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Momentum distribution of the uniform electron gas:
Improved parametrization and exact limits of the cumulant expansion
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The momentum distribution of the unpolarized uniform electron gas in its Fermi-liquid regime,n(k,r s),
with the momentak measured in units of the Fermi wave numberkF and with the density parameterr s , is
constructed with the help of the convex Kulik functionG(x). It is assumed thatn(0,r s),n(16,r s), the on-top
pair densityg(0,r s), and the kinetic energyt(r s) are known~respectively, from accurate calculations forr s

51, . . . ,5, from the solution of the Overhauser model, and from quantum Monte Carlo calculations via the
virial theorem!. Information from the high- and the low-density limit, corresponding to the random-phase
approximation and to the Wigner crystal limit, is used. The result is an accurate parametrization ofn(k,r s),
which fulfills most of the known exact constraints. It is in agreement with the effective-potential calculations
of Takada and Yasuhara@Phys. Rev. B44, 7879~1991!#, is compatible with quantum Monte Carlo data, and is
valid in the density ranger s&12. The corresponding cumulant expansions of the pair density and of the static
structure factor are discussed, and some exact limits are derived.
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I. INTRODUCTION

In solid-state theory1 and quantum chemistry,2 the phe-
nomenon of electron correlation and some of its details
hidden in the reduced densities and reduced den
matrices3–6 and their cumulants.7,8 For the ground state o
the uniform electron gas~jellium! of density r53/(4pr s

3)
~in a.u.!, these quantities are the pair densityg(x,r s) and the
momentum distributionn(k,r s), where k is measured in
units of the Fermi wave numberkF5(3p2r)1/3 andx is the
scaled interelectronic distance,x5kFr 12.

Besides its relevance in the understanding of many eff
in simple metals and semiconductors, the jellium mo
plays a crucial role in providing input quantities for approx
mate approaches to the many-electron problem of non
form density. Different approximate schemes, in fact, of
need different quantities from jellium. As an examp
density-functional theory ~DFT! uses the exchange
correlation energy of the uniform electron gas for the wid
used local-density approximation~LDA !. For building non-
empirical beyond-LDA functionals for use in DFT, the pa
density of jellium is often needed.9

In such applications, the quantities from the uniform ele
tron gas must be available in the form of analytic expr
sions. Since the jellium model is not exactly solvable, a
lytic expressions are built by interpolating between kno
exact limits, and by fitting the quantum Monte Carlo~QMC!
data, when available. Relevant examples are~i! the correla-
tion energy used in LDA implementation, built by usin
functional forms10–12 that include exact limits, and interpo
late the QMC data of Ceperley and Alder;13 ~ii ! the pair
density, built by combining exact properties and fitting
QMC data,14,15 or by simply interpolating between exa
limits;16 ~iii ! the static local-field factor, parametrized b
fitting17 QMC data of the static response;18 and ~iv! the dy-
0163-1829/2002/66~23!/235116~13!/$20.00 66 2351
re
ty

ts
l

i-
n
,

-
-
-

namical local-field factors, built by using many known exa
constraints.19 All these parametrized quantities are n
strictly ‘‘exact,’’ but are considered to be closest to the tr
quantities, in the sense that this is the best one can pres
obtain, and in the sense that they are accurate enough fo
purpose for which they are needed.

In recent years, there has been increasing interest
particular approach to the many-electron problem of nonu
form density, the so-called density-matrix functional theo
~DMFT! that uses the one-body density matrix as the ba
variable.6,20–22Building a ‘‘local approximation’’ for DMFT
is not an easy task. In a first attempt,23 the momentum dis-
tribution n(k,r s) of jellium has been used as input. Besid
this important application, for which a reliable parametriz
tion of n(k,r s) is needed, there are other reasons to focus
the momentum distribution of jellium. The definitions o
‘‘exchange’’ and ‘‘correlation’’ in DMFT are different from
those in DFT and in Hartree-Fock–like approaches.
DMFT, the cumulant part7,8 of the pair density rises to be
key quantity. An accurate parametrization ofn(k,r s) at me-
tallic densities allows to extract the cumulant pair density
jellium, since the whole pair density is available.14–16 The
cumulant pair density can then be compared with recent
tempts to calculate it in a high-density electron gas,24,25 and
can be diagonalized in terms of ‘‘cumulant geminals’’~ana-
log of ‘‘Overhauser geminals’’ for the pair density26–28!.
Also, the study of exact limiting behaviors of the cumula
pair density is of great interest, since some of these lim
could be approximately valid in nonuniform systems.

The momentum distribution of the uniform electron gas
also useful for the calculation of the exchange-correlat
correction to Compton profiles computed with
LDA-DFT.29 Note also thatn(k,r s) determines the part o
the local-field factor beyond the random-phase approxim
tion ~RPA! that takes into account the change in occupat
©2002 The American Physical Society16-1
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numbers in the Lindhard function@see Eq.~29! of Ref. 19#.
The qualitative behavior ofn(k,r s) is the following. It

starts atk50 with a valuen(0,r s)&1, and decreases wit
increasingk. For k,1, it is concave. Then in the Ferm
liquid regime atk51, there is a finite jump~Fermi gap! from
n(12,r s) to a lower valuen(11,r s)5n(12,r s)2zF(r s) with
logarithmic slopes at both sides ofk51. For k.1, ~corre-
lation tail! n(k,r s) is convex, and vanishes fork→`. For
r s50 ~ideal Fermi gas!, it is n(k,0)5u(12k), whereu(x)
is the Heaviside step function. Thus, the quasiparticle we
zF(r s) starts withzF(0)51, and decreases with increasin
interaction strengthr s . At large r s , the electrons form a
Wigner crystal with a smoothn(k,r s). r s!1 andr s@1 are
the weak- and strong-correlation limits, respectively. For
termediate values ofr s , a non-Fermi liquid regime may exis
with zF50. In such case,n(k,r s) would be continuous vsk,
with a nonanalytical behavior atk51.

In Ref. 30, the idea of using the convex Kulik functio
G(x) to parametrize the two branches (k,1 andk.1) of
n(k,r s) is sketched. The functionG(x) appeared in Kulik’s31

RPA analysis ofn(k,r s) near the Fermi edge (u12ku!1),
see Eq.~A4!. G(x) behaves asc01c1xlnx for small x ~see
Appendix A and Fig. 1!, which corresponds to the corre
nonanalytic behavior ofn(k,r s) near the Fermi surface. So
supposing that the value at the center,n(0,r s), and the values
at the Fermi edge,n(12,r s) and n(11,r s), are known, it
should be possible to representn(k,r s) in terms of G(x),
with suitable prefactors and with suitable scaling~squeezing
and stretching! of its argument. In this way,n(k,r s) becomes
a functional ofn0(r s)5n(0,r s), and ofn6(r s)5n(16,r s),
and can be designed to yield the proper normalization
the correct kinetic energyt(r s), which follows from the total
energye(r s)5t(r s)1v(r s) via the virial theorem.32 In Ref.
30, the input data from Takada and Yasuhara~TY!33,34 for
n0(r s), n6(r s), and t(r s) at r s51, . . . ,5 have been used
together with the on-top pair densityg0(r s)5g(0,r s) @which
determines the large-k behavior ofn(k)] from Ref. 27. The
result is a fieldn(k,r s) for r sP@1,6#, which is correctly
concave fork,1, convex fork.1, and with a Fermi gap
zF(r s) at k51 decreasing with growingr s . The attempt to

FIG. 1. The Kulik functionG(x) appearing in the RPA analysi
of n(k,r s), see Eq.~A4!. At the origin, G(x) has a finite value,
G(0)53.353 337@Eq. ~A7!#, and a logarithmic-divergent slope, se
Eq. ~A6!.
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extend this procedure forr sP@6,10# failed; n(k,1,r s) is no
longer concave forr s*6.

Here, an improved version of the parametrization
n(k,r s) in terms of the Kulik functionG(x) is presented.
Our parametrized momentum distribution is in good agr
ment with the TY values,33,34 and is valid in the range o
densitiesr s&12. Previous parametrizations ofn(k,r s)

35–38

used the QMC data of Ref. 35 as an input. However, QM
data are presently only available for 0.4&k&0.9 and 1.1
&k&1.5, thus not providing information aboutn(k,r s) near
the center,k50, and at the Fermi edge,k51. In these last
regions, in fact, different parametrizations of the same QM
data can be rather different from each other.35–37 Our con-
struction of n(k,r s) uses information from the effective
potential calculations of Takada and Yasuhara,33,34 from the
high- and low-density limits ofn(k,r s), corresponding to
RPA and the Wigner crystal~WC! limit, and from accurate
parametrizations oft(r s) ~Ref. 12! and of g0(r s).

27 In the
regions where QMC data are available, ourn(k,r s) is com-
patible with them. Also, with respect to previous works,35–38

the functional form used here satisfies more exact limits
particular, here the logarithmic behavior at the Fermi edg
taken into account.39 Notice that it causes the logarithmi
divergence oft(r s→0).40

Using ourn(k,r s), the momentŝkn&, the correlation en-
tropy, and the one-body reduced density matrixf (x,r s) are
evaluated. The latter appears in the cumulant partitioning
the pair densityg(x,r s). The static structure factorS(k,r s),
related to the pair density via Fourier transform, the partic
number fluctuations in fragmentsDNV(r s), and the potential
energyv(r s) are discussed in terms of their cumulant par
tioning, and some exact limits are derived. Finally, by mea
of an accurate model for the spin-resolved pair density,15 the
cumulant part ofg(x,r s) is extracted.

The paper is organized as follows. In Sec. II, the kno
sum rules and limiting cases forn(k,r s) are reported, and
they are used in Sec. III to build up our parametrization
the momentum distribution via the Kulik function. Sectio
IV is devoted to the calculation and discussion of differe
measures of the correlation strength, of the 1-matrix, and
the cumulant expansion of the pair density. In Sec. V,
study the cumulant partitioning of the static structure fact
of the density fluctuations, and of the potential energy. C
clusions and future developments are reported in Sec. V

II. SUM RULES AND LIMITING CASES

How is n(k,r s) defined? Starting from the many-bod
wave functionC(1, . . . ,N), the one-body reduced densit
matrix ~1-matrix for short! results from theN21 contrac-
tion,

g~1u18!5E d2•••dN

~N21!!
C~1,2, . . . ,N!C* ~18,2, . . . ,N!,

~1!

E d1•••dN

N!
uC~1, . . . ,N!u251,
6-2
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MOMENTUM DISTRIBUTION OF THE UNIFORM . . . PHYSICAL REVIEW B66, 235116 ~2002!
with the notation 1[(r 1 ,s1). For the uniform electron gas
g(1u18)5rds1s

18
f (kFur 12r 18u,r s) defines the dimensionles

1-matrix f (x,r s). Then its Fourier transform is the mome
tum distribution

n~k,r s!5
a3

2 E
0

`

dx3
sinkx

kx
f ~x,r s!, ~2!

where dx353/4p d3x53x2dx and a5(4/9p)1/3. n(k,r s)
can be calculated using perturbation theory, directly w
Green’s functions,31 see Figs. 1~a! and 1~b! of Ref. 24, or via
the Hellmann-Feynman theorem41 as the energy derivative
n(k,r s)5dE/d«k , supposedE is ~perturbatively! known as
a functional of«k5\k2/2m and vq54pe2/q2.42 Perturba-
tive methods only work for high densities,r s!1. At metallic
and lower densities, other techniques must be used, nam
the effective-potential method,33 which combines perturba
tion theory ~Green’s functions! with the Fermi-hypernetted
chain approach, and the QMC simulations.35,43A more com-
plete list of references concerning calculations and par
etrizations can be found in Ref. 30.

n(k,r s) has to satisfy the condition 0,n(k,r s),1 ~which
guarantees the ensembleN-representability of the 1-matrix!
and the sum rules (k in units of kF , and energies in Ry!

E
0

`

dk3n~k,r s!51, ~3!

1

~ar s!
2E0

`

dk3n~k,r s!k
25t~r s!, ~4!

wheret(r s) can be written as the sum of the kinetic ener
of the free Fermi gas, 3/5(ar s)

22, and of the kinetic energy
of correlation,tcorr(r s). For r s!1, tcorr(r s) is known from
RPA and from the lowest-order exchange diagram bey
it;44–46 for a summary see Eq.~3.25! and Figs. 1~a! and 1~b!
of Ref. 24. At largerr s , tcorr(r s) can be obtained via the
virial theorem32 from parametrized QMC correlatio
energies.12 The large-k behavior ofn(k,r s) is determined by
the kinks in the many-body wavefunction, which occ
whenever two electrons are at contact or ‘‘on top’’~coalesc-
ing cusp properties!,47,48

n~k→`,r s!5
C~r s!

k8
1OS 1

k10D ,

C~r s!5
8

9p2
~a r s!

2g0~r s!, ~5!

where g0(r s)5g(0,r s) is the on-top value of the pair
distribution function. In ther s→0 limit, g0(r s) can be ob-
tained from perturbation theory,49,50 and at largerr s it has
been calculated by solving an effective two-body Sch¨-
dinger equation.27,51

In a normal Fermi liquid,52 the momentum distribution
has a discontinuity and infinite slopes53 at the Fermi edge
k51,
23511
h
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n~k→12,r s!5n2~r s!2A~r s!~12k!ln~12k!1O~12k!,
~6!

n~k→11,r s!5n1~r s!1A~r s!~k21!ln~k21!1O~k21!.
~7!

In the following, A(r s) is referred to as the Fermi edge c
efficient. In the small-r s limit, n6(r s) andA(r s) are known
from RPA~see Appendix A!. In the low-density or WC limit,
the Fermi gap disappers@n2(r s)→n1(r s)#, the infinite
slopes at the Fermi edge may also vanish@A(r s)→0#.

Near the center, k→0, n(k,r s) should behave
quadratically,36–38,43

n~k→0,r s!5n0~r s!1B~r s!k
21O~k4!. ~8!

A simple argument in favor of Eq.~8! is that it holds both in
the high- and in the low-density limit~see Appendixes A and
B!.

When r s→0, exact results forn(k,r s) are known by
means of RPA31,42 ~Appendix A!. In the RPA treatment, the
Kulik function G(x) appears,31 see Eqs.~A3!–~A5! and Fig.
1. G(x) will be used in the following section to build up
parametrizedn(k,r s) that satifies Eqs.~3!–~8!.

In the low-density or strongly correlated limit,r s→`, the
electron gas undergoes Wigner crystallization~see, e.g.,
Refs. 54 and 56!. A simple model for the momentum distri
bution in such regime is reported in Appendix B.

III. IMPROVED PARAMETRIZATION OF n„k,r s…

The momentum distribution in terms of the Kulik functio
G(x) of Fig. 1 is parametrized as follows. Fork,1, we use
the ansatz

n,~k,r s!5n02
@n02n2#

G~0!
G@x,~k,r s!#, ~9!

while for k.1 we use

n.~k,r s!5
n1

G~0!
G@x.~k,r s!#, ~10!

with x,(k,r s) andx.(k,r s) equal to

x,~k,r s!5a
ar s

2p2

G~0!

@n02n2#

~12k!

A4ar s /p

1b
p2

ar s
Ap

3

~12 ln2!

F9~0!

@n02n2#

G~0!

~12k!2

k
,

~11!

x.~k,r s!5a
ar s

2p2

G~0!

n1

~k21!

A4ar s /p

1A3p~12 ln2!

g0

n1

G~0!

p

4ar s
~k21!4.

~12!
6-3
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Here F9(0)517.968 746@see Appendix A, Eq.~A1!#, and
the r s dependence ofa, b, n0 , n6 , andg0 is not explictly
shown for shortness. These constructions are such
n,(k)→n0 ,n2 for k→0,12, respectively, andn.(k)
→n1,0 for k→11,`, respectively. The behavior of the Ku
lik function for small and large arguments~see Appendix A!
ensures the exact asymptotic expansion of Eqs.~5!–~8! near
the center, near the Fermi surface, and for largek.

The parametera(r s) determines the Fermi edge coef
cient A(r s) of the u12ku lnu12ku term at the Fermi surface,

n~k→16,r s!5n6~r s!6a~r s!S ar s

p D 1/21

4 S p

4
1A3D

3u12ku lnu12ku1O~ u12ku!. ~13!

The parameterb(r s) determines the curvatureB(r s) of Eq.
~8! at the center,k50,

n~k→0,r s!5n0~r s!2
p4

a2

F9~0!

2 F r s

b~r s!
G2

k21O~k4!.

~14!

For smallr s ~RPA—see Appendix A!, it is a(r s→0)51 and
b(r s→0)51.

In the preliminary version of Ref. 30, another~but simi-
lar! ansatz was introduced, and it was chosenb(r s)51. Two
different functions,a,(r s) anda.(r s), for the coefficient of
u12ku lnu12ku at k512 and k511 were fixed by the sum
rules of Eqs.~3! and ~4! @with tcorr(r s) from Ref. 12#. The
values n0(r s) and n6(r s) were taken from the TY data
~available for r s51, . . . ,5). Theon-top valueg0(r s) was
taken from Ref. 27.

In our improved ansatz of Eqs.~9!–~12!, we seta,(r s)
5a.(r s)5a(r s) ~in agreement with Ref. 53; also Figs.
and 8 of Ref. 30 confirm this!, and we use againtcorr(r s)
from Ref. 12 andg0(r s) from Ref. 27. Since we want to
extend our results in the density range 6<r s<10, where
there are no data available forn0(r s) andn6(r s), we extract
information from the extreme low-density limit~Wigner
crystal—see Appendix B! by following an oversimplified
version of the idea presented in Ref. 55. We first buildn0(r s)
by using a functional form that recovers the exact hig
density limit, includes the Wigner crystal behavior asr s
→`, and has some free parameters to be fitted to the
data. The result is reported in Fig. 2, together with the hi
and low-density curves. It is given by

n0~r s!5
11t1 r s

21t2 r s
5/2

11t3 r s
21t4 r s

13/4
, ~15!

with t150.003 438 169, t250.007 253 136 66, t3
50.014 900 367,t450.001 132 443 64@ t12t3 agrees with
the RPA value 2(a/p2)2 4.1123520.011 46]. We then
build the parameterb(r s) by a simple interpolation betwee
the high- and low-density limits of the curvature at the cen
~see Fig. 3!. The result is

b~r s!5~110.000 937 692 5r s
13/4!1/2. ~16!
23511
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Finally, the values at the Fermi edge,n6(r s), and the coef-
ficient of the infinite slope at the Fermi edge,a(r s), are
obtained by fitting the TY values forn6(r s) while imposing
the normalization and the kinetic-energy12 sum rules of Eqs.
~3! and ~4!. The results are parametrized with the inclusi
of the high- and low-density limits, and are equal to

n2~r s!5
11v1 r s1v2 r s

21v3 r s
3

11v4r s1v5r s
21v6 r s

31v7 r s
15/4

, ~17!

with v1520.067 979 3, v2520.001 028 46, v3
50.000 189 111,v450.020 539 7, v5520.008 683 8, v6
56.871 0931025, v754.868 04731025 @v12v4 agrees
with the RPA value2(a/2p2)3.3533520.088 519], and

n1~r s!5
q1 r s

11q2 r s
1/21q3 r s

7/4
, ~18!

with q150.088 519 ~from RPA!, q250.45, q3
50.022 786 335;

a~r s!5
11p1 r s

1/41p2 r s
1/2

11p3 r s
1/41p4 r s

1/21p5 r s1p6 r s
6

, ~19!

FIG. 2. Parametrizedn(0,r s) ~solid line!, compared to the TY
values~Refs. 33 and 34!. The high-density or RPA limit and the WC
limit are also shown.

FIG. 3. Parametrized coefficient of thek2 term near the cente
(k→0), B(r s)52(p4/a2)(F9(0)/2)@r s /b(r s)#2. The high-
density or RPA result,b(r s→0)51, and the WC limit are also
shown.
6-4
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FIG. 4. Left panel: parametrizedn(16,r s) ~solid lines!, compared to the TY values~Refs. 33 and 34!. The high-density or RPA limit and
the WC limit are also shown. Right panel: value of the Fermi gapzF(r s)5n(12,r s)2n(11,r s) as a function ofr s ; the present parametri
zation is compared with the TY results~Refs. 33,34!.
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with p15278.8682, p2520.098 994 1, p35268.5997,
p4538.1159,p55217.6829, andp6520.011 367 59. Our
parametrizedn(k,r s) breaks down atr s*12 @in the density
range 12&r s&16, n(k.1,r s) is no longer convex, and fo
r s*16 the unphysical resultn2,n1 is obtained when the
sum rules of Eqs.~3! and ~4! are imposed#.

In the left panel of Fig. 4, we show the functionsn6(r s),
together with the TY values, and the high- and low-dens
limits @here ther s→` limit is considered to be the inflexion
point of the WC momentum distribution, see Eq.~B4!#. As
said, our model is only valid forr s&12, so thatn2(r s) and
n1(r s) at densities lower thanr s512 are no more obtaine
from the constraints of Eqs.~3! and ~4!. Thus, the strange
behavior of n2(r s) at r s;16 does not affect our results
Also, the scheme presented here for the transition betw
the metallic and the extreme low-density region is overs
plified and must not be regarded as rigorous or reliable.
did not take into account the transition to the partially pol
ized electron gas~which affects ther s*50 densities56! as
well as many other features. However, our results seem t
reliable in the relevant density ranger s&12, and the simple
picture of the left panel of Fig. 4 is only a ‘‘naive sugge
tion.’’ In the right panel of Fig. 4, we compare our param
etrizedzF(r s) with the TY results. In Fig. 5, we report ther s
dependence of the Fermi edge coefficientA(r s). Finally, in
Fig. 6, we present in the left panel our parametrizedn(k,r s)
for 1<r s<10, and in the right panel we compare our res
with the TY n(k,r s) and with the QMC data of Ref. 35 fo
r s55.

IV. MOMENTS, CORRELATION ENTROPY, 1-MATRIX,
AND CUMULANT EXPANSION

With the now available momentum distributionn(k,r s),
its moments

^kn&5E
0

`

dk3n~k,r s!k
n ~20!

can be evaluated in addition to the normalization forn50
and the kinetic energy forn52 @Eqs.~3! and ~4!#. They are
23511
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shown in Fig. 7 forr s53 and 10, together with ther s50
~ideal Fermi gas! and with the WC result (r s575). The ex-
pression

~Dt !25
1

~ar s!
4

@^k4&2^k2&2# ~21!

~measured in Ry2) describes the fluctuation of the kinet
energy. The momentŝk2& and ^k4& determine the small-x
behavior of the 1-matrix, see Eq.~25!. In Refs. 57 and 58,
the entropylike expressions(r s)52^ ln n(k,rs)& as a function
of the interaction strengthr s has been used as a measure
the correlation strength.59 Here the expression

sph~r s!5E dk3 ~21!$n~k,r s!ln n~k,r s!

1@12n~k,r s!# ln@12n~k,r s!#% ~22!

is introduced as an alternative with the understanding
n(k,r s) and 12n(k,r s) are the probabilities for the momen
tum statek to be occupied~with spin up and spin down! and
empty, respectively. The entropy of this probability ‘‘distr
bution’’ is just the integrand of Eq.~22!, andsph(r s) is the
sum of all these entropies. Notice its invariance under

FIG. 5. Parametrized coefficient of the infinite slope at t
Fermi edge,A(r s)5a(r s)(ar s /p)1/20.63. The present result i
compared with the RPA value,a(r s→0)51. See Ref. 39.
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FIG. 6. Left panel: momentum distribution calculated with Eqs.~9!–~12! for r s51,2, . . . ,10~solid lines!. In the Wigner limit,n(k,r s

@1) is calculated with Eq.~B1! ~dashed line, corresponding tor s575). Right panel: comparison of the present work with the TY~Refs.
33,34! momentum distribution and the QMC calculation of Ref. 35 forr s55.
m
e-

gt

-

(

is
exchangen(k,r s)↔12n(k,r s), which is referred to as
particle-hole symmetry in the reduced-density-matrix co
munity. This symmetry is an intrinsic property of the corr
lation energy as a functional of the 1-matrix.61 sph(r s) is
plotted in Fig. 8. Another measure of the correlation stren
is the correlation-tail normalization

ncorr tail~r s!5E
1

`

dk3 n~k,r s!, ~23!

also reported in Fig. 8. For larger s , the Fermi edge disap
pears,zF(r s)50 @and also any relict of it,A(r s)50], then
the inflexion point ofn(k,r s) vs k may serve in Eq.~23! as
the lower limit.

With n(k,r s) also, the~dimensionless! 1-matrix,

f ~x,r s!5E
0

`

dk3
sinkx

kx
n~k,r s!, x5kFur 2r 8u, ~24!

is available as the inverse of Eq.~2!. It has the small-x be-
havior,

f ~x!1,r s!512
^k2&
3!

x21
^k4&
5!

x42
1

5!

2

9p
~ar s!

2g0~r s!x
5

1O~x6!, ~25!

FIG. 7. The momentŝkn& of n(k,r s) for r s53 andr s510. The
corresponding results for the noninteracting gas (r s50) and for the
Wigner crystal atr s575 are also reported.
23511
-

h

and the large-x asymptotics~Friedel oscillations with re-
duced amplitudes!,

f ~x@1,r s!523 zF~r s!
cosx

x2

1
3

x3
@zF~r s!sinx2pA~r s!cosx#1OS 1

x4D ,

~26!

see Appendix C.A(r s)5a(r s)(ar s /p)1/20.63 is the Fermi
edge coefficient, the prefactor of the logarithmic termk
21)lnuk21u in n(k'1,r s). The factor 0.63 is the Kulik num-
ber 7.91, see Eq.~A6!, divided by 4p. In the inverse Fourier
transform~2!, the oscillatory terms of Eq.~26! do not affect
the small-k behavior of n(k,r s), because their average
zero. Sincen(k!1,r s)5n0(r s)1O(k2), the large-x behav-
ior of the nonoscillatoryf (x,r s) is }1/x6 or faster.f (x,r s) is
displayed in Fig. 9. One may partitionn(k,r s), and corre-
spondinglyf (x,r s), in the following way:

n~k,r s!5zF~r s!u~12k!1n1~k,r s!,

FIG. 8. The particle-hole symmetric correlation entropy@Eq.
~22!#, the normalization of the cumulant pair density@right-hand
side~rhs! of Eq. ~34!#, and the correlation tail normalization
ncorr tail(r s) @Eq. ~23!# as a function ofr s .
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MOMENTUM DISTRIBUTION OF THE UNIFORM . . . PHYSICAL REVIEW B66, 235116 ~2002!
f ~x,r s!53 zF~r s!
j 1~x!

x
1 f 1~x,r s!, ~27!

where j 1(x)5(sinx2xcosx)/x2. n1(k,r s) is a continuous
function with n1(12,r s)5n1(11,r s) and an infinite slope a
k51. Figure 10 showsn1(k,r s) and f 1(x,r s) for r s55.

The 1-matrix squared appears in the cumulant partition
of the pair density,

g~x,r s!512
1

2
u f ~x,r s!u22h~x,r s!, x5kFr 12. ~28!

This defines the cumulant pair densityh(x,r s), which is the
diagonal of the cumulant 2-matrixx(1u18,2u28). The spin-
resolved version of Eq.~28! is

g↑↑~x,r s!512u f ~x,r s!u22h↑↑~x,r s!,

g↑↓~x,r s!512h↑↓~x,r s!, ~29!

with g(x,r s)5 1
2 @g↑↑(x,r s)1g↑↓(x,r s)# and h(x,r s)

5 1
2 @h↑↑(x,r s)1h↑↓(x,r s)#. Notice that the~generalized ex-

change or! Fock termu f (x,r s)u2 appears only in the parallel
spin pair density and not in the antiparallel-spin pair dens
g↑↑(x,r s) describes the Fermi hole~due to both Pauli and
Coulomb repulsion! with g↑↑(0,r s)5h↑↑(0,r s)50, and
g↑↓(x,r s) describes the Coulomb hole~only due to the Cou-

FIG. 9. 1-matrix f (x,r s) for r s50 ~ideal Fermi gas!, for r s

510 ~present model!, and forr s575 @WC limit, Eq. ~B1!#.
23511
g

.

lomb repulsion! with g(0,r s),1. In addition to the above-
mentioned correlation-strength indices, the quantit
h↑↑9 (0,r s) measuring the on-top Fermi-hole curvature, a
h↑↓(0,r s) measuring the on-top Coulomb hole are other on

From Eq.~26!, it follows

u f ~x@1,r s!u25
9

2 F zF
2~r s!

x4
1

2pA~r s!zF~r s!

x5 G ~11cos 2x!

29
zF

2~r s!

x5
sin 2x1OS 1

x6D . ~30!

If this is inserted into Eq.~28!, then the nonoscillatory terms

9

2

zF
2

x4
1

9pzFA

x5
,

are canceled by the asymptotics ofh(x,r s), which follow
from the sum-rule properties of the static structure fac
S(q,r s), see Sec. V and Ref. 52. The nominator of the os
lating 1/x5 term can be written as

9zFAzF
2~r s!1p2A2~r s!cos„2x12x0~r s!…,

tan 2x0~r s!5
zF~r s!

pA~r s!
.

The on-top properties ofg↑↑(x!1,r s) andg↑↓(x!1,r s) are

determined by the coalescing cusp theorems.47,62

With Eq. ~29!, with the spin-resolved pair densities o
Ref. 15, and withf (x,r s) of this paper, the resulting cumu
lant pair densitiesh↑↑(x,r s) andh↑↓(x,r s) are plotted in Fig.
11. For small r s (!1), our results agree with thos
of Ref. 24.

V. STATIC STRUCTURE FACTOR, DENSITY
FLUCTUATIONS, AND POTENTIAL ENERGY

The cumulant partitioning of Eq.~28! causes correspond
ing decompositions of all the quantities containing
2g(x,r s). Such quantities are the static structure fac
S(q,r s), the fluctuationDNV(r s) of the particle number in a
FIG. 10. Continuous part ofn(k,r s), n1(k,r s)5n(k,r s)2zF(r s)u(12k) ~left panel!, and the corresponding 1-matrixf 1(x,r s) ~right
panel!. The oscillations off 1(x) are due to the infinite slope ofn1(k) at k51.
6-7
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FIG. 11. Cumulant pair densities for parallel and antiparallel spins, obtained by combining the present work with the results of
air
s

.
-
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ng
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for
fragmentV, and the potential energyv(r s).
So, the static structure factor is given by

S~q,r s!512
1

2
ñ2~q,r s!2h̃~q,r s!, ~31!

with the ~generalized exchange or! Fock component

ñ2~q,r s!5a3E
0

`

dx3
sinqx

qx
u f ~x,r s!u2

5E
0

`

dk3n~k,r s!E
21

11

dz n~Ak21q222kqz,r s!,

~32!

@from which it follows thatñ2(q,r s) has a discontinuity in its
second derivative atq52], and the cumulant component

h̃~q,r s!5a3E
0

`

dx3
sinqx

qx
h~x,r s!, ~33!

which is simply the Fourier transform of the cumulant p
density h(x,r s). In Eq. ~32! the convolution theorem ha
been applied.ñ2(q,r s) is related to the probability of finding
a pair of electrons with given relative momentumq.27,28

Notice that the sum ruleS(q→0,r s)50 is equivalent to
the sum rule

a3E
0

`

dx3h~x,r s!5E
0

`

dk3n~k,r s!@12n~k,r s!#. ~34!

The left-hand side~lhs! equalsh̃(0,r s) and the rhs equals 1
2 1

2 ñ2(0,r s). Löwdin had asked what meaning the rhs has63

According to Eq.~34!, it fixes the normalization of the cu
mulant pair densityh(x,r s) and is another particle-hole sym
metric measure of the correlation strength; it is also repo
in Fig. 8. Equation~34! is sometimes called perfect screeni
sum rule or charge neutrality condition.

For noninteracting electrons (r s50), the cumulant part
vanishes,h̃(q,r s)50, and the Fock partSF(q,r s) simply
yields
23511
d

S0~q!5
q

2 F3

2
2

1

2S q

2D 2GuS 12
q

2D1uS q

2
21D , ~35!

with the linear small-q behavior 3q/4. For interacting elec-
trons (r sÞ0), the small-q sum rule52,64

S~q!1,r s!5
1

2~ar s!
2vpl~r s!

q21O~q4!, ~36!

and the large-q sum rule62

S~q@1,r s!512
8

3p
ar sg0~r s!

1

q4
1OS 1

q6D ~37!

hold. vpl
2 (r s)54pe2r/m53/r s

3 a.u. defines the plasma fre
quency.

The nonidempotency and the singularities ofn(k,r s) de-
termine the small-q behavior ofSF(q,r s)512 1

2 ñ2(q,r s),

SF~q!1,r s!5SF~0,r s!1
3

4
zF

2~r s!q2A~r s!zF~r s!

3q2ln q1O~q2!, ~38!

as shown in Appendix D. Notice thatSF(0,r s) is equal to
the rhs of Eq.~34!. In Fig. 12, we reportSF(q,r s) for the

FIG. 12. The Fock component of the static structure factor
r s50 ~ideal Fermi gas!, r s55 ~present work!, and in the WC limit
for r s575.
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ideal gas (r s50), for r s55, and in the WC limit.
Equation ~38!, together with the sum rule of Eq.~36!,

allows to extract the large-x behavior ofh(x,r s). Namely,
because of Eq.~36!, h̃(q,r s) must cancel both the linear an
the q2ln q terms of ñ2(q,r s). This implies that the large-x
behavior of the oscillation-averaged^h(q,r s)& is

^h~x@1,r s!&52
9

4

zF
2~r s!

x4
2

9

2

pA~r s!zF~r s!

x5
1OS 1

x6D .

~39!

In Eq. ~28! these terms cancel with the nonoscillatory lon
range part of12 u f (x,r s)u2.

If we consider within the uniform electron gas a certa
fragment V ~e.g., a sphere of radiusR) containing on
average NV5V/(4pr s

3/3)5(R/r s)
3 electrons, and ask

for the particle-number fluctuationDNV , then the answer
is65,66

~DNV!2

NV
512

~ar s!
6

NV
E

V
d3x1E

V
d3x2

3F1

2
u f ~x,r s!u21h~x,r s!G

512
~ar s!

6

NV

3

8p

3E d3qU E
V

d3xeiqxU2F1

2
ñ2~q,r s!1h̃~q,r s!G ,

x5ux12x2u. ~40!

Again one may ask how differently the Fock and the cum
lant parts contribute to their sum and to the conclusion ‘‘c
relation suppresses fluctuations.’’1,66 In the case of a spher
V54pR3/3, the term in the modulus in Eq.~40! is just
V3 j 1(qR)/(qR), so that the Fock term yields

F ~DNV!2

NV
G

F

512
3

2
p2V~ar s!

9E
0

`

dq3F3 j 1~qR!

qR G2

ñ2~q,r s!.

~41!

Also, the potential energyv(r s) consists of a Fock and
cumulant part:7

v~r s!52
a2

r s
E

0

`

dx3F1

2
u f ~x,r s!u21h~x,r s!G1x

52
a2

r s

3

2E0

`

dq3F1

2
ñ2~q,r s!1h̃~q,r s!G 1

q2
~42!

~in Ry!. The Fock part can also be written as7

vF~r s!52
3

2par s
E

0

`

dk n~k,r s!E
0

`

dk8n~k8,r s!

3kk8ln
k1k8

uk2k8u
. ~43!
23511
-

-
-

In lowest order, withn(k,r s)→u(12k), Eq. ~43! yields
23/(2p a r s). The logarithmic term ofv(r s→0) arises
from vC(r s), not fromvF(r s).

24

VI. SUMMARY AND OUTLOOK

In Ref. 30, it was shown that the convex Kulik functio
G(x), with appropriate prefactors and with an appropria
inhomogeneous scaling of its argument, reproduces the
mentum distributionn(k,r s) of the unpolarized uniform
electron gas of densityr53/4pr s

3 in the metallic-density
regime r sP@1,6#. The r s functions n(0,r s), n(16,r s), the
on-top pair densityg(0,r s), and the kinetic energyt(r s) form
the input for such construction. In this work, we improve
the parametrization ofn(k,r s) via the Kulik function, and we
extended it up tor s&12, including the high-density regim
@Eqs.~9!–~12! and Fig. 6#.

The Fourier transform ofn(k,r s) yields the one-body
reduced density matrixf (x,r s) ~Figs. 9 and 10!, with large
x oscillations arising from the Fermi gapzF(r s)
and the Fermi edge coefficientA(r s), the prefactor of the
logarithmic term in n(k'1,r s), which is included in
our parametrization~Fig. 5!. Several measures of the corr
lation strength have been discussed~Fig. 8!. With reliable
models for the pair densityg(x,r s), the cumulant pair
density h(x,r s)512 1

2 u f (x,r s)u22g(x,r s) has been ex-
tracted~Fig. 11! as a prestep of its diagonalization in term
of cumulant geminals~analog with the diagonalization
of the pair density in terms of Overhauser geminals!. Future
work also includes the generalization to the partially pol
ized gas. In this case, withz5(N↑2N↓)/N, one has to con-
sider different cases. For spin polarizationz between 0 and
1, two momentum distributions are to be describe
n↑(k,r s ,z) for the spin-up electrons andn↓(k,r s ,z) for the
spin-down electrons. So far, only the input datag0(r s ,z)
~Ref. 27! and t(r s ,z) ~Ref. 12! are available in this more
general case.

A small FORTRAN subroutine, which numerically evalu
ates our parametrizedn(k,r s), is available at http://
axtnt2.phys.uniroma1.it/PGG/elegas.html.
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APPENDIX A: RANDOM-PHASE APPROXIMATION

In RPA, it is31,42 n(k,r s)512(ar s /p2)2H(k,1) for k
,1 and (ar s /p2)2H(k,1) for k.1, where
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H~x,1,y!5
1

x E
12x

11xdq

q E
0

`

duF 12x2

2q

12x2 2 2

q

2
1x

q 2 G Q~q,u!

PAOLA GORI-GIORGI AND PAUL ZIESCHE PHYSICAL REVIEW B66, 235116 ~2002!
5 S 2q D 1u2 S 2
1xD 1u2

q21y
ar s

p2
Q~q,u!

1E
11x

` dq

q E
0

`

duF q

2
2x

S q

2
2xD 2

1u2

2

q

2
1x

S q

2
1xD 2

1u2
G Q~q,u!

q21y
ar s

p2
Q~q,u!6 ,

H~x.1,y!5
1

xEx21

x11dq

q E
0

`

duF x221

2q

S x221

2q D 2

1u2

2

x2
q

2

S x2
q

2D 2

1u2
G Q~q,u!

q21y
ar s

p2
Q~q,u!

,

and

Q~q,u!52pH 11
11u22q2/4

2q
ln

~11q/2!21u2

~12q/2!21u2
2uFarctan

11q/2

u
1arctan

12q/2

u G J .
-

in

e

For small or largek ~far from the Fermi edge! it is
H(k,1)→F(k) with F(k)5H(k,0). F(k) has the small and
largek properties,

F~k!1!54.112 33518.984 373k21O~k4! ~A1!

and

F~k@1!5
8p2

9

1

k8
1OS 1

k10D , ~A2!

respectively.20,21 The coefficient of 1/k8 is 8.772 98. Fork
near the Fermi edge, it is20,21

H~k,1!→ p2

2ar s

1

k2GS uk21u

A4ar s /p
D , ~A3!

with

G~x!5E
0

`

du
R8~u!

R~u!

u

u1y

R~u!2R~y!

u2y U
y5x/AR(u)

~A4!

and

R~u!512u arctan
1

u
. ~A5!

G(x) has the small-x behavior,31

G~x!1!5G~0!1FpS p

4
1A3D x1O~x2!G ln x1O~x!,

~A6!

with
23511
G~0!5E
0

`

du~21!
R8~u!

R~u!
arctan

1

u
'3.353 337. ~A7!

The coefficient ofx ln x is 7.908 799~the Kulik number!.
G(x) has the large-x behavior,

G~x@1!5
p

6
~12 ln 2!

1

x2 1OS 1

x4D . ~A8!

The coefficient of 1/x2 is 0.160 668~the Macke number!.
The Kulik functionG(x) is shown in Fig. 1.

APPENDIX B: THE MOMENTUM DISTRIBUTION OF
THE WIGNER CRYSTAL

In the low-density~large r s) or strongly correlated limit,
the electrons localize54 and form a ferromagnetic body
centered-cubic lattice with an electrostatic~or Madelung! en-
ergy of 21.792/r s Ry.67 The next term,12.65/r s

3/2 Ry, de-
scribes the coupled harmonic zero-temperature motion
lowest order.68–70To estimate the correspondingn(k,r s), we
define with 3\v/252.65/r s

3/2 ~in Ry, or v50.88/r s
3/2 in a.u.!

the frequency of indepent oscillating electrons~Einstein
model!. So, from the momentum distribution of th
harmonic-oscillator ground state, it follows

n~k,r s→`!5
4p

3

1

~pv/kF
2!3/2

e2k2/(v/kF
2); ~B1!

see Refs. 71–73, p. 19. Note thatk is dimensionless~mea-
sured in units ofkF), and thatv/kF

250.88a2r s
1/250.24r s

1/2.
In Ref. 72, the factor 1 is used instead of 0.88.n(k,r s→`) is
correctly normalized and yields with Eq.~4! the kinetic en-
ergy ~in Ry!
6-10
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t~r s→`!5
1

2

2.65

r s
3/2

1•••, ~B2!

as it should. The corresponding potential energy is

v~r s→`!52
1.792

r s
1

1

2

2.65

r s
3/2

1•••. ~B3!

The inflexion-point trajectory withr s as parameter is de
scribed by~see left panel of Fig. 4!

kinfl~r s!5@v/~2kF
2!#1/250.35r s

1/4,

ninfl~r s!5
4p

3

e21/2

~pv/kF
2!3/2

5
3.88

r s
3/4

. ~B4!

The regionk.kinfl ~to be referred to as correlation tail! con-
tributes to the normalization the constant amount

E
kinfl

`

dk3n~k,r s!5erfS 1

A2
D 2A 2

ep
50.80. ~B5!

From Eq.~B1!, it follows for n(0,r s→`),

n0~r s→`!5
4

3p1/2S 1

0.24r s
1/2D 3/2

5
6.40

r s
3/4

, ~B6!

see Fig. 2; and for the curvature at the center~the coefficient
of k2),

2
4

3p1/2

1

~0.88a2r s
1/2!5/2

52
26.71

r s
5/4

, ~B7!

see Fig. 3.
A more refined treatment takes into account that in h

monic approximation there are two transversal branche
harmonic lattice vibrations,v t1,2

(q,r s), and one longitudinal

branchv l(q,r s) in the face-centered cubic Brillouin zone
satisfying the sum rulev t1

2 (q,r s)1v t2
2 (q,r s)1v l

2(q,r s)

5vpl
2 (r s). For q50, it is v t1,2

(0,r s)50, and therefore

v l(0,r s)5vpl(r s). But also in this case the virial theorem
holds, and assuming thatn(k,r s) is a Gaussian distribution
then Eq.~B1! turns out again.

APPENDIX C:
1-MATRIX NEAR THE DIAGONAL AND FAR FROM IT

The equationg(1u18)5r ds1s
18
f (kFur 12r 18u) defines the

dimensionless 1-matrixf (x). Its small-x behavior of Eq.
~25! follows from the large-k behavior ofn(k) @Eq. ~5!#.
Namely, with siny/y512(y2/3!)1(y4/5!)2•••, and with
the integrability ofn(k)k2kn for n50, . . . ,4, it is
23511
r-
of

f (n)~0!5E
0

`

dk3n~k!knS d

dyD
nsiny

y
uy50 , ~C1!

which yields the first three terms of Eq.~25!. Here f (n)(0)
5(d/dx)n f (x)ux50.

Since n(k)k2k5 is nonintegrable, one has to compu
f (5)(0) with the Kimball procedure,62,74 which defines by
using

n~k!5
C

~11k2!4
1N~k!, C5

8

9p2
~ar s!

2g0~r s!,

~C2!

a stronger~namely, ;1/k10 for k→`) decaying function
N(k), so thatN(k)k2k5 is now integrable, yielding 0 be
cause of (d/dy)5siny/yuy5050. Thus,

f (5)~0!5S d

dyD
5

p~x!ux50 , ~C3!

with

p~x!5CE
0

` dk3

~11k2!4

sinkx

kx
5C

p

32
~313x1x2!e2x.

~C4!

It follows

f (5)~0!52C
p

4
52

2

9p
~ar s!

2g0~r s!, ~C5!

Q.E.D.
The large-x behavior~26! follows from Eq.~24! by partial

integration. Thereby the discontinuities ofn(k,r s) at k'1
appear. They determine the amplitudes of the Friedel os
lations:

f ~x,r s!52zF~r s!
3 cosx

x2
1zF~r s!

3 sinx

x3
1 f 1~x,r s!,

~C6!

with

f 1~x@1,r s!52A~r s!
3

x3 H Fp2 1Si~x!Gcosx2Ci~x! sinxJ
1OS 1

x4D52A~r s!p
3 cosx

x3
1OS 1

x4D . ~C7!

zF(r s) is the Fermi gap andA(r s) is the Fermi edge coeffi-
cient.

APPENDIX D: FOCK COMPONENT OF THE STATIC
STRUCTURE FACTOR AT SMALL q

According to the definition of Eq.~32!, the oscillations of
u f (x@1,r s)u2 @see Eq.~30!# only affect the discontinuities in
6-11
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ñ2(q,r s) and in its derivatives atq52, while the small-q
behavior of ñ2(q,r s) is only affected by the oscillation
averaged part ofu f (x,r s)u2, i.e., by

^ f 2~x@1,r s!&5
9

2

zF
2~r s!

x4
19

pA~r s!zF~r s!

x5
1OS 1

x6D .

~D1!

Following the procedure of Kimball,62,74 we define a func-
tion F(x) by
is

s

ity

a

ys

23511
^ f 2~x,r s!&5F~x!1
9

2

zF
2~r s!

~11x2!2
19

pA~r s!zF~r s!

~11x!5
,

~D2!

so thatF(x→`)}1/x6. Then, the second term will give th

coefficient of the linear term inñ2(q,r s), while the third
term will give the coefficient of a term}q2ln q. By carrying
out the calculations, one obtains Eq.~38!, Q.E.D.
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