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Spin diffusion and injection in semiconductor structures: Electric field effects
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In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and
moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin
polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate
electron statistics and identified a high-field diffusive regime which has no analog in metals. Here spin
injection from a ferromagngfM) into a nonmagnetic semiconduct\tS) is extensively studied by applying
this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and
FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semicon-
ductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric
field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the
symmetry between the two magnets at low fields, where both magnets are equally important for spin injection,
and spin injection becomes determined by the magnet from which carriers flow into the semiconductor. The
field-induced spin injection enhancement should also be insensitive to the presence of a highly doped non-
magnetic semiconductor (N$ at the FM interface, thus FM/NSNS structures should also manifest efficient
spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in
a recent experiment on spin injection from magnetic semiconductors.
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I. INTRODUCTION wheren, ) is the deviation of up-spidown-spin electron
density from its equilibrium valuekg the Boltzmann con-
Semiconductor devices based on the control and manipistant, andr the temperature. This equation consistently takes
lation of electron spin(semiconductor spintronigdhave re-  into account electric-field effects and nondegenerate electron
cently attracted considerable attention since the discovery aftatistics. We identified a high-field diffusive regime which
long spin relaxation times and large spin transport distancegas no analog in metals. This regime occurs for fields as
in semiconductors and various device structdre order small as 1 V/cm at low temperatures. Two distinct spin dif-
to design and fabricate high-performance spintronic devicession lengths now characterize spin motion, i.e., up-stream
a comprehensive understanding of spin transport and inje 1,) and down-streaml(;) spin diffusion lengths. This is a
tion properties of semiconductors and heterostructures i rther example of the analo§y*? between up/down-spin
necladed. . . . ... electrons in semiconductor spin transport and majority/
n theoret|ca_lestud|es. of spin transport and injection Ir'minority carriers in semiconductor charge transport, where
semiconductors th? Spin polarlz_atlon IS usu?lly assumed the presence of an electric field also results in two charge
to obey the same diffusion equation as in metals, diffusion lengths-* We applied this spin drift-diffusion equa-
tion to study spin injection from a ferromagnet into a semi-
V(=)= (s —p))/L2=0, (1.1)  conductor, and showed that the electric-field effects on spin
injection could be described in terms of the two field-induced
where u;(;) is the electrochemical potential of up-spin spin diffusion lengths in the semiconductor.
(down-spin electrons. In this diffusion equation, the electric  In this paper, first, we derive a more general drift-
field does not play any role, and spin polarization decaygliffusion equation of spin polarization valid for both doped
away on a length scale &f from an injection point. This is semiconductors and metals, and demonstrate the develop-
reasonable for metals because the electric field essen- ment from Eq.(1.2) to Eq.(1.1) as the system changes from
tially screened. For semiconductor spintronic devices, hownondegenerate to degenerate. We clarify the relation between
ever, the semiconductor often is lightly doped and nondegerthe electrochemical potential splitting and density imbalance
erate, and a moderate electric field can dominate the carrigsf up-spin and down-spin electrons in nondegenerate sys-
motion. In fact, experiments have shown that electric fieldgems, and clarify the two spin polarizations, i.e., spin polar-
can affect spin diffusion in semiconductors dramaticifly. ization of current and spin polarization of density. We then
In Ref. 10, we examined the role of electric field on spinyse the spin drift-diffusion equation for nondegenerate sys-
transport in nondegenerate semiconductors and derived @ms, Eq.(1.2), to analyze several typical one-dimensional
drift-diffusion equation for spin polarization, device geometries. We find that high fields also enhance spin
injection from a ferromagnet to a semiconductor in structure
oE nn with a spin-selective barrier. Rashb&mith and Silver, Fert
V¥n,—n)+—-V(n;—n))— L L.y, (1.2  and Jaffre” and Flatte Byers, and Lau in Ref. 2 have con-
kgT L2 sidered such a barrier in the low-field regime. The field en-
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hancement and the interface enhancement of spin injectioie electric field:® More recently Zitic et al. displayed such
may reinforce each other to achieve high injection efficien-equations for both minority and majority carri¢fsUsually
cies in different structures. extensive numerical calculations are required to solve the set
Next, we study spin injection in sandwiched FM/NS/FM of drift-diffusion equations together with the Poisson’s equa-
structures with and without spin-selective interfacial barrierstion self-consistently. The spin drift-diffusion equation we
At low fields the two magnets are equally important to de-derive is asingle equation instead of a set of equations and
termine spin injection into the semiconductor and the spirfa@n be solved analytically in several interesting geometries.
injection efficiency is sensitive to the relative orientation of 1€ role of this spin drift-diffusion equation in spin transport
the two magnets. We find that in the high-field regime, this'S similar to that of the ambipolar drift-diffusion equation in

symmetry is broken and spin injection is determined by theé*1arge transport.
magnet from which carriers are injected into the semiconduc-
tor. The spin injection efficiency can be enhanced by orders
of magnitude by increasing the electric field for both parallel The system we consider here risdoped (-doped sys-

and antiparallel orientation of the two magnets. tems can be analyzed similayJywhich can be ferromagnetic

We further consider FM/NSNS structures, where a or nonmagnetic. The analysis presented in this section is
highly doped nonmagnetic semiconductor (NSs placed valid not only in doped semiconductors but also in metals.
near the magnet interface. Such a configuration is commoW/e assume that there is no space charge and the material is
in structures designed to overcome the Schottky barrier bdiomogeneous. The current for up-spin and down-spin can be
tween a magnet and a semiconductor, and is intrinsic to FMNIItten as
InAs, where densely occupied surface states form at the in-
terface. We find that spin injection at the strong-field limit in
such a_structure is controlled b_y the _t(_)tal electri(_: c_:urr_ent j =0 E+eDVn,, (2.1b
flowing into semiconductors and insensitive to the distinction
between semiconductors. Thus high fields can effectively enwhich consists of the drift current and the diffusion one.
hance spin injection in such structures as well. Here Dy () is the up-spin(down-spin electron diffusion

Finally we explore electric-field effects on the magnetore-constant andr;  the up-spindown-spin conductivity. The
sistance of a magnetic semiconductdS)/NS/MS struc-  change of up-spindown-spin conductivity from its un-
ture. A large positive magnetoresistance have been observégrturbed valuec{ |, in the presence of spin polariza-
in MS/NS/MS structure&’ We find that this magnetoresis- tion, AO’T(i)E‘TT(L)_U?(i)’ is assumed to be proportional
tance collapses in the high-field regime, suggesting a sensie n;(|y, the up-spin(down-spir) electron densitydeviation
tive test of the electric-field effects on spin transport in semifrom its equilibrium valuen?u) ,
conductors.

The paper is organized as follows: In Sec. Il we review Aayy=n)evi() - 2.2
the general spin drift-diffusion equation in nondegenerat
and degenerate systems and analyze the field-induced s
diffusion lengths. In Sec. Ill we investigate spin injection in
FM/NS structures with an interfacial barrier. Sections IV and
V contain results on spin injection in FM/NS/FM structures
and in FM/NS/NS structures, respectively. Section VI is de- an, n n 1

A. Drift-diffusion equation for spin polarization

Sere the mobilityr, (|, is independent of field and density
Rier the range of density variation,) .

The continuity equations for up-spin and down-spin elec-
trons in systems including spin-flip scattering process are

voted to the electric-field effects on magnetoresistance in . —+—+ EV-jT , (2.3
MS/NS/MS structures. In Sec. VII, we summarize our con- e
clusions. o, Cn 1
—=——+—+=-Vj, (2.9
ot TlT TTl e
Il. ELECTRIC FIELD AND SPIN TRANSPORT wherer; ! (') is the rate with which up-spitdown-spin

electrons scatter to down-spinp-spin electrons. Here the

In this section we derive a more general drift-diffusion recombination process is neglected because the system we
equation for spin polarization valid in both degenerate andonsider is dopedunipolap. In steady statef dn; |y /dt
nondegenerate systems and discuss the electric-field effectsg], we have
on spin transport by analyzing the structure of this equation.
Discussion of the drift-diffusion equations of carrier motion
in semiconductors involving spin-dependent processes can
be traced back decades ago. Pieeteal. incorporated spin
relaxation in a one-dimension diffusion model of up-spin and n o n
down-spin carrier densities at zero electric fitlogawaet Vo, -E+o V-E+eD V?n = (— - —) e, (2.6
al. investigated spin transport in wires with a set of complete T T
drift-diffusion equations for minority carriers, which explic- whereV-E=—e(n;+n )/, ande is the dielectric constant
itly include spin-flip and recombination processes as well a®f the system.

2 ng N
LT
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For a homogeneous system without space-charge, 200 T T
+n, should be balanced by a local change of hole concen- — T=300K /
tration. In doped systems, however, spin polarization can be -— T=30K /
created without changing electrons or hole denstfiésand 150 T T=3K /7
therefore, = /
g 200 . /
nT—i-nl:O. (2.7 5100 2150 / // |
Care is required, however, to avoid settiigE=0 di- w” 2 100 //' /’
rectly in Eqs.(2.5) and(2.6).1% Instead we multiply Eq(2.5) 5ol Wsor 74 y |
by o, and Eq.(2.6) by o, and substract one from the other, e o T /.//
eliminating the terms containing-E. Only then do we set Density (em”)_ =%
n;+n =0. Now we have 0'__.:.—_'.:.'.'-| ::: -
10" N 10 10"

Electron density n, {cm’ )

VAN —n)+ o5 eEV(n -1 o 29
1~ 1N > » 4.

FIG. 1. Critical fieldE. as a function of electron density for

where the effective mobilityv and the effective diffusion different temperatures in 3D systems. The inset is for 2D systems.
constantD for spin polarization are The effective electron mass* =0.067m,, wherem, is the free

electron mass.

owv,tov
=% (2.99 For degenerate systemsy in Eq. (2.11) should have
a1 oy the Fermi—Dirac form. In a three-dimensior(8D) system,
_pcl2 ;
oD, +0/D, oo N(E)=AE4, we have approximately
oto ' v 1 F—l/Z[(SF_S?)/kBT] (212
and eD  2keT Fyf(ep—ef)lkgT] '
L=Drg (2.10  Wheregg is the Fermi energysﬁ’ the bottom edge of the

conduction band for the minority spin, andF,(&)
is the intrinsic spin-diffusion Iength Where the spin relax- — = [edx XTe* ¢+1]7 1.2 In a two-dimensional(2D) sys-
1
ation time rg is defined viarg'=r;'+7". Equations tem, e.g., a thin region with only the lowest subband occu-

(2.93 and(2.9b) indicate that the behavior of spin transport pied, N(€) is a constant, and for in-plane motion,
is controlled by theminority spin species. This is analogous

to ambipolar charge transport, where minority charge carriers 1

determine the behavid?. D" 5 Sy (213
For nonmagnetic systems,; =»,=v andD,=D =D. kKeTFol (ep—&)/kgT][1+e *F 1]

For ferromagnetic systems, and D are approximately the \we can define a critical field

mobility and the diffusion constant for the lower-

conductivity spin species, usually the minority spins. We will 1/ v\?

assign the down-spin label to this species,vsov, andD E.= eL\eD/

=D, . Thus the coefficient of the second term in ER.8)

can be approximated from the single-band form of the EinSuch that wheie>E_, the drift term will be more important
stein relation-3 than the diffusive term in Eq(2.8), and neglecting the

electric-field effects on spin transport in this regime cannot
v be justified. In Fig. 1, we ploE. as a function of electron
e_D:_ N(E)—dg/f N(ETo(E)DE,  (2.1)  density for different temperatures in 2D and 3Ddoped
GaAs using a typical spin diffusion length=2 um.® We
where€ is the energy measured from the bottom edge of th€an see that for electron densities ranging front> 110
conduction band for the minority spihl(€) is the density of ~ 10"8cm ™2 the critical fieldE, is not beyond realistic fields
states for the minority spin arfg the distribution function. A under which spintronic dewces operate. In particular, at low
more accurate evaluation ofeD whenw,# v could notbe temperaturesE; can be as low as 1 V/cm in lightly and
done without knowledge of, e.gv, /v, . moderately doped semiconductors. Even for 100% spin po-
One special exception exists, however, for nondegeneratgrized n-doped ZnMnSen,=10"¥cm™3, the drift term is
semiconductors, wherd, has the Boltzmann formf, relevant forE>200 V/cm atT<30 K. Thus the electric
~e %87 andv/eD=1/kgT. Thus we obtain Eq(1.2) to field should be taken into account to properly interpret phe-
describe the transport of, —n |, the natural measure of the nomena involving spin transport in both magnetic and non-
spin polarization in semiconductors. We emphasize that Egqnagnetic semiconductors.
(1.2) is also valid for highly spin-polarize@including ferro- For highly degenerate systems, in whieh— s >kgT,
magneti¢ nondegenerate semiconductors. from Egs.(2.12 and (2.13, v/eD=3/2(sg— sl) for a 3D

(2.19
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system andv/eDzl/(sF—skf) for a 2D system. For real whereA; andA, are constants. In contrast the general form
ferromagnetic metals, however, the approximatior> o | is  of solution to Eq.(1.2) is
not sufficient for quantitative values ofeD, yet v/eD re-
mains of similar small magnitude. For a typical spin diffu- ny—n =A;exp(—x/Ly)+Aexp(—x/Ly), (2.19
sion length of a metall.~2100 nm, the field has to exceed )
10° V/cm for the drift term to become comparable to the Wherex;=1/L, and\,=1/L, are the roots of the quadratic
diffusion term in Eq.(2.8). Thus in metals under realistic equation,
fields the drift term can be neglected. Using the relation be-
tween the electrochemical potential;(|,, and the nonequi- A —=\vE/D—-1/L?=0. (2.20
librium carrier densityn, ), in a highly degenerate system
To understand the physical consequence of the electric
Ny =eNi)(ep)lmytedl, (219 field on the spin diffusion, we suppose that a continuous spin
whereN; },(&¢) is the up-spinidown-spin density of states imbalance is injected at=0, (n;—n )|y, and the electric
at the Fermi energy, anBE=—V4, we find that Eqs(2.7) field is along the—x direction. The spin polarization will
and(2.9) reduce to gradually decay in size as the distance from the point of
injection increases and eventually go to zerotab. The

71 __% distribution of the spin polarization then can be described by
w L2 o o wl ni—n;=(n;—n)pexp—x/Lg), x>0, (2.213
B oto o1to
(2.16 n;—n =(n;—nlgexpx/L,), x<0, (2.21h

which is consistent with Eq2.18 in Ref. 19, the spin trans- where we define two quantitiesy and L, as the down-
port equation derived for metallic systems. It is straightfor-siream and up-stream spin diffusion lengths, respectively,

ward to see that Eql.1) is contained in Eq(2.16). In de-
leE| v \/ leEl »\2 1]" .
2 e N2 ep| T2 » 2220
ate density the corrections are snfdll.

riving Eq. (2.16 we have assumed that the spin-dependent
conductivity is proportional to the spin-dependent density of Ly=
states at the Fermi levetr; /o =N;(eg)/N (eg). The ef-
fects of electron—electron interactigalterations of the spin
stiffness, spin drag, efcwill modify the value of v/eD, 2 -1
although for the temperatures of greatest interest and moder- L @ L+ \/<@ L) + i| (2.22b
2 eDb 2 eDb L2| '

Equations(2.8—(2.10 provide a framework to under-
stand spin transport in semiconductors, with limiting casesand L Lq=L2. Here v/eD in 3D and 2D systems can be
Eqg. (1.2 for nondegenerate semiconductors, Ej4l)— evaluated via Eqs2.12 and (2.13), respectively. For non-
(2.13 for moderately degenerate semiconductors, and Eqlegenerate semiconductors, E(s223 and (2.22b reduce
(2.16 for highly degenerate semiconductors and metals. Weo
see that the electric field, unlike that in metals, plays a cen-

u

tral role on spin transport. Comparing E@L..2) with the |eE| eE \2 1 -1
drift-diffusion equation of minority carriergelectron$ in Ly=| — + ( +—| , (2.23a
p-doped semiconductors, 2kgT 2kgT L2
eE n—ng 2 -1
V2(n—ng)+—-V(n—ng)— ——=0, (2.17 | le€| eE |\ 1
kgT 2 L,= _ZkBT+ T | (2.23b

wherelL, is the intrinsic electron diffusion length amg the

equilibrium electron density, we find that E(L.2) and Eq.  Equation(2.233 was reported in Ref. 21.

(2.17 have the same structure and the electric field is ex- In the absence of the field, the down-stream and up-
pected to play a similar role in both situations. For minority Stream lengths are equal to the intrinsic diffusion lenigth
carrier transport it is well-known that the electric field gives With increasing field the down-stream diffusion lendth

rise to two distinct charge diffusion lengths and considerablyncreases, whereas the up-stream diffusion lerigthde-

modifies minority charge injection. creases. It was also shown in Ref. 21 that the spin transport
distance in semiconductors can be increased by an electric
B. Spin diffusion lengths field (down-stream diffusion lengihbut the up-stream dif-

fusion length was not discussed. A high-field regime for spin
local charge neutrality constraint E(.7), dramatically al- transport in semiconductors can be definedbyE,, where

ters the spin transport behavior in semiconductors from tha‘?EC/I_(dBT:b%/L' lg trt:is rggir&w_;&f,Lq ang Iﬁd Qevigte frcl>_ml_. |
expected from Eq(1.1). The general solution to Ed1.1) gpﬁn& er? y ar? t ?Sp:f Idl u\il/on € haw_or |shqualll'$tlvey
(restricting variation to the-direction is lfferent from that in low fields. \We emphasize that sihas

large in semiconductors, this regime is not beyond realistic
wr—p=Arexp—x/L)+Azexpix/L), (218  fields where most spintronic devices operate. For a typical

The spin drift-diffusion equatioii2.8), together with the
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spin diffusion length in semiconductors,=2 ,LLm,S E. spin drift-diffusion equation is linear in terms of the former,
=125 V/cm atT=300 K andE.=1.25 V/cm atT=3 K. but would be nonlinear in terms of the latter.

The physics of the field effects on the spin diffusion be- Whenu;—u <kgT,
comes clearer at the strong-field limit, whefeE|/kgT

>1/L. In this limit, the electrons move with drift velocity 1 1 M
|[E|v. and so does the spin polarizatiohy is simply (ny=ny) RJFR S (2.30
the distance over which the carriers move within the spin 1 l
lifetime g,**%* and we have the drift-diffusion equation for the electro-
chemical potential splitting,
L ~@ 2—ﬁD = vg|E] (2.24a
R kT Ts= Vel E|7s. . —

eE
V(=) + =V —p))— 0. (2.3)
For the up-stream diffusion length, at this limit, bR ke b L?

L,=kgT/|eH, (2.24h In this linear differential equation fog, —u |, the electric
. . o field still plays a central role and there are two distinct dif-
which simply corresponds to a Boltzmann distribution of fysjon lengths, i.e., the down-streaingj and the up-stream

electrons in a retarding fiefd. (L,) diffusion lengths, foru;— x| . Thus spin transport pre-
dicted by Eq.(2.31) would be still qualitatively different
C. Carrier densities versus electrochemical potentials from that expected from Eq1.1).

In the literature of spin transport in metals, the spin po-
larization is usually described by the splitting of electro- D. Current versus density spin polarization
chemical potentials for up-spin and down-spin electrons. For |4 structures involving magnetic materials the degree of
nondegenerate semiconductors, the density difference b%pin polarization can be defined in several different
tween up-spin and down-spin electrons is a natural way tQyays?223 |t is the experimental set-up and observable that

characterize the spin polarization. It is therefore useful tQjgtermine which definition is appropriate to characterize spin
describe the connection between these two quantities. polarization in different circumstances.

The electrochemical potentials for up-spin and down-spin  There exist two common definitions in literature to char-
electrons in a semiconductor are related to their densities Vigcterize spin polarization injected into nonmagnetic semi-
conductors. One definition uses the density difference be-

_.0 Hi) ™ Mo tween up-spin and down-spin electrons
nm)—nm) eX%kB—T)—l , (225) p-sp p ’
where u, is the value that the electrochemical potential P(x)= nT_ni, (2.32
would have without spin polarization, No
Vo= (elog)d (2.26 wheren0=2n?m is the total electron density of a nonmag-
s/ .

netic semiconductor. The other uses the current difference
whereoy is the electrical conductivity of the semiconductor between up-spin and down-spin electrons,
andJ is the total electrical current. In a doped semiconductor

with a homogeneous carrier concentration, the electrochemi- IR
cal potentialu, at postionx is given by a(x)= = (2.33
Ho=(elog)d-x—B=eE-x—B, (2.27) Generally speaking, these two spin polarization are differ-

ent, although they are related. To find the relationship be-
tween these two polarizations in a homogeneous nonmag-
netic semiconductor, we note that

whereB is a constant. Thus the electrochemical potentials fo
individual spins are

n
1)
1+

U0

The electrochemical potential splittings;— |, and the gy sing the local charge neutrality condition E8.7), we
density differencen; —n,, between up-spin and down-spin ptain

electrons then are related via

ji—i=e(n—n)vE+eD—o—. (2349

1+(n;—n,)/2n° a(X)=P(X)+ — —. (2.35
pi— e, =kgTIn 1+ (ny—n)i2ng JE dx

ol- (2.29

1—(nT—nl)/2nl o o ] )
For a steady spin imbalance injectedkatO, as discussed in

Therefore it is advantageous to use—n,; instead of u;, Sec. 1B, according to the general solution of E¢a.2139

— | to describe spin transport in semiconductors, for theand(2.21b,
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dx

dx

and the relation between the spin polarization of current
a(x) and the spin polarization of densiB(x) can be written

|

a(x)=P(x)

as

a(x)=P(x)

for x>0, and

for x<0. v/eD in Egs.(2.38 and(2.39 can be calculated
using Egs.(2.12 and (2.13 for 3D and 2D systems with

1
—_L_u(nT_ni)’ x<0,

1+

14

eD

14
eD

1

1y
)E_

11
)E_

(2.36

(2.37

(2.38

(2.39

PHYSICAL REVIEW B 66, 235302 (2002

In the semiconductor, up-spin and down-spin electron
densties satisfy the spin drift diffusion equation for non-
degenerate systems, E@..2), as well as the local charge
neutrality condition, Eq(2.7). The general solution can be
written as

Nyy=+(—)Aexp —x/Ly), (3.2

and accordingly the electrochemical potentials for individual
spins are

e*X/Ld

mi)=ksTIn 1+(_)n—0 +eEx-B. (3.3

Here ng=n?+nf=2n is the total electron density of the
nonmagnetic semiconductor.

In general, a Schottky barrier will form between the mag-
net and the semiconductor when the two materials are placed
together. Since the charge neutrality condition would be se-
verely violated in the depletion region of a Schottky barrier,

different doping concentrations and temperatures. In the nora wide depletion region is undesirable for spin transport and
degenerate limit, Eq2.38 reduces to

a(x)= P(X)(

which is equivalent to Eq(5) in Ref. 21, where the authors
studied magnetizatiofP) in the presence of current with a
givenspin polarization &) in semiconductors. In the mean-

time Eq.(2.39 reduces to

a(x)=P(x)

1+

kgT
LTy

eEly

-
eEL,/)’

Thus in semiconductora(x) is proportional toP(x), and

(2.40

(2.41)

spin coherence. Specifically the presence of holes dramati-
cally shortens the electron spin coherence time. We consider
instead structures with a very thin interfacial barrier between
the magnet and the semiconductor.

Transport through such an interfacial barrier is commonly
classified as thermionic emission, diffusion, or tunneling.
Each of these has a different characteristic dependence of the
interfacial conductance on voltage and temperature. Thermi-
onic emission and diffusion are characterized by rectifying
behaviorJ«[expeWkgT)—1] (V is the voltage drop across
the barrier and) the curreny, but with different prefactors
(more temperature dependent for thermionic emission and
more voltage dependent for diffusipnTunneling conduc-

the ratio between them depends on the electric field and iteance by contrast, is much less sensitive to either voltage or

direction.

IIl. FIELD-ENHANCED SPIN INJECTION IN FM /NS
STRUCTURES

temperature. As a real system typically has a combination
of processes occurring, for a real barrier the interfacial con-
ductance for up-spin(down-spin electrons, G;(|(V,T),
could have a broad range of voltage and temperature depen-
dencies® In the low-voltage regime, i.eeV<kgT, where

We first consider a simple one-dimensional spin injectionthe systems considered in this paper likely belong, the con-
structure to elucidate the underlying physics of electric-field-ductance for both diffusion and thermionic emission can be

enhanced spin injection. This injection structure comprises #sensitive to voltage, and a voltage-independgn)) is a

semi-infinite degenerate ferromagnet<{(0) and a semi-

infinite nonmagnetic nondegenerate semiconducxor (). _ | _
Electrons are injected from the magnet into the semiconducwas examined in Refs. 2,4-6 as a way to circumvent the
tor, and therefore, the electric field is antiparallel to theresistance mismatch obstacle for spin injection from a ferro-

x-axis. In the ferromagnet the electrochemical potentials fomagnetic metal into a semiconductor. The origins of a

individual spins satisfy Eq(2.16), which has the following

1 o'
>+C( T)eX’L‘”, (3.1)

general solution:

1 (:““T) X
e\ u, 0;4-0{

where 0;“) is the up-spin(down-spin electrical conduc-

1

f
— 1/UL

good approximation.
A spin-selective interfacial barrier, for whic,#G |,

spin-selective interfacial conductance are myriad. In tunnel-
ing or thermionic emission, even for a spin-independent
barrier the conductance depends on the ferromagnet's
spin-dependent density of stafeSpin-dependent barriers
can originate also from magnetic barriér$® In ballistic
transport, wave function matching across the ferromagnet/
semiconductor interface, and the absencé&-gpbint carriers

tivity of the ferromagnet, and is the total electron current, of one spin orientation in the ferromagnet can also produce a
which is a constant throughout the structure in steadystrong spin selectivity’ ~3°

state. We usé.() andL® to denote the intrinsic spin dif-

Below we present calculations of spin injection efficiency

fusion length in the ferromagnet and in the semiconductorfor generalG; andG, . For the purposes of display in our

respectively.

figures below of the spin injection efficiency as a function of
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We solve this equation and plot the spin injection of cur-
rent ay as a function of the electric field in Fig. 2. In the
numerical calculations we have chosen a ratio of 2 between
the interfacial conductances for up-spin and down-spin elec-
trons (G, /G| =2) to illustrate the “spin-filtering” effect of
an interfacial barrier. This ratio depends on details of elec-
tronic structures of both the ferromagnet and the semicon-
ductor and therefore may vary from structure to structure. To
manifest the electric-field-enhanced spin injection we have
included an ideal case with interfacial conducta@Ge=G,
=0, although in reality the interfacial conductance may not
exceed the Sharvin conductance of the interfida/e esti-
mate the Sharvin conductance to be>1®'2 (Q cn?) 1

for a typical metal with electron density about?i6m 3,

leEl/k T (nm™) o . ; .
B and 1.2<10° (Q cn?) 1 for a typical semiconductor with

FIG. 2. Spin injection efficiencyr, as a function of electric electron density about i@c_m %, which are much higher
field. The interfacial conductance for up-spin electrons is twicelN@n other nonzero |nte[f?0|al conductances used in the cal-
larger than that for down-spin electror®; =2G, . Solid, dashed, culations[ <10° (Q cn?) 1. o _
and dotted—dashed lines correspond@p=c (transparent inter- We see from Fig. 2 that the electric field can substantially
face, 1C%, and 16 (Q cn?) 1, respectively. Other parameters are €nhance the spin injection efficiency in FM/NS structures.
p;=05 LMO=60nm, L®=2um, and o¢=1000, We note that spin injection enhancement from a spin-
=10 (Q cm)™ L. selective interfacial barrier between the ferromagnet and the
semiconductor, which has been identified in the low-field
electric field, e.g., Fig. 2, we consider a simple voltage-regime?~® becomes more pronounced in the high-field re-
independenG; andG, . Plots for more general voltage and gime.
temperature dependencies ®f andG, can be straightfor- In the small spin polarization limitn;()/ne<1, a(x)
wardly generated using the general expressions derived bean be expressed in an explicit form,

low.
If there is no spin-flip scattering at the interface, the cur-
- L® L Lu, GG
a(X)=| ———+ —
(1-pflos  0s 4GiG,

rent for each spin direction is continuous across the interface -1
and is related to the spin-dependent electrochemical potential

change across the interface via Ohm'’s Law, giving rise to the

following boundary conditions: pL (D G-6,|
o . - 5 e ¥ta, (3.6
J1(07)=Gy[p4(07) = (07)], (3.49 (1=-pfoy 461G
11(07)=G [ (07) = (07)], (3.4b , _ L
This expression clearly shows that the electric field and the
j1(07)=j,(07)=},(0%)—j,(0%) (3.49 spin-selective interfacial resistance both enhance spin injec-

tion, but in different ways. The electric-field effects on spin
where the current of individual spirjs(|, can be calculated injection can be described in terms of the two field-induced
via ej;()=0y()du()/dx. These three equations com- diffusion lengths. Both diffusion lengths affect spin injection
pletely determine the three unknown coefficieAtsB, C in  favorably. The up-stream length, controls the relevant re-
Egs.(3.0)—(3.3. sistance in the semiconductor, which determines the spin in-
The solution ofn; (|, in Eq. (3.2) and the relation of Eq. jection efficiency. With increasing field this effective resis-
(2.40 indicate that in the semiconducter(x)= age ', tance,L,/os, becomes smaller, and accordingly the spin
whereay is the spin injection efficiency at the interface. We injection efficiency is enhanced. The transport distance of the
obtain an equation fo, injected spin polarization in the semiconductor, however, is
controlled by the down-stream lengtly. As the field in-
creases, this distance becomes longer. On the other hand, the
spin-selective interfacial barrier provides another spin polar-
ization source besides the spin-aligned electrons in the ferro-
magnet and acts as a spin filter which permits electrons with
a particular spin to pass through the interface, and therefore
enhances spin injection. Moreover, the spin-selective barrier
has no effect on the transport distance of the injected spin
where crf=a$+o[ is the conductivity of the ferromagnet, polarization in the semiconductor.
os=ngev the conductivity of the semiconductor, anm We now contrast Eq(3.6) with that obtained by previous
=(a§—o£)/af the spin polarization in the ferromagnet. calculationd=® based on Eq(1.1). The spin injection

Gy '+G !
+(ao—Ppr) T

G;'-G;* . PG +G
2 2

. 2L® _ keT n—kBT/eELu+a0
(1—p%)0-f eEO’S _kBT/eELU_a’O,

(3.5
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-1

L® L®  G,+G,
aX)=| ———+—+————

e*X/L(S) 3
(1-pHoy  4GG, (39

is given by the zero-field result of E(B.6). For a transparent
interface withG; '=G| *=0, the effective resistance in the
magnet,LV/o, is much less than its counterpart in the
semiconductorL®/og [as LO<L® and o¢>0g. Thus

Eq. (3.7) suggests that this resistance mismatch makes it vir-
tually impossible to realize an appreciable spin-injection 10-50
from a ferromagnetic metal to a semiconductor without a
spin-selective interfacial barrier. However, the more general
descriptio.n of Spir_l transport in sgmiconductors indicates th,at FIG. 3. Spin injection as a function of electric field. Solid and
th? effective semiconductor resistance to be compared Withaghed lines describe spin polarization of curregtand spin po-
Lo should beL /o rather thanL®/o. Sincel, can |arization of densityP, at the interface, respectively. The lower

be .smaller. thar. () by' qrders of magnitude in the high-field curves are for a transparent interface structure and the upper ones
regime, this “conductivity mismatch” obstacle may be over- are for a structure with a spin selective interfacial barrier,

come with the help of strong electric fields, or equivalently, =2G,=10" (Q cn?) ~*. Other parameters are the same as in Fig.
large injection currents. We note that although it has been.
realized that spin injection can be enhanced by increasing the . )
total injection current,the treatment there used Ed.1) to ~ — 125 V/em, .or|J| =1250 Ncnflfor a typical semiconduc-
describe spin transport in nondegenerate semiconductorr conductivityos=10 (2 cm)~", atT=3 K. _ _
and therefore the electric-field effects were not taken into Suppose there existed a spin-selective interfacial barrier
account. Thus the physics of the field-dependent spin trandetween the magnet and the semiconductor W@th=2G,
port was not captured and the treatment was incomplete. = 10" (Q cn¥) ™. For the Co/GaAs structure, the spin injec-
In the presence of the interfacial barrier, the relativetion efficiency would be 0.1% at zero fielegnuch greater
importance of the two mechanisms for the spin injectionthan 2<10 ¢ in a similar injection structure without a spin-
efficiency enhancement, electric field and spin-selectiveselective interfacial barrigrwhich can be further enhanced
interfacial barrier, depends on the relative magnitude oto 10% at|eE|/kgT=0.06 nm', or E=15kV/cm atT
Ri=LD/(1-pf)or, R=LO/og, and R=(G;+G))/ =300 K. If we chooseG;=2G,=6x10° (2 cn?) %, the
4G,G,, which are the effective resistances of the ferromagspin injection efficiency increases from 2% at zero field to
net, the semiconductor, and the interface, and may vary fromo% with a more practical fieldE|=840 V/icm at T
system to system. For systems wi>Rs>R¢, the spin- =300 K. For the spin injection structure from the ferromag-
selective interfacial barrier dominates in enhancing the spimetic semiconductor, the spin injection efficiency is 0.1% at
injection efficiency. On the other hand, for systems V&  zero field(also considerably greater than 0.02% in a similar
>Ri>R; or R>R;>R;, the electric field can enhance spin sty cture without a spin-selective interfacial bafiewhich
injection efficiently. The transport distance of injected spinc;n pe further increased to 10% |atE] /ksT=0.05 nm L.
polarization in the semiconductor, however, can only be enyy, 5 the combination of electric field and spin-selective in-

;agce(é b%/h the eIecttfr:c tf|eld, evEn N sysﬁemsdy\frfﬁt» R’tst terfacial barrier may help explain the large spin injection
. Furthermore, the two mechanisms have ditterent lemy, . ..o 14405 from ZnMnSe to ZnEe* from GaMnAs to
perature and field dependencies. The field-enhanced spin if:_ , 35 6-38 o
e . . . g aAs>® from Fe to GaAs) as well as the dramatic in-
jection efficiency increases with the electric fidlcurreny rease in spin iniection with current in Ref. 37
and decreases with the temperature. The interface-enhanc(éaeF. 3p h J . larizati ¢ ' .ndy d
spin injection likely depends weakly if at all on the field and | lguré 5 Shows spin polarization of curre o an
the temperature. spin polarization of densityRy) at the interface as a func-
To quantitatively demonstrate the electric-field effectstion of electric field. According to Eq.(2.40, Py
on spin injection, we choose the realistic parameters of & @o(|eE[Lu/kgT). We can see that in the low-field regime,
spin injection device as followsp;=0.5 andL(’=60 nm the density polarization in the semiconductor is much
(asin C9,2L®=2 um (as in GaA$2 First we examine the smaller than the current polarization; whereas in the high-
structures without an interfacial barrier. For a ferromagmetidield regime, the two polarizations become equal. Thus the
metal/semiconductor structure, e.g., Co/Gass=10* o, difference between high-field injection and low-field injec-
the spin injection efficiency increases fronx20 © at zero  tion is that a strong electric field in high-field injection re-
field to 2% at|eE//kgT=5 nm 1. For a ferromagnetic sults in a macroscopic density difference between up-spin
semiconductor withp;~0.5 and o;~1000g, the spin and down-spin electrons; whereas in low-field injection the
injection efficiency increases from 0.02% at zero field tocarrier densities of up-spin and down spin electrons remain
2% at |eE|/kgT=0.05 nm'%, which corresponds tdE|  the same.

Spin Injection

| ) | " | N
0.001  0.002 _ 0.003  0.004
leE|/k,T (nm™)
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0.003 T T T 0.08 most spintronic devices. The two ferromagnets are otherwise
identical with possible different orientations of magnetiza-
tion (parallel and antiparallgl Electrons are injected from
the left magnet to the semiconductor and the electric field is
antiparallel to thec-axis. The spin transport in the magnets is

~~~~~~~~~~~~ described by Eq(2.16) with the following general solutions:
0.002 \ 0.07
D L
1M X 1) Loy ®
—| )= +C e/t (@1

Boundary resistance (1 0o cmz)
Boundary resistance (1 0o cmz)

in the left magnetX<0), and

| | |
0.00%; 0.05 (X XE 0.9:06
[eE)/k.T (nm™) 1 1R
s i(MT) — ;4‘81 +CR TR ef(xfxo)/L(f)
FIG. 4. Boundary resistand®, as a function of electric field. eJlu, a$+ 0? 1 —1/@

The solid line is for the structure with a transparent interface. The (4.2
dashed line is for the structure with a spin-selective interfacial bar-
rier, G;=2G, =10 (Q cn?) 1. Other parameters are the same asin the right magnetX>Xx,). Here we use superscript or sub-

in Fig. 2. scriptL (R) to label the quantities in the leftight) ferro-
magnet.
Another important quantity is the boundary resistaRge The spin-dependent electron densities in the semiconduc-

which can be used to analyze how easily a current can corter satisfy Eqs(1.2) and(2.7), and the general solutions at
vert its spin while flowing from the magnet into the semi- 0<x<x, can be written as
conductor,

Niy=+(—)[Age ¥ra+Aet /] (4.3

_1o(07)= 07 -

eJ and therefore the electrochemical potentials for individual

Ry, can be expressed in terms of the spin injection efficiencyc'plns are
and the resistances of the magnet, the semiconductor, and the L xL
interface. CTinl 14— 2Ape™ Md+2A,e X0
miy=ksTIn[1+(—) o

Rp

-B

pL® G, -G,
Rb:a:(pf_ao) !

(1-p?o; 4GiG,

G.+G G.—-G The six unknowns in the above solutions,, A;, Bo,
423 G L — Ps 42; Gl' (3.9 B,, C,, andCg, are determined by the following six inde-
™l ™ pendent boundary conditions:

+eEx—By. (4.4

+

We plot Ry, in Fig. 4 as a function of electric field. With
increasing field, the boundary resistance decreases, indicat- jT(O’)=GT[,¢T(O*)—M(O’)], (4.59
ing that the field helps current conversion from a higher po-
larization (in the magnetto a lower polarization(in the

S N _
semiconductor For structures with a transparent interface, 10T =Gylw (07) =4, (0], (4.5
in the small polarization limifn;,/ny<1], S
J1(07) = (07)=](07) =] (07), (4.50
LM Ly, 5 -1 2|_(f) L,
Rpy=|—+ —(1-p;} pf— —, (3.10 = . B
ot Os gt Os J1(X0) =G [ m1(Xg ) = 1 (Xg) ], (4.50
which clearly shows that the boundary resistance is deter-
mined by the up-stream diffusion length, rather tharL(® LX) =8 [y (xg) — 5] (4.50
and should be a function of the electric field.
I
IV. SPIN INJECTION IN FM /NSFM STRUCTURES J1%0) =11 (%0 ) =11(%0) =11 (X0 ), (4.59

In this section we consider a sandwiched structure thalvhereG; |, andém) are the spin-dependent conductances
comprises a semi-infinite ferromagnet<(0), a nonmag- at the left and the right interfaces, respectively.
netic semiconductor with widtky, and a semi-infinite fer- We find the two equations for the spin polarizations of
romagnet X>Xg). Xq is assumed to be much shorter than thecurrent at the interfacesy(0) and a(xy), by matching the
semiconductor’s intrinsic spin diffusion length, as in  above boundary conditions, Eqg.53—(4.5f),

235302-9
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G=2G,=10"(Qcm®y"

f
G,+G, 2L®

kBT 1+Zl o

+ —|= In : g

ZGTGl (1_pL)Uf eEO’S l_Zl k5
o 8
PRSI ) 1780 a(xp) - ped <
26,6, 2G5, o 3

keT 1-2z,

G +G, 2L?
+ = n
eEos 1+2)’°

ZéTéi (1-pR)oy

wherep, andpg are the spin polarization in the left and right
magnets, respectively, and

X

(4.9

) 1 ) | L | ) | L
0.002 0004 0.006 0.008 0.01
leEl/kgT (nm™)

FIG. 5. Spin injection efficiencyy, as a function of electric

Ly —Xg/L i > ) - .
eE a(Xo)(Ly+Lg)—a(0)(L e ut+Lge ") field. Solid and dashed lines correspond to parallel configuration

a= kgT eXo/Lu— g %o/Lq ' (pL=pr=Pp:) and antiparallel configurationp{ = —pg=ps), re-
(4.7a spectively. The lower curves are for the structure with a transparent
interface. The upper curves are for the structure with a spin-
eE a(xg)(Lye "o/tut L 40/t d) — a(0)(L,+Ly) selective interfacial barfrieGT:ZGl:107 (Q c?) L. Other pa-
=7 " ) rameters arg;=0.5, L("=60 nm, x,=1 um, L®=2 um, and
B e’ oitd—e 70Tu 0¢=1000,=10° (2 cm)™ 1.

(4.7b

from the left magnet into the semiconductor for both con-
figurations are the same, indicating that only the magnet
from which carriers are injected is important to the spin in-

Whena(0) anda(x) are known, we can express the spin
polarization of current in the semiconductor<@<x,) as

e (x—x)/Lg_ g(x—xo)/Ly jection efficiency. _ . . .
a(xX)=a(0) For structures with transparent interfaces, spin polariza-
gfo/ta—g Xo/tu tion in the semiconducta(x) can be expressed in compact

forms in both the low- and high-field regimes. In fact, in the

—x/L x/L . . .
e Td—eth low-field regime, whereg<L,,Ly4, we reproduce Eq7) in

_a(xo)exo/l-u—e_xo”—d, (48) Ref. 3,
. o o . 4
and the spin polarization of density in the semiconductor 2L xo| “(pL+prL®
(0<x<X,) as aX)=a=|——F—+—| ———, (41)
(1-pflos s (1-pf) oy
—(x—Xg)/L (x—xg)/L
P(x)= _a(o)e_E Le oot Lge™ T for 0<x<xo. The above expression indicates that the spin
kgT g¥o/bd— e X0/tu injection strongly depends on the relative orientation of the
L " two ferromagnetic metals: For the parallel configuration,
eE L& ra+L4eu a(x) is finite; whereas for the antiparallel configuration, spin

+ a(Xop)

(4.9 injection is not possible. In this limit, the left magnet and the

_ _ . right one are equally important in determining spin injection.
Furthermore, the resistance of the nonmagnetic semiconduthe magnitude of spin injectioa is determined by the ratio

kBT eXo/Lu_e—Xo/Ld '

tor is approximately of the effective resistances in the magfiet”/ o] and in the
semiconductor X,/og). For typical device parameters
(f) — _ 0/0s
R=20 L7 IPr=a(Xo)lpr _[a(0)—pilp _ L®/a<xq/0os, and the spin injection efficiency would be
Os O 1-pg’ 1-p.? extremely small due to this resistance mismatch. The spin

(4.10  polarization of density in this limit can be written &(x)
=—a(eE/kgT)?L Ly. At the zero-field limit, the density

. Figure 5 depicts the Spin |nject|o_n e_:ff|C|ency at the Ieﬂdifference between up-spin and down-spin electrons van-
interface ) as a function of electric field for the parallel ishes

configurationp, = pgr=ps and the antiparallel configuration On the other hand, in the high-field reginte, andL 4 can
PL=—Ppr=Pp;. For stuctures with transparent interfaces g by orders of mégnitude, and usuallm<>;o< Ly. We
(G, '=G =G, =G '=0), we see that the spin injec- find that in this limit, for 0<x<xq,

tion in both configurations can be enhanced by orders of

magnitude by increasing the field. In the low-field regime,

spin injection can only be achieved in structures with the a(X)=a=
parallel configuration. In the high-field regime, spin injection

(4.12

L) Lu]—l p L

PP N I N
(1-pf)os s (1=pp)o¢
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andP(x) = a|eE|L,/kgT, which is close tax in the strong- 10° ,
field limit. We see that in the high-field regime, spin injection
is determined by the magnet from which carriers are injected,
and the “remote” magnet that collects the current becomes
irrelevant in determining the spin injection efficiency. More-
over, the effective resistance of the semiconductor to be com-
pared with that of the magnet "/ o) is L, /o rather than
Xo/0s. In this regime, the spin polarization of current and
the spin polarization of density have similar amplitude. Thus
in the high-field regime, according to E¢4.12), the spin
injection behavior in the sandwiched FM/NS/FM structure
would be the same as in a simpler FM/NS structure. The
reason that the second magnet becomes unimportant for spin 10°® ! !
injection in the high-field regime is that the influence of the 10° 10° , 10°
second magnet on spin transport in the semiconductor is lo- I (A/em”)
calized within the up-stream lengtt. () from the magnet.

L, decreases with increasing field and would be mucr‘bur
shorter tharx, in the high-field regime.

Spin injection a(x,)

10*

FIG. 6. Spin injection efficiency as a function of total electric
rent. Solid, dashed, and dotted—dashed lines correspond to
(0s,05)=(10,1), (1,10, and(10,10 (£ cm)~t. The lower curves

| Int '.:lgf'. 5|ije altso ?IOt Sp!{]hlrt]JeCtl%n ats al funptlonlof che are for structures with a transparent interface. The upper curves are
clectric Tield n structure with o identical Spin-Se'ecliveé g cryres with a spin-selective interfacial barrier; =2G,

interfacial barriers between the magnet and the semiconduc- ;v (Qcn?)~L. Other parameters arp;=0.5, L(=60 nm
tor. In the calculations it is assumed tlﬁbﬂt(l)zé“uaﬁo for | 9=T©®=2 um, ando =10 (Q cm)~ L.
the parallel configuration, anﬁm)zém)io for the anti-

parallel configuration. We see that the electric field substan- 2Age a4+ 2A %)Ly
tially enhances spin injection in structures with a spin-  ay()=KgTInj1+(—) = }
selective interfacial barrier. In the high-field regime, as in the 0

transparent case, spin injection from the left magnet into the eJx

semiconductor does not depend on the orientation of the +Ts—Bo (5.2

right magnet. The magnetoresistance can also be determined
from Eq. (4.10. We would like to point out, however, that for 0<<x<x,, and
for ferromagnetic metal/semiconductor/ferromagnetic metal

structures, the magnetoresistance is usually too weak to de- kTN 14 (—) 2A,e” X0/t N e_Jx_B
tect due to the conductivity mismatch between metals and ~#1()~ "8 o P
semiconductorsd> o). (5.3
for x>x,.
V. SPIN INJECTION IN FM /NSNS STRUCTURES Here we consider structures without an interface resis-

ance between the two semiconductor regions. The boundary

In semiconductor spin injection structures, a highly dope . . o= =
! u bin Iject uetu 'INY COPEC. onditions are given by Eq$4.5a—(4.50) with G *=G*

nonmagnetic semiconductor (NBis often placed near the ) . .
interface to overcome the Schottky barrier between a magn 0. These _equations cqmpletely deterr_nme the six un-
and a semiconductor. This configuration is also intrinsic to<"OWNS,A; (i=0,1,2), B; (i=1,2), andC, in Egs.(5.1)-
FM/InAs, where densely occupied surface states form at th 3. ) ) ) L
interface. Here we consider an injection structure that com- Ve obtain an equation fa=a(x,), the spin polarization
prises a semi-infinite magnek€0), a finite nonmagnetic of current at the interface between the two semiconductors,
semiconductor with conductivityrs and carrier concentra- -1 -1 -1, ~-1

tion ny (0<x<Xxo), and a semi-infinite nonmagnetic semi- G =G 7 pilG 4G ) keT

conductor with conductivityrs and carrier concentratiom, 2 2 eJ
(x>Xp). The electrochemical potentials in the magnet satisfy —KkaTo./edL +(a+b)z
Eqg. (2.16, and the electron densities in semiconductors sat- X In—0> fs ~Lu ( )
isfy Egs.(1.2) and(2.7). The general solution of the electro- —kgTos/edl,—(a+b)z

chemical potentials in the magnet and the semiconductors ) PR
can be written as 2L G, "+G,

+
(1_pE)0'f 2

i
1w X 1 1o, 0 - _
- — + x/L . L,o L,o
ellu) ol+olll c —l/(TE © 63 X ( —a—-—="b|z—p|, (5.9
T 1 LUO'S LdO'S
for x<0, whereJ= o E=0E, and
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1 1\]"Y o o the high-field regime and in the low-field regime discussed in
a= as(—+ — } —+ — |eXo/ty, Sec. IV. In the low-field regime, the densities of up-spin and
La Ly Lg Lu down-spin electrons in a nonmagnetic semiconductor remain
the same even in the presence of a fully spin-polarized cur-
1 1)1 —}S os\ L rent. Thus in the semiconductor onhalf of the electrons
b=|os L—d+ L, T + Ly e X'ty contribute to the conductance if the current is 100% spin-
d

polarized, and the resistance of the semiconductor should be
Fi 6ill h L fici twice of that for an unpolarized current. Hence the semicon-
igure 6 illustrates the spin injection efficienayxo) asa  q,ctor resistance strongly depends on the spin polarization of

function of the total electric curreni. We see that in the ¢ c\yrrent in the low-field regime. In the high-field regime,
low-field regime, the conductivities of both sem|conductorshowever the spin polarization of densiB/is close to the

are important to determine spin injection. As the total effec—spin polarization of current. Therefore if the current is

tive resistance xo/os+L /o] of the semiconductors de- 100% spin-polarized, the electron density would be also fully
creases, the spin injection efficiency increases. With an inspin-polarized, andll electrons would contribute to the con-
crease of the current or the field, spin injection can bejuctance. Hence in the high-field regime, the semiconductor
enhanced considerably. Moreover, in the strong-field limitresistance is only weakly dependent on the spin polarization,
the spin injection efficiency will be determined by the total and the magnetoresistance vanishes.
current flowing into the semiconductors. Here we calculate how the magnetoresistance depends on
In fact, at the zero-field limit, wheré ,=L4=L®, L, the electric field. The magnetic semiconductor we consider
=T4=L®, andxy<L®, a(x,) can be written as a simpler here is degenerate and its spin transport is described by Eq.

form, (2.16. Thus all results obtained in Sec. IV are also appli-
cable to the MS/NS/MS structures. We also assume that the
L G,+G, o XgL® interfaces between the two materials are transparent, i.e.,
a(Xg)= 5 TeRE =~ 92 zero interface resistance. The magnetizations of the two
(1=pf)og [ os (L) magnetic semiconductors are identical and parafigk pg

=p(H), which are zero in the absence of an external mag-
(5.5 netic field and finite for a given external magnetic fiéld
The resistance of the nonmagnetic semicondud®gkl),
_ ) _ . will depend on the spin polarization in the magnetic semi-
which shows that the ratio between the total effective resisgqnqgyctors because of spin accumulation at the heterostruc-
tance of the two semiconductorsy/os+L9/G, and that  ture interfaces, and is therefore also a function of the external
of the magnetL("/o, together with the spin-selective in- magnetic field.
terfacial barrier between the ferromagnet and the semicon- The resistance of the nonmagnetic semiconductor can be
ductor, determines the spin injection efficiency. On the othegalculated via
hand, at the strong-field limit, where,=kgT/|eE|, L, _ N
T ; Ho(Xg)—mo(07)
4, andL ,<xy<Ly, a(Xy) can be expressed in an even R(H)= ,
more compact form, eJ

which certainly would beR(0)=x,/0s when attached to

~5]-1

XO L(S)

+ —+ =
Os  og

f
L py L Gi-G
(1-pflor  4GiG

(6.2)

_ L® keT G,;+G, o unpolarized magnetic semiconductdzero magnetic field
a(Xo)= (1-pd)o + @ + 4G,G, Here o is the conductivity of the nonmagnetic semiconduc-
il tor. The resistance in the presence of spin-polarized magnetic
L®p, G,—-G, semiconductors wittxy<L(® can be expressed as
: (5.6
o . o R(H)=xelogt —————[2p(H)— a(0)— a(xo)].

which indicates that in FM/NS/NS structures spin injection is [1-p“(H)]on
controlled by the total current flowing into the semiconduc- (6.2

tors and a distinction between the two semiconductors besere o(0) anda(x,) are the spin polarization of current at
comes unimportant. the left and right interfaces,(™ is the spin diffusion length
in the magnetic semiconductor, ang, is the conductivity of

VI. FIELD-DEPENDENT MAGNETORESISTANCE the magnetic semiconductor. In the low-field regime, accord-
IN MS/NS'MS STRUCTURES ing to Eq.(4.11), we find that the magnetoresistance,
In MS/NS/MS structures a strong positive magnetoresis- AR R(H)—R(0) [1—p2(H)]omXo -1
tance effect has been observed at low temperatfirés.the R= RO p?(H)| 1+ Y m
applied magnetic field is changed from 0t T the spin (0) 206
polarization in a magnetic semiconductor can change at low 6.3
temperatures from 0 te-100%. This can be significant for a MS/NS/MS structure because of

Electric-field dependence of the magnetoresistance can lthe large p(H) [p(H)~1] and small conductivity ¢,
expected based on the different spin injection behaviors in-¢,) in magnetic semiconductors.
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T ' spin transport in semiconductors predicts that the electric
field can effectively enhance spin injection from a ferromag-
net into a semiconductor. For structures with a spin-selective
interfacial barrier we find that the electric field further en-
hances spin injection substantially. The combination of the
field enhancement and the interface enhancement of spin in-
jection may help us to obtain a comprehensive understanding
of the observed large spin injection in a variety of FM/NS,
FM/NS/FM, and FM/NS/NS structures and the current de-
pendence of that spin injection.

The consequences of spin injection into a semiconductor
in the high-field regime are qualitatively different from those

0.0 R ks in the low-field regime. A high-field injection creates a no-
0 002 004 006 008 0.1 table density difference between up-spin and down-spin elec-
|eEl’kgT (nm ) trons and the spin polarization of density has a similar value

. . o as the spin polarization of current. In contrast a low-field
l_:IG. 7. MagnetoresistanceR/R as af_unctlon of electric field. injection does not create an appreciable density difference
Solid, dashed, and dotted—da_shed lines correspondp(td) between up-spin and down-spin electrons, and the spin po-
—0.99, 09, and 0.8, respectively. Other parameters e |arization of current is quite different from the spin polariza-
=1 pm, LT=60 nm, L™'=2 pm, andon=os. tion of density. One consequence of these different spin in-
o _ ) jection behaviors is that for sandwiched FM/NS/FM
In the high-field regime, by using E¢4.12 we express  stryctures the high field destroys the symmetry between the

the magnetoresistance as two magnets at low fields, where both magnets are equally
important to determine spin injection. The efficiency of spin
AR 2p%H)[ 1 [1-pAH)]oy, -1 injec_tion into semiconductors in Fhe high-field re.gi'me is Qe-

R L—+ . (6.4  termined by the magnet from which carriers are injected into

Xo u L™os the semiconductor and the magnet that collects the carriers

becomes irrelevant. Another consequence is that for FM/
We see from the above expression that the effect of the ele®NS/NS structures spin injection efficiency in the high-field
tric field on the magnetoresistance can be described in termggime is only determined by the total injected electric cur-
of the field-induced up-stream spin diffusion length. Increastent and the distinction between the semiconductors becomes
ing the electric field will decrease the magnetoresistance batnimportant.
causel , decreases with the electric field. Figure 7 illustrates We have also examined the electric-field effect on mag-
the magnetoresistance as a function of electric field for aetoresistance in MS/NS/MS structures. In the low-field re-
MS/NM/MS structure. We see that with increasing electricgime, the magnetoresistance in an MS/NS/MS structure can
field the magnetoresistance diminishes. For example, if thee significant, as reported in Ref. 14. With increasing electric
parameters are chosen as followsy=1 um, LM field, the magnetoresistance diminishes quickly. The under-
=60 nm,L®=2 um, o,=0, andp(H)=0.99, the mag- lying physics is that in the high-field regime the spin polar-
netoresistanc@\ R/R decreases from 83% at zero field to ization of density is similar to the spin polarization of current
5.3% at|eE|/kgT=0.05 nm %, or E=125 V/icm for o5  in the nonmagnetic semiconductor aaitl electrons contrib-
=10 (Qcm) tatT=3 K. ute to the conductance in the presence of spin-polarized cur-
rent in contrast tdalf of electrons in the low-field regime if
the current is fully polarized. Thus in the high-field regime,
VIl. CONCLUDING REMARKS the resistance of the nonmagnetic semiconductor only
We have derived a general drift-diffusion equation for Weakly depends on the spin polarization of current and hence
spin polarization in both degenerate and nondegenerate sydle magnetic field, giving rise to a diminishing magnetore-
tems by consistently taking into account electric-field effectsSistance effect in the high-field regime. _
We have demonstrated that as a system changes from degen-Our calculations in this paper present a broad picture of
erate to nondegenerate, the electric field becomes more a§éectric field-dependent spin transport and spin injection phe-
more important in spin transport. We have identified a high"omena into semiconductors. Our theory also provides
field diffusive regime in nondegenerate semiconductorhysical insight into the field-induced enhancement of spin
which has no analog in metals. In this regime, there are twd)jection as well as the electric field-dependent magnetore-
distinct spin diffusion lengths, i.e., up-stream and down-Sistance and suggests high-field injection as a simple way to
stream spin diffusion lengths. amplify spin injection into semiconductor spintronic devices.
We have applied this more general drift-diffusion equa-
tion for spin polarization to several typical injection struc-
tures encountered in semiconductor spintronic devices to
study the spin injection behavior in these structures and the This work was supported by DARPA/ARO DAAD19-01-
effects of electric fields. The high-field description of the 0490.
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