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Spin diffusion and injection in semiconductor structures: Electric field effects
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Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242

~Received 17 June 2002; published 4 December 2002!

In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and
moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin
polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate
electron statistics and identified a high-field diffusive regime which has no analog in metals. Here spin
injection from a ferromagnet~FM! into a nonmagnetic semiconductor~NS! is extensively studied by applying
this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and
FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semicon-
ductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric
field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the
symmetry between the two magnets at low fields, where both magnets are equally important for spin injection,
and spin injection becomes determined by the magnet from which carriers flow into the semiconductor. The
field-induced spin injection enhancement should also be insensitive to the presence of a highly doped non-
magnetic semiconductor (NS1) at the FM interface, thus FM/NS1/NS structures should also manifest efficient
spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in
a recent experiment on spin injection from magnetic semiconductors.

DOI: 10.1103/PhysRevB.66.235302 PACS number~s!: 72.25.Dc, 72.20.Ht, 72.25.Hg, 72.25.Mk
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I. INTRODUCTION

Semiconductor devices based on the control and man
lation of electron spin~semiconductor spintronics! have re-
cently attracted considerable attention since the discover
long spin relaxation times and large spin transport distan
in semiconductors and various device structures.1,2 In order
to design and fabricate high-performance spintronic devic
a comprehensive understanding of spin transport and in
tion properties of semiconductors and heterostructure
needed.

In theoretical studies of spin transport and injection
semiconductors3–6 the spin polarization is usually assume
to obey the same diffusion equation as in metals,7

¹2~m↑2m↓!2~m↑2m↓!/L250, ~1.1!

where m↑(↓) is the electrochemical potential of up-sp
~down-spin! electrons. In this diffusion equation, the electr
field does not play any role, and spin polarization dec
away on a length scale ofL from an injection point. This is
reasonable for metals because the electric fieldE is essen-
tially screened. For semiconductor spintronic devices, h
ever, the semiconductor often is lightly doped and nondeg
erate, and a moderate electric field can dominate the ca
motion. In fact, experiments have shown that electric fie
can affect spin diffusion in semiconductors dramatically.8,9

In Ref. 10, we examined the role of electric field on sp
transport in nondegenerate semiconductors and derive
drift-diffusion equation for spin polarization,

¹2~n↑2n↓!1
eE

kBT
•¹~n↑2n↓!2

n↑2n↓
L2

50, ~1.2!
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wheren↑(↓) is the deviation of up-spin~down-spin! electron
density from its equilibrium value,kB the Boltzmann con-
stant, andT the temperature. This equation consistently tak
into account electric-field effects and nondegenerate elec
statistics. We identified a high-field diffusive regime whic
has no analog in metals. This regime occurs for fields
small as 1 V/cm at low temperatures. Two distinct spin d
fusion lengths now characterize spin motion, i.e., up-stre
(Lu) and down-stream (Ld) spin diffusion lengths. This is a
further example of the analogy11,12 between up/down-spin
electrons in semiconductor spin transport and major
minority carriers in semiconductor charge transport, wh
the presence of an electric field also results in two cha
diffusion lengths.13 We applied this spin drift-diffusion equa
tion to study spin injection from a ferromagnet into a sem
conductor, and showed that the electric-field effects on s
injection could be described in terms of the two field-induc
spin diffusion lengths in the semiconductor.

In this paper, first, we derive a more general dri
diffusion equation of spin polarization valid for both dope
semiconductors and metals, and demonstrate the deve
ment from Eq.~1.2! to Eq. ~1.1! as the system changes fro
nondegenerate to degenerate. We clarify the relation betw
the electrochemical potential splitting and density imbalan
of up-spin and down-spin electrons in nondegenerate
tems, and clarify the two spin polarizations, i.e., spin pol
ization of current and spin polarization of density. We th
use the spin drift-diffusion equation for nondegenerate s
tems, Eq.~1.2!, to analyze several typical one-dimension
device geometries. We find that high fields also enhance
injection from a ferromagnet to a semiconductor in struct
with a spin-selective barrier. Rashba,4 Smith and Silver,5 Fert
and Jaffre`s,6 and Flatte´, Byers, and Lau in Ref. 2 have con
sidered such a barrier in the low-field regime. The field e
©2002 The American Physical Society02-1
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hancement and the interface enhancement of spin injec
may reinforce each other to achieve high injection efficie
cies in different structures.

Next, we study spin injection in sandwiched FM/NS/F
structures with and without spin-selective interfacial barrie
At low fields the two magnets are equally important to d
termine spin injection into the semiconductor and the s
injection efficiency is sensitive to the relative orientation
the two magnets. We find that in the high-field regime, t
symmetry is broken and spin injection is determined by
magnet from which carriers are injected into the semicond
tor. The spin injection efficiency can be enhanced by ord
of magnitude by increasing the electric field for both para
and antiparallel orientation of the two magnets.

We further consider FM/NS1/NS structures, where a
highly doped nonmagnetic semiconductor (NS1) is placed
near the magnet interface. Such a configuration is comm
in structures designed to overcome the Schottky barrier
tween a magnet and a semiconductor, and is intrinsic to F
InAs, where densely occupied surface states form at the
terface. We find that spin injection at the strong-field limit
such a structure is controlled by the total electric curr
flowing into semiconductors and insensitive to the distinct
between semiconductors. Thus high fields can effectively
hance spin injection in such structures as well.

Finally we explore electric-field effects on the magneto
sistance of a magnetic semiconductor~MS!/NS/MS struc-
ture. A large positive magnetoresistance have been obse
in MS/NS/MS structures.14 We find that this magnetoresis
tance collapses in the high-field regime, suggesting a se
tive test of the electric-field effects on spin transport in se
conductors.

The paper is organized as follows: In Sec. II we revie
the general spin drift-diffusion equation in nondegener
and degenerate systems and analyze the field-induced
diffusion lengths. In Sec. III we investigate spin injection
FM/NS structures with an interfacial barrier. Sections IV a
V contain results on spin injection in FM/NS/FM structur
and in FM/NS/NS structures, respectively. Section VI is d
voted to the electric-field effects on magnetoresistance
MS/NS/MS structures. In Sec. VII, we summarize our co
clusions.

II. ELECTRIC FIELD AND SPIN TRANSPORT

In this section we derive a more general drift-diffusio
equation for spin polarization valid in both degenerate a
nondegenerate systems and discuss the electric-field ef
on spin transport by analyzing the structure of this equat
Discussion of the drift-diffusion equations of carrier motio
in semiconductors involving spin-dependent processes
be traced back decades ago. Pierceet al. incorporated spin
relaxation in a one-dimension diffusion model of up-spin a
down-spin carrier densities at zero electric field.15 Sogawaet
al. investigated spin transport in wires with a set of compl
drift-diffusion equations for minority carriers, which explic
itly include spin-flip and recombination processes as wel
23530
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the electric field.16 More recently Zˆutić et al. displayed such
equations for both minority and majority carriers.17 Usually
extensive numerical calculations are required to solve the
of drift-diffusion equations together with the Poisson’s equ
tion self-consistently. The spin drift-diffusion equation w
derive is asingleequation instead of a set of equations a
can be solved analytically in several interesting geometr
The role of this spin drift-diffusion equation in spin transpo
is similar to that of the ambipolar drift-diffusion equation
charge transport.

A. Drift-diffusion equation for spin polarization

The system we consider here isn-doped (p-doped sys-
tems can be analyzed similarly!, which can be ferromagnetic
or nonmagnetic. The analysis presented in this section
valid not only in doped semiconductors but also in meta
We assume that there is no space charge and the mater
homogeneous. The current for up-spin and down-spin can
written as

j ↑5s↑E1eD↑¹n↑ , ~2.1a!

j ↓5s↓E1eD↓¹n↓ , ~2.1b!

which consists of the drift current and the diffusion on
Here D↑(↓) is the up-spin~down-spin! electron diffusion
constant ands↑(↓) the up-spin~down-spin! conductivity. The
change of up-spin~down-spin! conductivity from its un-
perturbed values↑(↓)

0 in the presence of spin polariza
tion, Ds↑(↓)[s↑(↓)2s↑(↓)

0 , is assumed to be proportiona
to n↑(↓) , the up-spin~down-spin! electron densitydeviation
from its equilibrium valuen↑(↓)

0 ,

Ds↑(↓)5n↑(↓)en↑(↓) . ~2.2!

Here the mobilityn↑(↓) is independent of field and densit
over the range of density variationn↑(↓) .

The continuity equations for up-spin and down-spin ele
trons in systems including spin-flip scattering process are

]n↑
]t

52
n↑
t↑↓

1
n↓
t↓↑

1
1

e
¹• j ↑ , ~2.3!

]n↓
]t

52
n↓
t↓↑

1
n↑
t↑↓

1
1

e
¹• j ↓ , ~2.4!

wheret↑↓
21 (t↓↑

21) is the rate with which up-spin~down-spin!
electrons scatter to down-spin~up-spin! electrons. Here the
recombination process is neglected because the system
consider is doped~unipolar!. In steady state@]n↑(↓) /]t
50#, we have

¹s↑•E1s↑¹•E1eD↑¹2n↑5S n↑
t↑↓

2
n↓
t↓↑

De, ~2.5!

¹s↓•E1s↓¹•E1eD↓¹2n↓5S n↓
t↓↑

2
n↑
t↑↓

De, ~2.6!

where¹•E52e(n↑1n↓)/e, ande is the dielectric constan
of the system.
2-2
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For a homogeneous system without space-charge,n↑
1n↓ should be balanced by a local change of hole conc
tration. In doped systems, however, spin polarization can
created without changing electrons or hole densities,18,11 and
therefore,

n↑1n↓50. ~2.7!

Care is required, however, to avoid setting¹•E50 di-
rectly in Eqs.~2.5! and~2.6!.13 Instead we multiply Eq.~2.5!
by s↓ and Eq.~2.6! by s↑ , and substract one from the othe
eliminating the terms containing¹•E. Only then do we set
n↑1n↓50. Now we have

¹2~n↑2n↓!1
n

eD
eE•¹~n↑2n↓!2

n↑2n↓
L2

50, ~2.8!

where the effective mobilityn and the effective diffusion
constantD for spin polarization are

n5
s↑n↓1s↓n↑

s↑1s↓
, ~2.9a!

D5
s↑D↓1s↓D↑

s↑1s↓
, ~2.9b!

and

L5ADtS ~2.10!

is the intrinsic spin-diffusion length, where the spin rela
ation time tS is defined viatS

215t↑↓
211t↓↑

21 . Equations
~2.9a! and ~2.9b! indicate that the behavior of spin transpo
is controlled by theminority spin species. This is analogou
to ambipolar charge transport, where minority charge carr
determine the behavior.13

For nonmagnetic systems,n↑5n↓5n and D↑5D↓5D.
For ferromagnetic systems,n and D are approximately the
mobility and the diffusion constant for the lowe
conductivity spin species, usually the minority spins. We w
assign the down-spin label to this species, son.n↓ and D
.D↓ . Thus the coefficient of the second term in Eq.~2.8!
can be approximated from the single-band form of the E
stein relation,13

n

eD
52E

0

`

N~E!
] f 0

]E dEYE
0

`

N~E! f 0~E!dE, ~2.11!

whereE is the energy measured from the bottom edge of
conduction band for the minority spin,N(E) is the density of
states for the minority spin andf 0 the distribution function. A
more accurate evaluation ofn/eD whenn↑Þn↓ could not be
done without knowledge of, e.g.,n↑ /n↓ .

One special exception exists, however, for nondegene
semiconductors, wheref 0 has the Boltzmann form,f 0
;e2E/kBT, and n/eD51/kBT. Thus we obtain Eq.~1.2! to
describe the transport ofn↑2n↓ , the natural measure of th
spin polarization in semiconductors. We emphasize that
~1.2! is also valid for highly spin-polarized~including ferro-
magnetic! nondegenerate semiconductors.
23530
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For degenerate systems,f 0 in Eq. ~2.11! should have
the Fermi–Dirac form. In a three-dimensional~3D! system,
N(E)5AE 1/2, we have approximately

n

eD
5

1

2kBT

F21/2@~«F2«↓
b!/kBT#

F1/2@~«F2«↓
b!/kBT#

, ~2.12!

where «F is the Fermi energy,«↓
b the bottom edge of the

conduction band for the minority spin, andFn(j)
5*0

`dx xn@ex2j11#21.13 In a two-dimensional~2D! sys-
tem, e.g., a thin region with only the lowest subband oc
pied,N(E) is a constant, and for in-plane motion,

n

eD
5

1

kBTF0@~«F2«↓
b!/kBT#@11e2(«F2«↓

b)/kBT#
. ~2.13!

We can define a critical field

Ec[
1

eL S n

eDD 21

, ~2.14!

such that whenE.Ec , the drift term will be more important
than the diffusive term in Eq.~2.8!, and neglecting the
electric-field effects on spin transport in this regime can
be justified. In Fig. 1, we plotEc as a function of electron
density for different temperatures in 2D and 3Dn-doped
GaAs using a typical spin diffusion lengthL52 mm.8 We
can see that for electron densities ranging from 1015 to
1018cm23 the critical fieldEc is not beyond realistic fields
under which spintronic devices operate. In particular, at l
temperaturesEc can be as low as 1 V/cm in lightly an
moderately doped semiconductors. Even for 100% spin
larized n-doped ZnMnSe,n051018cm23, the drift term is
relevant for E.200 V/cm at T,30 K. Thus the electric
field should be taken into account to properly interpret p
nomena involving spin transport in both magnetic and n
magnetic semiconductors.

For highly degenerate systems, in which«F2«↓
b @kBT,

from Eqs. ~2.12! and ~2.13!, n/eD53/2(«F2«↓
b) for a 3D

FIG. 1. Critical field Ec as a function of electron density fo
different temperatures in 3D systems. The inset is for 2D syste
The effective electron massm* 50.067m0, wherem0 is the free
electron mass.
2-3
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system andn/eD51/(«F2«↓
b) for a 2D system. For rea

ferromagnetic metals, however, the approximations↑ @s↓ is
not sufficient for quantitative values ofn/eD, yet n/eD re-
mains of similar small magnitude. For a typical spin diff
sion length of a metal,L;100 nm, the field has to excee
106 V/cm for the drift term to become comparable to t
diffusion term in Eq.~2.8!. Thus in metals under realisti
fields the drift term can be neglected. Using the relation
tween the electrochemical potential,m↑(↓) , and the nonequi-
librium carrier density,n↑(↓) , in a highly degenerate system

n↑(↓)5eN↑(↓)~«F!@m↑(↓)1ec#, ~2.15!

whereN↑(↓)(«F) is the up-spin~down-spin! density of states
at the Fermi energy, andE52¹c, we find that Eqs.~2.7!
and ~2.8! reduce to

¹2S m↑
m↓

D 5
1

L2S s↓
s↑1s↓

2
s↓

s↑1s↓

2
s↑

s↑1s↓

s↑
s↑1s↓

D S m↑
m↓

D ,

~2.16!

which is consistent with Eq.~2.18! in Ref. 19, the spin trans
port equation derived for metallic systems. It is straightf
ward to see that Eq.~1.1! is contained in Eq.~2.16!. In de-
riving Eq. ~2.16! we have assumed that the spin-depend
conductivity is proportional to the spin-dependent density
states at the Fermi level,s↑ /s↓5N↑(«F)/N↓(«F). The ef-
fects of electron–electron interaction~alterations of the spin
stiffness, spin drag, etc.! will modify the value of n/eD,
although for the temperatures of greatest interest and mo
ate density the corrections are small.20

Equations~2.8!–~2.10! provide a framework to under
stand spin transport in semiconductors, with limiting ca
Eq. ~1.2! for nondegenerate semiconductors, Eqs.~2.11!–
~2.13! for moderately degenerate semiconductors, and
~2.16! for highly degenerate semiconductors and metals.
see that the electric field, unlike that in metals, plays a c
tral role on spin transport. Comparing Eq.~1.2! with the
drift-diffusion equation of minority carriers~electrons! in
p-doped semiconductors,13

¹2~n2n0!1
eE

kBT
•¹~n2n0!2

n2n0

Le
2

50, ~2.17!

whereLe is the intrinsic electron diffusion length andn0 the
equilibrium electron density, we find that Eq.~1.2! and Eq.
~2.17! have the same structure and the electric field is
pected to play a similar role in both situations. For minor
carrier transport it is well-known that the electric field giv
rise to two distinct charge diffusion lengths and considera
modifies minority charge injection.

B. Spin diffusion lengths

The spin drift-diffusion equation~2.8!, together with the
local charge neutrality constraint Eq.~2.7!, dramatically al-
ters the spin transport behavior in semiconductors from
expected from Eq.~1.1!. The general solution to Eq.~1.1!
~restricting variation to thex-direction! is

m↑2m↓5A1 exp~2x/L !1A2 exp~x/L !, ~2.18!
23530
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whereA1 andA2 are constants. In contrast the general fo
of solution to Eq.~1.2! is

n↑2n↓5A1 exp~2x/L1!1A2 exp~2x/L2!, ~2.19!

wherel151/L1 andl251/L2 are the roots of the quadrati
equation,

l22lnE/D21/L250. ~2.20!

To understand the physical consequence of the elec
field on the spin diffusion, we suppose that a continuous s
imbalance is injected atx50, (n↑2n↓)u0, and the electric
field is along the2x direction. The spin polarization will
gradually decay in size as the distance from the point
injection increases and eventually go to zero at6`. The
distribution of the spin polarization then can be described

n↑2n↓5~n↑2n↓!u0 exp~2x/Ld!, x.0, ~2.21a!

n↑2n↓5~n↑2n↓!u0 exp~x/Lu!, x,0, ~2.21b!

where we define two quantitiesLd and Lu as the down-
stream and up-stream spin diffusion lengths, respectively

Ld5F2
ueEu

2

n

eD
1AS ueEu

2

n

eDD 2

1
1

L2G21

, ~2.22a!

Lu5F ueEu
2

n

eD
1AS ueEu

2

n

eDD 2

1
1

L2G21

, ~2.22b!

and LuLd5L2. Here n/eD in 3D and 2D systems can b
evaluated via Eqs.~2.12! and ~2.13!, respectively. For non-
degenerate semiconductors, Eqs.~2.22a! and ~2.22b! reduce
to

Ld5F2
ueEu
2kBT

1AS eE

2kBTD 2

1
1

L2G21

, ~2.23a!

Lu5F ueEu
2kBT

1AS eE

2kBTD 2

1
1

L2G21

. ~2.23b!

Equation~2.23a! was reported in Ref. 21.
In the absence of the field, the down-stream and

stream lengths are equal to the intrinsic diffusion lengthL.
With increasing field the down-stream diffusion lengthLd
increases, whereas the up-stream diffusion lengthLu de-
creases. It was also shown in Ref. 21 that the spin trans
distance in semiconductors can be increased by an ele
field ~down-stream diffusion length!, but the up-stream dif-
fusion length was not discussed. A high-field regime for s
transport in semiconductors can be defined byE.Ec , where
eEc /kBT51/L. In this regime,Lu and Ld deviate fromL
considerably and the spin diffusion behavior is qualitative
different from that in low fields. We emphasize that sinceL is
large in semiconductors, this regime is not beyond reali
fields where most spintronic devices operate. For a typ
2-4
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spin diffusion length in semiconductors,L52 mm,8 Ec
5125 V/cm atT5300 K andEc51.25 V/cm atT53 K.

The physics of the field effects on the spin diffusion b
comes clearer at the strong-field limit, whereueEu/kBT
@1/L. In this limit, the electrons move with drift velocity
uEune and so does the spin polarization.Ld is simply
the distance over which the carriers move within the s
lifetime tS ,13,21

Ld.
ueEu
kBT

L25
euEu
kBT

DtS5neuEutS . ~2.24a!

For the up-stream diffusion lengthLu at this limit,

Lu.kBT/ueEu, ~2.24b!

which simply corresponds to a Boltzmann distribution
electrons in a retarding field.13

C. Carrier densities versus electrochemical potentials

In the literature of spin transport in metals, the spin p
larization is usually described by the splitting of electr
chemical potentials for up-spin and down-spin electrons.
nondegenerate semiconductors, the density difference
tween up-spin and down-spin electrons is a natural way
characterize the spin polarization. It is therefore useful
describe the connection between these two quantities.

The electrochemical potentials for up-spin and down-s
electrons in a semiconductor are related to their densities

n↑(↓)5n↑(↓)
0 FexpS m↑(↓)2m0

kBT D21G , ~2.25!

where m0 is the value that the electrochemical potent
would have without spin polarization,

¹m05~e/ss!J, ~2.26!

wheress is the electrical conductivity of the semiconduct
andJ is the total electrical current. In a doped semiconduc
with a homogeneous carrier concentration, the electroche
cal potentialm0 at postionx is given by

m05~e/ss!J•x2B5eE•x2B, ~2.27!

whereB is a constant. Thus the electrochemical potentials
individual spins are

m↑(↓)5kBT lnS 11
n↑(↓)

n↑(↓)
0 D 1eE•x2B. ~2.28!

The electrochemical potential splitting,m↑2m↓ , and the
density difference,n↑2n↓ , between up-spin and down-sp
electrons then are related via

m↑2m↓5kBT lnF11~n↑2n↓!/2n↑
0

12~n↑2n↓!/2n↓
0G . ~2.29!

Therefore it is advantageous to usen↑2n↓ instead ofm↑
2m↓ to describe spin transport in semiconductors, for
23530
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spin drift-diffusion equation is linear in terms of the forme
but would be nonlinear in terms of the latter.

Whenm↑2m↓!kBT,

~n↑2n↓!S 1

2n↑
0

1
1

2n↓
0D 5

m↑2m↓
kBT

, ~2.30!

and we have the drift-diffusion equation for the electr
chemical potential splitting,

¹2~m↑2m↓!1
eE

kBT
•¹~m↑2m↓!2

m↑2m↓
L2

50. ~2.31!

In this linear differential equation form↑2m↓ , the electric
field still plays a central role and there are two distinct d
fusion lengths, i.e., the down-stream (Ld) and the up-stream
(Lu) diffusion lengths, form↑2m↓ . Thus spin transport pre
dicted by Eq.~2.31! would be still qualitatively different
from that expected from Eq.~1.1!.

D. Current versus density spin polarization

In structures involving magnetic materials the degree
spin polarization can be defined in several differe
ways.22,23 It is the experimental set-up and observable t
determine which definition is appropriate to characterize s
polarization in different circumstances.

There exist two common definitions in literature to cha
acterize spin polarization injected into nonmagnetic se
conductors. One definition uses the density difference
tween up-spin and down-spin electrons,

P~x![
n↑2n↓

n0
, ~2.32!

wheren052n↑(↓)
0 is the total electron density of a nonma

netic semiconductor. The other uses the current differe
between up-spin and down-spin electrons,

a~x![
j ↑2 j ↓
j ↑1 j ↓

. ~2.33!

Generally speaking, these two spin polarization are diff
ent, although they are related. To find the relationship
tween these two polarizations in a homogeneous nonm
netic semiconductor, we note that

j ↑2 j ↓5e~n↑2n↓!nE1eD
d~n↑2n↓!

dx
. ~2.34!

By using the local charge neutrality condition Eq.~2.7!, we
obtain

a~x!5P~x!1
D

nE

dP

dx
. ~2.35!

For a steady spin imbalance injected atx50, as discussed in
Sec. II B, according to the general solution of Eqs.~2.21a!
and ~2.21b!,
2-5
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d~n↑2n↓!

dx
52

1

Ld
~n↑2n↓!, x.0, ~2.36!

d~n↑2n↓!

dx
5

1

Lu
~n↑2n↓!, x,0, ~2.37!

and the relation between the spin polarization of curr
a(x) and the spin polarization of densityP(x) can be written
as

a~x!5P~x!F12S n

eDD 21 1

eELd
G ~2.38!

for x.0, and

a~x!5P~x!F11S n

eDD 21 1

eELu
G ~2.39!

for x,0. n/eD in Eqs. ~2.38! and ~2.39! can be calculated
using Eqs.~2.12! and ~2.13! for 3D and 2D systems with
different doping concentrations and temperatures. In the n
degenerate limit, Eq.~2.38! reduces to

a~x!5P~x!S 12
kBT

eELd
D , ~2.40!

which is equivalent to Eq.~5! in Ref. 21, where the author
studied magnetization~P! in the presence of current with
givenspin polarization (a) in semiconductors. In the mean
time Eq.~2.39! reduces to

a~x!5P~x!S 11
kBT

eELu
D . ~2.41!

Thus in semiconductorsa(x) is proportional toP(x), and
the ratio between them depends on the electric field and
direction.

III. FIELD-ENHANCED SPIN INJECTION IN FM ÕNS
STRUCTURES

We first consider a simple one-dimensional spin inject
structure to elucidate the underlying physics of electric-fie
enhanced spin injection. This injection structure comprise
semi-infinite degenerate ferromagnet (x,0) and a semi-
infinite nonmagnetic nondegenerate semiconductor (x.0).
Electrons are injected from the magnet into the semicond
tor, and therefore, the electric field is antiparallel to t
x-axis. In the ferromagnet the electrochemical potentials
individual spins satisfy Eq.~2.16!, which has the following
general solution:

1

eJS m↑
m↓

D 5
x

s↑
f 1s↓

f S 1

1D 1CS 1/s↑
f

21/s↓
f D ex/L( f )

, ~3.1!

where s↑(↓)
f is the up-spin~down-spin! electrical conduc-

tivity of the ferromagnet, andJ is the total electron current
which is a constant throughout the structure in stea
state. We useL ( f ) and L (s) to denote the intrinsic spin dif
fusion length in the ferromagnet and in the semiconduc
respectively.
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In the semiconductor, up-spin and down-spin electr
densties satisfy the spin drift diffusion equation for no
degenerate systems, Eq.~1.2!, as well as the local charg
neutrality condition, Eq.~2.7!. The general solution can b
written as

n↑(↓)51~2 !A exp~2x/Ld!, ~3.2!

and accordingly the electrochemical potentials for individu
spins are

m↑(↓)5kBT lnF11~2 !
2Ae2x/Ld

n0
G1eEx2B. ~3.3!

Here n0[n↑
01n↓

052n↑
0 is the total electron density of th

nonmagnetic semiconductor.
In general, a Schottky barrier will form between the ma

net and the semiconductor when the two materials are pla
together. Since the charge neutrality condition would be
verely violated in the depletion region of a Schottky barri
a wide depletion region is undesirable for spin transport a
spin coherence. Specifically the presence of holes dram
cally shortens the electron spin coherence time. We cons
instead structures with a very thin interfacial barrier betwe
the magnet and the semiconductor.

Transport through such an interfacial barrier is commo
classified as thermionic emission, diffusion, or tunnelin
Each of these has a different characteristic dependence o
interfacial conductance on voltage and temperature. The
onic emission and diffusion are characterized by rectify
behaviorJ}@exp(eV/kBT)21# (V is the voltage drop acros
the barrier andJ the current!, but with different prefactors
~more temperature dependent for thermionic emission
more voltage dependent for diffusion!. Tunneling conduc-
tance by contrast, is much less sensitive to either voltag
temperature. As a real system typically has a combina
of processes occurring, for a real barrier the interfacial c
ductance for up-spin~down-spin! electrons, G↑(↓)(V,T),
could have a broad range of voltage and temperature de
dencies.24 In the low-voltage regime, i.e.,eV!kBT, where
the systems considered in this paper likely belong, the c
ductance for both diffusion and thermionic emission can
insensitive to voltage, and a voltage-independentG↑(↓) is a
good approximation.

A spin-selective interfacial barrier, for whichG↑ÞG↓ ,
was examined in Refs. 2,4–6 as a way to circumvent
resistance mismatch obstacle for spin injection from a fer
magnetic metal into a semiconductor. The origins of
spin-selective interfacial conductance are myriad. In tunn
ing or thermionic emission, even for a spin-independ
barrier the conductance depends on the ferromagn
spin-dependent density of states.2 Spin-dependent barrier
can originate also from magnetic barriers.25,26 In ballistic
transport, wave function matching across the ferromag
semiconductor interface, and the absence ofG-point carriers
of one spin orientation in the ferromagnet can also produc
strong spin selectivity.27–30

Below we present calculations of spin injection efficien
for generalG↑ and G↓ . For the purposes of display in ou
figures below of the spin injection efficiency as a function
2-6
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electric field, e.g., Fig. 2, we consider a simple voltag
independentG↑ andG↓ . Plots for more general voltage an
temperature dependencies ofG↑ and G↓ can be straightfor-
wardly generated using the general expressions derived
low.

If there is no spin-flip scattering at the interface, the c
rent for each spin direction is continuous across the inte
and is related to the spin-dependent electrochemical pote
change across the interface via Ohm’s Law, giving rise to
following boundary conditions:

j ↑~02!5G↑@m↑~01!2m↑~02!#, ~3.4a!

j ↓~02!5G↓@m↓~01!2m↓~02!#, ~3.4b!

j ↑~02!2 j ↓~02!5 j ↑~01!2 j ↓~01!, ~3.4c!

where the current of individual spinsj ↑(↓) can be calculated
via e j↑(↓)5s↑(↓)dm↑(↓) /dx. These three equations com
pletely determine the three unknown coefficientsA, B, C in
Eqs.~3.1!–~3.3!.

The solution ofn↑(↓) in Eq. ~3.2! and the relation of Eq.
~2.40! indicate that in the semiconductora(x)5a0e2x/Ld,
wherea0 is the spin injection efficiency at the interface. W
obtain an equation fora0,

G↑
212G↓

21

2
1

pf~G↑
211G↓

21!

2
1~a02pf !FG↑

211G↓
21

2

1
2L ( f )

~12pf
2!s f

G5
kBT

eEss
ln

2kBT/eELu1a0

2kBT/eELu2a0
, ~3.5!

where s f5s↑
f 1s↓

f is the conductivity of the ferromagne
ss5n0en the conductivity of the semiconductor, andpf

5(s↑
f 2s↓

f )/s f the spin polarization in the ferromagnet.

FIG. 2. Spin injection efficiencya0 as a function of electric
field. The interfacial conductance for up-spin electrons is tw
larger than that for down-spin electrons,G↑52G↓ . Solid, dashed,
and dotted–dashed lines correspond toG↑5` ~transparent inter-
face!, 108, and 107 (V cm2)21, respectively. Other parameters a
pf50.5, L ( f )560 nm, L (s)52 mm, and s f5100ss

5103 (V cm)21.
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We solve this equation and plot the spin injection of cu
rent a0 as a function of the electric field in Fig. 2. In th
numerical calculations we have chosen a ratio of 2 betw
the interfacial conductances for up-spin and down-spin e
trons (G↑ /G↓52) to illustrate the ‘‘spin-filtering’’ effect of
an interfacial barrier. This ratio depends on details of el
tronic structures of both the ferromagnet and the semic
ductor and therefore may vary from structure to structure.
manifest the electric-field-enhanced spin injection we ha
included an ideal case with interfacial conductanceG↑5G↓
5`, although in reality the interfacial conductance may n
exceed the Sharvin conductance of the interface.31 We esti-
mate the Sharvin conductance to be 0.331012 (V cm2)21

for a typical metal with electron density about 1023cm23,
and 1.23109 (V cm2)21 for a typical semiconductor with
electron density about 1016cm23, which are much higher
than other nonzero interfacial conductances used in the
culations@<108 (V cm2)21#.

We see from Fig. 2 that the electric field can substantia
enhance the spin injection efficiency in FM/NS structur
We note that spin injection enhancement from a sp
selective interfacial barrier between the ferromagnet and
semiconductor, which has been identified in the low-fie
regime,4–6 becomes more pronounced in the high-field
gime.

In the small spin polarization limit,n↑(↓) /n0!1, a(x)
can be expressed in an explicit form,

a~x!5F L ( f )

~12pf
2!s f

1
Lu

ss
1

G↑1G↓
4G↑G↓ G21

3F pfL
( f )

~12pf
2!s f

1
G↑2G↓
4G↑G↓ Ge2x/Ld. ~3.6!

This expression clearly shows that the electric field and
spin-selective interfacial resistance both enhance spin in
tion, but in different ways. The electric-field effects on sp
injection can be described in terms of the two field-induc
diffusion lengths. Both diffusion lengths affect spin injectio
favorably. The up-stream lengthLu controls the relevant re
sistance in the semiconductor, which determines the spin
jection efficiency. With increasing field this effective resi
tance,Lu /ss , becomes smaller, and accordingly the sp
injection efficiency is enhanced. The transport distance of
injected spin polarization in the semiconductor, however
controlled by the down-stream lengthLd . As the field in-
creases, this distance becomes longer. On the other hand
spin-selective interfacial barrier provides another spin po
ization source besides the spin-aligned electrons in the fe
magnet and acts as a spin filter which permits electrons w
a particular spin to pass through the interface, and there
enhances spin injection. Moreover, the spin-selective bar
has no effect on the transport distance of the injected s
polarization in the semiconductor.

We now contrast Eq.~3.6! with that obtained by previous
calculations3–6 based on Eq.~1.1!. The spin injection

e
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a~x!5F L ( f )

~12pf
2!s f

1
L (s)

ss
1

G↑1G↓
4G↑G↓ G21

3F pfL
( f )

~12pf
2!s f

1
G↑2G↓
4G↑G↓ Ge2x/L(s)

~3.7!

is given by the zero-field result of Eq.~3.6!. For a transparen
interface withG↑

215G↓
2150, the effective resistance in th

magnet,L ( f )/s f , is much less than its counterpart in th
semiconductor,L (s)/ss @as L ( f )!L (s) and s f@ss]. Thus
Eq. ~3.7! suggests that this resistance mismatch makes it
tually impossible to realize an appreciable spin-inject
from a ferromagnetic metal to a semiconductor withou
spin-selective interfacial barrier. However, the more gene
description of spin transport in semiconductors indicates
the effective semiconductor resistance to be compared
L ( f )/s f should beLu /ss rather thanL (s)/ss . SinceLu can
be smaller thanL (s) by orders of magnitude in the high-fiel
regime, this ‘‘conductivity mismatch’’ obstacle may be ove
come with the help of strong electric fields, or equivalen
large injection currents. We note that although it has b
realized that spin injection can be enhanced by increasing
total injection current,5 the treatment there used Eq.~1.1! to
describe spin transport in nondegenerate semiconduc
and therefore the electric-field effects were not taken i
account. Thus the physics of the field-dependent spin tra
port was not captured and the treatment was incomplete

In the presence of the interfacial barrier, the relat
importance of the two mechanisms for the spin inject
efficiency enhancement, electric field and spin-selec
interfacial barrier, depends on the relative magnitude
Rf5L ( f )/(12pf

2)s f , Rs[L (s)/ss , and Ri[(G↑1G↓)/
4G↑G↓ , which are the effective resistances of the ferrom
net, the semiconductor, and the interface, and may vary f
system to system. For systems withRi@Rs@Rf , the spin-
selective interfacial barrier dominates in enhancing the s
injection efficiency. On the other hand, for systems withRs
@Ri@Rf or Rs@Rf@Ri , the electric field can enhance sp
injection efficiently. The transport distance of injected sp
polarization in the semiconductor, however, can only be
hanced by the electric field, even in systems withRi@Rs
@Rf . Furthermore, the two mechanisms have different te
perature and field dependencies. The field-enhanced spi
jection efficiency increases with the electric field~current!
and decreases with the temperature. The interface-enha
spin injection likely depends weakly if at all on the field an
the temperature.

To quantitatively demonstrate the electric-field effe
on spin injection, we choose the realistic parameters o
spin injection device as follows:pf50.5 andL ( f )560 nm
~as in Co!,32 L (s)52 mm ~as in GaAs!.8 First we examine the
structures without an interfacial barrier. For a ferromagme
metal/semiconductor structure, e.g., Co/GaAs,s f.104 ss ,
the spin injection efficiency increases from 231026 at zero
field to 2% at ueEu/kBT55 nm21. For a ferromagnetic
semiconductor withpf;0.5 and s f;100 ss , the spin
injection efficiency increases from 0.02% at zero field
2% at ueEu/kBT50.05 nm21, which corresponds touEu
23530
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5125 V/cm, oruJu51250 A/cm2 for a typical semiconduc-
tor conductivityss510 (V cm)21, at T53 K.

Suppose there existed a spin-selective interfacial bar
between the magnet and the semiconductor withG↑52G↓
5107 (V cm2)21. For the Co/GaAs structure, the spin inje
tion efficiency would be 0.1% at zero field~much greater
than 231026 in a similar injection structure without a spin
selective interfacial barrier!, which can be further enhance
to 10% at ueEu/kBT50.06 nm21, or E515 kV/cm at T
5300 K. If we chooseG↑52G↓563105 (V cm2)21, the
spin injection efficiency increases from 2% at zero field
10% with a more practical fielduEu5840 V/cm at T
5300 K. For the spin injection structure from the ferroma
netic semiconductor, the spin injection efficiency is 0.1%
zero field~also considerably greater than 0.02% in a simi
structure without a spin-selective interfacial barrier!, which
can be further increased to 10% atueEu/kBT50.05 nm21.
Thus the combination of electric field and spin-selective
terfacial barrier may help explain the large spin injecti
percentages from ZnMnSe to ZnSe,33,34 from GaMnAs to
GaAs,35 from Fe to GaAs,36–38 as well as the dramatic in
crease in spin injection with current in Ref. 37.

Figure 3 shows spin polarization of current (a0) and
spin polarization of density (P0) at the interface as a func
tion of electric field. According to Eq. ~2.40!, P0

5a0(ueEuLu /kBT). We can see that in the low-field regim
the density polarization in the semiconductor is mu
smaller than the current polarization; whereas in the hi
field regime, the two polarizations become equal. Thus
difference between high-field injection and low-field inje
tion is that a strong electric field in high-field injection re
sults in a macroscopic density difference between up-s
and down-spin electrons; whereas in low-field injection t
carrier densities of up-spin and down spin electrons rem
the same.

FIG. 3. Spin injection as a function of electric field. Solid an
dashed lines describe spin polarization of currenta0 and spin po-
larization of densityP0 at the interface, respectively. The lowe
curves are for a transparent interface structure and the upper
are for a structure with a spin selective interfacial barrier,G↑
52G↓5107 (V cm2)21. Other parameters are the same as in F
2.
2-8
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SPIN DIFFUSION AND INJECTION IN . . . PHYSICAL REVIEW B66, 235302 ~2002!
Another important quantity is the boundary resistanceRb ,
which can be used to analyze how easily a current can c
vert its spin while flowing from the magnet into the sem
conductor,

Rb5
m0~01!2m0~02!

eJ
. ~3.8!

Rb can be expressed in terms of the spin injection efficie
and the resistances of the magnet, the semiconductor, an
interface.

Rb5
2B

eJ
5~pf2a0!F pfL

( f )

~12pf
2!s f

1
G↑2G↓
4G↑G↓ G

1
G↑1G↓
4G↑G↓

2pf

G↑2G↓
4G↑G↓

. ~3.9!

We plot Rb in Fig. 4 as a function of electric field. With
increasing field, the boundary resistance decreases, ind
ing that the field helps current conversion from a higher
larization ~in the magnet! to a lower polarization~in the
semiconductor!. For structures with a transparent interfac
in the small polarization limit@n↑(↓) /n0!1#,

Rb5FL ( f )

s f
1

Lu

ss
~12pf

2!G21

pf
2 L ( f )

s f

Lu

ss
, ~3.10!

which clearly shows that the boundary resistance is de
mined by the up-stream diffusion lengthLu rather thanL (s)

and should be a function of the electric field.

IV. SPIN INJECTION IN FM ÕNSÕFM STRUCTURES

In this section we consider a sandwiched structure
comprises a semi-infinite ferromagnet (x,0), a nonmag-
netic semiconductor with widthx0, and a semi-infinite fer-
romagnet (x.x0). x0 is assumed to be much shorter than t
semiconductor’s intrinsic spin diffusion lengthL (s), as in

FIG. 4. Boundary resistanceRb as a function of electric field.
The solid line is for the structure with a transparent interface. T
dashed line is for the structure with a spin-selective interfacial b
rier, G↑52G↓5107 (V cm2)21. Other parameters are the same
in Fig. 2.
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most spintronic devices. The two ferromagnets are otherw
identical with possible different orientations of magnetiz
tion ~parallel and antiparallel!. Electrons are injected from
the left magnet to the semiconductor and the electric field
antiparallel to thex-axis. The spin transport in the magnets
described by Eq.~2.16! with the following general solutions

1

eJS m↑
m↓

D 5
x

s↑
L1s↓

L S 1

1D 1CLS 1/s↑
L

21/s↓
LD ex/L( f )

~4.1!

in the left magnet (x,0), and

1

eJS m↑
m↓

D 5S x

s↑
R1s↓

R
1B1D S 1

1D 1CRS 1/s↑
R

21/s↓
RD e2(x2x0)/L( f )

~4.2!

in the right magnet (x.x0). Here we use superscript or sub
script L (R) to label the quantities in the left~right! ferro-
magnet.

The spin-dependent electron densities in the semicond
tor satisfy Eqs.~1.2! and ~2.7!, and the general solutions a
0,x,x0 can be written as

n↑(↓)51~2 !@A0e2x/Ld1A1e(x2x0)/Lu#, ~4.3!

and therefore the electrochemical potentials for individ
spins are

m↑(↓)5kBT lnF11~2 !
2A0e2x/Ld12A1e(x2x0)/Lu

n0
G

1eEx2B0 . ~4.4!

The six unknowns in the above solutions,A0 , A1 , B0 ,
B1 , CL , andCR , are determined by the following six inde
pendent boundary conditions:

j ↑~02!5G↑@m↑~01!2m↓~02!#, ~4.5a!

j ↓~02!5G↓@m↓~01!2m↓~02!#, ~4.5b!

j ↑~02!2 j ↓~02!5 j ↑~01!2 j ↓~01!, ~4.5c!

j ↑~x0
1!5G̃↑@m↑~x0

1!2m↓~x0
2!#, ~4.5d!

j ↓~x0
1!5G̃↓@m↓~x0

1!2m↓~x0
2!#, ~4.5e!

j ↑~x0
2!2 j ↓~x0

2!5 j ↑~x0
1!2 j ↓~x0

1!, ~4.5f!

whereG↑(↓) and G̃↑(↓) are the spin-dependent conductanc
at the left and the right interfaces, respectively.

We find the two equations for the spin polarizations
current at the interfaces,a(0) anda(x0), by matching the
above boundary conditions, Eqs.~4.5a!–~4.5f!,

e
r-
2-9
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pL~G↑1G↓!

2G↑G↓
2

G↑2G↓
2G↑G↓

1@a~0!2pL#

3FG↑1G↓
2G↑G↓

1
2L ( f )

~12pL
2!s f

G5
kBT

eEss
ln

11z1

12z1
,

pR~G̃↑1G̃↓!

2G̃↑G̃↓
2

G̃↑2G̃↓
2G̃↑G̃↓

1@a~x0!2pR#

3F G̃↑1G̃↓
2G̃↑G̃↓

1
2L ( f )

~12pR
2 !s f

G5
kBT

eEss
ln

12z2

11z2
, ~4.6!

wherepL andpR are the spin polarization in the left and rig
magnets, respectively, and

z15
eE

kBT

a~x0!~Lu1Ld!2a~0!~Luex0 /Lu1Lde2x0 /Ld!

ex0 /Lu2e2x0 /Ld
,

~4.7a!

z25
eE

kBT

a~x0!~Lue2x0 /Lu1Ldex0 /Ld!2a~0!~Lu1Ld!

ex0 /Ld2e2x0 /Lu
.

~4.7b!

Whena~0! anda(x0) are known, we can express the sp
polarization of current in the semiconductor (0,x,x0) as

a~x!5a~0!
e2(x2x0)/Ld2e(x2x0)/Lu

ex0 /Ld2e2x0 /Lu

2a~x0!
e2x/Ld2ex/Lu

ex0 /Lu2e2x0 /Ld
, ~4.8!

and the spin polarization of density in the semiconduc
(0,x,x0) as

P~x!52a~0!
eE

kBT

Lue2(x2x0)/Ld1Lde(x2x0)/Lu

ex0 /Ld2e2x0 /Lu

1a~x0!
eE

kBT

Lue2x/Ld1Ldex/Lu

ex0 /Lu2e2x0 /Ld
. ~4.9!

Furthermore, the resistance of the nonmagnetic semicon
tor is approximately

R5
x0

ss
1

L ~ f !

s f
F @pR2a~x0!#pR

12pR
2 2

@a~0!2pL#pL

12pL
2 G .

~4.10!

Figure 5 depicts the spin injection efficiency at the l
interface (a0) as a function of electric field for the paralle
configurationpL5pR5pf and the antiparallel configuratio
pL52pR5pf . For structures with transparent interfac
(G↑

215G↓
215G̃↑

215G̃↓
2150), we see that the spin injec

tion in both configurations can be enhanced by orders
magnitude by increasing the field. In the low-field regim
spin injection can only be achieved in structures with
parallel configuration. In the high-field regime, spin injecti
23530
r

c-

t

f
,
e

from the left magnet into the semiconductor for both co
figurations are the same, indicating that only the mag
from which carriers are injected is important to the spin
jection efficiency.

For structures with transparent interfaces, spin polari
tion in the semiconductora(x) can be expressed in compa
forms in both the low- and high-field regimes. In fact, in th
low-field regime, wherex0!Lu ,Ld , we reproduce Eq.~7! in
Ref. 3,

a~x!5a5F 2L ( f )

~12pf
2!s f

1
x0

ss
G21

~pL1pR!L ( f )

~12pf
2!s f

, ~4.11!

for 0,x,x0. The above expression indicates that the s
injection strongly depends on the relative orientation of
two ferromagnetic metals: For the parallel configuratio
a(x) is finite; whereas for the antiparallel configuration, sp
injection is not possible. In this limit, the left magnet and t
right one are equally important in determining spin injectio
The magnitude of spin injectiona is determined by the ratio
of the effective resistances in the magnet@L ( f )/s f # and in the
semiconductor (x0 /ss). For typical device parameter
L ( f )/s f!x0 /ss , and the spin injection efficiency would b
extremely small due to this resistance mismatch. The s
polarization of density in this limit can be written asP(x)
52a(eE/kBT)2LuLd . At the zero-field limit, the density
difference between up-spin and down-spin electrons v
ishes.

On the other hand, in the high-field regime,Lu andLd can
differ by orders of magnitude, and usuallyLu!x0!Ld . We
find that in this limit, for 0,x,x0,

a~x!5a5F L ( f )

~12pf
2!s f

1
Lu

ss
G21

pLL ( f )

~12pL
2!s f

, ~4.12!

FIG. 5. Spin injection efficiencya0 as a function of electric
field. Solid and dashed lines correspond to parallel configura
(pL5pR5pf) and antiparallel configuration (pL52pR5pf), re-
spectively. The lower curves are for the structure with a transpa
interface. The upper curves are for the structure with a sp
selective interfacial barrier,G↑52G↓5107 (V cm2)21. Other pa-
rameters arepf50.5, L ( f )560 nm, x051 mm, L (s)52 mm, and
s f5100 ss5103 (V cm)21.
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andP(x)5aueEuLu /kBT, which is close toa in the strong-
field limit. We see that in the high-field regime, spin injectio
is determined by the magnet from which carriers are injec
and the ‘‘remote’’ magnet that collects the current becom
irrelevant in determining the spin injection efficiency. Mor
over, the effective resistance of the semiconductor to be c
pared with that of the magnet (L ( f )/s f) is Lu /ss rather than
x0 /ss . In this regime, the spin polarization of current a
the spin polarization of density have similar amplitude. Th
in the high-field regime, according to Eq.~4.12!, the spin
injection behavior in the sandwiched FM/NS/FM structu
would be the same as in a simpler FM/NS structure. T
reason that the second magnet becomes unimportant for
injection in the high-field regime is that the influence of t
second magnet on spin transport in the semiconductor is
calized within the up-stream length (Lu) from the magnet.
Lu decreases with increasing field and would be mu
shorter thanx0 in the high-field regime.

In Fig. 5, we also plot spin injection as a function of th
electric field in structure with two identical spin-selectiv
interfacial barriers between the magnet and the semicon
tor. In the calculations it is assumed thatG↑(↓)5G̃↑(↓)Þ0 for
the parallel configuration, andG↑(↓)5G̃↓(↑)Þ0 for the anti-
parallel configuration. We see that the electric field subst
tially enhances spin injection in structures with a sp
selective interfacial barrier. In the high-field regime, as in
transparent case, spin injection from the left magnet into
semiconductor does not depend on the orientation of
right magnet. The magnetoresistance can also be determ
from Eq. ~4.10!. We would like to point out, however, tha
for ferromagnetic metal/semiconductor/ferromagnetic me
structures, the magnetoresistance is usually too weak to
tect due to the conductivity mismatch between metals
semiconductors (s f@ss).

V. SPIN INJECTION IN FM ÕNSÕNS STRUCTURES

In semiconductor spin injection structures, a highly dop
nonmagnetic semiconductor (NS1) is often placed near the
interface to overcome the Schottky barrier between a ma
and a semiconductor. This configuration is also intrinsic
FM/InAs, where densely occupied surface states form at
interface. Here we consider an injection structure that co
prises a semi-infinite magnet (x,0), a finite nonmagnetic
semiconductor with conductivityss and carrier concentra
tion n0 (0,x,x0), and a semi-infinite nonmagnetic sem
conductor with conductivitys̃s and carrier concentrationñ0
(x.x0). The electrochemical potentials in the magnet sati
Eq. ~2.16!, and the electron densities in semiconductors s
isfy Eqs.~1.2! and~2.7!. The general solution of the electro
chemical potentials in the magnet and the semiconduc
can be written as

1

eJS m↑
m↓

D 5
x

s↑
f 1s↓

f S 1

1D 1CS 1/s↑
f

21/s↓
f D ex/L( f )

~5.1!

for x,0,
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m↑(↓)5kBT lnF11~2 !
2A0e2x/Ld12A1e(x2x0)/Lu)

n0
G

1
eJx

ss
2B0 ~5.2!

for 0,x,x0, and

m↑(↓)5kBT lnF11~2 !
2A2e2(x2x0)/L̃d

ñ0
G1

eJx

s̃s

2B1

~5.3!

for x.x0.
Here we consider structures without an interface re

tance between the two semiconductor regions. The boun
conditions are given by Eqs.~4.5a!–~4.5f! with G̃↑

215G̃↓
21

50. These equations completely determine the six
knowns,Ai ( i 50,1,2), Bi ( i 51,2), andC, in Eqs. ~5.1!–
~5.3!.

We obtain an equation forz5a(x0), the spin polarization
of current at the interface between the two semiconducto

G↑
212G↓

21

2
1

pf~G↑
211G↓

21!

2
2

kBT

eJ

3 ln
2kBTs̃s /eJL̃u1~a1b!z

2kBTs̃s /eJL̃u2~a1b!z

5F 2L ( f )

~12pL
2!s f

1
G↑

211G↓
21

2 G
3F S L̃uss

Lus̃s

a2
L̃uss

Lds̃s

bD z2pf G , ~5.4!

whereJ5ssE5s̃sẼ, and

FIG. 6. Spin injection efficiency as a function of total electr
current. Solid, dashed, and dotted–dashed lines correspon

(ss ,s̃s)5(10,1), ~1,10!, and~10,10! (V cm)21. The lower curves
are for structures with a transparent interface. The upper curves
for structures with a spin-selective interfacial barrier,G↑52G↓
5107 (V cm2)21. Other parameters arepf50.5, L ( f )560 nm,

L (s)5L̃ (s)52 mm, ands f5103 (V cm)21.
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a5FssS 1

Ld
1

1

Lu
D G21S s̃s

L̃d

1
ss

Lu
D ex0 /Ld,

b5FssS 1

Ld
1

1

Lu
D G21S 2s̃s

L̃d

1
ss

Ld
D e2x0 /Lu.

Figure 6 illustrates the spin injection efficiencya(x0) as a
function of the total electric currentJ. We see that in the
low-field regime, the conductivities of both semiconducto
are important to determine spin injection. As the total effe
tive resistance@x0 /ss1L̃ (s)/s̃s# of the semiconductors de
creases, the spin injection efficiency increases. With an
crease of the current or the field, spin injection can
enhanced considerably. Moreover, in the strong-field lim
the spin injection efficiency will be determined by the to
current flowing into the semiconductors.

In fact, at the zero-field limit, whereLu5Ld5L (s), L̃u

5L̃d5L̃ (s), andx0!L (s), a(x0) can be written as a simple
form,

a~x0!5F S L ( f )

~12pf
2!s f

1
G↑1G↓
4G↑G↓ D S 11

ss

s̃s

x0L̃ (s)

~L (s)!2D
1

x0

ss
1

L̃ (s)

s̃s
G21F L ( f )pf

~12pf
2!s f

1
G↑2G↓
4G↑G↓ G , ~5.5!

which shows that the ratio between the total effective re
tance of the two semiconductors,x0 /ss1L̃ (s)/s̃s , and that
of the magnet,L ( f )/s f , together with the spin-selective in
terfacial barrier between the ferromagnet and the semic
ductor, determines the spin injection efficiency. On the ot
hand, at the strong-field limit, whereLu5kBT/ueEu, L̃u

!L̃d , andLu!x0!Ld , a(x0) can be expressed in an eve
more compact form,

a~x0!5F L ( f )

~12pf
2!s f

1
kBT

ueJu
1

G↑1G↓
4G↑G↓ G21

3F L ( f )pf

~12pf
2!s f

1
G↑2G↓
4G↑G↓ G , ~5.6!

which indicates that in FM/NS/NS structures spin injection
controlled by the total current flowing into the semicondu
tors and a distinction between the two semiconductors
comes unimportant.

VI. FIELD-DEPENDENT MAGNETORESISTANCE
IN MS ÕNSÕMS STRUCTURES

In MS/NS/MS structures a strong positive magnetore
tance effect has been observed at low temperatures.14 As the
applied magnetic field is changed from 0 to;2 T the spin
polarization in a magnetic semiconductor can change at
temperatures from 0 to;100%.

Electric-field dependence of the magnetoresistance ca
expected based on the different spin injection behavior
23530
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the high-field regime and in the low-field regime discussed
Sec. IV. In the low-field regime, the densities of up-spin a
down-spin electrons in a nonmagnetic semiconductor rem
the same even in the presence of a fully spin-polarized c
rent. Thus in the semiconductor onlyhalf of the electrons
contribute to the conductance if the current is 100% sp
polarized, and the resistance of the semiconductor shoul
twice of that for an unpolarized current. Hence the semic
ductor resistance strongly depends on the spin polarizatio
the current in the low-field regime. In the high-field regim
however, the spin polarization of densityP is close to the
spin polarization of currenta. Therefore if the current is
100% spin-polarized, the electron density would be also fu
spin-polarized, andall electrons would contribute to the con
ductance. Hence in the high-field regime, the semicondu
resistance is only weakly dependent on the spin polarizat
and the magnetoresistance vanishes.

Here we calculate how the magnetoresistance depend
the electric field. The magnetic semiconductor we consi
here is degenerate and its spin transport is described by
~2.16!. Thus all results obtained in Sec. IV are also app
cable to the MS/NS/MS structures. We also assume that
interfaces between the two materials are transparent,
zero interface resistance. The magnetizations of the
magnetic semiconductors are identical and parallel,pL5pR
5p(H), which are zero in the absence of an external m
netic field and finite for a given external magnetic fieldH.
The resistance of the nonmagnetic semiconductor,R(H),
will depend on the spin polarization in the magnetic sem
conductors because of spin accumulation at the heteros
ture interfaces, and is therefore also a function of the exte
magnetic field.

The resistance of the nonmagnetic semiconductor can
calculated via

R~H![
m0~x0

2!2m0~01!

eJ
, ~6.1!

which certainly would beR(0)5x0 /ss when attached to
unpolarized magnetic semiconductors~zero magnetic field!.
Heress is the conductivity of the nonmagnetic semicondu
tor. The resistance in the presence of spin-polarized magn
semiconductors withx0!L (s) can be expressed as

R~H!.x0 /ss1
L (m)p~H!

@12p2~H!#sm

@2p~H!2a~0!2a~x0!#.

~6.2!

Herea(0) anda(x0) are the spin polarization of current a
the left and right interfaces,L (m) is the spin diffusion length
in the magnetic semiconductor, andsm is the conductivity of
the magnetic semiconductor. In the low-field regime, acco
ing to Eq.~4.11!, we find that the magnetoresistance,

DR

R
[

R~H!2R~0!

R~0!
5p2~H!S 11

@12p2~H!#smx0

2ssL
(m) D 21

.

~6.3!

This can be significant for a MS/NS/MS structure because
the large p(H) @p(H);1# and small conductivity (sm
;ss) in magnetic semiconductors.
2-12
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In the high-field regime, by using Eq.~4.12! we express
the magnetoresistance as

DR

R
5

2p2~H!

x0
S 1

Lu
1

@12p2~H!#sm

L (m)ss
D 21

. ~6.4!

We see from the above expression that the effect of the e
tric field on the magnetoresistance can be described in te
of the field-induced up-stream spin diffusion length. Incre
ing the electric field will decrease the magnetoresistance
causeLu decreases with the electric field. Figure 7 illustra
the magnetoresistance as a function of electric field fo
MS/NM/MS structure. We see that with increasing elect
field the magnetoresistance diminishes. For example, if
parameters are chosen as follows:x051 mm, L (m)

560 nm, L (s)52 mm, sm5ss , andp(H)50.99, the mag-
netoresistanceDR/R decreases from 83% at zero field
5.3% at ueEu/kBT50.05 nm21, or E5125 V/cm for ss
510 (V cm)21 at T53 K.

VII. CONCLUDING REMARKS

We have derived a general drift-diffusion equation f
spin polarization in both degenerate and nondegenerate
tems by consistently taking into account electric-field effec
We have demonstrated that as a system changes from de
erate to nondegenerate, the electric field becomes more
more important in spin transport. We have identified a hig
field diffusive regime in nondegenerate semiconduct
which has no analog in metals. In this regime, there are
distinct spin diffusion lengths, i.e., up-stream and dow
stream spin diffusion lengths.

We have applied this more general drift-diffusion equ
tion for spin polarization to several typical injection stru
tures encountered in semiconductor spintronic devices
study the spin injection behavior in these structures and
effects of electric fields. The high-field description of th

FIG. 7. MagnetoresistanceDR/R as a function of electric field.
Solid, dashed, and dotted–dashed lines correspond top(H)
50.99, 0.9, and 0.8, respectively. Other parameters arex0

51 mm, L (m)560 nm, L (s)52 mm, andsm5ss .
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spin transport in semiconductors predicts that the elec
field can effectively enhance spin injection from a ferroma
net into a semiconductor. For structures with a spin-selec
interfacial barrier we find that the electric field further e
hances spin injection substantially. The combination of
field enhancement and the interface enhancement of spin
jection may help us to obtain a comprehensive understan
of the observed large spin injection in a variety of FM/N
FM/NS/FM, and FM/NS/NS structures and the current d
pendence of that spin injection.

The consequences of spin injection into a semicondu
in the high-field regime are qualitatively different from tho
in the low-field regime. A high-field injection creates a n
table density difference between up-spin and down-spin e
trons and the spin polarization of density has a similar va
as the spin polarization of current. In contrast a low-fie
injection does not create an appreciable density differe
between up-spin and down-spin electrons, and the spin
larization of current is quite different from the spin polariz
tion of density. One consequence of these different spin
jection behaviors is that for sandwiched FM/NS/F
structures the high field destroys the symmetry between
two magnets at low fields, where both magnets are equ
important to determine spin injection. The efficiency of sp
injection into semiconductors in the high-field regime is d
termined by the magnet from which carriers are injected i
the semiconductor and the magnet that collects the car
becomes irrelevant. Another consequence is that for F
NS/NS structures spin injection efficiency in the high-fie
regime is only determined by the total injected electric c
rent and the distinction between the semiconductors beco
unimportant.

We have also examined the electric-field effect on m
netoresistance in MS/NS/MS structures. In the low-field
gime, the magnetoresistance in an MS/NS/MS structure
be significant, as reported in Ref. 14. With increasing elec
field, the magnetoresistance diminishes quickly. The und
lying physics is that in the high-field regime the spin pola
ization of density is similar to the spin polarization of curre
in the nonmagnetic semiconductor andall electrons contrib-
ute to the conductance in the presence of spin-polarized
rent in contrast tohalf of electrons in the low-field regime i
the current is fully polarized. Thus in the high-field regim
the resistance of the nonmagnetic semiconductor o
weakly depends on the spin polarization of current and he
the magnetic field, giving rise to a diminishing magneto
sistance effect in the high-field regime.

Our calculations in this paper present a broad picture
electric field-dependent spin transport and spin injection p
nomena into semiconductors. Our theory also provid
physical insight into the field-induced enhancement of s
injection as well as the electric field-dependent magneto
sistance and suggests high-field injection as a simple wa
amplify spin injection into semiconductor spintronic device
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