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Dynamical control of correlated states in a square quantum dot

C. E. Creffield and G. Platero
Instituto de Ciencia de Materiales (CSIC), Cantoblanco, E-28049, Madrid, Spain

~Received 11 July 2002; published 4 December 2002!

In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states
termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in
space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory
electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find
that, for certain combinations of frequency and strength of the applied field, the tunneling between various
charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anti-
crossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location
of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured
in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled
states in mesoscopic devices.

DOI: 10.1103/PhysRevB.66.235303 PACS number~s!: 73.63.Kv, 42.50.Hz, 03.67.Lx
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I. INTRODUCTION

The study of quantum coherent effects in mesoscopic
tems, such as quantum dots~QDs!, is a subject of great cur
rent interest, both from the theoretical point of view, a
because of a growing number of possible experimental
plications. One of the most notable of these is the swi
developing field of quantum computation, in which the c
herent manipulation of entangled quantum states is an es
tial component. Recent experimental successes in dete
Rabi oscillations in QD systems driven by ac-fields1 have
spurred interest in the use of intense ac-fields to cohere
manipulate the time development of electronic states.2 An
exciting possibility is to make use the phenomenon ofcoher-
ent destruction of tunneling~CDT!,3 in which the tunneling
dynamics of a quantum system become suppressed at ce
parameters of the field. Tuning the driving field thus provid
a simple mechanism to localize or move charge within
QD on a rapid time-scale by destroying or restoring the t
neling between regions of the device, so allowing ac-field
be used as ‘‘electron tweezers.’’

In this article we study the use of ac-fields for this pu
pose, by investigating the time-dependent behavior of e
trons confined to a two-dimensional QD with a square geo
etry, under the influence of a strong driving field. We use
effective model of Hubbard type to describe the syste
which gives a considerable computational advantage o
standard numerical approaches, and also allows us to e
include the important effects of the electron correlations p
duced by the Coulomb interaction. By integrating the Sch¨-
dinger equation in time, we find that, for certain values of
field, tunneling between different charge configuratio
within the QD can be quenched extremely well. In particu
we find that tunneling processes parallel to the field can
destroyed while transverse tunneling is left unchanged,
sulting in an effective decoupling between the two halves
the QD. We explain these findings by making use of
Floquet approach,4 and show that the points at which tunne
ing is quenched correspond to anti-crossings between
quet quasi-energies, the locations of which can be found
0163-1829/2002/66~23!/235303~8!/$20.00 66 2353
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curately using a perturbational method. This significan
clarifies how time-dependent electric fields can affect
charge distribution inside a strongly correlated QD, and h
they can be used for quantum control.

At the low electron densities typically present in QD
correlations produced by the Coulomb interaction can s
nificantly influence the electronic structure. Such stron
correlated problems are notoriously difficult to treat, and
addition of a time-dependent field complicates the probl
even further. When the mean interelectron separation
ceeds a certain critical value, however, a considerable s
plification occurs, as the Coulomb interaction dominates
kinetic energy and drives a transition to a quasi-crystall
arrangement which minimizes the total electrostatic ene
In analogy to the phenomenon of Wigner crystallization
bulk two-dimensional systems, such a state is terme
Wigner molecule. As the electrons in the Wigner state a
sharply localized in space, the system can be naturally
efficiently discretized by placing lattice points just at the
spatial locations. A many-particle basis can then be c
structed by taking Slater determinants of single-parti
states defined on these lattice sites, from which an effec
Hamiltonian of Hubbard type can be generated to desc
the low-energy dynamics of the system.5 A major advantage
of this technique over standard discretization6 schemes, in
which a very large number of lattice points is taken to a
proximate the continuum limit, is that the dimension of t
effective Hamiltonian is much smaller~typically by many
orders of magnitude!, which permits the investigation of sys
tems which would otherwise be prohibitively complex. Th
approach has proven to be extremely successful in treati
variety of static problems, including one-dimensional QD5

two-dimensional QDs with polygonal boundaries,7,8 and
electrons confined to quantum rings.9 We further develop this
method in this work by including a time-dependent elect
field, and study the temporal dynamics of the system as
driven out of equilibrium.

II. MODEL AND METHODS

We consider a system of two electrons confined to
square QD with a hard-wall confining potential—a simp
©2002 The American Physical Society03-1
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representation of a two-dimensional semiconductor Q
Such a system can be produced by gating a two-dimensi
electron gas confined at a heterojunction interface, and
placing a gate split into four quadrants over t
heterostructure,10 the potentials at the corners of the QD c
be individually regulated. In Fig. 1~a! we show the ground-
state charge-density obtained from the exact diagonaliza
of a square QD,7 for device parameters placing it deep in t
Wigner molecule regime. It can be seen that the cha
density is sharply peaked at four points, located close to
vertices of the QD. This structure arises from the Coulo
interaction between the electrons, which tends to force th
apart into diagonally opposite corners of the dot. As there
two such diagonal states, degenerate in energy, we can
derstand the form of the ground-state by considering it to
essentially a superposition of these two states~with a small
admixture of higher energy states!. The four points at which
the peaks occur define the sites on which the effective latt
Hamiltonian operates, as shown in Fig. 1~b!.

We take an effective lattice-Hamiltonian of the form

H5 (
^ i , j &,s

@ t̃ ~cis
† cj s1H.c.!1Ṽninj #1(

i
@Ũni↑ni↓

1Ei~ t !ni #, ~1!

wherecis
† /cis are the creation/annihilation operators for

electron of spins on sitei, nis5cis
† cis , andni is the total

charge occupation of sitei. The quantityt̃ denotes the hop
ping between adjacent sites, and throughout this work we
t̃ and\ equal to one, and measure all energies in units ot̃ .
Ṽ represents the Coulomb repulsion between electrons o
pying neighboring sites, andŨ is the standard Hubbar
U-term, giving the energy cost for double-occupation o
site. Ei(t) denotes the electric potential at sitei, which in
general can have a static and a time-dependent compo
In experiment, static offsets can arise either from deviati
of the confining potential of the QD from the ideal geomet
or by the deliberate application of gating voltages to
corners of the QD. Applying corner potentials in this w
could be used to enhance the stability of the Wigner m
ecule state, especially if the confining potential is softer th
the hard-wall potential considered here. Corner gates m

FIG. 1. ~a! Ground-state charge-density for a two-electr
square QD. GaAs material parameters are used, and the side-l
of the QD is 800 nm, placing it in the Wigner regime. The da
areas indicate peaks in the charge-density.~b! Lattice points used
for the effective lattice-Hamiltonian.
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also be used to ensure that the multiplet of states include
this effective lattice-model is well-separated from the oth
excited states of the QD system, which will therefore n
influence the system’s dynamics. In this work, however,
do not explicitly consider the effects of static gates, and
neglect the influence of small, accidental offsets encounte
in experiment as we expect them to have only minor effe
and indeed may even stabilize CDT.11 For convenience, we
consider applying an ac-field aligned with thex-axis of the
QD, which can be parametrized as

EA5ED5
E

2
cosvt, EB5EC52

E

2
cosvt, ~2!

where A,B,C,D label the sites as shown in Fig. 1~b!. We
emphasize that although we have the specific system
semiconductor QD in mind, the effective-Hamiltonian we a
using can describe a wide range of physical systems, inc
ing 232 arrays of connected QDs12 and the quantum cellu
lar automata systems studied by Lentet al.,13 and our results
are thus of general applicability.

We study the dynamics of the system by placing it in
certain initial state, and then integrating this state in tim
under the influence of the effective Hamiltonian~1!, using a
fourth-order Runge-Kutta method.14 During the time-
evolution, typically of the order of 50 periods of the drivin
field, we measure physical quantities such as the part
occupation of the sitesni(t), and also ensure that at all time
the unitarity of the wavefunction is accurately preserved.
we consider a two-electron system, its eigenstates are s
metric ~antisymmetric! under particle exchange, correspon
ing to their singlet~triplet! symmetry. The Hamiltonian~1!
contains no spin-flip terms since measurements on semi
ductor QDs show that the spin-flip relaxation time is typ
cally extremely long,15 and so the singlet and triplet sub
spaces are completely decoupled. Thus if the initial st
possesses a definite parity, this will be retained throughou
time evolution, and we only need to include states of
same parity in the basis. We choose to use initial states w
singlet symmetry, which corresponds to the symmetry of
system’s ground-state. Simple state counting reveals tha
singlet subspace has a dimension of ten, and can be spa
by the six states shown schematically in Fig. 2, together w
the four states in which each site is doubly-occupied.

gth
FIG. 2. Schematic representation of the two-particle basis st

for the singlet subspace of the Hamiltonian. The ground state of
QD is approximately a superposition of states~1! and ~2!.
3-2
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DYNAMICAL CONTROL OF CORRELATED STATES IN A . . . PHYSICAL REVIEW B66, 235303 ~2002!
Since the Hamiltonian~1! is periodic in time, we can use
the Floquet theorem to write the solutions of the tim
dependent Schro¨dinger equation asc(t)5exp(2iejt)fj(t),
wheree j is called the quasi-energy, andf j (t) is a function
with the same period as the driving field, called the Floq
state. This type of expression is familiar in the context
solid-state physics, where spatial periodicity permits
analogous rewriting of the spatial wavefunction in terms
quasi-momenta and Bloch states~Bloch’s theorem!. The Flo-
quet states, and their corresponding quasi-energies, ca
obtained from the eigenvalue equation:

FH~ t !2 i
]

]t Gf j~ t !5e jf j~ t !, ~3!

which, as we show in the Appendix, is the key to obtaini
an analytic expression for the quasi-energies by mean
perturbation theory.

Using the Floquet states as a basis, the time-evolution
general state driven by the periodic field may be written

c~ t !5(
j

cje
2 i e j tf j~ t !, ~4!

which is formally analogous to the standard expansion in
eigenvectors of a time-independent Hamiltonian. Indeed
the adiabatic limit,T52p/v→`, the quasi-energies evolv
to the eigenenergies, and the Floquet states to the eigens
An important property of expanding in Floquet states~4! is
that it provides a extremely valuable separation of tim
scales. Although the Floquet states explicitly depend on ti
they are periodic with the same period as the driving fi
and so just influence the dynamics on short time-scales. C
sequently, the long time-scale dynamics of the system is
sentially determined byjust the quasi-energies, and hen
evaluating the quasi-energies provides a simple and d
way of investigating the long time-scale behavior of the s
tem. In particular, when two quasi-energies are close to
generate, the time-scale for tunneling between the states
comes extremely long, producing the phenomenon
CDT.3,14

As the ac-field is aligned with thex-axis of the QD, the
Hamiltonian~1! is invariant under the composite parity o
erationx→2x;t→t1T/2. As a result the Floquet states ca
also be classified into parity classes, depending whether
are odd or even under this parity operation. Quasi-ener
belonging to different parity classes may cross, but if th
belong to the same class the von Neumann-Wigner theo
forbids this, and consequently at close approaches they f
anti-crossings instead. Identifying the presence of cross
and anti-crossings in the quasi-energy spectrum provide
necessary~though not sufficient! condition for CDT to occur.

The locations of these close approaches between qu
energies may be found by an analytic approach used
Holthaus16 to treat noninteracting electrons, and later gen
alized in Ref. 14 to include interactions. In this method t
quasi-energies are obtained by first solving the Floquet eq
tion ~3! in the absence of the tunneling terms, and then p
forming perturbation theory with the tunneling terms acti
as the ‘‘perturbation.’’ A full description of the method i
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given in the Appendix, and it has been shown to work e
tremely well when the tunneling terms are small in compa
son to the other energy-scales of the problem.

A convenient numerical method to obtain the qua
energies and Floquet states is to diagonalize the unitary ti
evolution operator for one period of the driving fieldU(t
1T,t). It may be easily shown that the eigenvectors of t
operator are equal to the Floquet states, and its eigenva
are related to the quasi-energies vial j5exp@2iejT#. This
method is particularly well-suited to our approach, asU(T,0)
can be obtained by propagating the unit matrix in time o
one period of the field, using the Runge-Kutta method
scribed earlier.

III. RESULTS

A. Noninteracting case

We begin our investigation by first considering the sim
plest case, that of noninteracting electrons (Ṽ50,Ũ50). In
Fig. 3 we show the time-evolution of the system for tw
strengths of electric field at a frequency ofv58, in each
case using state~6! ~see Fig. 2! as the initial state. A conse
quence of using this initial state is that as the ac-field
aligned with thex-axis of the QD, it does not break th
reflection symmetry between the upper and lower halves
the QD, and thus throughout the time evolutionnA5nD , and
nB5nC . For the first case, when the electric potentialE
530.0, it can be seen that the occupation of sites cyc
between zero and one, as the two electrons perform sp
Rabi oscillations between the left side of the system and
right side. The picture in the second case, however, foE
519.24, is radically different, with the occupation of sites
and D varying little from its initial value of one, and sites
and C remaining almost empty throughout the time evo
tion. It thus appears that at this second value ofE the tun-
neling between the left and right sides has been consider
suppressed.

To confirm that CDT is occurring, we present in Fig. 4
comparison of the amplitude of the oscillations of the occ
pation number of site A with the quasi-energy spectrum
the system as a function of the electric potentialE. It can be
clearly seen that for most field strengths the charge osc

FIG. 3. Time development of the noninteracting system forv
58: ~a! electric potential, E530.0 ~b! E519.24. Solid line indi-
cates the occupation of sites A and D, the dotted line the occupa
of sites B and C.
3-3
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C. E. CREFFIELD AND G. PLATERO PHYSICAL REVIEW B66, 235303 ~2002!
tion has an amplitude of approximately one, except
sharply defined minima where it is heavily quenched. T
positions of these minima correspond precisely to the lo
tions of exact crossings of the quasi-energies. Using the
turbative method described in the Appendix reveals that
quasi-energies fall into three bands. The central band
quasi-energies ofe6562J0(E/v) ~whereJ0 is the Bessel
function of the first kind! ande050. The upper band has th
same quasi-energies, but increased by a constant amou
12, and similarly the quasi-energies of the the lower ba
are decreased by 2. Plotting these quantities in Fig.~a!
demonstrates that the agreement of the perturbative re
with the exact results obtained from the diagonalization
U(T,0) is extremely good, and corroborates our observa
of CDT atE519.24, as at this pointE/v52.40 which is the
first zero ofJ0. This dependence of CDT onJ0 is familiar
from the behavior of the driven two-level system,3,17 in
which the phenomenon of CDT was first noted.

It is interesting to observe that the quasi-energy spect
resembles that of noninteracting electrons driven by an
field in a superlattice,16,18 with the quasi-energy crossing
corresponding to ‘‘miniband collapse.’’ Indeed the latti
model we study can be considered to be a four-site ch
with periodic boundary conditions in space. The differen
between the cases arises, however, because in the cas
superlatticeall intersite tunneling processes are suppress
as the electric field is always parallel to the axis of the
perlattice. Although our system is topologically equivalent
a chain, the fact that it has a two-dimensional geome
means that only tunneling processes parallel to the field
suppressed (A↔B,C↔D), while tunneling in directions
perpendicular to the field (A↔D,B↔C) is unaffected.

FIG. 4. ~a! Quasi-energies of the noninteracting system forv
58: circles5exact results, lines5perturbative solution.~b! Ampli-
tude of oscillation of the occupation of site A.
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B. Interacting electrons, no double-occupancy

We now consider the effect of introducing interactio
between the electrons, and begin by taking the Hubb
U-term to be infinitely large—that is, we work in the sub
space of states with no double occupation. Our Hilbert sp
is thus six-dimensional, and we use as the basis the s
shown in Fig. 2.

We show the quasi-energy spectrum of this system, ag
for a frequency ofv58 in Fig. 5~a!. In contrast to the non-
interacting case, we see that the system presents two d
ent regimes of behavior. The first of these is the weak-fi
regime,E,Ṽ, at which the driving field does not dominat
the dynamics. In this regime the quasi-energy spectrum,
correspondingly the amplitude of oscillations, shows lit
structure, and it is difficult to obtain analytical results as t
perturbational approach is not valid when the tunnel
terms are comparable in magnitude to the electric field.

The second regime occurs at strong field strengthsE

.Ṽ, for which the quasi-energy spectrum clearly shows
sequence of close approaches. In Fig. 5~c! we show an en-
largement of one of these close approaches which revea
to be ananti-crossing. Employing the perturbation theor
demonstrates that the two quasi-energies involved in th
anti-crossings are described by62Jn(E/v), where n is
equal to Ṽ/v. We may thus think ofn as signifying the
number of photons the system needs to absorb to overc
the Coulomb repulsion between the electrons occupy
neighboring sites. To examine whether these anti-cross
correspond to CDT, we follow the same procedure as bef
and study the amplitude of oscillations innA as a function of
E, when the system is initialized in state~6!. The results in
Figs. 5~b! and 5~d! strongly confirm that tunneling is highly
suppressed at the anti-crossings, and hence that CDT in
occurs.

We further show in Fig. 6 the time-dependent numb
occupation of the four sites at two values ofE. In Fig. 6~a! E

FIG. 5. ~a! Quasi-energies of the system forŨ infinite, Ṽ580
and v58: circles5exact results, lines5perturbative solution
@62J10(E/v)#. ~b! Amplitude of oscillation of the occupation o
site A. ~c! Detail of quasi-energy spectrum, showing an an
crossing.~d! Detail of amplitude of oscillations.
3-4
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DYNAMICAL CONTROL OF CORRELATED STATES IN A . . . PHYSICAL REVIEW B66, 235303 ~2002!
has a value of 100.0, and it can be clearly seen that
electrons perform driven spatial Rabi oscillations betwe
the left side of the QD and the right. Accordingly the occ
pation of the sites varies continuously between zero and
In Fig. 6~b! we show the result of changing the electric p
tential to a value ofE5115.7, which corresponds to th
center of the first anti-crossing. In dramatic contrast to
previous case, we see that the occupation of sites A an
only varies slightly from unity, while sites B and C rema
essentially empty throughout the time-evolution. Only
small amount of charge can transfer per period of the driv
field between the left and right sides of the system, prod
ing the small spikes visible in this figure. The amplitude
these features is extremely small, however, indicating
the tunneling between left and right sides has been alm
totally quenched. The efficiency of the quenching depe
on the value ofṼ which for the case we consider is relative
high. For smaller values ofṼ, qualitatively the same feature
occur, but the efficiency of the quenching is diminished, a
the sharpness of the anti-crossings is reduced.

C. Interacting electrons, double-occupancy permitted

We now take the most general case, and consider the c
petition between theŨ and Ṽ terms. SettingŨ to a finite
value means that the four doubly-occupied basis states ar
longer energetically excluded from the dynamics, and
cordingly we must take the full ten-dimensional basis se

Although it is difficult to obtain precise estimates for th
values of parameters of the effective Hamiltonian, it is cle
that in generalŨ.Ṽ. Accordingly we choose the paramete
Ũ5160, Ṽ516 to separate the two energy-scales widely
our investigation. As before we set the frequency of the
field to v58, and in Fig. 7~a! we show the quasi-energ
spectrum obtained by sweeping over the field strength.
immediately clear from this figure that for electric potentia
E,Ũ the form of the spectrum is extremely similar to th
infinite-Ũ case. Performing perturbation theory confirm
that, as in the previous case, the behavior of the qu
energies is given by62Jn(E/v) wheren5Ṽ/v. We show
in Fig. 7~b! the amplitude of the oscillations ofnA when the

FIG. 6. Time development of the system forŨ infinite, Ṽ580
andv58: ~a! electric potential,E5100.0~b! E5115.7. Solid line
indicates the occupation of sites A and D, the dotted line the oc
pation of sites B and C.
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system is initialized in state~6!, which demonstrates that a
the locations of the anti-crossings the tunneling parallel
the field is again quenched.

When the electric potential exceeds the value ofŨ, how-
ever, new structure appears in the quasi-energy spectru
group of four quasi-energies, that for weaker fields clus
around zero, become ‘‘excited’’ and make a sequence of a
crossings as the field strength is increased. The amplitud
these oscillations is comparable to the amplitude of the
quasi-energies discussed above, but it is clear that the
sets of anti-crossings are not in phase with each other.
turbation theory predicts that these high-field quasi-energ
are given by62Jm(E/v), wherem5(Ũ2Ṽ)/v, and thus
these anti-crossings arise when the absorption ofm photons
equates to the electrostatic energy difference between
two electrons being on neighboring sites, and doub
occupying one site. This then indicates that this struct
arises from the coupling of the ac-field to the doub
occupied states.

To probe this phenomenon, we time-evolve the syst
from an initial state consisting oftwo electrons occupying
site A. In Fig. 8~b! it can be seen that for electric potentia
weaker thanŨ the amplitude of the oscillations innA re-
mains small, and shows little dependence on the field. As
potential exceedsŨ, this picture changes, and the ac-fie
drives large oscillations innA , and in fact mainly forces
charge to oscillate between sites A and B. At the high-fi
anti-crossings, however, the tunneling between A and B
suppressed, which shuts down this process. Instead, the
time-evolution that the system can perform consists ofun-
driven Rabi oscillations between sites A and D, perpendic

u-

FIG. 7. ~a! Quasi-energies of the system forŨ5160 andṼ
516, v58: circles5exact results, lines5perturbative solution
@62J2(E/v)#. ~b! Amplitude of oscillation of the occupation o
site A, with ~6! as the initial state.
3-5
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C. E. CREFFIELD AND G. PLATERO PHYSICAL REVIEW B66, 235303 ~2002!
lar to the field. As these oscillations are undriven they hav
much longer time-scale than the forced dynamics, and t
during the interval over which we evolve the system~ap-
proximately 50 periods of the driving field!, the occupation
of A only changes by a small amount, producing the ve
sharp minima visible in Fig. 8~b!, centered on the roots o
Jm(E/v).

As the tunneling perpendicular to the field is undriven
is straightforward to evaluate the time evolution of the init
state, if we assume that the left side of the QD is comple
decoupled from the right side. The occupation of sites A a
D is then given by

nA~ t !511cosVRt, nD512cosVRt, ~5!

whereVR54 t̃ 2/(Ũ2Ṽ), which, for the parameters we us
gives a Rabi period ofTR52p/VR5226.19. In Fig. 9 we
display the occupations of sites A and D as a function
time, for two values of electric potential. At the first valu
E5200, tunneling between the left and right sides of the Q
is not quenched, and accordingly the occupation of the
sites varies rapidly between zero and two as the electrons
driven by the ac-field around the system. The second va
E5185.8, corresponds to the first high-field anti-crossing
can be clearly seen that the charge oscillates between si
and D, with a frequency close toVR . These Rabi oscillations
are damped, however, indicating that the isolation betw
the left and right sides of the QD is not perfect. In this sen
we can regard the two sites B and C as providing an e
ronment, causing the quantum system composed of site
and D to slowly decohere in time. When the tunneling b
tween the left and right sides of the QD is strong, for e

FIG. 8. ~a! Quasi-energies of the system forŨ5160 andṼ
516, v58: circles5exact results, lines5perturbative solution
@62J18(E/v)#. ~b! Amplitude of oscillation of the occupation o
site A, with site A doubly-occupied as the initial state.
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ample atE5200, this decoherence occurs very rapidly. B
moving to an anti-crossing, however, and suppressing
tunneling, the rate of mixing between the two sides of t
QD can be considerably reduced, and is just limited by
separation in energy between the two quasi-energies. Tu
the parameters of the driving field therefore gives us a sim
and controllable way to investigate how a two-electr
wavefunction can decohere in a QD.

IV. CONCLUSIONS

In this article we have studied the time-dependent beh
ior of a system of two electrons confined to a square Q
driven by an external ac-field. By considering the strong
correlated limit of the system, we are able to use an effec
lattice model of just four sites, which arises from the natu
discretization presented by the system in a Wigner molec
state. We emphasize, however, that the form of the Ham
tonian we use is very general, and our results are thus ap
cable to a wide variety of mesoscopic systems. In our eff
tive model, the interelectron Coulomb interaction
described by two parameters,Ũ andṼ, and the dynamics of
the system consists essentially of tunneling from corner
corner, along the perimeter of the QD. We find that when
frequency of the driving field is in resonance withṼ or (Ũ
2Ṽ), charge moves freely around the system, excep
sharply defined field strengths at which tunneling paralle
the field is destroyed—CDT. By using Floquet theory w
have established that these points correspond to the roo
Jm(E/v), wherem is the order of the resonance@i.e., mv

5Ṽ or mv5(Ũ2Ṽ)].
When CDT occurs, tunneling parallel to the electric fie

is suppressed, and the system is restricted to performing
driven Rabi oscillations in the perpendicular direction. W
can therefore expect a radical modification in the freque
and polarization of the EM radiation emitted by the QD
this situation. In experiment the phenomenon of CDT sho
thus be readily measurable, allowing the measurement of
Ũ and Ṽ parameters, and hence giving a simple and use
parametrization of the QD system. The tunability of this e

FIG. 9. Time development of theŨ5160 andṼ516 system for
v58: ~a! electric potential, E5200.0 ~off-resonance! and ~b! E
5185.8~on-resonance!. Thick solid line indicates the occupation o
site A, the thick dotted line the occupation of site D. Dotted lines
~b! show the Rabi oscillations of the isolated two-site system,
~5!.
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DYNAMICAL CONTROL OF CORRELATED STATES IN A . . . PHYSICAL REVIEW B66, 235303 ~2002!
fect, and its ability to discriminate between states of doub
occupation and states in the single-occupation subsp
make it an excellent candidate as a control parameter
manipulating the dynamics of strongly correlated electron
mesoscopic systems.
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APPENDIX

The full spin-dependent wavefunction of a two-electr
system can be factorized into a spinor and a purely spa
wavefunction:

C~r 1 ,s1 ;r 2 ,s2!5x~s1 ,s2!c~r 1 ,r 2!, ~A1!

where for states of singlet symmetry the spatial wavefu
tion is symmetric under particle exchange~and the spinorx
is antisymmetric!, while the reverse is true for triplet state
In this work we consider just the singlet sector of the mod
and the two-particle states shown schematically in Fig
represent the spatial components of the two-electron wa
functions. These are formed from symmetric combinations
single-particle states defined on the lattice-points A,B,C
so that, for example,

u1&5
cA~r 1!cC~r 2!1cC~r 1!cA~r 2!

A2
, ~A2!

with similar expressions holding for each of the sta
shown. An analogous set of states with triplet symmetry
be constructed by taking antisymmetric combinations.
complete the singlet basis we must include the four state
which a lattice point is doubly occupied, holding one spin-
electron and one spin-down, which we label as

u7&5cA~r 1!cA~r 2!, u8&5cB~r 1!cB~r 2!,

u9&5cC~r 1!cC~r 2!, u10&5cD~r 1!cD~r 2!.

Our starting point to obtain approximate expressions
the quasi-energies is Eq.~3!. As the Floquet states are per
odic functions of time, it is useful to work in a Hilbert spac
of T-periodic functions,19 by defining an appropriate scala
product function:

^^fa~ t !ufb~ t !&&5
1

TE0

T

^fa~ t8!ufb~ t8!&dt8, ~A3!

where the single-bracket denotes the usual inner produc
the spatial component of the wavefunctions. The advant
of working in this extended Hilbert space is that the Floq
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states arestationary states of the operatorH(t)5H(t)
2 i (]/]t), and thus we are able to employ standard stati
ary perturbation theory techniques, and avoid the compl
tion of using time-dependent methods.

We first divide the Hamiltonian~1! into two parts:Ht
which contains all the tunneling terms, andHI containing all
the interaction terms~those involvingŨ, Ṽ and the electric
field!. We then find the eigensystem of the operatorHI(t)
5HI2 i (]/]t), and employ the tunneling Hamiltonian as th
perturbation. By making this division, we can expect t
perturbative result to be good when tunneling is small
comparison to the other energy scales of the problem,
conversely, to break down in the limit of weak fields.

In the basis we have chosenHI is diagonal, with entries

HI5diag~0,0,Ṽ,Ṽ2E~ t !,Ṽ,Ṽ1E~ t !,Ũ1E~ t !,

Ũ2E~ t !,Ũ2E~ t !,Ũ1E~ t !), ~A4!

whereE(t)5E cosvt, and thus finding the eigensystem
HI(t) reduces to the straightforward task of solving the t
first-order differential equations:

F ~HI ! j j 2 i
d

dtGf j~ t !5e jf j~ t !. ~A5!

For j 51 and 2, ~A5! has the trivial solutionsf j (t)
51,e j50. The third and fifth components also do not ha
an explicit time dependence, and so have similarly sim
solutions:f j (t)5exp@i(ej2Ṽ)t#. Imposing periodic boundary
conditions sets the value of the quasi-energy, requiringe j

2Ṽ)5mv wherem is an integer. The remaining solution
are all similar in form to each other, and as an examp
f10(t) is given by

f10~ t !5expF2 i ~Ũ2e10!t2 i
E

v
sinvt G . ~A6!

Imposing periodic boundary conditions on the this soluti
requires (Ũ2e)5nv, wheren is an integer.

The eigenvalues ofHI are thus 0~with a twofold degen-
eracy!, Ṽ modv ~with a fourfold degeneracy!, and
Ũ modv ~also with a fourfold degeneracy!. These represen
the zeroth-order approximations to the quasi-energies in
perturbational expansion. It can readily be shown that th
associated eigenvectorsf j (t) form an orthonormal basis se
and, by using standard degenerate perturbation theory,
quasi-energies can be obtained to first-order by finding
eigenvalues of the perturbing operator^^f i uHtuf j&&. By us-
ing the identity

exp@2 ib sinvt#5 (
m52`

`

Jm~b!exp@2 imvt# ~A7!

to rewrite the eigenvectors which have the form~A6!, the
3-7
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scalar products~A3! can be evaluated straightforwardly, a
lowing the matrix elements of the perturbing operator to
obtained, and the operator to be subsequently diagonaliz

For the general case, withṼ5mv and Ũ5nv, the first-
order approximation to the quasi-energies can be rea
hi

.

.H

ys

y

n,

23530
e
d.

ly

shown to be 0~with a fourfold degeneracy!, 62Jn(E/v),
and62Jn2m(E/v) ~with each state being twofold degene
ate!. The specific cases treated in Secs. III A and B can
treated in a similar way, giving the perturbative solutio
quoted there.
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