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Momentum distribution of the uniform electron gas:
Improved parametrization and exact limits of the cumulant expansion
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The momentum distribution of the unpolarized uniform electron gas in its Fermi-liquid regifke;),
with the moment& measured in units of the Fermi wave numligrand with the density parameteg, is
constructed with the help of the convex Kulik functi@{x). It is assumed that(0r),n(1*,rg), the on-top
pair densityg(0,r¢), and the kinetic energy(r,) are known(respectively, from accurate calculations fqr
=1,...,5,from the solution of the Overhauser model, and from quantum Monte Carlo calculations via the
virial theoren). Information from the high- and the low-density limit, corresponding to the random-phase
approximation and to the Wigner crystal limit, is used. The result is an accurate parametrizatigargy,
which fulfills most of the known exact constraints. It is in agreement with the effective-potential calculations
of Takada and Yasuhaf®hys. Rev. B44, 7879(1991)], is compatible with quantum Monte Carlo data, and is
valid in the density ranges<12. The corresponding cumulant expansions of the pair density and of the static
structure factor are discussed, and some exact limits are derived.
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[. INTRODUCTION namical local-field factors, built by using many known exact
constraints? All these parametrized quantities are not
In solid-state theoryand quantum chemistfythe phe- strictly “exact,” but are considered to be closest to the true
nomenon of electron correlation and some of its details arguantities, in the sense that this is the best one can presently
hidden in the reduced densities and reduced densitgbtain, and in the sense that they are accurate enough for the
matriceS~® and their cumulant&® For the ground state of purpose for which they are needed.
the uniform electron gagellium) of density p=3/(47r3) In recent years, there has been increasing interest in a
(in a.u), these quantities are the pair dengjt,r.) and the  particular approach to the many-electron problem of nonuni-
momentum distributionn(k,r.), where k is measured in form density, the so-called density-matrix functional theory
units of the Fermi wave numbég= (372p)¥® andx is the ~ (DMFT) that uses the one-body density matrix as the basic
scaled interelectronic distance= Ker . variable®2°~22Building a “local approximation” for DMFT
Besides its relevance in the understanding of many effectis not an easy task. In a first atteniptthe momentum dis-
in simple metals and semiconductors, the jellium modelkribution n(k,rs) of jellium has been used as input. Besides
plays a crucial role in providing input quantities for approxi- this important application, for which a reliable parametriza-
mate approaches to the many-electron problem of nonuniion of n(k,r) is needed, there are other reasons to focus on
form density. Different approximate schemes, in fact, oftenthe momentum distribution of jellium. The definitions of
need different quantities from jellium. As an example, “exchange” and “correlation” in DMFT are different from
density-functional theory (DFT) uses the exchange- those in DFT and in Hartree-Fock—like approaches. In
correlation energy of the uniform electron gas for the widelyDMFT, the cumulant paft of the pair density rises to be a
used local-density approximatiqghDA). For building non-  key quantity. An accurate parametrizationrdk,rs) at me-
empirical beyond-LDA functionals for use in DFT, the pair tallic densities allows to extract the cumulant pair density of
density of jellium is often needet. jellium, since the whole pair density is availabfe!® The
In such applications, the quantities from the uniform elec-cumulant pair density can then be compared with recent at-
tron gas must be available in the form of analytic exprestempts to calculate it in a high-density electron §5%,and
sions. Since the jellium model is not exactly solvable, anacan be diagonalized in terms of “cumulant geminalgha-
lytic expressions are built by interpolating between knownlog of “Overhauser geminals” for the pair density?3.
exact limits, and by fitting the quantum Monte Ca(@MC)  Also, the study of exact limiting behaviors of the cumulant
data, when available. Relevant examples @r¢he correla- pair density is of great interest, since some of these limits
tion energy used in LDA implementation, built by using could be approximately valid in nonuniform systems.
functional formd®~*?that include exact limits, and interpo- ~ The momentum distribution of the uniform electron gas is
late the QMC data of Ceperley and Ald€rii) the pair also useful for the calculation of the exchange-correlation
density, built by combining exact properties and fitting tocorrection to Compton profiles computed within
QMC datal*® or by simply interpolating between exact LDA-DFT.?° Note also than(k,r.) determines the part of
limits;*® (iii) the static local-field factor, parametrized by the local-field factor beyond the random-phase approxima-
fitting” QMC data of the static respon&®and (iv) the dy-  tion (RPA) that takes into account the change in occupation
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FIG. 1. The Kulik functionG(x) appearing in the RPA analysis
of n(k,rs), see Eq.(A4). At the origin, G(x) has a finite value,
G(0)=3.353 337 Eq.(A7)], and a logarithmic-divergent slope, see
Eq. (A6).

numbers in the Lindhard functidsee Eq(29) of Ref. 19.
The qualitative behavior of(k,rg) is the following. It
starts atk=0 with a valuen(0yrs)=<1, and decreases with
increasingk. For k<1, it is concave. Then in the Fermi-
liquid regime atkk=1, there is a finite jumgFermi gap from
n(1-,rg) to alower valuen(1*,rg)=n(1",rg) —zx(r) with
logarithmic slopes at both sides kf=1. Fork>1, (corre-
lation tail) n(k,rg) is convex, and vanishes fde—oo. For
r<=0 (ideal Fermi gag it is n(k,0)= #(1—Kk), where6(x)
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extend this procedure far, e[ 6,10] failed; n(k<1rg) is no
longer concave fors=6.

Here, an improved version of the parametrization of
n(k,rg) in terms of the Kulik functionG(x) is presented.
Our parametrized momentum distribution is in good agree-
ment with the TY value$>** and is valid in the range of
densitiesr <12. Previous parametrizations ofk,r¢)*>3
used the QMC data of Ref. 35 as an input. However, QMC
data are presently only available for &4=<0.9 and 1.1
=<k=1.5, thus not providing information abontk,rs) near
the centerk=0, and at the Fermi edg&=1. In these last
regions, in fact, different parametrizations of the same QMC
data can be rather different from each otftef’ Our con-
struction of n(k,rg) uses information from the effective-
potential calculations of Takada and Yasuh#ri, from the
high- and low-density limits ofn(k,rg), corresponding to
RPA and the Wigner crystdWC) limit, and from accurate
parametrizations of(ry) (Ref. 12 and of go(rg).2’ In the
regions where QMC data are available, ok,r;) is com-
patible with them. Also, with respect to previous worRs>®
the functional form used here satisfies more exact limits. In
particular, here the logarithmic behavior at the Fermi edge is
taken into accour® Notice that it causes the logarithmic
divergence ot(r,—0).%

Using ourn(k,rs), the momentgk”), the correlation en-
tropy, and the one-body reduced density mafi(ix,r) are
evaluated. The latter appears in the cumulant partitioning of
the pair densityg(x,rs). The static structure fact@®(k,rs),

is the Heaviside step function. Thus, the quasiparticle weighle|ateq to the pair density via Fourier transform, the particle-
ze(rs) starts withzg(0)=1, and decreases with increasing nymper fluctuations in fragmentsNq(r), and the potential
interaction strengtirs. At large rs, the electrons form a energyy(r.) are discussed in terms of their cumulant parti-
Wigner crystal with a smooth(k,rs). rs<1 andr&>1 are  tjoning, and some exact limits are derived. Finally, by means
the weak- and strong-correlation limits, respectively. For in-of an accurate model for the spin-resolved pair deriitge

termediate values af;, a non-Fermi liquid regime may exist
with ze=0. In such casej(k,rs) would be continuous vk,
with a nonanalytical behavior &= 1.

In Ref. 30, the idea of using the convex Kulik function
G(x) to parametrize the two branchek<{1 andk>1) of
n(k,r) is sketched. The functioB(x) appeared in Kulik’8!
RPA analysis ofn(k,r) near the Fermi edgg {—k|<1),
see Eq.(A4). G(x) behaves agy+cxInx for small x (see

cumulant part ofy(x,r) is extracted.

The paper is organized as follows. In Sec. Il, the known
sum rules and limiting cases far(k,rs) are reported, and
they are used in Sec. Il to build up our parametrization of
the momentum distribution via the Kulik function. Section
IV is devoted to the calculation and discussion of different
measures of the correlation strength, of the 1-matrix, and of
the cumulant expansion of the pair density. In Sec. V, we

Appendix A and Fig. 1, which corresponds to the correct study the cumulant partitioning of the static structure factor,
nonanalytic behavior ofi(k,rs) near the Fermi surface. So, of the density fluctuations, and of the potential energy. Con-
supposing that the value at the centgr ), and the values clusions and future developments are reported in Sec. VI.

at the Fermi edgen(17,rg) andn(1%,ry), are known, it
should be possible to represeamgk,r) in terms of G(x),
with suitable prefactors and with suitable scaliisgueezing
and stretchingof its argument. In this way(k,rs) becomes
a functional ofny(rg)=n(0yr,), and ofn.(rg=n(1%ry),

II. SUM RULES AND LIMITING CASES

How is n(k,rg) defined? Starting from the many-body

and can be designed to yield the proper normalization anghatrix (1-matrix for short results from theN—1 contrac-

the correct kinetic energy(r), which follows from the total
energye(ry)=t(rg)+uv(ry) via the virial theoreni? In Ref.
30, the input data from Takada and Yasuh&ry)3334 for
no(rs), N«(rg), andt(ry) atrs=1,...,5have been used,
together with the on-top pair densigy(rs) =g(0,r) [which
determines the largk-behavior ofn(k)] from Ref. 27. The
result is a fieldn(k,rg) for rge[1,6], which is correctly
concave fork<1, convex fork>1, and with a Fermi gap
ze(rg) at k=1 decreasing with growings. The attempt to

wave functionW(1, ... N), the one-body reduced density
tion,
11'—fd2"'dN\1f12 ¥*(1'2,... N
7(| )_ (l\l_—l)l (11--'N) ( 11-"1)1
(1)
dil---dN 5
j T“If(l’ PR ,N)| =1,
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with the notation ¥(r,,0). For the uniform electron gas, n(k—1",rg)=n_(rg)—A(rg)(1—k)In(1—k)+0O(1—k),
Y(1|1')=p8,, 4 f(kelF1—r3],rs) defines the dimensionless (6)
1-matrix f(x,rg). Then its Fourier transform is the momen-

tum distribution N(k—=1%rg)=n,(ro+A(rgd(k—1)In(k—1)+O(k—1).

(7)
a® (= _sinkx | i - i
_a 3 n the following, A(ry) is referred to as the Fermi edge co-
n(k.rs) 2 J; dx kx foors), @ efficient. In the small limit, n.(rg) andA(r,) are known

5 5 5 s from RPA(see Appendix A In the low-density or WC limit,
where dx®=3/4x d°x=3x"dx and a=(4/9m)"". n(k,r)  the Fermi gap disapperbn_(rg—n.(rg)], the infinite
can be calculated using perturbation theory, directly withsiopes at the Fermi edge may also varfislir ) —0].
Green’s functions? see Figs. (a) and 1b) of Ref. 24, or via Near the center,k—0, n(k,r) should behave
the Hellmann-Feynman theorétnas the energy derivative guadratically®-3343

n(k,rg) = 6E/ 8¢\, supposecE is (perturbatively known as

a functional ofe,=7%k?2m and v,=4me?/¢*.** Perturba- n(k—0,¢) =ng(re) +B(rgk?+0O(k%). (8)
tive methods only work for high densities,<1. At metallic ] ] ) . i
and lower densities, other techniques must be used, namet%s'm.p'e argument in favor of Ed8) is that it holds both in
the effective-potential methad, which combines perturba- the high- and in the low-density limisee Appendixes A and

tion theory (Green’s functionswith the Fermi-hypernetted

chain approach, and the QMC simulatichig3A more com- When rs—0, exact results fon(k,rs) are known by
plete list of references concerning calculations and parammeans of RPA" (Appendix A. In the RPA treatment, the
etrizations can be found in Ref. 30. Kulik function G(x) appears,' see Eqs(A3)—(A5) and Fig.

n(k,rs) has to satisfy the condition<On(k,rg)<1 (which 1. G(x) will be used in the following section to build up a
guarantees the ensembierepresentability of the 1-matrix ~Parametrized(k,r) that satifies Eqsi3)—(8).

and the sum ru|esk(in units of kF, and energies in Ry In the |0W-denSity or Stl’ongly CorrelatEdllim?TSHOO, the
electron gas undergoes Wigner crystallizati(see, e.g.,

= Refs. 54 and 56 A simple model for the momentum distri-
JO dk’n(k,re)=1, (3 bution in such regime is reported in Appendix B.
1 " Ill. IMPROVED PARAMETRIZATION OF n(k,rg)
3 2_
(ar )zfo dien(k,rok=t(r), (4) The momentum distribution in terms of the Kulik function
S

G(x) of Fig. 1 is parametrized as follows. Fk 1, we use
wheret(rg) can be written as the sum of the kinetic energythe ansatz
of the free Fermi gas, 3/5 ) ~2, and of the kinetic energy | |
of correlation,t.,(rs). Forr <1, to(rs) is known from _ No—nN_
RPA and fromc?ﬁ(e SI)owest-osrder e;()crrr(lasrzge diagram beyond n<(k,rs)=no= G(0) CGlx<(kro)], ©
it;*4=%for a summary see E3.25 and Figs. 1a) and 1b)
of Ref. 24. At largerrg, t.(rs) can be obtained via the
virial theoren?? from parametrized QMC correlation
energies? The largek behavior ofn(k,r) is determined by no(k,ro)= n_+G[X (K,ro)] (10)
the kinks in the many-body wavefunction, which occur SEG(o) e
whenever two electrons are at contact or “on tdpbalesc-
ing cusp propertigg'’48

while for k>1 we use

with x_(k,rg) andx-(k,rg) equal to

ars G(0)  (1—k)

C(ry) 1 X-(krg=a—
n(k—>00,rs)=k—83+0 pECIR <(krd 272 [No—n_] Jaar /=
b w?  [m (1-In2) [ng—n_](1—k)?
8 or 3 " !
Clro = g5 (ara)gu(rs), 5 arts V3 Fr0) GOk

" (11)
where go(rs)=9g(0,r) is the on-top value of the pair-
distribution function. In thasﬂﬁg\%gmit, Oo(rs) can be ob- k) arg G(0) (k—1)
tained from perturbation theofy;>” and at larger it has ARSI =a S T T
been calculated by solving an effective two-body Sehro 2m + Naars/m
dinger equatiof’ > 3m(1-I2) n, =

In a normal Fermi liquic®? the momentum distribution + \/ 5(0) Zar (k—1)%.

has a discontinuity and infinite slopésat the Fermi edge, 90 al's
k=1, (12
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Here F"(0)=17.968 746[see Appendix A, Eq(A1)], and
the rg dependence o4, b, ny, n., andggp is not explictly

shown for shortness. These constructions are such that

n.(k)—ng,n_ for k—0,1", respectively, andn.(k)
—n,,0 fork—1",, respectively. The behavior of the Ku-
lik function for small and large argumengsee Appendix A
ensures the exact asymptotic expansion of Egjs-(8) near
the center, near the Fermi surface, and for ldege

The parametern(rg) determines the Fermi edge coeffi-
cientA(rg) of the |1—k|In|1—k| term at the Fermi surface,

1/2 1

4

arg

n(kﬁltrrs):n:(rs)ia(rs)

a
AR

X |1—K/In|1—K|+O(|1—K|).

13

The parameteb(rg) determines the curvatuf®(rg) of Eq.
(8) at the centerk=0,

17_4 F"(O) [ rs 2
N(k—0rg=ng(rg — — —— k24 0(k%).
( S) O( S) az 2 b(rs) ( )
(14
For smallrg (RPA—see Appendix A itis a(r¢—0)=1 and

b(r—0)=1.

In the preliminary version of Ref. 30, anothdyut simi-
lar) ansatz was introduced, and it was chobén,)=1. Two
different functionsa_(rs) anda-(rg), for the coefficient of
|[1—k|In]1—kl atk=1" andk=1" were fixed by the sum
rules of Egs.(3) and (4) [with t,(rs) from Ref. 14. The
values ny(rg) and n.(rg) were taken from the TY data
(available forrg=1,...,5). Theon-top valuegy(rs) was
taken from Ref. 27.

In our improved ansatz of Eq$9)—(12), we seta_(rg)
=a.(rg)=a(rs) (in agreement with Ref. 53; also Figs. 7
and 8 of Ref. 30 confirm thjs and we use agaib.q.(rs)
from Ref. 12 andgy(rs) from Ref. 27. Since we want to
extend our results in the density range=<10, where
there are no data available fog(rs) andn.(rg), we extract
information from the extreme low-density limifwigner
crystal—see Appendix Bby following an oversimplified
version of the idea presented in Ref. 55. We first bay(r )

PHYSICAL REVIEW B66, 235116 (2002

1k " this work

n(0,rg)

100

FIG. 2. Parametrized(0,¢) (solid line), compared to the TY
values(Refs. 33 and 34 The high-density or RPA limit and the WC
limit are also shown.

Finally, the values at the Fermi edge, (rs), and the coef-
ficient of the infinite slope at the Fermi edge(r,), are
obtained by fitting the TY values for..(rg) while imposing
the normalization and the kinetic-enetggum rules of Egs.
(3) and (4). The results are parametrized with the inclusion
of the high- and low-density limits, and are equal to

1+v,rstvyri+ugrd

n_(rg)= , 17
¥ Ltvgrgtogritogrito,rid
with v1=—0.0679793, ©v,=-0.00102846, vj3

=0.000189111,v,=0.0205397, vs=—0.008 6838, v
=6.8710% 10 °, v,=4.86804% 10 ° [v,—v, agrees
with the RPA value— («/27%)3.3533= —0.088 519], and

by using a functional form that recovers the exact high-

density limit, includes the Wigner crystal behavior Bs

—o, and has some free parameters to be fitted to the TY
data. The result is reported in Fig. 2, together with the high-

and low-density curves. It is given by

1+t r2+t,r32
No(rg)= —————, (15
olfs 1+tgr+t,ri¥
with t,=0.003438169, t,=0.00725313666, t;

=0.014900367,t,=0.001 132443 64t,—t; agrees with
the RPA value —(a/7?)?4.1123=-0.01146]. We then
build the parametel(rg) by a simple interpolation between

the high- and low-density limits of the curvature at the center

(see Fig. 3 The result is

b(rg)=(1+0.000937 692 5,42 (16)

Qils
Ny(re)= : (18)
T 1+gprPgyrl®
with g;=0.088519 (from RPA), ,=0.45 Q3
=0.022 786 335;
1+pyrd*+pyrd?
a(rs)= 14 12 6 (19)
1+p3rs +p4rs +p5rs+p6rs
0 T T T T
0.2t
~, 04r
D o6t
08 } this work
-1 P L L L
0 20 40 60 80 100

FIG. 3. Parametrized coefficient of tfé term near the center
(k—0), B(rg=—(7"a?(F"(0)/2)rs/b(r]?. The high-
density or RPA resulthb(r—0)=1, and the WC limit are also
shown.
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. 1 T .

—_ this work this work ——
= x TY =
— oY 08 | .
=4
- 0.6 r g
Nt
N4t .
o 02} ]
=4
L L L L O 1 1 1 1
0 20 40 60 80 100 0 2 4 6 8 10
rS rS

FIG. 4. Left panel: parametrizet{1*,r,) (solid lines, compared to the TY valugRefs. 33 and 34 The high-density or RPA limit and
the WC limit are also shown. Right panel: value of the Fermi gdps)=n(1",rg)—n(1%,r) as a function of ¢; the present parametri-
zation is compared with the TY resul{Refs. 33,34

with p;=-—78.8682, p,=—0.098994 1, p;=—68.5997, shown in Fig. 7 forr=3 and 10, together with the;=0
p4=38.1159,ps= —17.6829, anthg= —0.01136759. Our (ideal Fermi gasand with the WC resultr=75). The ex-
parametrizedh(k,r) breaks down at =12 [in the density pression

range 12=r <16, n(k>1r,) is no longer convex, and for

r<=16 the unphysical result_<n, is obtained when the ) 1 4 -
sum rules of Eqs(3) and(4) are imposedl (At) =( . )4[<k )—(k9)7] (21)
In the left panel of Fig. 4, we show the functions(ry), s

together with the TY values, and the high- and low-densitymeasured in R) describes the fluctuation of the kinetic
limits [here ther .— <o limit is considered to be the inflexion energy. The momenté(2> and <k4> determine the smak-
point of the WC momentum distribution, see E&4)]. As  pehavior of the 1-matrix, see E5). In Refs. 57 and 58,
said, our model is only valid fors=12, so thah_(rs) and  the entropylike expressios(rs) = —(Inn(k,rg) as a function
n.(rs) at densities lower thans=12 are no more obtained of the interaction strengths has been used as a measure of

from the constraints of Eqg¢3) and (4). Thus, the strange the correlation strengt?. Here the expression
behavior ofn_(rg) at rg~16 does not affect our results.

Also, the scheme presented here for the transition between

the metallic and the extreme low-density region is oversim- Sph(fs)=J di® (= 1){n(k,rg)Inn(k,r)

plified and must not be regarded as rigorous or reliable. We

did not take into account the transition to the partially polar- +[1-n(k,rglin[1-n(k,re]} (22)

. ; - -
Lﬁgﬁ ;Slerﬁ'gg; (ﬁﬁz\:vfhelg?u?ef;e?—tlmz\e/rgrw sgr ?g:j'tt;ei)e;fto gg introduced as an alternative with the understanding that
reliable in the relevant density rangg<12, and the simple ?(k,rst) ?elr:dt 1Bn(k‘r5) are thtﬁ prgbab|l|t|e§, fOT tr;je moméan—
picture of the left panel of Fig. 4 is only a “naive sugges- (UM Statek to be occupiedwith spin up and spin dowrand
tion.” In the right panel of Fig. 4, we compare our param- empty, res_pectlvely. The entropy of this probablllty distri-
etrizedz(r ) with the TY results. In Fig. 5, we report thig ~ Pution” is just the integrand of Eq22), andsy(ry) is the
dependence of the Fermi edge coefficiét.). Finally, in  SUM of all these entropies. Notice its invariance under the

Fig. 6, we present in the left panel our parametriné¢,r ;)

for 1=<r4=<10, and in the right panel we compare our result 0.8 " this work
with the TY n(k,rg) and with the QMC data of Ref. 35 for 0.7 | RPA - 1
r«=>5. 0.6 | X 1
05/, 1
IV. MOMENTS, CORRELATION ENTROPY, 1-MATRIX, ;%n 04 [/ 1
AND CUMULANT EXPANSION 0.3 ,.' 1
With the now available momentum distributior{k,r), 0.2 ¢ |
its moments 0.1 T

0 L 1 1 1 1 1
- 0 5 10 15 20 25 30 35 40
(k”)zf dken(k,rok” (20) fy

0

_ N o FIG. 5. Parametrized coefficient of the infinite slope at the
can be evaluated in addition to the normalization #6t0  Fermi edge,A(ry)=a(rs)(ars/m)¥20.63. The present result is

and the kinetic energy for=2 [Egs.(3) and(4)]. They are  compared with the RPA valua(r.—0)=1. See Ref. 39.
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" this work

n(k,rg)
n(k,rg)
o
e
“u
[8)}

0 05 1 1.5 2

FIG. 6. Left panel: momentum distribution calculated with E@@—(12) forr,=1,2,..., 10(solid lineg. In the Wigner limit,n(k,rg
>1) is calculated with Eq(B1) (dashed line, corresponding tg=75). Right panel: comparison of the present work with the (Réfs.
33,39 momentum distribution and the QMC calculation of Ref. 35rge5.

exchangen(k,rg)«—1—n(k,rg), which is referred to as and the large¢ asymptotics(Friedel oscillations with re-
particle-hole symmetry in the reduced-density-matrix com-duced amplitudes

munity. This symmetry is an intrinsic property of the corre-

lation energy as a functional of the 1-mat?i“xsph(rs) is COSX

plotted in Fig. 8. Another measure of the correlation strength  f(x>1yr)=-3 Z(rs)—5—

is the correlation-tail normalization X

1
P )

also reported in Fig. 8. For large, the Fermi edge disap- (26)
pears,zg(rs)=0 [and also any relict of itA(rg)=0], then ) U ) )
the inflexion point ofn(k,r.) vs k may serve in Eq(23) as  S€€ Appendix CA(rs)=a(rs)(ars/m) %0.63 is the Fermi

o0 3 .
ncorrtail(rs): J'l dks n(k,rs), (23) +E[ZF(|’5)SII’1X_ WA(FS)COSX]-FO

the lower limit. edge coefficient, the prefactor of the logarithmic terk (
With n(k,rs) also, the(dimensionless1-matrix, - 1)In|k—l| in n(kwl,rs). The factor 0.63 is the Kulik num-
ber 7.91, see EqA6), divided by 4. In the inverse Fourier

sinkx transform(2), the oscillatory terms of Eq26) do not affect
o ki), x=kgr—r'|, (249  the smallk behavior ofn(k,rs), because their average is
o zero. Sincen(k<<1rg)=ng(ro+0(k?), the largex behav-

f(x,rs):fo dk®

is available as the inverse of E(®). It has the smalk be-  ior of the nonoscillatoryf (x,r ) is o 1/x°® or fasterf(x,rg) is
havior, displayed in Fig. 9. One may partitiom(k,rs), and corre-
spondinglyf(x,rg), in the following way:
f(x<<1r )=1—@x2+@x4— ! — (arg)?go(re)x®
Ts 3l 51 % T 5195 #s) olls (ko) =2e(ro) O(1—K)+ny(k,ro),
+0(x°), (25 18 . . . . .
" | correlation entropy @ B
4 — T . . — . : 1.6 rcumulant normaliz.  * e
35 ! { 1.4 Neorrtail ° L4 7
12 o 1
3 L
1r . .
A 25
> 2t
Vo155 |
1 L
05 r
0 !
3 -2 1 0 1 2 3 4 5 Iy
v

FIG. 8. The particle-hole symmetric correlation entrdisg.
FIG. 7. The momenték”) of n(k,rg) for rg=3 andrg=10. The  (22)], the normalization of the cumulant pair densftyght-hand
corresponding results for the noninteracting gas=0) and for the  sidgrhs) of Eq. (34)], and the correlation tail normalization
Wigner crystal ar ;=75 are also reported. NeorrtaiT's) [EQ- (23)] as a function of .
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1.2 . . - - - - - lomb repulsion with g(0rs)<1. In addition to the above-
1k r, = 0 (ideal gas) | mentioned correlation-strength indices, the quantities
2\ s =10 — h’T’T(O,rS) measuring the on-top Fermi-hole curvature, and
08 R fg =75 (WC) - | h;,(0,s) measuring the on-top Coulomb hole are other ones.
= 06 . From Eq.(26), it follows
=
= 04 1 5
9| zp(rg) 27A(rg)zg(r
0.2 - [f(x>1r9)|?==| =+ (ro)ze(rs) (1+cos %)
20 x4 x5
0 e ,
) S —— (N 1
0 2 4 6 8 10 12 14 -9 XSS sin2x+0 ik (30
X = Kerqz

If this is inserted into Eq(28), then the nonoscillatory terms,
FIG. 9. 1-matrix f(x,rs) for r¢=0 (ideal Fermi gas for rg

=10 (present mod¢] and forr =75 [WC limit, Eq. (B1)]. 9 2'2: 97zeA
_ 24 T
SONEPREDRN L , © o
(X,r) =3 Ze(rg)—— +T1(X.ry), (27 are canceled by the asymptotics fufx,r.), which follow

_ _ ) . _ from the sum-rule properties of the static structure factor
where j,(x) = (sinx—xcosx)/x". ny(k,rs) is a continuous  g(q,ry), see Sec. V and Ref. 52. The nominator of the oscil-
function withn,(17,rg)=n,(1%,ry) and an infinite slope at lating 1&° term can be written as

k=1. Figure 10 shows{(k,rs) andf(x,rg) for rg=5.
The 1-matrix squared appears in the cumulant partitioning
of the pair density,

92¢\ZE(r ) + m2A2(r ) COI2X+ 2Xo(T ),

1 o ZF(rs)
g(x,rs)=1—§|f(x,rs)|2—h(x,rs), Xx=Ker15. (28 tansz(rs)_ﬂ.A(rs)'

This defines the cumulant pair densktyx,rg), which is the The on.-top properties cg”_(x< 1rg andg, (x<1r) are
diagonal of the cumulant 2-matrix(1|1’,2]2"). The spin- determined by the coalescing cusp theoréffé.

resolved version of Eq(28) is With Eq. (29), with the spin-resolved pair densities of
Ref. 15, and withf(x,r) of this paper, the resulting cumu-
g1 1(X,rg)=1—[f(X,ro)|?=hy(x,re), lant pair densitie$;;(x,rs) andh; (x,rg) are plotted in Fig.
11. For smallrg (<1), our results agree with those
with -~ g(x,rg) =3[9y (xrd +gy (xrd] and h(xry V. STATIC STRUCTURE FACTOR, DENSITY

= %[hm(x,rs)vth“(x,rs)]. Notice that theglgeneralized ex-
change or Fock term|f(x,r¢)|? appears only in the parallel-
spin pair density and not in the antiparallel-spin pair density. The cumulant partitioning of Eq28) causes correspond-
gy1(x,rg) describes the Fermi hol@ue to both Pauli and ing decompositions of all the quantities containing 1
Coulomb repulsion with g;(0rg)=h;;(0rg)=0, and —g(x,r¢). Such quantities are the static structure factor
gy ,(x,rs) describes the Coulomb holenly due to the Cou- S(q,rs), the fluctuatiomMNq(rs) of the particle number in a

FLUCTUATIONS, AND POTENTIAL ENERGY

. . . 0.5 | : .
04 i
0.4 .
- 0.3 1 __ o3 _
<= 02 1 2 o2 ]
[y ——
0.1 | 0.1 1
0
o L L L
2 0 5 10 15 20
k X = Kefy2

FIG. 10. Continuous part ofi(k,rg), ny(K,rg)=n(k,rg) —zg(rs) 6(1—k) (left pane), and the corresponding 1-matrfx(x,rs) (right
pane). The oscillations off;(x) are due to the infinite slope of;(k) atk=1.
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T . . . 1 : . . :
o2 rg=1 —— \ =1 ——
016 [ fg =9 -oomm 1 0.8 fg=5 oo |
» 012 [ | 1 ™ 08¢ ]
z 008} / t I |
£ i Y &
0.04 _
o T S Y ¢ B S ——
0 2 4 6 8 10 0 p) 4 6 8 10
X = kery2 X = kgryp

FIG. 11. Cumulant pair densities for parallel and antiparallel spins, obtained by combining the present work with the results of Ref. 15.

fragment(), and the potential energy(r). q[3 1/q\? q q
So, the static structure factor is given by So(@)=5|5~ E(E) 9( 1-5]+¢0 5—1), (35
1. ~ with the linear smally behavior 3j/4. For interacting elec-
- 2
S(q.rs)=1=3n%(q.r)) —h(a.ry), 3D trons (s#0), the smallg sum rul§%*
with the (generalized exchange)dfock component 1
S(q<lrg)=——"——q’+0(q"), (36)
~ = _singx 2(arg)wp(rs)
n’(q,r )=a‘°’f dx——[f(x,rg)|?
S 0 qx s and the largeg sum rulé?
= mdkgn(kr ) +1dgn(\/k2+q2—2kq§r ) 8 1 1
. s ) iI's)s S(q>1,rs)=1—Earsgo(rs)—ﬁ—o E (37

) o, wi(rs) =4me?p/m=3/r] a.u. defines the plasma fre-

[from which it follows thain?(q,r) has a discontinuity in its ~guency. . _ -
second derivative aj=2], and the cumulant component The nonidempotency and the singularitiesngk,rs) de-
termine the smally behavior ofS(q,rg)=1—2n%(q,ry),

Riara=e [ o g hicr (33 3
(@.rg)=a” | dxgyhxrs), SHA<1r9) =055 + 7 2= AT Ze(r)
which is simply the Fourier transform of the cumulant pair X g2nq+0(g?d), (39)

density h(x,rg). In Eg. (32) the convolution theorem has

been appliedn?(q,r.) is related to the probability of finding &S Shown in Appendix D. Notice th&(0rs) is equal to
a pair of electrons with given relative momentu’28 the rhs of Eq.(34). In Fig. 12, we reporiS(q,rs) for the

Notice that the sum rul&(q—0,y)=0 is equivalent to

the sum rule 12 ' ' ' ' '
1r e
@[ “ahier)= | denrari-ntrg). @4 08 | -
0 0 T
~ S 06t 1
The left-hand sidélhs) equalsh(O,r) and the rhs equals 1 %)
—3n%(0ry). Lowdin had asked what meaning the rhs fas. 0.4 1 o (ideal l
According to Eq.(34), it fixes the normalization of the cu- 02 [ fs =0 eargiss) ___________
mulant pair density(x,rs) and is another particle-hole sym- .  1,=75 6’.\’0) e
metric measure of the correlation strength; it is also reported 0
Lo : . . . 0 0.5 1 1.5 2 25 3
in Fig. 8. Equatior(34) is sometimes called perfect screening
sum rule or charge neutrality condition. a

Eor noDinteracting electrong {=0), the cumulapt part FIG. 12. The Fock component of the static structure factor for
vanishes,h(q,rg) =0, and the Fock parB:(q,rs) simply  r.=0 (ideal Fermi gas rs=5 (present work and in the WC limit
yields for rg=75.
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ideal gas (s=0), forrg=5, and in the WC limit.

Equation (38), together with the sum rule of Ed36),
allows to extract the largr-behavior ofh(x,rg). Namely,
because of E(.36), F(q,rs) must cancel both the linear and

the g°Inq terms ofn?(q,r). This implies that the large-
behavior of the oscillation-averagét(q,rs)) is
o( )

(39

In Eq. (28) these terms cancel with the nonoscillatory long-
range part of|f(x,rg)|%.

If we consider within the uniform electron gas a certain
fragment ) (e.g., a sphere of radiuR) containing on
average NQ=Q/(47Tr§/3)=(R/rs)3 electrons, and ask
for the particle-number fluctuatioANg,, then the answer

9 wA(r
2

ZF( r s)
x4

s) ZF( r s)
X5

<h(X>1rS)>_ 6

i365,66
No No f dxlf a2

1
X §|f(x,rs)|2+h(x,rs)}

., (ar)® 3
- N, 8m
NEEs -
desq f dxe® gnz(q,rs)+h(q,rs)},
Q
X:|X1_X2|- (40)

Again one may ask how differently the Fock and the cumu-
lant parts contribute to their sum and to the conclusion “cor-
relation suppresses fluctuations®® In the case of a sphere
Q=4xR%3, the term in the modulus in Eq40) is just
Q3j,(qR)/(gR), so that the Fock term yields

{ 3j1(aR) |-

2
(41

Also, the potential energy(rs) consists of a Fock and a

cumulant part:

a? (= 3ZI.
U(rS):__I’ fo dx 5
S

1
_|f(ers)|2+h(Xars) ;

(ANg)?
No

3

2

F

WZQ(ars)gf dg®
0

B a? 3focd 3 1..,2 f 1 12
=" 1.2), 993" (a,r9)+h(a.ry) e (42
(in Ry). The Fock part can also be written’as
ve(rg)=— 27mrJ0 dk n(k,rS)J0 dk'n(k’,rg)
k+k'
X kk'In . (43
k=K'

PHYSICAL REVIEW B66, 235116 (2002

In lowest order, withn(k,rg)— 6(1—Kk), Eq. (43 yields
—=3/(2m arg). The logarithmic term ofv(rs—0) arises
from vc(rg), not fromug(ry).?

VI. SUMMARY AND OUTLOOK

In Ref. 30, it was shown that the convex Kulik function
G(x), with appropriate prefactors and with an appropriate
inhomogeneous scaling of its argument, reproduces the mo-
mentum distributionn(k,rs) of the unpolarized uniform
electron gas of density)=3/47rr§ in the metallic-density
regimerge[1,6]. Therg functionsn(Org), n(17,rg), the
on-top pair densitg(0,r5), and the kinetic energy(r) form
the input for such construction. In this work, we improved
the parametrization af(k,r) via the Kulik function, and we
extended it up ta =12, including the high-density regime
[Egs.(9)—(12) and Fig. 6.

The Fourier transform ofh(k,rg) yields the one-body
reduced density matrix(x,rs) (Figs. 9 and 1§ with large
x oscillations arising from the Fermi gapzg(rg)
and the Fermi edge coefficiedt(rs), the prefactor of the
logarithmic term in n(k=1rg), which is included in
our parametrizatioriFig. 5). Several measures of the corre-
lation strength have been discussédg. 8). With reliable
models for the pair densityg(x,rs), the cumulant pair
density h(x,ro=1—3|f(x,rg)|>=g(x,rg has been ex-
tracted(Fig. 11) as a prestep of its diagonalization in terms
of cumulant geminals(analog with the diagonalization
of the pair density in terms of Overhauser gemindfiture
work also includes the generalization to the partially polar-
ized gas. In this case, Wim—(NT N,)/N, one has to con-
sider different cases. For spin polarizatiorbetween 0 and
1, two momentum distributions are to be described,
n;(k,rg,¢) for the spin-up electrons ang (k,rg,{) for the
spin-down electrons. So far, only the input dagrs,{)
(Ref. 27 andt(rs,) (Ref. 12 are available in this more
general case.

A small FORTRAN subroutine, which numerically evalu-
ates our parametrizech(k,rg), is available at http://
axtnt2.phys.uniromal.it/PGG/elegas.html.
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APPENDIX A: RANDOM-PHASE APPROXIMATION

In RPA, it iV n(k,r=1—(ars/m?)?H(k,1) for k
<1 and (ar¢/7%)?H(k,1) for k>1, where
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1—x? q
1] [rexdq (- 2" Q(g.u)
H(x<ly)=-— — | du
x| Ji-x q Jo 1-x%\? q ° ar
+u? | S+x| +U? | g2+y—2Q(q,u)
24 2 qQ +y—Q(q,
T
q q |
==X = +X
= dq (- 2 2 Q(q,u)
Tl oOlu q 2, [a 2 r '
1+ o
* (E_X) Tu? |5 +u2_ q2+yw_zSQ(q’“)
x2—1 q ]
X—_
1 (x+1dq (= 2 2 u
H(x>1y)=— ik du a - Q@.w ,
XJx-1 9 Jo xX*=1\% a\’. ar
2q ) U |XT3) U] q2+y?Q(Q.U)

and

Q(q,u)=27r[ 1+

For small or largek (far from the Fermi edgeit is

H(k,1)— F(k) with F(k)=H(k,0). F(k) has the small and

largek properties,

F(k<1)=4.112335-8.984 3782+ 0(k%) (A1)
and
82

respectivel?>?! The coefficient of I® is 8.77298. Fork
near the Fermi edge, it35%

H(k,1) LN L (A3)
1 — A 1D —!
2arg K Vaarglm
with
» R'(u) u R(u-—R
G(x):f R (W) -R(y)
o R u+ty u-y y=x/VR{T)
(Ad)
and
1
R(u)y=1—u arctana . (A5)

G(x) has the smalk behavior’

ks

G(x<1)=G(0)+ %Jr 3

X+ O(xz)}ln X+ 0O(X),
(AB)
with

1+u?—q%4 (1+q/2)%+u?
In
2q (1—9/2)%+u?

—u

1+q/2 1—-q/2
arctaﬁu— + arctanT .

!

) 1
R() arctana ~3.353337. (A7)

The coefficient ofxInx is 7.908 799(the Kulik numbey.
G(x) has the large- behavior,

G(0)= J:d u(—1)

T 1 1
G(X>l):g(l—|n 2);4—0 vk (A8)
The coefficient of M2 is 0.160 668(the Macke number

The Kulik function G(x) is shown in Fig. 1.

APPENDIX B: THE MOMENTUM DISTRIBUTION OF
THE WIGNER CRYSTAL

In the low-density(larger) or strongly correlated limit,
the electrons localizé and form a ferromagnetic body-
centered-cubic lattice with an electrostaiic Madelung en-
ergy of —1.792t, Ry® The next term,+2.65¢2 Ry, de-
scribes the coupled harmonic zero-temperature motion in
lowest ordef®~"To estimate the correspondingk,r), we
define with 3 w/2=2.65t%? (in Ry, or w=0.88¢2?in a.u)
the frequency of indepent oscillating electrofEinstein
mode). So, from the momentum distribution of the
harmonic-oscillator ground state, it follows

(k ) 4 1
n(k,re—w)=— ———
® 3 (7'ra)/k§)3/2
see Refs. 71-73, p. 19. Note tHats dimensionlesgmea-
sured in units okg), and thatw/k2=0.88%r}?=0.241.

In Ref. 72, the factor 1 is used instead of 0.88«,r— ) is

correctly normalized and yields with E¢4) the kinetic en-
ergy (in Ry)

o kz/(w/ké); (B1)
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1265

S

as it should. The corresponding potential energy is

1.792 12.65
b(remm)=———

+—=—=+
s 2 r§/2 (BS)

The inflexion-point trajectory withrg as parameter is de-

scribed by(see left panel of Fig. 4

Kinn(r o) =[ w/(2k3)]¥?=0.35 "%,

47 e 12 3.88

3 ( w/k2)3/2 r3/4' (B4)

nlnfl(rs)

The regionk>k;.; (to be referred to as correlation fadon-
tributes to the normalization the constant amount

fdk3 k f1 \F—OBO B
n(rs)er\/_ oy 0-80. (B5)

Kinfi

From Eq.(B1), it follows for n(0,rg— ),

%2 6.40

r2/4

4
3’7T1/2

1

No(rs—®)= 024 2
" S

(B6)

see Fig. 2; and for the curvature at the celttiee coefficient
of k?),

4 1
N 3771/2 (0 8&2,.1/2)5/2: -
" S

26.71
r&Ss/4 '

(B7)

PHYSICAL REVIEW B66, 235116 (2002

£(")(0) fwdk3 (k)k ( d )V—Siny| (CY
v _ n vl —0,
0 dy/ y 7°
which yields the first three terms of E(R5). Here f(*)(0)
=(d/dx)"F(X)] =0
Since n(k)k’k® is nonintegrable, one has to compute
£()(0) with the Kimball procedur€®’* which defines by

using

8 2
+N(k), C:ﬁ(a’rs) Jo(rs),

(C2

a stronger(namely, ~1/k*° for k—o) decaying function
MK), so thatN(k)k?k® is now integrable, yielding 0 be-
cause of (j/dy)SSiny/y|y:0=O. Thus,

oG
n )_(1+k2)4

d 5
f‘s’(0)=<@> P(X)|x=0. (C3
with
—wa dk® sinkx 7 3 3y
p(x)= . —(1+k2)4 R 3—2( +3x+x%)e "
(CH
It follows
5) T 2 )
fO(0)=—C == g-(ar)’gy(ry),  (CH
Q.E.D.

The largex behavior(26) follows from Eq.(24) by partial
integration. Thereby the discontinuities ntk,rg) at k=1
appear. They determine the amplitudes of the Friedel oscil-
lations:

see Fig. 3. f(X,rg)=—2zg(r )—3 +z((r ) nX+f(xr)

A more refined treatment takes into account that in har- s Fs Fis Bhts
monic approximation there are two transversal branches of (C6)
harmonic lattice V|brat|onszpt (q rs), and one longitudinal ith
branchw,(q,rs) in the face- centered cubic Brillouin zone,
satisfying the sum rulewt (q rs)+wt (q rs)+w, (q re)

3|7 . . .
=wp(rs). For g=0, it is oy (0ry)= 0 and therefore f1(x>1rg)=—A(rg—1| 5 +Si(x) |cosx—Ci(x) smx]
(01¢) = wp(rs). But also in th|s case the virial theorem X
holds, and assuming thatk,r) is a Gaussian distribution, 1 3 cosx 1
then Eq.(B1) turns out again. +0 - = —A(rgmT—— O(F)' (C7)

APPENDIX C: ze(r,) is the Fermi gap and\(ry) is the Fermi edge coeffi-
1-MATRIX NEAR THE DIAGONAL AND FAR FROM IT cient.

The equationy(1|1’)=p 8, , f(keglr;—r1|) defines the

quationy(L|1) =p &y, (kelr 1~ 13) APPENDIX D: FOCK COMPONENT OF THE STATIC

dimensionless 1-matrixX(x). Its smallx behavior of Eg.
(25) follows from the largek behavior ofn(k) [Eq. (5)].
Namely, with sinyly=1—(y’ /3l)+(y4/5')— .-, and with
the integrability ofn(k)ksz for v=0,...,4, itis

STRUCTURE FACTOR AT SMALL q

According to the definition of Eq32), the oscillations of
|f(x>1r)|? [see Eq(30)] only affect the discontinuities in

235116-11
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ﬁz(q,rs) and in its derivatives atj]=2, while the smallg
behavior of n?(q,re) is only affected by the oscillation-
averaged part dff (x,rg)|?, i.e., by

(0] .
(D1)

Following the procedure of Kimbaf?’#we define a func-
tion F(x) by

9 Z4(ry)

x4

1

<f2(X>1,rS)>= +n7TA(rS)52F(rs)

2 X

PHYSICAL REVIEW B66, 235116 (2002
9 Zry)  mArdze(ry)

2 — v
(D= R0+ 5 e 9 1

(D2)

so thatF(x— =)« 1/x8. Then, the second term will give the

coefficient of the linear term im?(q,rs), while the third
term will give the coefficient of a terreg?In g. By carrying
out the calculations, one obtains E§8), Q.E.D.
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