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Noncoaxial resonance of an isolated multiwall carbon nanotube
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~Received 21 August 2002; published 6 December 2002!

This brief report studies noncoaxial mechanical resonance of an isolated multiwall carbon nanotube. Non-
coaxial resonant frequencies and the associated noncoaxial vibrational modes are calculated. For shorter or
periodically supported multiwall carbon nanotubes, the lowest noncoaxial resonant frequencies predicted by
the present model are comparable to their first few higher natural frequencies, which indicates that noncoaxial
resonance will be excited at the higher natural frequencies. Since noncoaxial vibration will distort otherwise
concentric geometry of multiwall carbon nanotubes, it could crucially affect their physical~such as electronic
and optical! properties.
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Carbon nanotubes~CNT’s! hold substantial promise a
building blocks for nanoelectronics, nanodevices, a
nanocomposites,1–8 because of their electronic and mecha
cal properties. Mechanical behavior of CNT’s has been
subject of much recent research. Since controlled exp
ments at the nanometer scale are difficult, and molecu
dynamics simulations remain formidable for large-scale s
tems, continuum elastic models have been widely a
successfully used to study mechanical behavior of CNT
such as static deflection, thermal vibration, and reson
frequencies.9–12 In particular, the single-elastic beam
model,10–12which ignores intertube radial displacements a
the related internal degrees of freedom, has been widely u
to study mechanical behavior of multiwall nanotub
~MWNT’s!.3–6,13As shown in Ref. 14 for column buckling
of MWNT’s, such a simplified model is adequate for fre
standing MWNT’s of a larger aspect ratio.

However, in many proposed designs of singlewa
nanotube-~SWNT! or MWNT-based electronics and nanod
vices, see, e.g., Refs. 1–4, CNT’s are often supported p
odically. In some other applications, such as nanotwee
and antiferromegnetic AFM tips,7,8 shorter CNT’s are pre-
ferred to prevent undesirable kinking and buckling. The
fore, vibrational behavior of shorter or periodically su
ported MWNT’s is of practical interest. In these cases, it
anticipated that intertube radial displacements of MWN
would come to play a significant role and give rise to diffe
ent resonant frequencies and noncoaxial vibrational mo
Although noncoaxial intertube vibration would not substa
tially affect the overall deflection of MWNT’s, it could dis
tort otherwise concentric geometry and thus crucially aff
some of their physical~especially electronic15–18 and
optical19,20! properties. Hence, it is relevant to study wh
vibration of MWNT’s becomes essentially noncoaxial.

The existing single-beam model9–12 assumes that al
nested individual tubes of a MWNT remain coaxial duri
vibration and thus can be described by a single deflec
curve. Evidently, such a model cannot be used to study n
coaxial intertube vibrations of MWNT’s. Here, a multiple
elastic beam model is suggested, in which each of the ne
nanotubes is described as an individual elastic beam, and
deflections of all nested tubes are coupled through the
der Waals interaction between any two adjacent tubes. S
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all nested tubes are originally concentric and the van
Waals interaction depends on the intertube spacing, the
van der Waals interaction pressure remains zero for eac
all nested tubes, provided they vibrate coaxially. For non
axial vibration, the net interaction pressure~per unit axial
length! between any two adjacent tubes depends on the ju
of their deflections. Here, we only consider infinitesimal v
bration, and study resonant frequencies and the assoc
vibrational modes. Therefore, as usual, nonlinear lar
deflection effects are not taken into account. In fact,
pointed out in Ref. 1, calculations using the nonlinear lar
deflection model agree well with those using the compu
tionally less costly linear small-deflection model. Thus, t
net interaction pressure at any point between any two a
cent tubes linearly depends on the jump of the deflection
that point. Therefore, flexural vibration of anN-wall CNT is
described by the followingN coupled equations:

c1@w22w1#5EI1

d4w1

dx4 1rA1

d2w1

dt2
,

c2@w32w2#2c1@w22w1#5EI2

d4w2

dx4 1rA2

d2w2

dt2
,

......

2c~N21!@wN2wN21#5EIN

d4wN

dx4 1rAN

d2wN

dt2
, ~1!

where x is the axial coordinate,t is time, wk(x,t) (k
51,2...N) is the deflection of thekth tube,I k andAk are the
moment of inertia and the cross-sectional area of thekth
tube, the subscripts 1, 2,...N denote the quantities of the in
nermost tube, its adjacent tube, and the outermost tube
spectively, and all tubes have the same Young’s moduluE
51 TPa and the mass densityr51.3 g/cm3. Here, the (N
21) intertube interaction coefficientsck (k51,2...N21)
can be estimated using recent date given in Ref. 21 as

ck5
3203~2Rk! ergs/cm2

0.16d2 , d50.142 nm,

k51,2...N21, ~2!
©2002 The American Physical Society02-1
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which are slightly larger than those used in Ref. 14.
Let us first consider a doublewall nanotube~DWNT! of

length L, as shown in Fig. 1. Recently, the interest
DWNT’s is rising due to the progress in large-scale synthe
of DWNT’s.21,22 Equations for a DWNT are given by th
first two of Eq.~1! with c250. Let us assume that all neste
individual tubes have the same end conditions. Thus, it
be verified that all nested tubes have the same vibratio
mode,Y(x), determined by

d4Y~x!/dx45l4Y~x! ~3!

with the given end conditions. The valuel and the mode
Y(x) are determined as the eigenvalue and eigenfunctio
Eq. ~3! under the given end conditions. For instance,
fixed end conditions, the first five eigenvalues of Eq.~3! are
l1L54.73, l2L57.85, l3L510.9956, l4L514.137, and
l5L517.278. For cantilever end conditions,l1L51.875,
l2L54.694, l3L57.855, l4L510.996, andl5L514.137,
see Ref. 23. Thus, for then-order vibrational modeYn(x)
(n51,2...), the twon-order resonant frequencies of th
DWNT can be obtained by substitutingw15a1eivtYn(x),
w25a2eivtYn(x) into Eq. ~1!, which yields

vn0
2 5

1

2
~an2Aan

224bn!, vn1
2 5

1

2
~an1Aan

224bn!,

an5
EI1ln

41c1

rA1
1

EI2ln
41c1

rA2
.A4bn,

bn5
EI1EI2ln

8

r2A1A2
1c1ln

4 EI11EI2

r2A1A2
, ~4!

where the subscript 0 stands for the lowest~natural! n-order
resonant frequency, in order to distinguish it from otherN

TABLE I. Resonant frequencies (1011 Hz) of a fixed DWNT
~with the inner diameter 0.7 and the outer diameter 1.4 nm!.

L/Dout

Mode ~n!

1 2 3 4 5

Natural
frequency

10 14 38 72 106 141
20 3.5 10 19 31 46
50 0.6 1.6 3.1 5.1 7.5

Intertube 10 103 107 123 162 225
frequency 20 102 102 103 105 110

50 102 102 102 102 102

FIG. 1. Noncoaxial vibration of a doublewall carbon nanotub
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21) n-order intertube resonant frequencies characterized
substantially noncoaxial vibrational modes. For each of
resonant frequencies, the associated amplitude ratio of vi
tional modes of the inner to the outer tubes is

a1

a2
511

EI2ln
4

c1
2

rv2A2

c1
. ~5!

For the sake of comparison, then-order resonant frequenc
of a MWNT given by the single-beam model10–12 is

vn
25ln

4EI/~rA!, ~6!

where I and A are the total moment of inertia and the tot
cross-sectional area of MWNT’s. Thus,I 5I 11I 2 and A
5A11A2 for a DWNT. For a periodically supported
MWNT, it is reasonable to assume that the deflection and
slope are zero at the supporters due to the symmetry. T
let us consider a fixed DWNT. For instance, assume that
inner and the outer diameters are 0.7 and 1.4 n

TABLE II. Resonant frequencies (1011 Hz) of a cantilever
DWNT ~with the inner diameter 0.7 and the outer diameter 1.4 n!.

L/Dout

Mode ~n!

1 2 3 4 5

Natural
frequency

10 2 14 38 72 106
20 0.6 3.5 10 19 31
50 0.1 0.6 1.6 3.1 5.1

Intertube 10 102 103 107 123 162
frequency 20 102 102 102 103 105

50 102 102 102 102 102

TABLE III. Resonant frequencies (1011 Hz) of a fixed five-wall
CNT ~with the innermost diameter 0.7 and the outermost diame
3.5 nm!.

L/Dout

Mode ~n!

1 2 3 4 5

Natural
frequency

10 4.9 13.4 25.5 38.9 50.5
20 1.2 3.4 6.6 10.9 16.1
50 0.2 0.5 1.1 1.8 2.6

Intertube
frequency

(vn1)

10 53 54 57 65 80
20 53 53 53 53 54
50 53 53 53 53 53

Intertube
frequency

(vn2)

10 90 91 93 97 106
20 90 90 91 91 91
50 90 90 90 90 90

Intertube
frequency

(vn3)

10 122 122 123 127 133
20 121 121 122 122 122
50 121 121 121 121 121

Intertube 10 145 145 147 150 157
frequency 20 145 145 145 145 145

(vn4) 50 145 145 145 145 145

.
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respectively.22 Thus, the twon-order resonant frequencie
given by Eq.~4!, for n51 – 5, are listed in Table I for severa
smaller aspect ratios. It is found that~i! the natural frequency
vn0 given by Eq.~4! is close to that given by the single
beam model~6!, with a relative error less than 1% forn
51, and less than 25% forn55; ~ii ! the intertube resonan
frequencyvn1 , about 10 THz, is insensitive to the mod
numbern, and is much higher than the lowest natural fr
quencyv10 for larger aspect ratios. Therefore, the sing
beam model is accurate for coaxial vibrations of DWNT’s
larger aspect ratios at relatively lower frequencies, such
those studied in Refs. 10–12;~iii ! for shorter DWNT’s, how-
ever, the lowest noncoaxial resonant frequencies are com
rable to the first few higher natural frequencies. For exam
for aspect ratio 10~for which the beam model is adequate!,
the first few intertube frequenciesvn1 (n51 – 5) are around
10 THz, comparable to the third natural frequencyv30
57.17 THz and the fourth natural frequencyv40
510.6 THz. In this case, the noncoaxial intertube reson
frequencies and the associated noncoaxial vibrational mo
will be excited at the higher natural frequencies.

Shorter cantilever MWNT’s are used in some nanodevi
~such as nanotweezers and AFM tips7,8,24,25!. Here, the first
few resonant frequencies of a shorter cantilever DWNT
listed in Table II. It is seen from Tables I and II that a
conclusions obtained for fixed DWNT’s remain qualitative
true for cantilever DWNT’s. In particular, the lowest inte
tube resonant frequencies are almost the same in the
cases, indicating that they are insensitive to the end co
tions. Additionally, for both fixed and cantilever DWNT’s
the amplitude ratioa1 /a2 of the inner to the outer tubes fo
the natural frequencyvn0 is always close to unity, indicating
that the associated vibrational modes are almost coaxial
the other hand, the amplitude ratioa1 /a2 for the intertube
resonant frequencyvn1 is about20.7, indicating that the
deflection of the inner tube is opposite to the deflection of
outer tube and thus the associated vibrational mode will
tort otherwise concentric geometry of DWNT’s. Since t
concentric structure is the geometrical characteristic
MWNT’s, such a noncoaxial intertube vibration would cr
cially affect some of their important physical properties.

Further, let us consider a five-wall CNT with the inne
most diameter 0.7 and the outermost diameterDout
53.5 nm. In this case, for then-order mode of Eq.~3! with
the given end conditions, Eq.~1! gives five coupled equa
tions which determine then-order~lowest! natural frequency
vn0 and other four intertube resonant frequenciesvn1
,vn2,vn3,vn4 . This phenomenon is similar to resonan
of N coupled harmonic oscillators.26,27 For example, for the
fixed end conditions, all five resonant frequencies forn
51 – 5 are shown in Table III. It is seen that all results o
tained for DWNT’s remain qualitatively true for the five-wa
CNT, while the lowest intertube resonant frequency now
creases to 5.25 THz. Again, it confirms that the single-be
model is relevant to coaxial vibrations of MWNT’s of large
aspect ratios at relatively lower frequencies,10–12and nonco-
axial vibrations occur only at much higher frequencies. He
four noncoaxial intertube vibrational modes are shown
Fig. 2. It is seen that the intertube vibration causes comp
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noncoaxial distortion of the MWNT. In particular, nonco
axial vibration could occur inside a MWNT even withou
significant deflection of the outermost tube. Of course,
jump of the deflections between any two adjacent tube
bounded by the initial intertube spacing~about 0.34 nm!.
This is not a problem for small-deflection linear vibratio
studied here.

In summary, different noncoaxial resonant frequenc
and the associated noncoaxial vibrational modes are ca
lated. The first few noncoaxial resonant frequencies
found to be insensitive to vibrational modes, length
MWNT’s, and the end conditions, while they decrease w
the number of nested layers. For smaller aspect ratios,
lowest noncoaxial intertube resonant frequencies are fo
to be comparable to the first few higher~such as the third,
fourth, or fifth! natural frequencies. This implies that intern
noncoaxial resonance will be excited at the higher natu
frequencies, and MWNT’s cannot maintain their concent
structure at ultrahigh frequencies. In particular, because
first few intertube resonant frequencies fall into a very n
row range, their noncoaxial vibrational modes would be e
cited simultaneously. As a result, noncoaxial intertube vib
tion will distort otherwise concentric geometry of MWNT’s
and thus crucially alter some of their important physic
properties. Finally, it should be mentioned that the rapid
vance in nanomechanical systems28 is making it feasible or
more practical to generate and detect vibrations in the t
hertz range.29,30

FIG. 2. Four noncoaxial intertube vibrational modes of a fix
five-wall CNT.
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