Electrically inactive nitrogen complex in Si oxynitride

Eun-Cheol Lee and K. J. Chang

Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea (Received 6 August 2002; published 31 December 2002)

Based on first-principles theoretical calculations, we find a very stable nitrogen complex in oxynitrides, which consists of two N atoms at O sites and one O vacancy. This N complex is electrically inactive without bonding with hydrogen, removing the electrical activity of O vacancies, and the stability of this complex is greatly enhanced as going from pure oxide to oxynitride films. We suggest that charge traps involving a single N atom, such as a bridging N center, can be deactivated by reactions with O or NO interstitials, and resulting N interstitials are easily depleted into the interface, in good agreement with experiments.

DOI: 10.1103/PhysRevB.66.233205

PACS number(s): 61.72.-y, 61.72.Bb, 66.30.Jt, 81.65.Mq

The incorporation of N into a gate oxide of metal-oxidesemiconductor (MOS) devices has attracted much attention because of the suppression of dopant diffusion, leakage current, charge trapping, and hot-carrier-induced degradation.^{1–5} Experiments showed that the performance of MOS devices depends on both the concentration and distribution of N incorporated in oxynitride (or lightly nitrided oxide) films.⁶ However, the reason for the electrical improvement of MOS devices by N incorporation is not clearly understood, while it desires a complete understanding of the structural and electronic properties of oxynitrides on an atomic level.

There have been much debates on the bond configuration of incorporated N. From x-ray photoelectron spectroscopy measurements for oxynitrides,^{7,8} a $N \equiv Si_3$ configuration was suggested at or very close to the interface, i.e., one N bonded to three Si atoms, while the chemical bond of N away from the interface is either a N bonded to two Si and one O atom $(O-N=Si_2)$ or a N bonded to two Si atoms $(N=Si_2)$.^{6,9–11} Previous theoretical calculations indicated that N incorporation in SiO₂ generates dangling bonds or lone pairs of the Si, O, and N atoms, and hydrogenation deactivates these charge traps.¹² However, H-related bonds such as Si-H and N-H have not been observed in oxynitride films grown in N2O ambient,^{13,14} which exhibit smaller electron and hole trap densities, as compared to pure SiO₂ film. In NH₃-nitrided films, on the other hand, a much higher charge trap density was found, with a large number of Si-H and N-H bonds formed by the introduction of high H concentrations.^{13,14} Since H densities are usually lower in N₂O-oxynitrided films, it is unlikely that H plays an important role in reducing charge traps in these samples.

In this paper, we present an atomic model for N incorporated in SiO₂, based on first-principles pseudopotential calculations. We find a very stable N-related complex near the interface, which consists of one O vacancy and two N atoms in the N \equiv Si₃ configuration. This complex is an electrically inactive center with no dangling bond even in the absence of H, and becomes very stable as going to Si-rich layers, where the concentration of N is increased. Due to the inactive N-related complex, the electrical activity of O vacancies is severely suppressed, explaining experimental findings that the intensity of partially oxidized Si atoms and the density of E' centers near the interface are significantly reduced. We suggest that O or NO interstitials easily deactivate charge traps involving a single N atom, and depleted N atoms moves to the interface to form the inactive N complex.

We calculate the total energies of N-related defects in α -quartz SiO₂ using a first-principles pseudopotential method within the generalized gradient approximation.¹⁵ To deal with the localized nature of the O- and N-2p orbitals, we use a real-space multigrid method,¹⁶ which has been very efficient in applications to localized systems such as SiO₂ and ZnO.17,18 The Laplacians in Poisson and Kohn-Sham equations are expressed up to the 12th order, based on a higher-order finite difference method.¹⁹ We employ the same set of grids as that used for a 72-atom supercell in previous calculations for SiO₂.¹⁷ With use of the conjugate-gradient technique, we relax ionic coordinates until the atomic configuration is optimized. The formation energy of a defect α is defined as,²⁰ $E_f(\alpha) = E_{(tot)}(\alpha) - \sum_{\beta} n_{\beta} \mu_{\beta}$, where $E_{(tot)}(\alpha)$ is the total energy of the supercell containing the defect α , n_{β} is the number of β atoms (β =Si, O, and N) in the supercell, and μ_{β} is the chemical potential of a β atom. The chemical potentials of bulk Si and O2 are chosen as the maximum values for μ_{Si} and μ_{O} , respectively, and satisfy the relation, $\mu_{Si} + 2\mu_{O} = \mu_{SiO_2}$, where μ_{SiO_2} is the total energy per molecule in SiO₂. To describe the stoichiometry of SiO₂, we use the stoichiometric parameter λ defined as μ_{Si} $=\mu_{\rm Si}({\rm bulk})-\lambda\Delta H$, where $\mu_{\rm Si}({\rm bulk})$ is the chemical potential of bulk Si and ΔH is the calculated heat of formation of α guartz, 9.53 eV. Since NO molecules are considered to be responsible for oxynitridization in both N2O- and NO-grown oxynitride films,²¹ we obtain the N chemical potential from that of a NO molecule, $\mu_{\rm N} = \mu_{\rm NO} - \mu_{\rm O}$.

First, we study the energetics of the N=Si₂ and N=Si₃ configurations, which involve a single N in bonding. In the N=Si₂ class, the most preferential species are drawn in Figs. 1(a,b), referred to as N(2)₀ and N(2)₀-V₀, which represent the twofold N atoms at the O lattice in the perfect α quartz and α quartz with an O vacancy (V₀), respectively. Similarly, the threefold N atoms in the N=Si₃ configuration are referred to as N(3)₀ and N(3)₀-V₀ in Figs. 1(c,d). In general, the Si-N bond lengths of the twofold N atoms are found to be 1.66–1.67 Å, while they increase to 1.73–1.80 Å for the threefold N atoms, similar to previous calculations.¹² In the N(3)₀ and N(3)₀-V₀ defects with a broken bond, a new bond between the N and Si₁ atoms is formed, and a six-

FIG. 1. Atomic structures of the (a) $N(2)_0$, (b) $N(2)_0$ - V_0 , (c) $N(3)_0$, (d) $N(3)_0$ - V_0 , (e) $N(3)_0$ - V_0 - $N(3)_0$, and (f) O-added $N(3)_0$ - V_0 - $N(3)_0$ defects in the α -quartz structure.

member ring containing the N atom split into three- and four-member rings. Since a Si-O bond is stronger than a Si-N bond, the formation energy of N(2)_O is lower by 1.85 eV than for N(3)_O, as shown in Fig. 2. When the Si_I-N bond is formed as going from N(2)_O- V_O to N(3)_O- V_O , it gains a much higher energy than the energy cost to break the Si_I-Si_{II} bond, thus, the N(3)_O- V_O defect has the formation energy lower by 1.74 eV. Among the N=Si₂ and N=Si₃ defects up to now, N(2)_O has the lowest formation energy over the whole range of λ , except for the extreme Si-rich region ($\lambda \approx 0$), where N(3)_O- V_O is stabilized by reaction with V_O .

FIG. 2. The formation energies of various N-related defects as a function of the stoichiometric parameter λ .

FIG. 3. Atomic structures of the (a) O_i -N(2)_O, (b) N interstitial in the peroxy linkage structure, and (c) transition state with a N bonded to a Si atom. The lower panel shows the variation of energy along the diffusion path of N, where (b') denotes other peroxy linkage structure with the N positioned at a neighboring Si-O-Si bridge site.

However, all these defects contain active dangling bonds, becoming charge trap centers, while it was suggested that H incorporation prevents the charge trap generation.¹²

Here, we find a H-free defect complex that solely consists of N and $V_{\rm O}$, without any dangling bond. This complex, referred to as $N(3)_O - V_O - N(3)_O$ in Fig. 1(e), has two threefold N atoms (N_I and N_{II}) on both the sides of V_{Ω} . Because of the two $N \equiv Si_3$ species, this complex is an electrically inactive center, with no defect level in the band gap, very similar to donor-vacancy complexes proposed for inactive donors in Si.²² If N_I and N_{II} change into two N(2)_O species, the Si_I-Si_{II} bond is recovered. However, since lone-pair states remain at the twofold N atoms, the total energy increases by 6.20 eV, indicating that $N(3)_{O}-V_{O}-N(3)_{O}$ is a very stable complex. When an O atom is added to the N_{II}-Si_{II} bond, the N_{II} atom forms a bond configuration of O—N=Si₂ [see Fig. 1(f)]. This O-added complex is less stable than $N(3)_{O}-V_{O}-N(3)_{O}$ for a wide range of λ , while it is stabilized against N(2)₀ for $0 < \lambda < 0.5$, as shown in Fig. 2. We also consider adding an O atom to the N(2)_O defect, which is referred to as O_i -N(2)_O in Fig. 3(a), and find that this N configuration is the most stable defect for λ above 0.64, i.e., under the O-rich condition.

For N concentrations larger than 10^{14} cm⁻³, which can be achieved for $\lambda < 0.6$ at a growth temperature of $1000 \,^{\circ}C$ [see Fig. 2], the N(3)₀-V₀-N(3)₀ complex is found be the most stable N configuration. The stability of this complex is greatly enhanced against N(2)₀ as going to the Si-rich limit. This result indicates that N is likely to be incorporated in the Si-rich region such as suboxide layers near the interface, in good agreement with experiments.²³ Using a Si/tridymite-SiO₂ interface model, we find that an inactive N(3)_{Si}-N(3)_{Si} complex, where two adjacent Si atoms are occupied by two N atoms, can be formed in the Si bulk region close to the interface, similar to an inactive pair of phosphorous.²⁴ The binding energy of this complex is calculated to be 1.98 eV, as compared to two isolated substitutional N(3)_{Si} atoms. If the

N(3)_{Si}-N(3)_{Si} complex is buried in oxynitride as the interface grows into the Si substrate, it is expected to gradually transform into the $N(3)_0$ - V_0 - $N(3)_0$ complex. The existence of N=Si₃ units in the N(3)₀- V_0 -N(3)₀ complex agrees well with x-ray photoelectron spectroscopy measurements 11 and theoretical calculations 9,10 of core-level shifts. When the $N(3)_{\Omega}-V_{\Omega}-N(3)_{\Omega}$ complex is formed via the reaction, $3V_{\Omega}$ $+2N_i$ [or $2N(2)_0+V_0$] $\rightarrow N(3)_0-V_0-N(3)_0$, which is found to be exthothermic by 15.95 eV, O vacancies in incompletely oxidized Si are annihilated by nitridization, consistent with the prediction by the Mott rule.²⁵ The annihilation of O vacancies also agrees with other experiments, which reported that N incorporation significantly reduces the density of partially oxidized Si atoms in the suboxide layer near the interface,⁷ and removes the E' centers,²⁶ which are regarded as positively charged O vacancies,²⁷ especially near the interface. In the amorphous environment, it is expected that the pair of threefold N atoms may not have the same structure as that obtained in crystalline quartz. Because of the continous random network, the two threefold N atoms in the pair may be separated more than that in crystalline quartz. Then, it may appear that the threefold N atoms look isolated defects, which is not inconsistent with the single threefold N defect model.^{9,10} Our results suggest that the defect center with two threefold N atoms is the most dominant inactive N defect in amorphous Si oxynitride. However, since the structure of amorphous film is different from that of crystalline quartz, other possibilities such as the creation of the inactive single threefold N defect can not be ruled out. Thus, more decisive experiments are required to clarify the atomic structure of the dominant inactive N defect.

Oxide films grown in N₂O by rapid thermal oxidation (RTO) have a preferential pileup of N at the Si-SiO₂ interface, while furnace-grown oxides in N₂O exhibit a fairly uniform distribution of N throughout the oxide.^{6,8,28} Among the gas-phase products decomposed from N₂O by RTO, such as N₂, O₂, NO, and O, Carr and co-workers suggested that a reaction involving atomic O depletes previously incorporated N from the oxide.⁸ They also showed that incorporated N in the oxide is removed by annealing in O₃, which produces atomic O, while the N distribution is not significantly affected by O₂. Other view based on a reaction involving NO for the N removal was given,²⁹ while other experiments reported that the supply of NO does not remove N.²⁸

To see the depletion of N by atomic O, we examine the reaction of N-related defects acting as a charge trap with interstitial O, and the subsequent diffusion of N as an interstitial. When $N(2)_O$ forms the O_i - $N(2)_O$ complex [see Fig. 3(a)] with an interstitial O, the energy is lowered by 3.89 eV. Figure 3 shows the variation of energy along the diffusion path of N in the O_i - $N(2)_O$ complex, relative to isolated O_i and $N(2)_O$. For each position of the path between two (meta)stable configurations, the geometry optimization is performed by constrained conjugate-gradient relaxation method.³⁰ As the O_i - $N(2)_O$ defect turns into a peroxy linkage structure with the N atom incorporated in the Si-O-Si bond [see Fig. 3(b)], the energy increases gradually by 0.77 eV, while the energy of a threefold configuration, where N is directly bonded to the O atom, is much higher by 2.97 eV. In

the peroxy linkage structure, the N interstitial migrates to a neighboring Si-O-Si bridge site and forms a new peroxy linkage, with an energy barrier of 2.47 eV. At the saddle point of this diffusion process, the N atom is only bonded to the neighboring Si atom [see Fig. 3(c)], very similar to the concerted exchange of O interstitial,³¹ and eventually diffuses into the interface along the SiO_2 network. Since the kick-out diffusion of N by O_i occur with energies much lower than that of isolated $N(2)_0$ and O_i , it is very likely for the $N(2)_0$ defect to be depleted in the oxide by reaction with atomic O. Similarly, for other N-related defects involving a single N atom, we find the formation of O_i -N(2)_O via exthothermic reactions with interstitial O, which results in a similar O-assisted diffusion of N; the reactions of $N(3)_0 + O_i$, $N(3)_{O}-V_{O}+2O_{i}$, and $N(2)_{O}-V_{O}+2O_{i}$ are exthothermic by 5.74, 10.26, and 12.00 eV, respectively. Our results indicate that the O-assisted diffusion of N is highly likely to occur in the RTO process using N₂O, where atomic O is supplied from the decomposition of N₂O.⁸ When the N atom diffuses into the interface, where O vacancies are piled up, O vacancies will be annihilated by the reaction, $O_i - N(2)_0 + 3V_0$ \rightarrow N(3)₀-V₀-N(3)₀, which is exothermic by 14.41 eV. Since the oxynitridization or annealing process induces the formation of the inactive $N(3)_{O}-V_{O}-N(3)_{O}$ complex, the charge traps associated with O vacancies near the interface are deactivated.

We also find that the N(2)_O defect is easily removed by reaction with an interstitial NO molecule, as suggested by Saks and co-workers.²⁹ When N(2)_O forms a complex with NO, the binding energy is calculated to be 4.51 eV, and the newly formed N₂ molecule can be dissociated into the empty region of the six-member ring with an energy barrier of 1.27 eV, recovering a Si-O-Si bridge. The removal of N(2)_O by NO is energetically favorable because the energy of the dissociated N₂ is much lower by 6.60 eV than that of isolated N(2)_O and NO. The interstitial N₂ is an electrically inactive center, with no defect level in the band gap.

Finally, we discuss the electrical improvement of Si oxynitrides, which exhibit a significant reduction of charge traps. Experiments suggested that dominant hole traps in the oxide are attributed to oxygen vacancies.²⁶ Theoretical calculations³² also indicated that O vacancies are responsible for the stress-induced leakage current (SILC), while there has been other model involving a complex of O vacancy with hydrogen.³³ The replacement of O vacancies by our inactive N-related complexes in the O-deficient layer will eventually lead to the suppression of the SILC. On the other hand, NH3-nitrided oxides exhibited a high density of electron traps, which were attributed to $N(2)_{O}$, while the density of hole traps is lowered.^{26,34} When these oxides are thermally reoxidized in O_2 , the density of $N(2)_0$ was shown to be greatly reduced, $\overline{^{34}}$ which may result from the deactivation of $N(2)_{O}$ by reaction with O, based on our calculations. The removal of $N(2)_0$ by O or NO can also explain other experimental findings that the defect densities of N(2)₀ are reduced in oxynitrides grown in N₂O or NO ambient, which supplies the source of atomic O or NO. Thus, we suggest that it is an important procedure to supply O or NO interstitials for suppressing N-related charge traps and enhancing the electrical reliability of oxinitrides.

In conclusion, we find that incorporated N forms the stable defect complex that consists of two N atoms and one O vacancy, especially in Si-rich layers near the Si/SiO_2 interface, where the level of N incorporation is of an order of atomic %. Since this N complex is an electrically inactive center involving O vacancies, the suppression of the electrical activity of O vacancies piled up near the interface would lead to the improvement of the MOS device performance.

- ¹T. Aoyama et al., J. Electrochem. Soc. **140**, 3624 (1993).
- ²D. Mathiot et al., J. Appl. Phys. 73, 8215 (1993).
- ³D. Misra, Appl. Phys. Lett. **75**, 2283 (1999).
- ⁴E. Cartier et al., Appl. Phys. Lett. 64, 901 (1994).
- ⁵J. Ahn et al., Appl. Phys. Lett. **60**, 2809 (1992).
- ⁶D. Bouvet et al., J. Appl. Phys. 79, 7114 (1996).
- ⁷Z.H. Lu *et al.*, Appl. Phys. Lett. **67**, 2836 (1995).
- ⁸E.C. Carr et al., Appl. Phys. Lett. 66, 1492 (1995).
- ⁹G.-M. Rignanese et al., Phys. Rev. Lett. 79, 5174 (1997).
- ¹⁰G.F. Cerofolini *et al.*, Phys. Rev. B **61**, 14 157 (2000).
- ¹¹Y. Miura et al., Appl. Phys. Lett. 77, 220 (2000).
- ¹²S. Jeong and A. Oshiyama, Phys. Rev. Lett. **86**, 3574 (2001).
- ¹³M. Yasuda et al., Jpn. J. Appl. Phys. **30**, 3597 (1991).
- ¹⁴H. Fukuda et al., J. Appl. Phys. 81, 1825 (1997).
- ¹⁵ J.P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996).
- ¹⁶Y.-G. Jin, J.-W. Jeong, and K.J. Chang, Physica B **273-274**, 1003 (1999); Y.-G. Jin and K.J. Chang, J. Korean Phys. Soc. **40**, 406 (2002).
- ¹⁷Y.-G. Jin and K.J. Chang, Phys. Rev. Lett. 86, 1793 (2001).

We further find that $N(2)_O$ behaving as a charge trap in the the pure oxide can be easily deactivated by reaction with O or NO interstitial, and the subsequent kick-out diffusion of N into the interface leads to the formation of the inactive N complex, suppressing the electrical degradation caused by N incorporation.

We would like to thank Dr. Y.-G. Jin and Y.-S. Kim for helpful discussions. This work was supported by Samsung Electronics and the supercomputing center in KISTI.

- ¹⁸E.-C. Lee *et al.*, Phys. Rev. B **64**, 085120 (2001).
- ¹⁹J.R. Chelikowsky et al., Phys. Rev. Lett. 72, 1240 (1994).
- ²⁰J.E. Northrup and S.B. Zhang, Phys. Rev. B **47**, 6791 (1993).
- ²¹P.J. Tobin et al., J. Appl. Phys. 75, 1811 (1994).
- ²²M. Ramamoorthy and S.T. Pantelides, Phys. Rev. Lett. **76**, 4753 (1996).
- ²³I.J.R. Baumvol et al., Appl. Phys. Lett. 72, 2999 (1998).
- ²⁴R. Baierle *et al.*, Physica B **273-274**, 260 (1999).
- ²⁵V.A. Gritsenko et al., Phys. Rev. Lett. 81, 1054 (1998).
- ²⁶J.T. Yount et al., IEEE Trans. Nucl. Sci. 39, 2211 (1992).
- ²⁷M. Boero et al., Phys. Rev. Lett. 78, 887 (1998).
- ²⁸E.P. Gusev et al., IBM J. Res. Dev. 43, 265 (1999).
- ²⁹N.S. Saks et al., Appl. Phys. Lett. 67, 374 (1995).
- ³⁰M. Kaukonen *et al.*, Phys. Rev. B **57**, 9965 (1998).
- ³¹D.R. Hamann, Phys. Rev. Lett. **81**, 3447 (1998).
- ³²A. Oshiyama, Jpn. J. Appl. Phys. **37**, L232 (1998).
- ³³P.E. Blöhl and J.H. Stathis, Phys. Rev. Lett. 83, 372 (1999); P.E. Blöhl, Phys. Rev. B 62, 6158 (2000).
- ³⁴J.T. Yount et al., J. Appl. Phys. 76, 1754 (1994).