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Two interacting electrons in a spherical box: An exact diagonalization study
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We study a system of two electrons interacting with a Coulomb potential in a sphere of Radioanded
by an infinite wall using exact diagonalization. We have also investigated the influence of an additional
parabolic potentialof strengthk) arising from a uniform background smeared throughout the sphere. The
convergence of the ground state energy of the singlet spin state of the system is investigated as a function of
sphere sizeessentiallyrg, the Wigner—Seitz density parametéor cases where there is no background
potential k=0) and for whenk#0. With k=0 and smallrg, we observe a maximum in the ground state
density at the origin of the sphere. Af=8 a.u., the ground state density acquires a minimum at the origin. For
this and larger systems we identify the formation of a “Wigner” molecule state. We further investigate
the ground state density as a functionkadind also the correlation hole density as a functionadindk. We
invert the Kohn—Sham equation for a two electron system and calculate the local effective potential and
correlation potentialto within an additive constahtas functions of the radial coordinate for a number of
values ofrg andk.

DOI: 10.1103/PhysRevB.66.235118 PACS nunider71.15.Mb, 73.2%-b

[. INTRODUCTION We have organized this paper as follows. In Sec. Il we
formulate the model whilst in Sec. Il we discuss the general
Improvements in experimental methods of confining elecimethod of solution. In Sec. IV we evaluate the Coulomb
trons and in the techniques used to investigate these systenfiegrals in terms of the coupled one particle basis. In Sec. V
have been a rich source for theoretical investigation. Previwe formalize the density and exchange—correlation hole den-
ous work employed a variety of confining potentials: spheri-sities for this system, and in Sec. VI we introduce a back-
cal potential welld, isotropic harmonic oscillatdr,planar ~ ground potential into the model through the smearing of
polygonal® and the infinite cubiodland ellipsoidal confin- @ uniform positive charge throughout the interior of the
ing geometries. In this paper we study the simple system osphere. In Sec. VIl we invert the Kohn—Sham equation to
two interacting electrons confined to a spherical volume ofind the local effective and correlation potentials, to within
space by an infinite potential. We solve this problem in aan additive constant. In Sec. VIII we report results of several
guasiexact way using exact diagonalization, which enablegalculations including energies, wave functions, exact densi-
us to calculate essentially exact solutions for the ground anties, exact correlation holes and the Kohn—Sham and corre-
excited states. lation potentials, as functions of andk. Section IX is the
The introduction of a uniform background charge densityconclusion.
throughout the interior of the sphere results in the particles
moving in an attractive parabolic potential, giving rise to a
model closely related to the “Hooke’s law” helium atom. ll. THE MODEL
The strength of this background charge density shall be de-

noted k _The Hooke's law system is an analytically and seek solutions to the Scdioger equation in terms of

solvablé’ model (for a certain infinite set of discrete oscil- ; X . .
. . ) . the center-of-mass and relative coordinates. This method is
lator frequencieswhich has been studied extensivéR/it X ) .
successful in the Hooke’s law helium, due to the fact that

has a central aitractive center where the electron-nucle Wo separate Schdinger equations arise, one for the center-
Coulomb interaction is described by a harmonic potential.

: of-mass coordinates and one for the relative coordinates.

These types of systems have the attractive property that t .
- . . . .~ However for the present problem, such an approach yields a
correlation between the confined particles can be varied sim-

IV by increasing or decreasing the size of the svs coupled set of Schainger equations as the confining poten-
ply Dy increasing ng ystem, tial, being infinite at the boundary, induces an awkward con-
whererg is linked to the radius of the sphere through

" straint on the relative coordinates when the center-of-mass
=R/23, An additional parametdthe steepness of the para-

) . S . coordinates are off-center. Therefore, in this paper we have
bolic potentiakk) is introduced in the case of a nonzero com- bap

pensating uniform background charge density. The two pachosen to proceed by looking for solutions in terms of the

rameters ¢ andk can be varied smoothly to take the system-lo-zzspea::\li {Lrjlr;cfttl)oﬁg.ls of the infinite spherical-well problem.
from the densgweakly correlategto the dilute (strongly

correlated regime. This class of exactly solvable model, can

be used to study without any approximations, the complex Dotn(1) =Npij 1 (i) Yim(6, ) = (r|nIm), D
nature of the exchange—correlation hole. Such investigations

can lead to improvements to functionals beyond the local

density approximatiofLDA ).8-1° where

One might proceed in the spirit of Kestner and Sindnbg
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2 combination of symmetrizefor antisymmetrizedone par-
Nn,:%(jHl(kn,))*l (2)  ticle solutions, which in ket notation becomes

(raranalymanalomg) =N [(r gl my)(ranol my)
‘ £(raInglimy)(rq|nalomy)].
= 3 (11)

The Ng are chosen such as to normalize Et),

Here thej,(r) are the spherical Bessel functions of ordler
and theY|,(6,¢) are the spherical harmonics. Tkg, are 1
simply thenth roots of thelth order spherical Bessel func- Nk = 5125 5 5 .
tion andR is the radius of the confining sphere. Equati8h \/ +20n,n,911,9mm,
ensures that the wavefunction vanishes at the boundary
the sphere.

The two-electron Hamiltonian for the problefiartree
atomic unitsh =m,=e?=1 are used throughoubecomes

and

an|=

(12

‘ﬁue to the spherical symmetry of the system it is most effi-
cient to work in a coupled representation such that we can
expand these coupled basis functions in terms of the un-
coupled, one particle functions, such that

A=T+0+V, (4)
Inglinol, LMY= >0 |n;l;myn,l,m,)
mym;
.1 )
T=-— E Zl Vi ’ (5) X<n1|1m1n2|2m2|n1| 1n2|2LM> (13)
with (Nl myn,l,my|nglinsl, LMY, by definition, the
. 1 3j-Wigner symbols. L must satisfy the triangular
Ut ©®  inequality;?
2 |1+|22L>||1_|2|, (14)
V=i§l Vexdli) (7)  andM is constrained to be
where we define the external potential to be M=m;+m,. (15
1 L andM are constants of the motion and uniquely define any
Zkr2, r<R, given spatial wave functiol[y,(r,r>).
vex(r)=1 2 (8 To further simplify notation we define
0, r=R.

. . . G={nilynyl5}, (16)
This external potential can be thought of as arising through ] )

charge, such that the value bicorresponding to an overall €xpress¥ [y (ry,ro) as
charge-neutral system is given by

\PEM(rl’rZ):é Cé|n1|1nz|2LM>:% Cé‘bél_m .
k=—. 9 (17)

The cg are coefficients to be determined, and the sum over
Our Hamiltonian contains two parameters and R+~ G runs over all possible combinations pf,l,n.l,}, where
andk>0 we would recover the Hooke’s law atom. With  n,, and |, , can have the maximum values,,, and | .y,
=0 andR finite we have an ideal confined electron problem.respectively. Thabg, ,, form a complete symmetrior an-
In both cases the “strongly” correlated limit can be achievedtisymmetrig set of basis functions that satisfies the boundary

by letting R become large ok small. condition of the wave function being identically zero at the
boundary of the sphere.
I1l. METHOD OF SOLUTION In the chosen basis the kinetic energy is diagonal, with

. ] ) matrix elements being of the form
We define a two-body wave functiobi(x,,x,) which we

decompose into a spatial wave functidn™(r,,r,) and a . 1, 5
spin wave functiony™ (o ,0>5): (PoLm| TIPerLm) = 5 (en tan,,) deer
W(Xq, %) =W (ry,r) x*(01,07). (10

Nqlq

1
. . . = (kn, TKny,) e (18)
We can then expand the spatial wave function as a linear 2R? 22
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However, the Coulomb matrix elements in the requiredThis is, so far, formally exact and if calculated as written the
basis require a little more work and will be discussed in the¥ = would be the exact wave functions to the problem, in-
next section. For the moment we will assume that they carluding the excited states. Of course, in practice, the finite

be calculated accurately and efficiently. number of basis function®g, ,, that can be practicably in-
The Schrdinger equation, cluded prevent this from being an exact solution to the prob-
. lem.
HY==EV¥™, (19
can now be rewritten as an eigenvalue equation in the un- IV. COULOMB INTEGRALS

knowncg such that for a givet.M state: In order to evaluate the matrix elements of the Hamil-

tonian we need to be able to calculate the Coulomb matrix
> Heeco =E*cg. (200  elements, and in doing so we need to be able to calculate
G’ integrals of the form

(1) 701,m,(72) 07122 (V1) s (T 2)

*
ry’ ! ry’ ! nnlllml
(nqlymyn,lomynliminglomsy) = drqdr,. (21)

Iri—ry

In considering the Coulomb integrals for the symmetrized and antisymmetrized basis functions we find we have to consider
the sum and difference of the direat;{,m;n,l,m,|nil1minsl;m}) and exchangen;l,m;n,l,m,|nsl5msn;lim;) integrals,
which in terms of the coupled representation becomes

*

(PamlUIDG L) =2NkNi [(ngl 1ol L Mg insl 5L M) = (nglan,l LM Sl 5ngl L M), (22

with the N being given by Eq(12). The integrals appearing on the right-hand side of(28) are well knowr® and in terms
of the coupled representation become

(nql1n,lL,LM O N NSL MY =6,/ 5MM,Zk f(L1lo1115 L[R®(nglnylons 1 nsls) + R (nyl oyl nslingl )],
(23
where
I2

k 1 17\ (k | ;
fk(|1|z|i|£;L):5LfL(—1)L+k[(2|1+1)(2|1+1)(2|z+1)(2|é+1)]1’2\N(|1|i|2|é;kL)(0 S S)(o ; 0)' (24

HereW(l,11l,15;kL) is a Racah function and there are a number of restrictions placed on the allowed nonzero values of such
a function. In Eq.(24) the 3j-Wigner symbols impose the restriction that |, +1; andk+1,+1, be even. Physically this is

such that the 14, interaction does not couple states of a different total parity. From these terms there is also the condition that
k<l,+I; and<Il,+1,. The R® are simply finite forms of the Slater radial integrals

RO (nylynolonilingls) = i 2ar, | r2dr iN i1 Can T ONn (e T DN (g F2) N (e )
1112ty Nals ot (=0 2 2r§+1 nyl 1 0@ng 1 PO N1 (ann i Fa) Nt 1, (a1, F2) Ny 1 (a2 F2).

- (25

In calculating these Slater radial integrals the inner inte-have the form corresponding to each particle having zero
gral, formally a function of the radial variablg, is calcu- total angular momentum. A closed form solution to them
lated using a Gauss—Chebyshev routinever a mesh of corresponds to solving the Slater radial integrals
64 points. Tests were performed to ensure that convergR(®)(n,0n,0n;0n50) for any combination of the radial
ence of the integrals with respect to mesh size had occurreguantum numbers. These analytic solutions provided an in-
over a range of sphere sizes and quantum numbers. Thigluable check when writing code, and they give us an idea
tabulation, a process which happens as an initialization stepf how accurate our numerical evaluation of these highly
in the code, is done once in order to decrease computearscillatory radial integrals is. Table | shows some examples
time. of the differences between the Coulomb matrix elements

It was noticed that a whole class of Coulomb matrix ele-evaluated analytically and numerically, with the differences
ments could be solved analytically. These particular elementseing extremely small. We note excellent agreement with the
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TABLE I. Comparison of the numerical and analytic values of a 1 . .
selection of the Coulomb matrix elements with zero total angular — Nyc(rq,rp) = ———(W¥|N(ry) Sn(ry)| W) —8(r—ry),

n(r
momentum. (ry) (30)
Element Analytic Numerical where
<10010QL:J |100100 1.786073181 1.786073070 5ﬁ(r) _ ﬁ(r) —n(r), (31)
(1002000|200400 0.00713410171  0.00713410153 i
(1002000|300400 0.143623626 0.143623628  andn(r) is the number density operator
(2004000 |300300 0.621169740 0.621169745
(2003000|400400 0.0583870328 0.0583870309 ﬁ(r) = 2 S(r—rj). (32
I

In the preceding expressions, subscripts and superscripts

ground state (1001000100), Coulomb integral as calcu- have been omitted for clarity. These general expressions can

lated in Ref. 5. be greatly simplified for this two electron system and we find
that the exchange—correlation hole given by B) can be
V. ELECTRON DENSITY AND written solely in terms of the density and the two-body wave
EXCHANGE —CORRELATION HOLE function
One of the most interesting and potentially useful proper- 2|W(ry,rp)2
ties of these two-electron model systems, is that the density Nye(F1,r)= —n(ry). (33
functional theory(DFT) when applied to them can be greatly n(ra)
simplified. We know that for any two-electron system we canThjs quantity is normalized te-1.
write The correlation hole density.(r;,r,) can be calculated
by subtracting off the exchange hole density(rq,r,),
* which for any two-electron system is given b
n<r1)=2J (Wi (ryro)| 2 drs. (26) y Y gien by
_ n(ry)
Substituting the form of the two-body wave function given Me(r1,r)=——— (34)
previously into Eq.(26) results in
Therefore we find
n(ry=22 c5¢s Scer, 27) 2W(ry,rp)* n(ry)
GG’ Ne(ry,ry)= - , (39
n(rq) 2

with the cg the wave function coefficients and . . . .
where the correlation hole density is normalized to zero. This

expression has a useful qualitative interpretation:
SGG,:f CDélqu)é,LM dr,. (28)  |W(ry,ry)|? is the probability of finding one electron at
and another at,. Dividing this by the probability of finding

L . , . n electron at 4, yields a conditional probability of finding
The density is a scalar quantity and is thus independent an electron at, given that the other is at,. If this condi-

choice of axes, it is also independent of rotations about th§q o pronability is larger than the probability of finding an
chosen axes. Given this, we are able to integrate out thgieqon ar,, thenn,(ry,r) is positive, otherwise it is nega-
angula}r dependence In Eq_ZG)' Formally we integrate Eqg. tive. When would we expect these two situations to occur? If
(27) with respect to the solid ang®,, such that r, is chosen close to the reference painpt the chances of
1 finding another electron at, given there is already an elec-
_ _ = tron atrq, is small and therefore in the vicinity of; the
n(rs) f n(rydi 2m % CGCGJ Seo: A1 correlation hole will be negative. Converselyrifis chosen
(290  to be alarge distance from, then the probability of finding
another electron at, might be larger than expectédue to
Computationally, the evaluation of the density for this correlation and thusn.(r,,r,) may be positive. Electron
model is the quickest part of the whole calculation. Having acorrelation is responsible for the positive regions of the
density that is extremely easy to calculate is an attractivexchange—correlation hole. An investigation of the oscilla-
feature of this system, as all properties of the system can b#ns in the sign of.(r4,r,) will enable us to understand, at
derived from the density. least qualitatively, the spatial correlation between the elec-
The physical exchange—correlation hole is defined in DFTirons in any given state. As an example, if the electrons are
in terms of the density—density correlation function evalu-seen to localize in well defined regions of sp&as would be
ated with the two-body wave function, given by EdQ.7), the case upon formation of a Wigner moleguee would
such that expect the correlation hole, and the exchange—correlation
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hole, to be strongly positive at some value of separation. Otthe interior of the sphere. This is done by allowing a back-
the other hand, if the electrons are uncorrelated throughowround charge density(r), to take the form

space the correlation hole will not be strongly positive and
the exchange—correlation hole will be predominantly nega-

: kp, r<R,
tive. = 37
: . . p(r) (
Although formally the correlation hole is a six- 0, r=R
dimensional function, the spherical symmetry of the problem
reduces the dimensionality to three so that E3h) can be  with
written simply as
2|W(ry,r5,0)% n(ry) 2
— _ =—_, (38
nC(rlrrZ!e) n(rl) 2 (36) P Q
This functional form allows us to fix,; and vary either

Q is simply the volume of the enclosing sphere &=hould
be identified with the harmonic potential prefactor as defined
by Eg. (8).
In order to diagonalize the Hamiltonian, matrix elements
Overall charge neutrality is imposed upon the system byof the form (®s|V|®g ) have to be evaluated. These ele-
smearing a positive uniform background charge throughoutments have the form

r, oré.

VI. A UNIFORM BACKGROUND POTENTIAL

o 1 R .
(PoumlVIPg )= Ek[ 5n2n,25|1|15m1m£f0 Nyt i1y (@i PNz (@np )y dry

R
+5nln'15|2|é5m2méfo anlzjlz(anzler)NnéléjIé(anélér2)r‘21dr2 , (39

where for compactness, we introduce the notation 5 1
()= e+ 1 Venz(r) 43
= Ve M) =€+ 5 —1 —
n=(nim). (40 2 nZ(r)

These one dimensional integrals are evaluated quickly knowledge of the exact ground state densitf), from a

and accurately using a Gauss—Chebyshev integratiogorrejated wave function therefore enables one to compute
routine:” The introduction of a uniform background charge vei(r)— €. Furthermore, we can write

provides another variable parameter with which to probe the
correlation of the system. Vef(1) =Vexd(1) +0x(1) +ve(r) +vpar(r), (44)

wherev, andv. are the separate exchange and correlation

VII. THE KOHN —-SHAM AND CORRELATION potentials. Since,

POTENTIALS
Another interesting property of this, and indeed any two v, ()= SE« (45)
electron system, is that we can directly relate the density to ) on(r)’
the one electron Kohn—Sham orbitals such that for two elec\'/vith
trons of opposite spin the Kohn—Sham orbital is simply re-
lated to the electronic density via 10 n(Hngrr)
X H
==| ———drdr’, 46
n(r)=2¢2(r). (42) * Zf [r—r'| 40

The Kohn—-Sham orbitalg(r), and corresponding eigen- for two electron systems we can use E84) to relate the
value, e, satisfy the Kohn—Sham equation which describesxact exchange potential to the Hartree potential
the noninteracting system

1
Ux(r):_EUHart(r)- (47)

1
—§V2+veﬁ<r>}¢<r)=e¢<r>. (42)
Using these relationships we find that we can compute the
We can readily invert Eq(42) in order to findveg(r) to  correlation potential(from the exact electron densjtyto
within an additive constant—the Kohn—Sham eigenvalue, within an additive constant
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TABLE II. Energy convergence as a function of sphere size, for TABLE IIl. Energy convergence for the charge-neutral unit
k=0. sphere.
Radius rg/a.u. n,I No. of basis Energy/a.u. Relative Radius rs/a.u. n,| No. of basis Energy/a.u. Relative
of sphere functions error of sphere functions error
1 079 11 3 11.643018677 0.169% 1 079 11 3 12.208587646 0.091%
2,2 21 11.624207716 0.007% 2,2 21 12.198445438 0.007%
3,3 78 11.623559564 0.0017% 3,3 78 12.197755765 0.002%
4,3 136 11.623487792 0.0012% 4,3 136 12.197679819 0.0011%
4,4 210 11.623430654 0.0006% 4,4 210 12.197623086 0.0006%
0 11.6233%2) 0 12.197545)
5 397 11 0.739147316 2.13% . Lo . L
22 0.724069582 005% €nergy with respect to the infinite basis energy lifelcu-
33 0723786342 00119 lated in the manner of Halkieet al*%. Upon increasing
43 0723764057 0.0078% W€ observe a slower convergence, as measured by the rela-
44 0723740152 0.0045% tive error. We expect tha_t fd(_aéo, the effect of the uniform
" 0.7237073) baquround potentialwhich is to be thought of as a para-
' bolic well) would be to push the electrons into the center of
20 1587 11 0103409312  8.35% the sphere, thus increasing the energy of the system. Table IlI
: ; ' : shows that this is indeed the case.
2,2 0.095697381 0.273%
3.3 0.095445451  0.010% B. The ground state wave function
4,3 0.095438065 0.002%
4.4 0.095437266  0.001% It is interesting to observe how the wave functions evolve
o 0.09543618) as a function ofrs. We concentrate on the overall ground
stateL =0,M =0 with k=0. The absolute values of the wave
function coefficients are shown in Fig. 1. Asincreases we
1 Vzn%(r) 1 observe a decrease in the contribution from tlh@OlOQ
. _ EUHart(r)_Uext(r)- (48) state along with an increase in the contributions from higher

ve(r)— €=z —4—
2 n%(r)

states(e.g.,|100200, |110110, and|200200). It is instruc-
tive to understand this change in terms of the one particle

Expressed in this form, the correlation potential has a kineti@tates|n|m) of Eq. (1). The energies associated with these
contribution and a self-interaction correction term, which ingne particle solutions are simply
the present case is Simpty v ar(r).

VIIl. RESULTS

We shall be studying a confining sphere of rad®jsand

will only be concerned with the ground state of the system

(i.e., theL=0, M =0 state. We denoten,,,, and| . t0 be
the largest wave numbers allowed in the basisptsf [Eq.
(1)]. For any givenn,, andl ., the Hamiltonian was di-
agonalized using a direct diagonalization method/e have

investigated the form of the wave function, density, correla-
tion hole, Kohn—Sham and correlation potentials for a range

of rg and for different values of in the case of the uniform

background study.

A. Convergence withn s and |y

We first examine the convergence of the total energy of ,

the system with increasing,,, andl ,ax &s a function of 5.
We considem,,,, from 1 to 4 and 5 from 0O to 4. Table Il
shows total energies for a number of for the singletL
=0, M=0 wave function for the cask=0, i.e., in the

absence of a uniform background charge. We see that the

energy decreases on increasing botmgf, andl ., this is
of course, due to the energy being variational with respect to =0, M=0 ground state as a function of, herenm.=4Jmax
both of these parameters. We define the relative error in the 4, andk=0.

2
nl

- 2R?

o

(49

nl

08
—— 100100

100200
---- 100300
——~- 100400
—-—- 110110
_ o—o 110210
$O5 |  o—> 200200 e

- .-

03 s

31.7

5.95

FIG. 1. Absolute value of wave function coefficients for singlet,
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1
n(r,).r

0.2 r

0 1

0 02 . 04 06 08 1 0 0.2 04 0.6 0.8 1
Fractional distance from origin Fractional distance from origin

L 0 .

FIG. 2. Ground statel(=0, M=0) electron density as a func- FIG. 3. Ground statel(=0, M=0) electronic density as a
tion of R for k=0. The density is seen to form a minimum at the function of k for R=12. A small increase in the strength of the
origin of the sphere for~8. The formation of a minimum is  confining potential is seen to remove the minimum at the origin.
indicative of the system moving into a Wigner molecule phase
where correlation between the particles is the dominant factor. The .

horizontal axis is the fractional distance from the origin. To enableMniMum Is indicative of the formation of a “Wigner” mol-

comparisons between systems of differing size, we have normalize8CUl€; in varyingR we move from a strongly uncorrelated
distances to that of the unit sphere. This convention is adoptegystem (small R) where kinetic energy dominates to a
throughout. strongly correlated regiméarge R) where the electrostatic

interaction is dominant. AR increases the correlation be-

for any givenn andl. The influence of the confining potential tween the particles becomes paramount.
causes striking differences from a hydrogenic energy level It is also interesting to compare this work with a related
scheme. In the hydrogenic Sckinger equation a centrifu- Study of electrons confined to a hard walled clwaere we
gal term,Z[I(1+1)/r?] ensures that a given state specifiedfind approximately the same value rffor formation of the
by the principle guantum numbenm, can only have certain Wigner molecule. This is somewhat unsurprising as the den-
angular momentum states. In the present model, because sify at the origin is going to be insensitive to the confining
the infinite confining potential, this accidental degeneracypotential for systems large enough to form a Wigner mol-
between ther and| states is broken. Subsequently there is arecule. However, we would expect that a detailed analysis of
n quantum number associated with each angular momentuther properties, for example(r,,r,,6), near the confin-
separately. ing boundary would yield results that were strongly potential
We see that the spacing between any two levels goes afependent.
~1/R?, so as the confining sphere becomes larger the energy We also examine the form of the density fo£ 0. In Fig.
gap between successive levels becomes smaller, allowirg)we consider(for a number of different values d&f) the
population of higher angular momentum states. The trugxample of a system for which we are just inside the regime
ground state for a high density systéemallr) would be  of forming the Wigner molecule. We see that it requires a
the population of the 4 state by both electrons. However for relatively small value ok to remove the minimum in the
larger spheres, as the gap between energy levels decreasesidhsity at the origin and to move back into an “uncorre-
is energetically favorable for an electron to be in a highenated” phase. A nonzero value &fmeans that the electrons
angular momentum state thus reducing electron—electron reire moving in a potential which pushes them towards the
pulsion occurring from double occupation of the same orcenter of the sphere. Asincreases in magnitude the poten-
bital. tial for the electrons to be at the origin of the sphere is
competing with the tendency of the electrons to be as far
apart as possible.
Whenk=1, the system is charge-neutral and in Fig. 4 we
The singlet ground state densitfjor k=0) is shown in  see a number of densities for a variety of different sized
Fig. 2 for a range of values dR. We see that for amg  spheres. We observe that in this system there is a character-
<8 a.u., the density has a maximum at the origin of theistic value ofR at which we develop a minimum at the ori-
sphere. Forg~8 a.u., the density acquires a minimum atgin, thus recovering the Wigner molecule. FRr=17 we
the origin, which becomes more pronouncedrasicreases. observe formation of a minimum at the origin, corresponding
At the same time the maximum in the density progresseso rs~13 a.u. However, the qualitative behavior of the den-
towards the boundary of the sphere. This development of aity does not change.

C. The ground state density
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01

2

n(0,r,,m).r,

-0.3 —— R=13,k=1.0
s R =25 k=1.0
o4 ---- R=50,k=1.0
——— R=50,k=0.0
-05
| . -06 . ' ' )
. 0 0.2 0.4 0.6 0.8 1
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FIG. 6. Ground statel(=0, M=0) correlation hole as a func-
tion of R for charge-neutral systems. The long-dashed plot is a
system with no background charge density to be used for compari-
son.

FIG. 4. Ground statel(=0, M=0) electronic density as a
function of R for the charge-neutral systek1. We find that for
rs~13 a.u. we recover the Wigner molecule state.

D. The ground state correlation hole comes positive; there is an enhanced probability of finding
Figure 5 shows.(ry,r,,6) for k=0, r;=0 andg=  the “other” electron away from the reference electron which

for several values dR. Although we explicitly defined, with 1S fixed at the origin. Interestingly, agr) develops a mini-

r, at the origin there is n@ dependence and the correlation Mum, i.e., on moving into the Wigner molecule, we develop
hole density is a function of the radial coordinate For & Ipcal maximum around the origin in the correlation hole.
small R, where we are in an uncorrelated system, the correlhis becomes more pronounced the larger the sphere be-
lation hole is predominately negative. From our qualitativeCOMes, corresponding to regions of space where the electron
analysis of the form of the correlation hole given in Sec. viS more likely to be with respect to the other. This spatial
we see that this corresponds to low levels of spatial correla@nisotropy in the correlation hole density is a counterintui-
tion, as we would expect from a system of a size such thaVe result, although it should be remembered that in com-
the kinetic energy is the dominant term. Upon increagtng  Paring these regions arqund the referg_nce particle we are still
we see from Fig. 2, that the density acquires a maximum angoncerned _W|th_ correlation _ho_le densities that are negative.
this maximum is seen to move to the boundary of the sphere. We see in Fig. 6 the variation af,(ry,r>,6) for a num-

This is indicative of the increased importance of the CoulomPer ofRwith r;=0, 6=, andk=1 (the case of a charge-

bic energy terms and consequently the correlation hole beleutral sphere For k#0 the correlation hole for large
spheres remains negative throughout space, with no local

maximum in the origin. We find that for large enough
spheres we can recover this maximum and all of the results
concur with observations made in our discussion of Fig. 5.
In Figs. 7 and 8 we show contour plots for the singlet,
ground state correlation hole. In all of these pl&s 15,
rs=11.91 a.u. and in the absence of a background charge
density k=0) we can assume that we are inside the Wigner
molecule regime. The darker regions in Figs. 7 and 8 corre-
spond to areas wherg(rq,r,, ) <0, while the lighter areas
haven(r{,r,,0)>0. In Figs. 1a, b the reference electron
is fixed at the origin and in Figs.(8, b it is slightly dis-
placed from the origin. In Fig. (@), with k=0, there is a
region of space where the correlation hole is positive, as
observed in Figs. 5 and 6. The well defined regions of posi-
tive and negative correlation imply a strong degree of locali-
04 s s . . sation and is indicative of the formation of a Wigner mol-
0 ®2 Eractional distance from origin 08 ! ecule. In the presence of a compensating background charge
density, Fig. Tb), the correlation hole becomes more nega-
FIG. 5. Ground statel(=0, M=0) correlation hole as a func- tive around the origin. This contraction is caused by the ad-
tion of R. Observe the enhancement of the correlation hole at thalitional attractive potential and diminishes the spatial corre-
origin for large sphere sizes. lation between the particles. In Fig. 8 upon displacing the

0.1 T T T

2

nJ0,r,,m).r,
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(@) (@)

FIG. 8. Ground statel(=0, M=0) correlation hole contour
FIG. 7. Ground statel(=0, M=0) correlation hole contour plots for theR=15, r;=0.1R, k=0 (a) and charge-neutral systems,

plots for theR=15, r;=0, k=0 (a) and charge-neutral systems, k=1 (b). Areas of dark shading represent negative regions of the
k=1 (b). Areas of dark shading represent negative regions of theorrelation hole, while regions with lighter shading are to be asso-
correlation hole, while regions with lighter shading are to be associjated with positive values of the correlation hole. Here we observe
ciated with positive values of the correlation hole. For ¥l  strong directional correlation between particles and a contraction
case,(b), we see that the correlation hole is deefeontractedl  around the reference particle in the charge-neutral case.

around the reference particle which is positioned at the origin of the

sphere. . .
P E. The Kohn—Sham and correlation potentials

In Fig. 9 we present the Kohn—Sham effective potential
reference particle from the origim{= 0.1R), we see thatthe for our two electron system arising from E@-:3) for a num-
correlation hole is now theta dependent. Once again, the eper of different sphere sizes fa=0 and the charge-neutral
fect of the compensating background charge density is seegystemk=1. In both instances .(r)— e is plotted for
in Fig. 8b), to cause a contraction of the correlation holesphere sizes just inside and outside the Wigner molecule re-
around the reference particle. gime. Since we are calculating the effective potential to
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FIG. 10. A decomposition of the effective potential into contri-
butions from the Hartree, exchange and correlation potentials. We

(ktf XV'tC\'/n an i(:]dl,:we co?stahtastﬁ fL:/r\‘/?t'on ofrsl, fo: k;O antd i Fonsider the ground stat¢ £0, M=0) in the absence of a back-
—+. Ve see that upon forming the Wigner molecule the poten Iaground potential K=0) for R=1 (a8 and R=20 (b). Note the
becomes increasingly more repulsive at the origin. In the charge=

. . .change in scale from Fig. 9.
neutral system we observe a flattening of the potential at large dis-
tances, due to the additional confining parabolic potential. erated using the exact ground state density and commonly
used functionals. We have used the Perdew—Zudhdecal

within an additive constant only the shape of the curve isdensity functional and the LY, P91 and PBE® GGA
important. We see that upon moving through the transitiorfunctionals. The subroutines used to generate the potentials
into the Wigner molecule the potential becomes increasinglyre from the cAbpPAac®' computational suite. Results are
repulsive at the origin, while becoming more attractive at theshown in Fig. 11. None of the functionals are able to repro-
sphere boundary. We can relate the behavior of the potentigluce the exact potential. The Perdew—Zunger does remark-
at the origin to the changes in the exact ground state densi@bly well in reproducing the general shape as does the LYP
for large R. An additional flattening of the potential at large 0
distances from the origin is observed in the case of the 7
charge-neutral system. In this instance the additional para /
bolic potential is seen to soften the effect of the infinite con-
fining surface.

Figures 1Qa, b show the correlation potential.(r) — e,
for high density[(a) R=1] and low density[(b) R=20]

FIG. 9. The ground statd 0, M=0) Kohn—Sham potential

systems in the absence of a background potenkial Q). o
Also shown are the Hartree, effective and exchange poteng 04 ™. | |- 1

tials as defined in Sec. VII. > . T TS

In the high density example there is no structure in the i Perdew-Zunger
correlation potential, indicative of the dominating kinetic -—-LYP
factors. We see in the low density system that the correlatior %8| _ ,2931,5 1
potential has a clear maximum at the origin with a broad ooy B
minimum upon moving away towards the sphere boundary,
mirroring the form of the electronic density and the increas-
: ; : ; 0.8 ' . . .
ing dominance of the Coulomb interaction. In both systems 0 0.2 0.4 0.6 0.8 1
the Hartree potential tends to a finite value at the sphere Fractional distance from origin

bour_ldary. Itis stralghtforwgrd to show th?,g for aI_I systems FIG. 11. A comparison of correlation potentials generated from
Fonfmed by such a pOte_nU@'Hart(R) "rs=27" and is thus commonly used functionals and the exact result generated in this
lndepepdent O,f system size. o ) study. The exact ground state density was used throughout for a
It is instructive to notg the quall'tatlve dlﬁerences' betyveensystem of siz&k=20. In order to compare the general shapes of the
the form of the correlation potential as presented in Fig. 1Qryes the exact potential has been rigidly shifted. We have used the
and with those calculated in other model syst&itfand in  |yp, P91, and PBE GGA functionals along with the Perdew—
actual atomic systemsee, for example, Ref. 17 Zunger local functional. We see that none of the commonly used
As one of our long term objectives is to develop function-functionals are able to reproduce the shape of the exact curve. The
als beyond the generalized gradient approximatiGicA) LYP and PZ functionals do reasonably well at reproducing a maxi-
we also compare the exact correlation potential to those gemaum at the origin and a shallow minimum some distance from it.
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GGA functional, based as it is upon the Colle—Sal¢&tti state is seen to form at large and using the density and
functional which was in turn fitted to the helium atom. The correlation hole we have been able to probe much of the rich
GGA's P91 and PBE exhibit a very deep minimum, which physics of this system. We are further able to tune the system
would tend to stabilize a Wigner molecule, but the overallusing the strength of the additional confining parabolic po-
shape of the potential is clearly unphysical. A similar failuretential, k. Once inside the Wigner molecule phase we are able

for atomic helium has been noted by Umriggral > to “dissociate” this state through increasing the valuekof
We see that in the charge-neutral systée (L) there exists
IX. CONCLUSION an R such that we can return to a strongly correlated

_ _ ) ﬁWigner) state.
In this paper we have studied the quantum-mechanical Ap exact solution of a model system such as this where

behavior of two interacting electrons confined to a sphericajhe electron—electron interaction is a realistic one, and can be
volume of space by a hard infinite potential. We have alsqaried smoothly as a function of two free parameters, pro-
imposed an additional parabolic potential due to a uniformyiges ys with real insight into the correlation of two electron
background charge which is smeared throughout the confingiomic systems. It would seem from our analysis of com-
ing volume. We have used an exact Qiagonali_zation metho%only used GGASFig. 11) that there may be missing long
whereby we express the wave functions as linear combingznge correlation interactions and a model such as ours pro-
tions of symmetrized or antisymmetrized products of the ongjiges an exact framework for investigating this and either

particle solut_ions. Due to the symmetry of the system Wenoving beyond the GGA formalism, or improving existing
were able to introduce the quantum numbdeendM, which  f,nctionals.

are constants of the motion, and represent the problem in a
coupled representation. These two numbers precisely define
any given wave function. We can calculate well converged
energies fom,,=4 andl,,=3 for any givenrg. This work has been funded through an E.P.S.R.C. student-

With this technique we have studied the singlet groundship. D.C.T. would like to thank Dr. A. J. Cohen for helpful
state as a function of increasirigy A “Wigner” molecule  discussions.
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