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Noncoaxial resonance of an isolated multiwall carbon nanotube
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This brief report studies noncoaxial mechanical resonance of an isolated multiwall carbon nanotube. Non-
coaxial resonant frequencies and the associated noncoaxial vibrational modes are calculated. For shorter or
periodically supported multiwall carbon nanotubes, the lowest noncoaxial resonant frequencies predicted by
the present model are comparable to their first few higher natural frequencies, which indicates that noncoaxial
resonance will be excited at the higher natural frequencies. Since noncoaxial vibration will distort otherwise
concentric geometry of multiwall carbon nanotubes, it could crucially affect their phy(sieeh as electronic
and optical properties.
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Carbon nanotube$CNT’s) hold substantial promise as all nested tubes are originally concentric and the van der
building blocks for nanoelectronics, nanodevices, and/Naals interaction depends on the intertube spacing, the net
nanocomposite’,® because of their electronic and mechani-van der Waals interaction pressure remains zero for each of
cal properties. Mechanical behavior of CNT’s has been théll nested tubes, provided they vibrate coaxially. For nonco-
subject of much recent research. Since controlled experigxial vibration, the net interaction pressuiger unit axial
ments at the nanometer scale are difficult, and moleculal€ngth between any two adjacent tubes depends on the jump
dynamics simulations remain formidable for large-scale sysof their deflections. Here, we only consider infinitesimal vi-
tems, continuum elastic models have been widely andration, and study resonant frequencies and the associated
successfully used to study mechanical behavior of CNT'sVibrational modes. Therefore, as usual, nonlinear large-
such as static deflection, thermal vibration, and resonarfleflection effects are not taken into account. In fact, as
frequencie@__lz In particu|ar, the Sing]e_e|astic beam pOinted out in Ref. 1, calculations USing the nonlinear Iarge-
model°~*2which ignores intertube radial displacements angdeflection model agree well with those using the computa-
the related internal degrees of freedom, has been widely usdtpnally less costly linear small-deflection model. Thus, the
to study mechanical behavior of multiwall nanotubesnet interaction pressure at any point between any two adja-
(MWNT’s).2~813As shown in Ref. 14 for column buckling cent tubes linearly depends on the jump of the deflections at
of MWNT’s, such a S|mp||f|ed model is adequate for free- that pOint. Therefore, flexural vibration of &ftwall CNT is

Standing MWNT'’s of a |arger aspect ratio. described by the fO”OWin@l COUp|Ed equations:
However, in many proposed designs of singlewall- 4 2
nanotube{SWNT) or MWNT-based electronics and nanode- d’w, d*w,
Cq[W,—w,]=El v + PAlw,

vices, see, e.g., Refs. 1-4, CNT’s are often supported peri-

odically. In some other applications, such as nanotweezers

and antiferromegnetic AFM tips® shorter CNT's are pre- _ d*w, d?w,

ferred to prevent undesirable kinking and buckling. There- Col Ws =W —ColWo =W, ]=Elomgia T pArg,

fore, vibrational behavior of shorter or periodically sup-

ported MWNT's is of practical interest. In these cases, itis ...

anticipated that intertube radial displacements of MWNT’s

would come to play a significant role and give rise to differ- d?wy,

ent resonant frequencies and noncoaxial vibrational modes.  ~CnN-n[WnTWn-1]=Elvrmam oAz (D)

Although noncoaxial intertube vibration would not substan-

tially affect the overall deflection of MWNT’s, it could dis- Where x is the axial coordinatef is time, wy(x,t) (K

tort otherwise concentric geometry and thus crucially affect=1,2..N) is the deflection of th&th tube,l, andA are the

some of their physical(especially electronic™® and moment of inertia and the cross-sectional area of ktie

optical®?) properties. Hence, it is relevant to study whentube, the subscripts 1, 2N..denote the quantities of the in-

vibration of MWNT’s becomes essentially noncoaxial. nermost tube, its adjacent tube, and the outermost tube, re-
The existing single-beam modet? assumes that all spectively, and all tubes have the same Young’s modilus

nested individual tubes of a MWNT remain coaxial during =1 TPa and the mass density=1.3 g/cni. Here, the N

vibration and thus can be described by a single deflection-1) intertube interaction coefficients, (k=1,2..N—1)

curve. Evidently, such a model cannot be used to study norsan be estimated using recent date given in Ref. 21 as

coaxial intertube vibrations of MWNT's. Here, a multiple-

4

elastic beam model is suggested, in which each of the nested _320x(2Ry) ergs/cn d=0.142 nm
nanotubes is described as an individual elastic beam, and the K 0.16d42 ' ‘ ’
deflections of all nested tubes are coupled through the van

der Waals interaction between any two adjacent tubes. Since k=1,2.N—-1, (2)
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TABLE 1. Resonant frequencies (¥oHz) of a cantilever
DWNT (with the inner diameter 0.7 and the outer diameter 1.4 nm

FIG. 1. Noncoaxial vibration of a doublewall carbon nanotube. frequency

which are slightly larger than those used in Ref. 14.

Let us first consider a doublewall nanotud@WNT) of

length L, as shown in Fig. 1. Recently, the interest in
DWNT's is rising due to the progress in large-scale synthesis

Mode (n)
L/D gyt 1 2 3 4 5
Natural 10 2 14 38 72 106
20 0.6 35 10 19 31
50 0.1 0.6 1.6 3.1 5.1
Intertube 10 102 103 107 123 162
frequency 20 102 102 102 103 105
50 102 102 102 102 102

of DWNT’s.??2 Equations for a DWNT are given by the

first two of Eq.(1) with c,=0. Let us assume that all nested
individual tubes have the same end conditions. Thus, it can

—1) n-order intertube resonant frequencies characterized by

be verified that all nested tubes have the same vibrationa?iUbStantia”y noncoaxial vibrational modes. For each of the
mode,Y(x), determined by

d*Y(x)/dx*=N14Y(x)

)

with the given end conditions. The valueand the mode
Y(x) are determined as the eigenvalue and eigenfunction of a, (o Cq

Eq. (3) under the given end conditions. For instance, for

fixed end conditions, the first five eigenvalues of E}).are
N L=4.73, \,L=7.85, \3L=10.9956, \,L=14.137, and
AsL=17.278. For cantilever end conditions;L=1.875,
NoL=4.694,\3L=7.855,A,L=10.996, and\sL =14.137,
see Ref. 23. Thus, for the-order vibrational moder ,(x)

(n=1,2...), the twon-order resonant frequencies of the

DWNT can be obtained by substituting; = a;e'“'Y,,(x),
w,=a,e' 'Y (x) into Eq. (1), which yields

1

1
wﬁozz(an_ \/aﬁ_4,8n)! wﬁlzz(an"' \/aﬁ_‘]‘ﬁn)y

an=

pA1

5 ELLEI,\E N
=t AN,
T ptALA; thn pA1A;

_Ell)\ﬁ+c1 . El,b i +c,
pA2

>\48,,

LEL+EI,

(4)

where the subscript 0 stands for the low@situra) n-order
resonant frequency, in order to distinguish it from othir (

TABLE |. Resonant frequencies (¥OHz) of a fixed DWNT
(with the inner diameter 0.7 and the outer diameter 1.4.nm

Mode (n)
L/Dgyt 1 2 3 4 5
Natural 10 14 38 72 106 141
frequency 20 35 10 19 31 46
50 0.6 1.6 3.1 5.1 7.5
Intertube 10 103 107 123 162 225
frequency 20 102 102 103 105 110
50 102 102 102 102 102

resonant frequencies, the associated amplitude ratio of vibra-
tional modes of the inner to the outer tubes is

a ELAY  pw?A,

=1+ - . (5)

For the sake of comparison, timeorder resonant frequency
of a MWNT given by the single-beam mod&1*?is

(6)

wherel and A are the total moment of inertia and the total
cross-sectional area of MWNT’s. Thus=1,+1, and A
=A;+A, for a DWNT. For a periodically supported
MWNT, it is reasonable to assume that the deflection and the
slope are zero at the supporters due to the symmetry. Thus,
let us consider a fixed DWNT. For instance, assume that the
inner and the outer diameters are 0.7 and 1.4 nm,

wp=N\El/(pA),

TABLE lIl. Resonant frequencies (3bHz) of a fixed five-wall
CNT (with the innermost diameter 0.7 and the outermost diameter
3.5 nm.

Mode (n)
L/D oyt 1 2 3 4 5
Natural 10 49 134 255 389 505
frequency 20 1.2 34 6.6 10.9 16.1
50 0.2 0.5 1.1 1.8 2.6
Intertube 10 53 54 57 65 80
frequency 20 53 53 53 53 54
(@n1) 50 53 53 53 53 53
Intertube 10 90 91 93 97 106
frequency 20 90 90 91 91 91
(@n2) 50 90 90 90 90 90
Intertube 10 122 122 123 127 133
frequency 20 121 121 122 122 122
(@n3) 50 121 121 121 121 121
Intertube 10 145 145 147 150 157
frequency 20 145 145 145 145 145
(wna) 50 145 145 145 145 145
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respectively? Thus, the twon-order resonant frequencies 1 a,
given by Eq.(4), forn=1-5, are listed in Table | for several A
smaller aspect ratios. It is found th@t the natural frequency

wno given by Eq.(4) is close to that given by the single-
beam model(6), with a relative error less than 1% faor 5

=1, and less than 25% far=5; (ii) the intertube resonant

frequencyw,;, about 10 THz, is insensitive to the mode

numbern, and is much higher than the lowest natural fre- 3 @,

qguency wq, for larger aspect ratios. Therefore, the single-
beam model is accurate for coaxial vibrations of DWNT’s of

larger aspect ratios at relatively lower frequencies, such as
those studied in Refs. 10—-1@ij ) for shorter DWNT'’s, how- V
ever, the lowest noncoaxial resonant frequencies are compe 1

rable to the first few higher natural frequencies. For example,

for aspect ratio 1@for which the beam model is adequate

the first few intertube frequencies,; (n=1-5) are around 4 @,
10 THz, comparable to the third natural frequeney,
=7.17THz and the fourth natural frequencyv,q
=10.6 THz. In this case, the noncoaxial intertube resonant
frequencies and the associated noncoaxial vibrational mode 5
will be excited at the higher natural frequencies.

Shorter cantilever MWNT's are used in some nanodevices
(such as nanotweezers and AFM fipg*25. Here, the first
few resonant frequencies of a shorter cantilever DWNT are
listed in Table Il. It is seen from Tables | and Il that all
conclusions obtained for fixed DWNT's remain qualitatively
true for cantilever DWNT’s. In particular, the lowest inter-
tube resonant frequencies are almost the same in the tw.
cases, lnd_lc_atlng that they are insensitive _to the end C?ndl_ FIG. 2. Four noncoaxial intertube vibrational modes of a fixed
tions. Additionally, for both fixed and cantilever DWNT's, five-wall CNT
the amplitude rati@, /a, of the inner to the outer tubes for '

the natural frequency, is always close to unity, indicating noncoaxial distortion of the MWNT. In particular, nonco-
that the associated vibrational modes are almost coaxial. Ofxjal vibration could occur inside a MWNT even without
the other hand, the amplitude raiq/a, for the intertube significant deflection of the outermost tube. Of course, the
resonant frequency, is about—0.7, indicating that the jump of the deflections between any two adjacent tubes is
deflection of the inner tube is opposite to the deflection of theyounded by the initial intertube spacirigbout 0.34 nm
outer tube and thus the associated vibrational mode will disThis is not a problem for small-deflection linear vibrations
tort otherwise concentric geometry of DWNT’s. Since thestudied here.
concentric structure is the geometrical characteristic of |n summary, different noncoaxial resonant frequencies
MWNT's, such a noncoaxial intertube vibration would cru- and the associated noncoaxial vibrational modes are calcu-
cially affect some of their important physical properties.  |ated. The first few noncoaxial resonant frequencies are
Further, let us consider a five-wall CNT with the inner- found to be insensitive to vibrational modes, length of
most diameter 0.7 and the outermost diamef®p,; MWNT'’s, and the end conditions, while they decrease with
=3.5nm. In this case, for the-order mode of Eq(3) with  the number of nested layers. For smaller aspect ratios, the
the given end conditions, Eql) gives five coupled equa- |owest noncoaxial intertube resonant frequencies are found
tions which determine the-order(lowes) natural frequency to be comparable to the first few high@uch as the third,
wno and other four intertube resonant frequencies;  fourth, or fifth) natural frequencies. This implies that internal
<wpp<wpz3<wy,. This phenomenon is similar to resonancenoncoaxial resonance will be excited at the higher natural
of N coupled harmonic oscillatof8:?” For example, for the frequencies, and MWNT’s cannot maintain their concentric
fixed end conditions, all five resonant frequencies for structure at ultrahigh frequencies. In particular, because the
=1-5 are shown in Table Ill. It is seen that all results ob-first few intertube resonant frequencies fall into a very nar-
tained for DWNT's remain qualitatively true for the five-wall row range, their noncoaxial vibrational modes would be ex-
CNT, while the lowest intertube resonant frequency now de<cited simultaneously. As a result, noncoaxial intertube vibra-
creases to 5.25 THz. Again, it confirms that the single-beantion will distort otherwise concentric geometry of MWNT’s,
model is relevant to coaxial vibrations of MWNT's of larger and thus crucially alter some of their important physical
aspect ratios at relatively lower frequenct€si?and nonco-  properties. Finally, it should be mentioned that the rapid ad-
axial vibrations occur only at much higher frequencies. Hereyance in nanomechanical systeéfhis making it feasible or
four noncoaxial intertube vibrational modes are shown inmore practical to generate and detect vibrations in the tera-
Fig. 2. It is seen that the intertube vibration causes complekertz rangé®>°
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