

field, tunneling between different charge conﬁgurationstwo'dimenSionaI QDs with polygonal boundarfes,and

within the QD can be quenched extremely well. In particulareleCtrons confined to quantum ringgVe further develop this

we find that tunneling processes parallel to the field can b ethod in this work by including a t_|me-dependent elect_n(_:
destroyed while transverse tunneling is left unchanged, re—'e.ld’ and study th? tgmporal dynamics of the system as it is
sulting in an effective decoupling between the two halves ofinven out of equilibrium.

the QD. We explain these findings by making use of the Il. MODEL AND METHODS

Floquet approachand show that the points at which tunnel- '

ing is quenched correspond to anti-crossings between Flo- We consider a system of two electrons confined to a

guet quasi-energies, the locations of which can be found asquare QD with a hard-wall confining potential—a simple

0163-1829/2002/6@3)/2353038)/$20.00 66 235303-1 ©2002 The American Physical Society



C. E. CREFFIELD AND G. PLATERO PHYSICAL REVIEW B6, 235303 (2002

(@) (b) ) ®
o QB o o
| | M @)
! ® o N N
. ‘ (O)------- O o o e e
D C 3) @) 5) (6)

squzlri. QlD' (ggfsrcr):arstgr?atﬁ)ear::r?é?eersd:rn;Iltjysefc(j)rai d t;ﬁg zilggﬁgg th FIG. 2. Schematic representation of the two-particle basis states
i R - C %r the singlet subspace of the Hamiltonian. The ground state of the
of the QD is 800 nm, placing it in the Wigner regime. The dark QD is approximately a superposition of stafak and (2)
areas indicate peaks in the charge-densiiy.Lattice points used '
for the effective lattice-Hamiltonian.
also be used to ensure that the multiplet of states included in

Such a system can be produced by gating a two-dimensiongkcited states of the QD system, which will therefore not
electron gas confined at a heterojunction interface, and bipfluence the system’s dynamics. In this work, however, we
heterostructuré? the potentials at the corners of the QD can _neglect t_he influence of small, accidental offsets gncountered
be individually regulated. In Fig.(&) we show the ground- [N €Xperiment as we expect Fhem to have only minor effects,
state charge-density obtained from the exact diagonalizatiofnd indeed may even stabilize _Cl.i)lTFor.convenl'ence, we
of a square QD for device parameters placing it deep in the consider applying an ac-field aligned with tkexis of the
Wigner molecule regime. It can be seen that the chargeQD. which can be parametrized as
density is sharply peaked at four points, located close to the
vertices of the QD. This structure arises from the Coulomb E E
interaction between the electrons, which tends to force them Exr= EDZECOSwt, Eg=Ec= —Ecosm, (2
apart into diagonally opposite corners of the dot. As there are
two such diagonal states, degenerate in energy, we can un-
derstand the form of the ground-state by considering it to ba&vhere A,B,C,D label the sites as shown in Fig(k). We
essentially a superposition of these two stdteith a small emphasize that although we have the specific system of a
admixture of higher energy staje3he four points at which semiconductor QD in mind, the effective-Hamiltonian we are
the peaks occur define the sites on which the effective latticeusing can describe a wide range of physical systems, includ-
Hamiltonian operates, as shown in Figb)l ing 2X 2 arrays of connected QB¥sand the quantum cellu-

We take an effective lattice-Hamiltonian of the form lar automata systems studied by Lental,'* and our results

are thus of general applicability.
We study the dynamics of the system by placing it in a

H= > [t(c],cip+H.c)+Vmn1+ X [Unin;, certain initial state, and then integrating this state in time
(L) ! under the influence of the effective Hamiltonié), using a
+E(H)ni], (1)  fourth-order Runge-Kutta methdd. During the time-

evolution, typically of the order of 50 periods of the driving
wherec/ /c;, are the creation/annihilation operators for anfield, we measure physical quantities such as the particle
electron of spino on sitei, nia:CiTgCioy andn; is the total occup:_;\tio_n of the siteis;(t), and al_so ensure that at all times
charge occupation of site The quantityt denotes the hop- the unitarity of the wavefunction is accurately preserved. As

ping between adjacent sites, and throughout this work we s&¥€ consider a two-electron system, its eigenstates are sym-
~ L .~ metric (antisymmetri¢ under particle exchange, correspond-
iandﬁ equal to one, and measure all energies in units. of ing to their singlet(triplet) symmetry. The Hamiltonianl)

V represents the Coulomb reBuIsion between electrons occépntains no spin-flip terms since measurements on semicon-
pying neighboring sites, antl is the standard Hubbard ductor QDs show that the spin-flip relaxation time is typi-
U-term, giving the energy cost for double-occupation of acally extremely long?® and so the singlet and triplet sub-
site. E;(t) denotes the electric potential at sitewhich in  spaces are completely decoupled. Thus if the initial state
general can have a static and a time-dependent componepbssesses a definite parity, this will be retained throughout its
In experiment, static offsets can arise either from deviationsime evolution, and we only need to include states of the
of the confining potential of the QD from the ideal geometry,same parity in the basis. We choose to use initial states with
or by the deliberate application of gating voltages to thesinglet symmetry, which corresponds to the symmetry of the
corners of the QD. Applying corner potentials in this way system’s ground-state. Simple state counting reveals that the
could be used to enhance the stability of the Wigner molsinglet subspace has a dimension of ten, and can be spanned
ecule state, especially if the confining potential is softer tharby the six states shown schematically in Fig. 2, together with
the hard-wall potential considered here. Corner gates mathe four states in which each site is doubly-occupied.
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Since the Hamiltoniafl) is periodic in time, we can use (a) (b)
the Floquet theorem to write the solutions of the time- ST ] AT
dependent Schdinger equation asi(t)=exp(—iet)g;(t), I //”\ im\ AV
wheree; is called the quasi-energy, arj(t) is a function \\ i‘ \ A/V |

with the same period as the driving field, called the Floquet"C% V\ ‘f! ”\ ‘ \\\;
state. This type of expression is familiar in the context of g 5 [ | f | M V\ 17 1

solid-state physics, where spatial periodicity permits an© \q V\ J’
analogous rewriting of the spatial wavefunction in terms of £ % ff ANE N \q
guasi-momenta and Bloch stai@och’s theorem The Flo- 0 ] wﬂ MM ST N i A AR
guet states, and their corresponding quasi-energies, can k o 4 8 12 16 200 4 8 12 16 20
obtained from the eigenvalue equation: Time Time
J FIG. 3. Time development of the noninteracting systemdor
H(t) —i—|di(t) =€ ¢i(1), (3) =8: (a) electric p_otential_, E30.0 (b) E=19.24. S_olid line indi- _
at] ™! 17 cates the occupation of sites A and D, the dotted line the occupation

which, as we show in the Appendix, is the key to obtainingOf sites B and C.

an analytic expression for the quasi-energies by means of ) ) )
perturbation theory. given in the Appendix, and it has been shown to work ex-
Using the Floguet states as a basis, the time-evolution of §eémely well when the tunneling terms are small in compari-

general state driven by the periodic field may be written asSON to the other energy-scales of the problem. .
A convenient numerical method to obtain the quasi-

et energies and Floquet states is to diagonalize the unitary time-
p(t) =2 cje 'y, (4)  evolution operator for one period of the driving fieldi(t
: +T,t). It may be easily shown that the eigenvectors of this
which is formally analogous to the standard expansion in th@perator are equal to the Floquet states, and its eigenvalues
eigenvectors of a time-independent Hamiltonian. Indeed, irare related to the quasi-energies Wig=exg —igT]. This
the adiabatic limit,T=2m/w—o, the quasi-energies evolve method is particularly well-suited to our approachlKg ,0)
to the eigenenergies, and the Floquet states to the eigenstatean be obtained by propagating the unit matrix in time over
An important property of expanding in Floquet statdsis  one period of the field, using the Runge-Kutta method de-
that it provides a extremely valuable separation of time-scribed earlier.
scales. Although the Floquet states explicitly depend on time,
they are periodic with the same period as the driving field
and so just influence the dynamics on short time-scales. Con- . RESULTS
sequently, the long time-scale dynamics of the system is es-
sentially determined byust the quasi-energies, and hence ) ] o ) o )
evaluating the quasi-energies provides a simple and direct We begin our investigation by first considering the sim-
way of investigating the long time-scale behavior of the sysplest case, that of noninteracting electrons=0,U=0). In
tem. In particular, when two quasi-energies are close to deFig. 3 we show the time-evolution of the system for two
generate, the time-scale for tunneling between the states bstrengths of electric field at a frequency @8, in each
comes extremely long, producing the phenomenon ofase using staté) (see Fig. 2 as the initial state. A conse-
CcDT2 quence of using this initial state is that as the ac-field is
As the ac-field is aligned with the-axis of the QD, the aligned with thex-axis of the QD, it does not break the
Hamiltonian(1) is invariant under the composite parity op- reflection symmetry between the upper and lower halves of
erationx— —X;t—t+T/2. As a result the Floguet states can the QD, and thus throughout the time evolutigg= np, and
also be classified into parity classes, depending whether theys=nc. For the first case, when the electric potental
are odd or even under this parity operation. Quasi-energies 30.0, it can be seen that the occupation of sites cycles
belonging to different parity classes may cross, but if theybetween zero and one, as the two electrons perform spatial
belong to the same class the von Neumann-Wigner theoreiRabi oscillations between the left side of the system and the
forbids this, and consequently at close approaches they formight side. The picture in the second case, however,Eor
anti-crossings instead. Identifying the presence of crossings 19.24, is radically different, with the occupation of sites A
and anti-crossings in the quasi-energy spectrum provides @nd D varying little from its initial value of one, and sites B
necessarythough not sufficientcondition for CDT to occur. and C remaining almost empty throughout the time evolu-
The locations of these close approaches between quagien. It thus appears that at this second value&edhe tun-
energies may be found by an analytic approach used byeling between the left and right sides has been considerably
Holthaus® to treat noninteracting electrons, and later genersuppressed.
alized in Ref. 14 to include interactions. In this method the To confirm that CDT is occurring, we present in Fig. 4 a
quasi-energies are obtained by first solving the Floquet equazomparison of the amplitude of the oscillations of the occu-
tion (3) in the absence of the tunneling terms, and then perpation number of site A with the quasi-energy spectrum of
forming perturbation theory with the tunneling terms actingthe system as a function of the electric potenalt can be
as the “perturbation.” A full description of the method is clearly seen that for most field strengths the charge oscilla-

A. Noninteracting case
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Electric potential, E B. Interacting electrons, no double-occupancy
FIG. 4. (a) Quasi-energies of the noninteracting systemdor e now consider the effect of introducing interactions
=8: C|rcIeF.ex.act results, Ilnesp.erturbatllve solution(b) Ampli- between the electrons, and begin by taking the Hubbard
tude of oscillation of the occupation of site A. U-term to be infinitely large—that is, we work in the sub-

tion has an amplitude of approximately one, except a pace of states with no double occupation. Our Hilbert space

. . L ’ s thus six-dimensional, and we use as the basis the states
sharply defined minima where it is heavily quenched. Theshown in Fig. 2.

positions of these minima correspo_nd pre(_:isely t_o the loca- We show the quasi-energy spectrum of this system, again
tions of exact crossings of the quasi-energies. Using the PR, a frequency of»=8 in Fig. 5a). In contrast to the non-

turbative method described in the Appendix reveals that th teracting case, we see that the system presents two differ-

quasi-energies fall into three bands. The central band h ' . ' : >
quasi-energies ok, — = 2J,(E/w) (whereJ, is the Bessel nt regimes of behavior. The first of these is the weak-field

function of the first kindlande,= 0. The upper band has the regime,E<V, at which the driving field does not dominate

same quasi-energies, but increased by a constant amount B¢ dynamics. In this regime the quasi-energy spectrum, and
+2, and similarly the quasi-energies of the the lower band:orrespondmgl_y _the. a}mplltude of oscnlat!ons, shows little
are decreased by 2. Plotting these quantities in Fig) 4 structure, and it is d|ff|cult_to obtain z_:malytlcal results as 'ghe
demonstrates that the agreement of the perturbative resdifrturbational approach is not valid when the tunneling
with the exact results obtained from the diagonalization of€'MS aré comparable in magnitude to the electric field.
U(T,0) is extremely good, and corroborates our observation ~The second regime occurs at strong field strengkhs,
of CDT atE=19.24, as at this poir/w=2.40 which is the >V, for which the quasi-energy spectrum clearly shows a
first zero ofJ,. This dependence of CDT aby, is familiar ~ sequence of close approaches. In Fi@) 5ve show an en-
from the behavior of the driven two-level systéd, in largement of one of these close approaches which reveals it
which the phenomenon of CDT was first noted. to be ananti-crossing Employing the perturbation theory

It is interesting to observe that the quasi-energy Spectru,ﬁemonstrates that the two quasi-energies involved in these
resembles that of noninteracting electrons driven by an acanti-crossings are described by2J,(E/w), wheren is
field in a superlatticé®!® with the quasi-energy crossings equal toV/w. We may thus think ofn as signifying the
corresponding to “miniband collapse.” Indeed the lattice number of photons the system needs to absorb to overcome
model we study can be considered to be a four-site chaithe Coulomb repulsion between the electrons occupying
with periodic boundary conditions in space. The differenceneighboring sites. To examine whether these anti-crossings
between the cases arises, however, because in the case afarespond to CDT, we follow the same procedure as before,
superlatticeall intersite tunneling processes are suppressednd study the amplitude of oscillationsri as a function of
as the electric field is always parallel to the axis of the suE, when the system is initialized in stat6). The results in
perlattice. Although our system is topologically equivalent toFigs. §b) and Rd) strongly confirm that tunneling is highly
a chain, the fact that it has a two-dimensional geometrsuppressed at the anti-crossings, and hence that CDT indeed
means that only tunneling processes parallel to the field areccurs.
suppressed (A-B,C—D), while tunneling in directions We further show in Fig. 6 the time-dependent number
perpendicular to the field (A D,B« C) is unaffected. occupation of the four sites at two valueskfin Fig. 6a) E
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has a value of 100.0, and it can be clearly seen that the < I \J I | \u‘ \} || ~\ \j ‘o 4
electrons perform driven spatial Rabi oscillations between 0.2 - | U U‘ I \ \/ ‘\) || H || H
the left side of the QD and the right. Accordingly the occu- ol o Ll LV
pation of the sites varies continuously between zero and one 0 100 200 300
In Fig. 6(b) we show the result of changing the electric po- Electric potential, E

tential to a value ofE=115.7, which corresponds to the

center of the first anti-crossing. In dramatic contrast to the FIG. 7. (8) Quasi-energies of the system fak=160 andV
previous case, we see that the occupation of sites A and B 16, »=8: circles=exact results, linesperturbative solution
only varies slightly from unity, while sites B and C remain [ +2J,(E/w)]. (b) Amplitude of oscillation of the occupation of
essentially empty throughout the time-evolution. Only asite A, with (6) as the initial state.

small amount of charge can transfer per period of the driving

field between the left and right sides of the system, producsystem is initialized in staté5), which demonstrates that at
ing the small spikes visible in this figure. The amplitude ofthe locations of the anti-crossings the tunneling parallel to
these features is extremely small, however, indicating thathe field is again quenched.

the tunneling between left and right sides has been almost When the electric potential exceeds the valu&ofhow-
totally quenched. The efficiency of the quenching dependgver, new structure appears in the quasi-energy spectrum. A

on the value o which for the case we consider is relatively group of four quasi-energies, that for weaker fields cluster

high. For smaller values &8, qualitatively the same features &round zero, become “excited” and make a sequence of anti-

occur, but the efficiency of the quenching is diminished, and"0SSings as the field strength is increased. The amplitude of
the sharpness of the anti-crossings is reduced. these oscillations is comparable to the amplitude of the two

quasi-energies discussed above, but it is clear that the two
sets of anti-crossings are not in phase with each other. Per-
C. Interacting electrons, double-occupancy permitted turbation theory predicts that these high-field quasi-energies

We now take the most general case, and consider the corade given by=2J,(E/w), wherem=(U~V)/w, and thus

petition between th& andV terms. Settingd to a finite these anti-crossings arise \_/vhen the ab_sorptiom photons
value means that the four doubly-occupied basis states are f9Uates 1o the electrostatic energy difference between the
longer energetically excluded from the dynamics, and actWe €lectrons being on neighboring sites, and doubly-
cordingly we must take the full ten-dimensional basis set. ©¢CUpyIng oné site. Th's then |nd|catgs that this structure

Although it is difficult to obtain precise estimates for the &15€S_from the coupling of the ac-field to the doubly-
values of parameters of the effective Hamiltonian, it is clea®CCUPied States.

that in aenerall>%. Accordinaly we ch th rameter To probe this phenomenon, we time-evolve the system
atin genera - Accordingly We choose the parameters ¢, an initial state consisting dfvo electrons occupying

U=160, V=16 to separate the two energy-scales widely forsjte A In Fig. §b) it can be seen that for electric potentials
our investigation. As before we set the frequency of the aCyeaker thanl the amplitude of the oscillations in, re-

field to =8, and in Fig. fa) we show the quasi-energy |,.ins'small, and shows little dependence on the field. As the
spectrum obtained by sweeping over the field strength. It is

immediately clear from this figure that for electric potentials potential exceed®, this picture changes, and the ac-field

E<U the f f th t . i v similar to th drives large oscillations im,, and in fact mainly forces
€ form ot the spectrum 1s exiremely simiiar to the charge to oscillate between sites A and B. At the high-field

infinite-U case. Performing perturbation theory confirms anti-crossings, however, the tunneling between A and B is
that, as in the previous case, the behavior of the quaskyppressed, which shuts down this process. Instead, the only
energies is given by-2J,(E/w) wheren=V/w. We show time-evolution that the system can perform consistaiof

in Fig. 7(b) the amplitude of the oscillations ofy, when the  driven Rabi oscillations between sites A and D, perpendicu-
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Quasi-energy
Occupation

Time

FIG. 9. Time development of the =160 andV= 16 system for
w=8: (a) electric potential, E200.0 (off-resonance and (b) E
=185.8(on-resonande Thick solid line indicates the occupation of
site A, the thick dotted line the occupation of site D. Dotted lines in
(b) show the Rabi oscillations of the isolated two-site system, Eq.

(5).

ample atE=200, this decoherence occurs very rapidly. By
: : moving to an anti-crossing, however, and suppressing the
0 1g?ectric potemialzgo 300 tunneling, the rate of mixing between t_he. two_sides of the
’ QD can be considerably reduced, and is just limited by the
separation in energy between the two quasi-energies. Tuning
the parameters of the driving field therefore gives us a simple
and controllable way to investigate how a two-electron
wavefunction can decohere in a QD.

FIG. 8. (@ Quasi-energies of the system far=160 andV
=16, w=8: circlessexact results, linesperturbative solution
[+£2J:4(E/w)]. (b) Amplitude of oscillation of the occupation of
site A, with site A doubly-occupied as the initial state.

lar to the field. As these oscillations are undriven they have a IV. CONCLUSIONS
much longer time-scale than the forced dynamics, and thus _ _ _ _
during the interval over which we evolve the systéap- In this article we have studied the time-dependent behav-
proximately 50 periods of the driving fieldthe occupation ior of a system of two electrons confined to a square QD,
of A only changes by a small amount, producing the verydriven by an external ac-field. By considering the strongly
sharp minima visible in Fig. ®), centered on the roots of correlated limit of the system, we are able to use an effective
J(Elw). lattice model of just four sites, which arises from the natural
As the tunneling perpendicular to the field is undriven, itdiscretization presented by the system in a Wigner molecule
is straightforward to evaluate the time evolution of the initial State. We emphasize, however, that the form of the Hamil-
state, if we assume that the left side of the QD is completelyonian we use is very general, and our results are thus appli-
decoupled from the right side. The occupation of sites A an@able to a wide variety of mesoscopic systems. In our effec-
D is then given by tive model, the interelectron Coulomb interaction is
described by two parametetsd,andV, and the dynamics of
Na(t)=1+cosQgt, np=1—CcosQgt, (5)  the system consists essentially of tunneling from corner to
U ) corner, along the perimeter of the QD. We find that when the
where()=4t"/(U—V), which, for the parameters we USe, o ency of the driving field is in resonance withor (U

ives a Rabi period of g=27/Q)g=226.19. In Fig. 9 we ~
g P R™ECTR g ~V), charge moves freely around the system, except at

display the occupations of sites A and D as a function o ; ; . ;
time, for two values of electric potential. At the first value, sharply defined field strengths at which tunneling parallel to

E=200, tunneling between the left and right sides of the QDthe field is _destroyed—CDT. By using Floguet theory we
is not quenched, and accordingly the occupation of the tW51ave established that these points correspond t_o the roots of
sites varies rapidly between zero and two as the electrons are(E/@), wherem is the order of the resonangee., mw
driven by the ac-field around the system. The second value; V or mo=(U—V)].

E=185.8, corresponds to the first high-field anti-crossing. It When CDT occurs, tunneling parallel to the electric field
can be clearly seen that the charge oscillates between sitesidsuppressed, and the system is restricted to performing un-
and D, with a frequency close 5. These Rabi oscillations driven Rabi oscillations in the perpendicular direction. We
are damped, however, indicating that the isolation betweefan therefore expect a radical modification in the frequency
the left and right sides of the QD is not perfect. In this sensénd polarization of the EM radiation emitted by the QD in
we can regard the two sites B and C as pro\/iding an envithiS situation. In experiment the phenomenon of CDT should
ronment, Causing the quantum System Composed of sites E\]US bgreadlly measurable, aIIOWing the measurement of the
and D to slowly decohere in time. When the tunneling be-U andV parameters, and hence giving a simple and useful
tween the left and right sides of the QD is strong, for ex-parametrization of the QD system. The tunability of this ef-
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fect, and its ability to discriminate between states of doublestates arestationary states of the operatof{(t)=H(t)
occupation and states in the single-occupation subspace,i(d/dt), and thus we are able to employ standard station-
make it an excellent candidate as a control parameter faary perturbation theory techniques, and avoid the complica-
manipulating the dynamics of strongly correlated electrons irtion of using time-dependent methods.

mesoscopic systems. We first divide the Hamiltoniar(1) into two parts:H;
which contains all the tunneling terms, aHg containing all
ACKNOWLEDGMENTS the interaction termgthose involvingU, V and the electric
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=H,—i(d/at), and employ the tunneling Hamiltonian as the
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the EU through the TMR program “Quantum Transport in perturbation. By making this division, we can expect the

the Frequency and Time Domains,’” and by the I:)GESperturbative result to be good when tunneling is small in
(Spain through Grant No P896-087é comparison to the other energy scales of the problem, and

conversely, to break down in the limit of weak fields.
In the basis we have choseéh is diagonal, with entries

APPENDIX s s 5
: . H,=diag0,0V,V—-E(t),V,V+E(t),U+E(1),
The full spin-dependent wavefunction of a two-electron

system can be factorized into a spinor and a purely spatial ~ ~ ~
wavefunction: U—E(t),U—-E(t),U+E(t)), (A4)

. _ where E(t) =E coswt, and thus finding the eigensystem of
W(ry,015r2,02) = x(01,02)¥(r1,72), (A1) H,(t) reduces to the straightforward task of solving the ten

) ] first-order differential equations:
where for states of singlet symmetry the spatial wavefunc-

tion is symmetric under particle exchan@nd the spinoly q
is antisymmetri, while the reverse is true for triplet states. N Thall AP

In this work we consider just the singlet sector of the model, {(H')” I dt} $i(0=€(0). (AS)
and the two-particle states shown schematically in Fig. 2

represent the spatial components of the two-electron wave- For j=1 and 2,(A5) has the trivial solutionse;(t)
functions. These are formed from symmetric combinations of_ ’ !
single-particle states defined on the lattice-points A,B,C,D
so that, for example,

1,6;=0. The third and fifth components also do not have
an explicit time dependence, and so have similarly simple
solutiqns:¢j(t) =ex;{i(g-—\7)t]. Imposing periodic boundary
WA(E ) Be(F2) + de(r ) (T ) conditions sets the value of the quasi-energy, requirigg (
|1)= 2 ) (A2) —V)=mw wherem is an integer. The remaining solutions
2 are all similar in form to each other, and as an example,

with similar expressions holding for each of the states$id(t) is given by

shown. An analogous set of states with triplet symmetry can

be constructed by taking antisymmetric combinations. To _ E

complete the singlet basis we must include the four states in d1o(t)= exp{ —i(U—¢€t—i—sinwt]|. (AB)
which a lattice point is doubly occupied, holding one spin-up @

electron and one spin-down, which we label as

Imposing periodic boundary conditions on the this solution
requires U — €)=nw, wheren is an integer.
18)=ve(ra) ge(ra), the eigenv?allues o, are thus O(Withga twofold degen-
eracy, V modew (with a fourfold degeneragy and
19)=tc(r1)dhe(ra), [10)=o(r)do(ra). U modw (also with a fourfold degeneragyThese represent
Our starting point to obtain approximate expressions folth® zeroth-order approximations to the quasi-energies in the
the quasi-energies is E(). As the Floquet states are peri- pertur_batlona_ll expansion. It can readily be shown that their
odic functions of time, it is useful to work in a Hilbert space associated eigenvectogg(t) form an orthonormal basis set,

of T-periodic functiond® by defining an appropriate scalar @1d, by using standard degenerate perturbation theory, the
product function: guasi-energies can be obtained to first-order by finding the

eigenvalues of the perturbing operatde;|H;| #;)). By us-
ing the identity

|7)=tha(r1) a(r2),

1(T

<<¢>a(t)|¢b(t)>>:$f0<¢a(t’)|¢b(t’))dt’, (A3)
where the single-bracket denotes the usual inner product for exr[—iﬁsinwt]zm;w In(Blexd —imwt] (A7)
the spatial component of the wavefunctions. The advantage

of working in this extended Hilbert space is that the Floquetto rewrite the eigenvectors which have the fo(A®6), the
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scalar product$A3) can be evaluated straightforwardly, al- shown to be O(with a fourfold degeneragy +2J,(E/w),
lowing the matrix elements of the perturbing operator to beand +2J,_,(E/w) (with each state being twofold degener-
obtained, and the operator to be subsequently diagonalizechte). The specific cases treated in Secs. Il A and B can be

For the general case, with=mw andU=nw, the first- treated in a similar way, giving the perturbative solutions
order approximation to the quasi-energies can be readilguoted there.
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