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Two interacting electrons in a spherical box: An exact diagonalization study
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~Received 24 June 2002; Revised manuscript received 18 September 2002; published 31 December 2002!

We study a system of two electrons interacting with a Coulomb potential in a sphere of radiusR, bounded
by an infinite wall using exact diagonalization. We have also investigated the influence of an additional
parabolic potential~of strengthk) arising from a uniform background smeared throughout the sphere. The
convergence of the ground state energy of the singlet spin state of the system is investigated as a function of
sphere size~essentiallyr s , the Wigner–Seitz density parameter! for cases where there is no background
potential (k50) and for whenkÞ0. With k50 and smallr s , we observe a maximum in the ground state
density at the origin of the sphere. Atr s'8 a.u., the ground state density acquires a minimum at the origin. For
this and larger systems we identify the formation of a ‘‘Wigner’’ molecule state. We further investigate
the ground state density as a function ofk and also the correlation hole density as a function ofr s andk. We
invert the Kohn–Sham equation for a two electron system and calculate the local effective potential and
correlation potential~to within an additive constant! as functions of the radial coordinate for a number of
values ofr s andk.

DOI: 10.1103/PhysRevB.66.235118 PACS number~s!: 71.15.Mb, 73.21.2b
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I. INTRODUCTION

Improvements in experimental methods of confining el
trons and in the techniques used to investigate these sys
have been a rich source for theoretical investigation. Pr
ous work employed a variety of confining potentials: sphe
cal potential wells,1 isotropic harmonic oscillator,2 planar
polygonal,3 and the infinite cubiodal4 and ellipsoidal5 confin-
ing geometries. In this paper we study the simple system
two interacting electrons confined to a spherical volume
space by an infinite potential. We solve this problem in
quasiexact way using exact diagonalization, which enab
us to calculate essentially exact solutions for the ground
excited states.

The introduction of a uniform background charge dens
throughout the interior of the sphere results in the partic
moving in an attractive parabolic potential, giving rise to
model closely related to the ‘‘Hooke’s law’’ helium atom
The strength of this background charge density shall be
noted k. The Hooke’s law system is an analytical
solvable6,7 model ~for a certain infinite set of discrete osci
lator frequencies! which has been studied extensively.8,9 It
has a central attractive center where the electron-nuc
Coulomb interaction is described by a harmonic potent
These types of systems have the attractive property tha
correlation between the confined particles can be varied s
ply by increasing or decreasing the size of the system,r s ,
where r s is linked to the radius of the sphere throughr s
5R/21/3. An additional parameter~the steepness of the par
bolic potentialk) is introduced in the case of a nonzero co
pensating uniform background charge density. The two
rametersr s andk can be varied smoothly to take the syste
from the dense~weakly correlated! to the dilute ~strongly
correlated! regime. This class of exactly solvable model, c
be used to study without any approximations, the comp
nature of the exchange–correlation hole. Such investigat
can lead to improvements to functionals beyond the lo
density approximation~LDA !.8–10
0163-1829/2002/66~23!/235118~11!/$20.00 66 2351
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We have organized this paper as follows. In Sec. II
formulate the model whilst in Sec. III we discuss the gene
method of solution. In Sec. IV we evaluate the Coulom
integrals in terms of the coupled one particle basis. In Sec
we formalize the density and exchange–correlation hole d
sities for this system, and in Sec. VI we introduce a ba
ground potential into the model through the smearing
a uniform positive charge throughout the interior of t
sphere. In Sec. VII we invert the Kohn–Sham equation
find the local effective and correlation potentials, to with
an additive constant. In Sec. VIII we report results of seve
calculations including energies, wave functions, exact de
ties, exact correlation holes and the Kohn–Sham and co
lation potentials, as functions ofr s andk. Section IX is the
conclusion.

II. THE MODEL

One might proceed in the spirit of Kestner and Sinanogl̄u6

and seek solutions to the Schro¨dinger equation in terms o
the center-of-mass and relative coordinates. This metho
successful in the Hooke’s law helium, due to the fact th
two separate Schro¨dinger equations arise, one for the cent
of-mass coordinates and one for the relative coordina
However for the present problem, such an approach yield
coupled set of Schro¨dinger equations as the confining pote
tial, being infinite at the boundary, induces an awkward c
straint on the relative coordinates when the center-of-m
coordinates are off-center. Therefore, in this paper we h
chosen to proceed by looking for solutions in terms of t
one-particle functions of the infinite spherical-well problem
These have the form11

hnlm~r !5Nnl j l~anlr !Ylm~u,f!5^r unlm&, ~1!

where
©2002 The American Physical Society18-1
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Nnl5
2

R3
~ j l 11~knl!!21 ~2!

and

anl5
knl

R
. ~3!

Here thej l(r ) are the spherical Bessel functions of ordel
and theYlm(u,f) are the spherical harmonics. Theknl are
simply thenth roots of thel th order spherical Bessel func
tion andR is the radius of the confining sphere. Equation~3!
ensures that the wavefunction vanishes at the boundar
the sphere.

The two-electron Hamiltonian for the problem~Hartree
atomic units\5me5e251 are used throughout! becomes

Ĥ5T̂1Û1V̂, ~4!

T̂52
1

2 (
i 51

2

¹ i
2 , ~5!

Û5
1

ur 12r 2u
, ~6!

V̂5(
i 51

2

vext~r i!, ~7!

where we define the external potential to be

vext~r !5H 1

2
kr2, r ,R,

0, r>R.

~8!

This external potential can be thought of as arising throu
the introduction of a uniform compensating backgrou
charge, such that the value ofk corresponding to an overa
charge-neutral system is given by

k5
2

R3
. ~9!

Our Hamiltonian contains two parameters and forR5`
and k.0 we would recover the Hooke’s law atom. Withk
50 andR finite we have an ideal confined electron proble
In both cases the ‘‘strongly’’ correlated limit can be achiev
by letting R become large ork small.

III. METHOD OF SOLUTION

We define a two-body wave functionC(x1,x2) which we
decompose into a spatial wave functionC6(r 1,r 2) and a
spin wave functionx7(s1 ,s2):

C~x1 ,x2!5C6~r 1,r 2!x
7~s1 ,s2!. ~10!

We can then expand the spatial wave function as a lin
23511
of

h

.

ar

combination of symmetrized~or antisymmetrized! one par-
ticle solutions, which in ket notation becomes

^r 1r 2un1l 1m1n2l 2m2&5NK@^r 1un1l 1m1&^r 2un2l 2m2&

6^r 2un1l 1m1&^r 1un2l 2m2&#.

~11!

The NK are chosen such as to normalize Eq.~11!,

NK5
1

A212dn1n2
d l 1l 2

dm1m2

. ~12!

Due to the spherical symmetry of the system it is most e
cient to work in a coupled representation such that we
expand these coupled basis functions in terms of the
coupled, one particle functions, such that

un1l 1n2l 2LM &5 (
m1m2

un1l 1m1n2l 2m2&

3^n1l 1m1n2l 2m2un1l 1n2l 2LM & ~13!

with ^n1l 1m1n2l 2m2un1l 1n2l 2LM &, by definition, the
3 j -Wigner symbols. L must satisfy the triangula
inequality,12

l 11 l 2>L>u l 12 l 2u, ~14!

andM is constrained to be

M5m11m2 . ~15!

L andM are constants of the motion and uniquely define a
given spatial wave functionCLM

6 (r 1,r 2).
To further simplify notation we define

G5$n1l 1n2l 2%, ~16!

a four-dimensional vector of quantum numbers. We can n
expressCLM

6 (r 1,r 2) as

CLM
6 ~r 1,r 2!5(

G
cG

6un1l 1n2l 2LM &5(
G

cG
6FGLM

6 .

~17!

The cG
6 are coefficients to be determined, and the sum o

G runs over all possible combinations of$n1l 1n2l 2%, where
n1,2 and l 1,2 can have the maximum valuesnmax and l max,
respectively. TheFGLM

6 form a complete symmetric~or an-
tisymmetric! set of basis functions that satisfies the bound
condition of the wave function being identically zero at t
boundary of the sphere.

In the chosen basis the kinetic energy is diagonal, w
matrix elements being of the form

^FGLMuT̂uFG8LM&5
1

2
~an1l 1

2 1an2l 2
2 !dGG8

5
1

2R2
~kn1l 1

2 1kn2l 2
2 !dGG8 . ~18!
8-2
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However, the Coulomb matrix elements in the requir
basis require a little more work and will be discussed in
next section. For the moment we will assume that they
be calculated accurately and efficiently.

The Schro¨dinger equation,

ĤC65EC6, ~19!

can now be rewritten as an eigenvalue equation in the
known cG

6 such that for a givenLM state:

(
G8

ĤGG8cG8
6

5E6cG
6 . ~20!
te

er
rr
T
st
ut

le
n

23511
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This is, so far, formally exact and if calculated as written t
C6 would be the exact wave functions to the problem,
cluding the excited states. Of course, in practice, the fin
number of basis functionsFGLM

6 that can be practicably in
cluded prevent this from being an exact solution to the pr
lem.

IV. COULOMB INTEGRALS

In order to evaluate the matrix elements of the Ham
tonian we need to be able to calculate the Coulomb ma
elements, and in doing so we need to be able to calcu
integrals of the form
consider

of such

ion that
~n1l 1m1n2l 2m2un18l 18m18n28l 28m28!5E E hn1l 1m1
* ~r 1!hn2l 2m2

* ~r 2!hn
18 l

18m
18
~r 1!hn

28 l
28m

28
~r 2!

ur 1Àr 2u
dr 1 dr 2. ~21!

In considering the Coulomb integrals for the symmetrized and antisymmetrized basis functions we find we have to
the sum and difference of the direct (n1l 1m1n2l 2m2un18l 18m18n28l 28m28) and exchange (n1l 1m1n2l 2m2un28l 28m28n18l 18m18) integrals,
which in terms of the coupled representation becomes

^FGLM
6 uÛuFG8L8M8

6 &52NKNK8@~n1l 1n2l 2LM un18l 18n28l 28L8M 8!6~n1l 1n2l 2LM un28l 28n18l 18L8M 8!#, ~22!

with theNK being given by Eq.~12!. The integrals appearing on the right-hand side of Eq.~22! are well known13 and in terms
of the coupled representation become

^n1l 1n2l 2LM uÛun18l 18n28l 28L8M 8&5dLL8dMM8(
k

f k~ l 1l 2l 18l 28 ;L !@R(k)~n1l 1n2l 2n18l 18n28l 28!1R(k)~n2l 2n1l 1n28l 28n18l 18!#,

~23!

where

f k~ l 1l 2l 18l 28 ;L !5dL8L~21!L1k@~2l 111!~2l 1811!~2l 211!~2l 2811!#1/2W~ l 1l 18l 2l 28 ;kL!S k l1 l 18

0 0 0
D S k l2 l 28

0 0 0
D . ~24!

HereW( l 1l 18l 2l 28 ;kL) is a Racah function and there are a number of restrictions placed on the allowed nonzero values
a function. In Eq.~24! the 3j -Wigner symbols impose the restriction thatk1 l 11 l 18 andk1 l 21 l 28 be even. Physically this is
such that the 1/r 12 interaction does not couple states of a different total parity. From these terms there is also the condit
k< l 11 l 18 and< l 21 l 28 . TheR(k) are simply finite forms of the Slater radial integrals

R(k)~n1l 1n2l 2n18l 18n28l 28!5E
r 150

R

r 1
2 dr 1E

r 250

r 1
r 2

2 dr 2

r 2
k

r 1
k11

Nn1l 1
j l 1

~an1l 1
r 1!Nn

18 l
18
j l

18
~an

18 l
18
r 1!Nn2l 2

j l 2
~an2l 2

r 2!Nn
28 l

28
j l

28
~an

28 l
28
r 2!.

~25!
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In calculating these Slater radial integrals the inner in
gral, formally a function of the radial variabler 1, is calcu-
lated using a Gauss–Chebyshev routine14 over a mesh of
64 points. Tests were performed to ensure that conv
ence of the integrals with respect to mesh size had occu
over a range of sphere sizes and quantum numbers.
tabulation, a process which happens as an initialization
in the code, is done once in order to decrease comp
time.

It was noticed that a whole class of Coulomb matrix e
ments could be solved analytically. These particular eleme
-

g-
ed
his
ep
er

-
ts

have the form corresponding to each particle having z
total angular momentum. A closed form solution to the
corresponds to solving the Slater radial integr
R(0)(n10n20n180n280) for any combination of the radia
quantum numbers. These analytic solutions provided an
valuable check when writing code, and they give us an id
of how accurate our numerical evaluation of these hig
oscillatory radial integrals is. Table I shows some examp
of the differences between the Coulomb matrix eleme
evaluated analytically and numerically, with the differenc
being extremely small. We note excellent agreement with
8-3
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ground state (100100u100100), Coulomb integral as calcu
lated in Ref. 5.

V. ELECTRON DENSITY AND
EXCHANGE –CORRELATION HOLE

One of the most interesting and potentially useful prop
ties of these two-electron model systems, is that the den
functional theory~DFT! when applied to them can be great
simplified. We know that for any two-electron system we c
write

n~r 1!52E uCLM
6 ~r 1,r 2!u2 dr 2. ~26!

Substituting the form of the two-body wave function give
previously into Eq.~26! results in

n~r 1!52(
GG8

cG
6cG8

6 SGG8 , ~27!

with the cG the wave function coefficients and

SGG85E FGLM
6* FG8LM

6 dr 2. ~28!

The density is a scalar quantity and is thus independen
choice of axes, it is also independent of rotations about
chosen axes. Given this, we are able to integrate out
angular dependence in Eq.~26!. Formally we integrate Eq
~27! with respect to the solid angleV1, such that

n~r 1!5E n~r 1!dV15
1

2p (
GG8

cGcG8E SGG8 dV1 .

~29!

Computationally, the evaluation of the density for th
model is the quickest part of the whole calculation. Havin
density that is extremely easy to calculate is an attrac
feature of this system, as all properties of the system ca
derived from the density.

The physical exchange–correlation hole is defined in D
in terms of the density–density correlation function eva
ated with the two-body wave function, given by Eq.~17!,
such that

TABLE I. Comparison of the numerical and analytic values o
selection of the Coulomb matrix elements with zero total angu
momentum.

Element Analytic Numerical

^100100uÛu100100& 1.786073181 1.786073070

^100100uÛu200400& 0.00713410171 0.00713410153

^100200uÛu300400& 0.143623626 0.143623628

^200400uÛu300300& 0.621169740 0.621169745

^200300uÛu400400& 0.0583870328 0.0583870309
23511
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nxc~r 1,r 2!5
1

n~r 1!
^Cudn̂~r 1!dn̂~r 2!uC&2d~r 12r 2!,

~30!

where

dn̂~r !5n̂~r !2n~r !, ~31!

and n̂(r ) is the number density operator

n̂~r !5(
i

d~r2r i!. ~32!

In the preceding expressions, subscripts and supersc
have been omitted for clarity. These general expressions
be greatly simplified for this two electron system and we fi
that the exchange–correlation hole given by Eq.~30! can be
written solely in terms of the density and the two-body wa
function

nxc~r 1,r 2!5
2uC~r 1,r 2!u2

n~r 1!
2n~r 2!. ~33!

This quantity is normalized to21.
The correlation hole densitync(r 1,r 2) can be calculated

by subtracting off the exchange hole densitynx(r 1,r 2),
which for any two-electron system is given by

nx~r 1,r 2!52
n~r 2!

2
. ~34!

Therefore we find

nc~r1 ,r 2!5
2uC~r 1,r 2!u2

n~r 1!
2

n~r 2!

2
, ~35!

where the correlation hole density is normalized to zero. T
expression has a useful qualitative interpretatio
uC(r 1,r 2)u2 is the probability of finding one electron atr 1
and another atr 2. Dividing this by the probability of finding
an electron atr 1, yields a conditional probability of finding
an electron atr 2 given that the other is atr 1. If this condi-
tional probability is larger than the probability of finding a
electron atr 2, thennc(r 1,r 2) is positive, otherwise it is nega
tive. When would we expect these two situations to occur
r 2 is chosen close to the reference pointr 1, the chances of
finding another electron atr 2 given there is already an elec
tron at r 1, is small and therefore in the vicinity ofr 1 the
correlation hole will be negative. Conversely, ifr 2 is chosen
to be a large distance fromr 1, then the probability of finding
another electron atr 2 might be larger than expected~due to
correlation! and thusnc(r 1,r 2) may be positive. Electron
correlation is responsible for the positive regions of t
exchange–correlation hole. An investigation of the oscil
tions in the sign ofnc(r 1,r 2) will enable us to understand, a
least qualitatively, the spatial correlation between the el
trons in any given state. As an example, if the electrons
seen to localize in well defined regions of space~as would be
the case upon formation of a Wigner molecule! we would
expect the correlation hole, and the exchange–correla

r

8-4



O
o
n
ga

-
em

b
o

k-

ed

ts
e-

TWO INTERACTING ELECTRONS IN A SPHERICAL . . . PHYSICAL REVIEW B 66, 235118 ~2002!
hole, to be strongly positive at some value of separation.
the other hand, if the electrons are uncorrelated through
space the correlation hole will not be strongly positive a
the exchange–correlation hole will be predominantly ne
tive.

Although formally the correlation hole is a six
dimensional function, the spherical symmetry of the probl
reduces the dimensionality to three so that Eq.~35! can be
written simply as

nc~r 1 ,r 2 ,u!5
2uC~r 1 ,r 2 ,u!u2

n~r 1!
2

n~r 2!

2
. ~36!

This functional form allows us to fixr 1 and vary either
r 2 or u.

VI. A UNIFORM BACKGROUND POTENTIAL

Overall charge neutrality is imposed upon the system
smearing a positive uniform background charge through
k
tio
e
th

wo
y
le
re

-
e

,

23511
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the interior of the sphere. This is done by allowing a bac
ground charge density,r(r ), to take the form

r~r !5H kr, r ,R,

0, r>R
~37!

with

r5
2

V
. ~38!

V is simply the volume of the enclosing sphere andk should
be identified with the harmonic potential prefactor as defin
by Eq. ~8!.

In order to diagonalize the Hamiltonian, matrix elemen
of the form ^FGuV̂uFG8& have to be evaluated. These el
ments have the form
^FGLM
6 uV̂uFG8LM

6 &5
1

2
kFdn2n2

8d l 1l
18
dm1m

18E0

R

Nn1l 1
j l 1

~an1l 1
r 1!Nn

18 l
18
j l

18
~an

18 l
18
r 1!r 1

4 dr 1

1dn1n1
8d l 2l

28
dm2m

28E0

R

Nn2l 2
j l 2

~an2l 2
r 2!Nn

28 l
28
j l

28
~an

28 l
28
r 2!r 2

4 dr 2G , ~39!
ute

ion

the
where for compactness, we introduce the notation

n5~nlm!. ~40!

These one dimensional integrals are evaluated quic
and accurately using a Gauss–Chebyshev integra
routine.14 The introduction of a uniform background charg
provides another variable parameter with which to probe
correlation of the system.

VII. THE KOHN –SHAM AND CORRELATION
POTENTIALS

Another interesting property of this, and indeed any t
electron system, is that we can directly relate the densit
the one electron Kohn–Sham orbitals such that for two e
trons of opposite spin the Kohn–Sham orbital is simply
lated to the electronic density via

n~r !52f2~r !. ~41!

The Kohn–Sham orbital,f(r ), and corresponding eigen
value, e, satisfy the Kohn–Sham equation which describ
the noninteracting system

F2
1

2
¹21veff~r !Gf~r !5ef~r !. ~42!

We can readily invert Eq.~42! in order to findveff(r ) to
within an additive constant—the Kohn–Sham eigenvalue
ly
n

e

to
c-
-

s

veff~r !5e1
1

2

¹2n
1
2~r !

n
1
2~r !

. ~43!

A knowledge of the exact ground state density,n(r ), from a
correlated wave function therefore enables one to comp
veff(r )2e. Furthermore, we can write

veff~r !5vext~r !1vx~r !1vc~r !1vHart~r !, ~44!

wherevx and vc are the separate exchange and correlat
potentials. Since,

vx~r !5
dEx

dn~r !
, ~45!

with

Ex5
1

2E n~r !nx~r ,r 8!

ur2r 8u
dr dr 8, ~46!

for two electron systems we can use Eq.~34! to relate the
exact exchange potential to the Hartree potential

vx~r !52
1

2
vHart~r !. ~47!

Using these relationships we find that we can compute
correlation potential~from the exact electron density! to
within an additive constant
8-5
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vc~r !2e5
1

2

¹2n
1
2~r !

n
1
2~r !

2
1

2
vHart~r !2vext~r !. ~48!

Expressed in this form, the correlation potential has a kin
contribution and a self-interaction correction term, which
the present case is simply2 1

2 vHart(r ).

VIII. RESULTS

We shall be studying a confining sphere of radiusR, and
will only be concerned with the ground state of the syst
~i.e., theL50, M50 state!. We denotenmax and l max to be
the largest wave numbers allowed in the basis ofh ’s @Eq.
~1!#. For any givennmax and l max, the Hamiltonian was di-
agonalized using a direct diagonalization method.15 We have
investigated the form of the wave function, density, corre
tion hole, Kohn–Sham and correlation potentials for a ran
of r s and for different values ofk in the case of the uniform
background study.

A. Convergence withnmax and l max

We first examine the convergence of the total energy
the system with increasingnmax andl max as a function ofr s .
We considernmax from 1 to 4 andl max from 0 to 4. Table II
shows total energies for a number ofr s for the singletL
50, M50 wave function for the casek50, i.e., in the
absence of a uniform background charge. We see that
energy decreases on increasing both ofnmax and l max, this is
of course, due to the energy being variational with respec
both of these parameters. We define the relative error in

TABLE II. Energy convergence as a function of sphere size,
k50.

Radius
of sphere

r s /a.u. n,l No. of basis
functions

Energy/a.u. Relative
error

1 0.79 1,1 3 11.643018677 0.169%
2,2 21 11.624207716 0.007%
3,3 78 11.623559564 0.0017%
4,3 136 11.623487792 0.0012%
4,4 210 11.623430654 0.0006%

` 11.62335~2!

5 3.97 1,1 0.739147316 2.13%
2,2 0.724069582 0.05%
3,3 0.723786342 0.011%
4,3 0.723764057 0.0078%
4,4 0.723740152 0.0045%

` 0.723707~3!

20 15.87 1,1 0.103409312 8.35%
2,2 0.095697381 0.273%
3,3 0.095445451 0.010%
4,3 0.095438065 0.002%
4,4 0.095437266 0.001%

` 0.0954361~8!
23511
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energy with respect to the infinite basis energy limit~calcu-
lated in the manner of Halkieret al.16!. Upon increasingr s
we observe a slower convergence, as measured by the
tive error. We expect that forkÞ0, the effect of the uniform
background potential~which is to be thought of as a para
bolic well! would be to push the electrons into the center
the sphere, thus increasing the energy of the system. Tab
shows that this is indeed the case.

B. The ground state wave function

It is interesting to observe how the wave functions evo
as a function ofr s . We concentrate on the overall groun
stateL50,M50 with k50. The absolute values of the wav
function coefficients are shown in Fig. 1. Asr s increases we
observe a decrease in the contribution from theu100100&
state along with an increase in the contributions from hig
states~e.g., u100200&, u110110&, and u200200&!. It is instruc-
tive to understand this change in terms of the one part
statesunlm& of Eq. ~1!. The energies associated with the
one particle solutions are simply

Enl5
anl

2

2R2
~49!

r TABLE III. Energy convergence for the charge-neutral un
sphere.

Radius
of sphere

r s /a.u. n,l No. of basis
functions

Energy/a.u. Relative
error

1 0.79 1,1 3 12.208587646 0.091%
2,2 21 12.198445438 0.007%
3,3 78 12.197755765 0.002%
4,3 136 12.197679819 0.0011%
4,4 210 12.197623086 0.0006%

` 12.19754~5!

FIG. 1. Absolute value of wave function coefficients for single
L50, M50 ground state as a function ofr s , herenmax54,l max

54, andk50.
8-6
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for any givenn andl. The influence of the confining potentia
causes striking differences from a hydrogenic energy le
scheme. In the hydrogenic Schro¨dinger equation a centrifu
gal term,\@ l ( l 11)/r 2# ensures that a given state specifi
by the principle quantum number,n, can only have certain
angular momentum states. In the present model, becaus
the infinite confining potential, this accidental degenera
between then andl states is broken. Subsequently there is
n quantum number associated with each angular momen
separately.

We see that the spacing between any two levels goe
;1/R2, so as the confining sphere becomes larger the en
gap between successive levels becomes smaller, allow
population of higher angular momentum states. The t
ground state for a high density system~small r s) would be
the population of the 1s state by both electrons. However fo
larger spheres, as the gap between energy levels decrea
is energetically favorable for an electron to be in a high
angular momentum state thus reducing electron–electron
pulsion occurring from double occupation of the same
bital.

C. The ground state density

The singlet ground state density~for k50) is shown in
Fig. 2 for a range of values ofR. We see that for anr s
,8 a.u., the density has a maximum at the origin of
sphere. Forr s'8 a.u., the density acquires a minimum
the origin, which becomes more pronounced asR increases.
At the same time the maximum in the density progres
towards the boundary of the sphere. This development

FIG. 2. Ground state (L50, M50) electron density as a func
tion of R for k50. The density is seen to form a minimum at th
origin of the sphere forr s'8. The formation of a minimum is
indicative of the system moving into a Wigner molecule pha
where correlation between the particles is the dominant factor.
horizontal axis is the fractional distance from the origin. To ena
comparisons between systems of differing size, we have norma
distances to that of the unit sphere. This convention is adop
throughout.
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minimum is indicative of the formation of a ‘‘Wigner’’ mol-
ecule; in varyingR we move from a strongly uncorrelate
system ~small R) where kinetic energy dominates to
strongly correlated regime~large R) where the electrostatic
interaction is dominant. AsR increases the correlation be
tween the particles becomes paramount.

It is also interesting to compare this work with a relat
study of electrons confined to a hard walled cube4 where we
find approximately the same value ofr s for formation of the
Wigner molecule. This is somewhat unsurprising as the d
sity at the origin is going to be insensitive to the confini
potential for systems large enough to form a Wigner m
ecule. However, we would expect that a detailed analysis
other properties, for example,nc(r 1 ,r 2 ,u), near the confin-
ing boundary would yield results that were strongly poten
dependent.

We also examine the form of the density forkÞ0. In Fig.
3 we consider~for a number of different values ofk) the
example of a system for which we are just inside the regi
of forming the Wigner molecule. We see that it requires
relatively small value ofk to remove the minimum in the
density at the origin and to move back into an ‘‘uncorr
lated’’ phase. A nonzero value ofk means that the electron
are moving in a potential which pushes them towards
center of the sphere. Ask increases in magnitude the pote
tial for the electrons to be at the origin of the sphere
competing with the tendency of the electrons to be as
apart as possible.

Whenk51, the system is charge-neutral and in Fig. 4
see a number of densities for a variety of different siz
spheres. We observe that in this system there is a chara
istic value ofR at which we develop a minimum at the or
gin, thus recovering the Wigner molecule. ForR'17 we
observe formation of a minimum at the origin, correspond
to r s'13 a.u. However, the qualitative behavior of the de
sity does not change.

e
e

e
ed
d

FIG. 3. Ground state (L50, M50) electronic density as a
function of k for R512. A small increase in the strength of th
confining potential is seen to remove the minimum at the origin
8-7
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D. The ground state correlation hole

Figure 5 showsnc(r 1 ,r 2 ,u) for k50, r 150 andu5p
for several values ofR. Although we explicitly defineu, with
r 1 at the origin there is nou dependence and the correlatio
hole density is a function of the radial coordinater 2. For
small R, where we are in an uncorrelated system, the co
lation hole is predominately negative. From our qualitat
analysis of the form of the correlation hole given in Sec.
we see that this corresponds to low levels of spatial corr
tion, as we would expect from a system of a size such
the kinetic energy is the dominant term. Upon increasingR,
we see from Fig. 2, that the density acquires a maximum
this maximum is seen to move to the boundary of the sph
This is indicative of the increased importance of the Coulo
bic energy terms and consequently the correlation hole

FIG. 4. Ground state (L50, M50) electronic density as a
function of R for the charge-neutral systemk51. We find that for
r s'13 a.u. we recover the Wigner molecule state.

FIG. 5. Ground state (L50, M50) correlation hole as a func
tion of R. Observe the enhancement of the correlation hole at
origin for large sphere sizes.
23511
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at
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comes positive; there is an enhanced probability of find
the ‘‘other’’ electron away from the reference electron whi
is fixed at the origin. Interestingly, asn(r ) develops a mini-
mum, i.e., on moving into the Wigner molecule, we devel
a local maximum around the origin in the correlation ho
This becomes more pronounced the larger the sphere
comes, corresponding to regions of space where the elec
is more likely to be with respect to the other. This spat
anisotropy in the correlation hole density is a counterint
tive result, although it should be remembered that in co
paring these regions around the reference particle we are
concerned with correlation hole densities that are negativ

We see in Fig. 6 the variation ofnc(r 1 ,r 2 ,u) for a num-
ber of R with r 150, u5p, andk51 ~the case of a charge
neutral sphere!. For kÞ0 the correlation hole for large
spheres remains negative throughout space, with no l
maximum in the origin. We find that for large enoug
spheres we can recover this maximum and all of the res
concur with observations made in our discussion of Fig.

In Figs. 7 and 8 we show contour plots for the singl
ground state correlation hole. In all of these plotsR515,
r s511.91 a.u. and in the absence of a background cha
density (k50) we can assume that we are inside the Wig
molecule regime. The darker regions in Figs. 7 and 8 co
spond to areas wherenc(r 1 ,r 2 ,u),0, while the lighter areas
havenc(r 1 ,r 2 ,u).0. In Figs. 7~a, b! the reference electron
is fixed at the origin and in Figs. 8~a, b! it is slightly dis-
placed from the origin. In Fig. 7~a!, with k50, there is a
region of space where the correlation hole is positive,
observed in Figs. 5 and 6. The well defined regions of po
tive and negative correlation imply a strong degree of loc
sation and is indicative of the formation of a Wigner mo
ecule. In the presence of a compensating background ch
density, Fig. 7~b!, the correlation hole becomes more neg
tive around the origin. This contraction is caused by the
ditional attractive potential and diminishes the spatial cor
lation between the particles. In Fig. 8 upon displacing
e

FIG. 6. Ground state (L50, M50) correlation hole as a func
tion of R for charge-neutral systems. The long-dashed plot i
system with no background charge density to be used for comp
son.
8-8
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TWO INTERACTING ELECTRONS IN A SPHERICAL . . . PHYSICAL REVIEW B 66, 235118 ~2002!
reference particle from the origin (r 150.1R), we see that the
correlation hole is now theta dependent. Once again, the
fect of the compensating background charge density is s
in Fig. 8~b!, to cause a contraction of the correlation ho
around the reference particle.

FIG. 7. Ground state (L50, M50) correlation hole contour
plots for theR515, r 150, k50 ~a! and charge-neutral system
k51 ~b!. Areas of dark shading represent negative regions of
correlation hole, while regions with lighter shading are to be as
ciated with positive values of the correlation hole. For thek51
case,~b!, we see that the correlation hole is deeper~contracted!
around the reference particle which is positioned at the origin of
sphere.
23511
f-
n,

E. The Kohn–Sham and correlation potentials

In Fig. 9 we present the Kohn–Sham effective poten
for our two electron system arising from Eq.~43! for a num-
ber of different sphere sizes fork50 and the charge-neutra
system k51. In both instancesveff(r )2e is plotted for
sphere sizes just inside and outside the Wigner molecule
gime. Since we are calculating the effective potential

e
-

e

FIG. 8. Ground state (L50, M50) correlation hole contour
plots for theR515, r 150.1R, k50 ~a! and charge-neutral system
k51 ~b!. Areas of dark shading represent negative regions of
correlation hole, while regions with lighter shading are to be as
ciated with positive values of the correlation hole. Here we obse
strong directional correlation between particles and a contrac
around the reference particle in the charge-neutral case.
8-9
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DAVID C. THOMPSON AND ALI ALAVI PHYSICAL REVIEW B 66, 235118 ~2002!
within an additive constant only the shape of the curve
important. We see that upon moving through the transit
into the Wigner molecule the potential becomes increasin
repulsive at the origin, while becoming more attractive at
sphere boundary. We can relate the behavior of the pote
at the origin to the changes in the exact ground state den
for largeR. An additional flattening of the potential at larg
distances from the origin is observed in the case of
charge-neutral system. In this instance the additional p
bolic potential is seen to soften the effect of the infinite co
fining surface.

Figures 10~a, b! show the correlation potentialvc(r )2e,
for high density@~a! R51] and low density@~b! R520]
systems in the absence of a background potential (k50).
Also shown are the Hartree, effective and exchange po
tials as defined in Sec. VII.

In the high density example there is no structure in
correlation potential, indicative of the dominating kinet
factors. We see in the low density system that the correla
potential has a clear maximum at the origin with a bro
minimum upon moving away towards the sphere bound
mirroring the form of the electronic density and the incre
ing dominance of the Coulomb interaction. In both syste
the Hartree potential tends to a finite value at the sph
boundary. It is straightforward to show that for all system
confined by such a potentialvHart(R)•r s522/3 and is thus
independent of system size.

It is instructive to note the qualitative differences betwe
the form of the correlation potential as presented in Fig.
and with those calculated in other model systems8–10 and in
actual atomic systems~see, for example, Ref. 17!.

As one of our long term objectives is to develop functio
als beyond the generalized gradient approximation~GGA!
we also compare the exact correlation potential to those g

FIG. 9. The ground state (L50, M50) Kohn–Sham potentia
~to within an additive constant! as a function ofr s , for k50 and
k51. We see that upon forming the Wigner molecule the poten
becomes increasingly more repulsive at the origin. In the cha
neutral system we observe a flattening of the potential at large
tances, due to the additional confining parabolic potential.
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erated using the exact ground state density and comm
used functionals. We have used the Perdew–Zunger17 local
density functional and the LYP,18 P9119 and PBE20 GGA
functionals. The subroutines used to generate the poten
are from the CADPAC21 computational suite. Results ar
shown in Fig. 11. None of the functionals are able to rep
duce the exact potential. The Perdew–Zunger does rem
ably well in reproducing the general shape as does the L

l
e-
is-

FIG. 10. A decomposition of the effective potential into cont
butions from the Hartree, exchange and correlation potentials.
consider the ground state (L50, M50) in the absence of a back
ground potential (k50) for R51 ~a! and R520 ~b!. Note the
change in scale from Fig. 9.

FIG. 11. A comparison of correlation potentials generated fr
commonly used functionals and the exact result generated in
study. The exact ground state density was used throughout f
system of sizeR520. In order to compare the general shapes of
curves the exact potential has been rigidly shifted. We have used
LYP, P91, and PBE GGA functionals along with the Perdew
Zunger local functional. We see that none of the commonly u
functionals are able to reproduce the shape of the exact curve.
LYP and PZ functionals do reasonably well at reproducing a ma
mum at the origin and a shallow minimum some distance from
8-10
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TWO INTERACTING ELECTRONS IN A SPHERICAL . . . PHYSICAL REVIEW B 66, 235118 ~2002!
GGA functional, based as it is upon the Colle–Salvet22

functional which was in turn fitted to the helium atom. Th
GGA’s P91 and PBE exhibit a very deep minimum, whi
would tend to stabilize a Wigner molecule, but the over
shape of the potential is clearly unphysical. A similar failu
for atomic helium has been noted by Umrigaret al.23

IX. CONCLUSION

In this paper we have studied the quantum-mechan
behavior of two interacting electrons confined to a spher
volume of space by a hard infinite potential. We have a
imposed an additional parabolic potential due to a unifo
background charge which is smeared throughout the con
ing volume. We have used an exact diagonalization meth
whereby we express the wave functions as linear comb
tions of symmetrized or antisymmetrized products of the o
particle solutions. Due to the symmetry of the system
were able to introduce the quantum numbersL andM, which
are constants of the motion, and represent the problem
coupled representation. These two numbers precisely de
any given wave function. We can calculate well converg
energies fornmax54 andl max53 for any givenr s .

With this technique we have studied the singlet grou
state as a function of increasingR. A ‘‘Wigner’’ molecule
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