Electrically inactive nitrogen complex in Si oxynitride

Eun-Cheol Lee and K. J. Chang

Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea (Received 6 August 2002; published 31 December 2002)

Based on first-principles theoretical calculations, we find a very stable nitrogen complex in oxynitrides, which consists of two N atoms at O sites and one O vacancy. This N complex is electrically inactive without bonding with hydrogen, removing the electrical activity of O vacancies, and the stability of this complex is greatly enhanced as going from pure oxide to oxynitride films. We suggest that charge traps involving a single N atom, such as a bridging N center, can be deactivated by reactions with O or NO interstitials, and resulting N interstitials are easily depleted into the interface, in good agreement with experiments.

DOI: 10.1103/PhysRevB.66.233205 PACS number(s): 61.72. - y, 61.72.Bb, 66.30.Jt, 81.65.Mq

The incorporation of N into a gate oxide of metal-oxidesemiconductor (MOS) devices has attracted much attention because of the suppression of dopant diffusion, leakage current, charge trapping, and hot-carrier-induced degradation. $1-5$ Experiments showed that the performance of MOS devices depends on both the concentration and distribution of N incorporated in oxynitride (or lightly nitrided oxide) films.⁶ However, the reason for the electrical improvement of MOS devices by N incorporation is not clearly understood, while it desires a complete understanding of the structural and electronic properties of oxynitrides on an atomic level.

There have been much debates on the bond configuration of incorporated N. From x-ray photoelectron spectroscopy measurements for oxynitrides,^{7,8} a N=Si₃ configuration was suggested at or very close to the interface, i.e., one N bonded to three Si atoms, while the chemical bond of N away from the interface is either a N bonded to two Si and one O atom $(O-M=Si₂)$ or a N bonded to two Si atoms $(N=Si₂)$.^{6,9–11} Previous theoretical calculations indicated that N incorporation in $SiO₂$ generates dangling bonds or lone pairs of the Si, O, and N atoms, and hydrogenation deactivates these charge traps.12 However, H-related bonds such as Si-H and N-H have not been observed in oxynitride films grown in N_2O ambient,^{13,14} which exhibit smaller electron and hole trap densities, as compared to pure $SiO₂$ film. In NH₃-nitrided films, on the other hand, a much higher charge trap density was found, with a large number of Si-H and N-H bonds formed by the introduction of high H concentrations.^{13,14} Since H densities are usually lower in N_2O -oxynitrided films, it is unlikely that H plays an important role in reducing charge traps in these samples.

In this paper, we present an atomic model for N incorporated in $SiO₂$, based on first-principles pseudopotential calculations. We find a very stable N-related complex near the interface, which consists of one O vacancy and two N atoms in the $N = Si_3$ configuration. This complex is an electrically inactive center with no dangling bond even in the absence of H, and becomes very stable as going to Si-rich layers, where the concentration of N is increased. Due to the inactive N-related complex, the electrical activity of O vacancies is severely suppressed, explaining experimental findings that the intensity of partially oxidized Si atoms and the density of E' centers near the interface are significantly reduced. We suggest that O or NO interstitials easily deactivate charge traps involving a single N atom, and depleted N atoms moves to the interface to form the inactive N complex.

We calculate the total energies of N-related defects in α -quartz SiO₂ using a first-principles pseudopotential method within the generalized gradient approximation.¹⁵ To deal with the localized nature of the O- and N-2*p* orbitals, we use a real-space multigrid method, 16 which has been very efficient in applications to localized systems such as $SiO₂$ and ZnO.17,18 The Laplacians in Poisson and Kohn-Sham equations are expressed up to the 12th order, based on a higher-order finite difference method.¹⁹ We employ the same set of grids as that used for a 72-atom supercell in previous calculations for SiO_2 .¹⁷ With use of the conjugate-gradient technique, we relax ionic coordinates until the atomic configuration is optimized. The formation energy of a defect α is defined as,²⁰ $E_f(\alpha) = E_{(tot)}(\alpha) - \sum_{\beta} n_{\beta} \mu_{\beta}$, where $E_{(tot)}(\alpha)$ is the total energy of the supercell containing the defect α , n_β is the number of β atoms (β =Si, O, and N) in the supercell, and μ_{β} is the chemical potential of a β atom. The chemical potentials of bulk Si and O_2 are chosen as the maximum values for μ_{Si} and μ_{O} , respectively, and satisfy the relation, $\mu_{Si} + 2\mu_0 = \mu_{SiO_2}$, where μ_{SiO_2} is the total energy per molecule in $SiO₂$. To describe the stoichiometry of SiO₂, we use the stoichiometric parameter λ defined as μ_{Si} $=$ μ_{Si} (bulk) – $\lambda \Delta H$, where μ_{Si} (bulk) is the chemical potential of bulk Si and ΔH is the calculated heat of formation of α quartz, 9.53 eV. Since NO molecules are considered to be responsible for oxynitridization in both N_2O - and NO-grown oxynitride films, 21 we obtain the N chemical potential from that of a NO molecule, $\mu_{\rm N} = \mu_{\rm NO} - \mu_{\rm O}$.

First, we study the energetics of the $N = Si_2$ and $N = Si_3$ configurations, which involve a single N in bonding. In the $N = Si₂$ class, the most preferential species are drawn in Figs. 1(a,b), referred to as $N(2)_O$ and $N(2)_O$ - V_O , which represent the twofold N atoms at the O lattice in the perfect α quartz and α quartz with an O vacancy (V_O), respectively. Similarly, the threefold N atoms in the $N = Si₃$ configuration are referred to as $N(3)_{O}$ and $N(3)_{O}$ - V_{O} in Figs. 1(c,d). In general, the Si-N bond lengths of the twofold N atoms are found to be $1.66-1.67$ Å, while they increase to $1.73-1.80$ Å for the threefold N atoms, similar to previous calculations. 12 In the $N(3)_{O}$ and $N(3)_{O}$ - V_{O} defects with a broken bond, a new bond between the N and Si_I atoms is formed, and a six-

FIG. 1. Atomic structures of the (a) $N(2)_O$, (b) $N(2)_O$ - V_O , (c) $N(3)_0$, (d) $N(3)_0 - V_0$, (e) $N(3)_0 - V_0 - N(3)_0$, and (f) O-added $N(3)_{O}$ - V_{O} - $N(3)_{O}$ defects in the α -quartz structure.

member ring containing the N atom split into three- and four-member rings. Since a Si-O bond is stronger than a Si-N bond, the formation energy of $N(2)_O$ is lower by 1.85 eV than for $N(3)_O$, as shown in Fig. 2. When the Si_I-N bond is formed as going from $N(2)_{0}$ - V_{0} to $N(3)_{0}$ - V_{0} , it gains a much higher energy than the energy cost to break the Si_I-Si_{II} bond, thus, the $N(3)_{0}$ - V_{0} defect has the formation energy lower by 1.74 eV. Among the $N = Si_2$ and $N = Si_3$ defects up to now, $N(2)_{O}$ has the lowest formation energy over the whole range of λ , except for the extreme Si-rich region (λ \approx 0), where N(3)_O-V_O is stabilized by reaction with V_O.

FIG. 2. The formation energies of various N-related defects as a function of the stoichiometric parameter λ .

FIG. 3. Atomic structures of the (a) O_i -N(2)_O, (b) N interstitial in the peroxy linkage structure, and (c) transition state with a N bonded to a Si atom. The lower panel shows the variation of energy along the diffusion path of N, where (b') denotes other peroxy linkage structure with the N positioned at a neighboring Si-O-Si bridge site.

However, all these defects contain active dangling bonds, becoming charge trap centers, while it was suggested that *H* incorporation prevents the charge trap generation.¹²

Here, we find a *H*-free defect complex that solely consists of N and V_0 , without any dangling bond. This complex, referred to as $N(3)_O-V_O-N(3)_O$ in Fig. 1(e), has two threefold N atoms (N_I and N_{II}) on both the sides of V_O . Because of the two $N = Si_3$ species, this complex is an electrically inactive center, with no defect level in the band gap, very similar to donor-vacancy complexes proposed for inactive donors in Si.²² If N_I and N_{II} change into two N(2)_O species, the Si_I-Si_{II} bond is recovered. However, since lone-pair states remain at the twofold N atoms, the total energy increases by 6.20 eV, indicating that $N(3)_{0}$ - V_{0} - $N(3)_{0}$ is a very stable complex. When an O atom is added to the $N_{II}-Si_{II}$ bond, the N_{II} atom forms a bond configuration of O—N=Si₂ [see Fig. $1(f)$. This O-added complex is less stable than $N(3)_{\Omega}$ - V_{Ω} - $N(3)_{\Omega}$ for a wide range of λ , while it is stabilized against $N(2)$ ^O for $0<\lambda<0.5$, as shown in Fig. 2. We also consider adding an O atom to the $N(2)$ ^O defect, which is referred to as O_i -N(2)_O in Fig. 3(a), and find that this N configuration is the most stable defect for λ above 0.64, i.e., under the O-rich condition.

For N concentrations larger than 10^{14} cm⁻³, which can be achieved for λ < 0.6 at a growth temperature of 1000 °C [see Fig. 2], the $N(3)_{0}$ - V_{0} - $N(3)_{0}$ complex is found be the most stable N configuration. The stability of this complex is greatly enhanced against $N(2)_O$ as going to the Si-rich limit. This result indicates that N is likely to be incorporated in the Si-rich region such as suboxide layers near the interface, in good agreement with experiments.23 Using a Si/tridymite-SiO₂ interface model, we find that an inactive N(3)_{Si}-N(3)_{Si} complex, where two adjacent Si atoms are occupied by two N atoms, can be formed in the Si bulk region close to the interface, similar to an inactive pair of phosphorous. 24 The binding energy of this complex is calculated to be 1.98 eV, as compared to two isolated substitutional $N(3)_{Si}$ atoms. If the

 $N(3)_{Si}N(3)_{Si}$ complex is buried in oxynitride as the interface grows into the Si substrate, it is expected to gradually transform into the $N(3)_O-V_O-N(3)_O$ complex. The existence of $N = Si_3$ units in the $N(3)_O-V_O-N(3)_O$ complex agrees well with x-ray photoelectron spectroscopy measurements 11 and theoretical calculations^{9,10} of core-level shifts. When the $N(3)_{\Omega}$ -*V*_{Ω}- $N(3)_{\Omega}$ complex is formed via the reaction, 3*V*_{Ω} $+2N_i$ [or $2N(2)_0 + V_0 \rightarrow N(3)_0 - V_0 - N(3)_0$, which is found to be exthothermic by 15.95 eV, O vacancies in incompletely oxidized Si are annihilated by nitridization, consistent with the prediction by the Mott rule.²⁵ The annihilation of O vacancies also agrees with other experiments, which reported that N incorporation significantly reduces the density of partially oxidized Si atoms in the suboxide layer near the interface,⁷ and removes the E' centers,²⁶ which are regarded as positively charged O vacancies, 27 especially near the interface. In the amorphous environment, it is expected that the pair of threefold N atoms may not have the same structure as that obtained in crystalline quartz. Because of the continous random network, the two threefold N atoms in the pair may be separated more than that in crystalline quartz. Then, it may appear that the threefold N atoms look isolated defects, which is not inconsistent with the single threefold N defect model.^{9,10} Our results suggest that the defect center with two threefold N atoms is the most dominant inactive N defect in amorphous Si oxynitride. However, since the structure of amorphous film is different from that of crystalline quartz, other possibilities such as the creation of the inactive single threefold N defect can not be ruled out. Thus, more decisive experiments are required to clarify the atomic structure of the dominant inactive N defect.

Oxide films grown in N_2O by rapid thermal oxidation (RTO) have a preferential pileup of N at the Si-SiO₂ interface, while furnace-grown oxides in N_2O exhibit a fairly uniform distribution of N throughout the oxide.^{6,8,28} Among the gas-phase products decomposed from N_2O by RTO, such as N_2 , O_2 , NO, and O, Carr and co-workers suggested that a reaction involving atomic O depletes previously incorporated N from the oxide.⁸ They also showed that incorporated N in the oxide is removed by annealing in O_3 , which produces atomic O, while the N distribution is not significantly affected by O_2 . Other view based on a reaction involving NO for the N removal was given,²⁹ while other experiments reported that the supply of NO does not remove N^{28} .

To see the depletion of N by atomic O, we examine the reaction of N-related defects acting as a charge trap with interstitial O, and the subsequent diffusion of N as an interstitial. When $N(2)_{\Omega}$ forms the $O_i-N(2)_{\Omega}$ complex [see Fig. $3(a)$] with an interstitial O, the energy is lowered by 3.89 eV. Figure 3 shows the variation of energy along the diffusion path of N in the O_i -N(2)_O complex, relative to isolated O_i and $N(2)_0$. For each position of the path between two (meta)stable configurations, the geometry optimization is performed by constrained conjugate-gradient relaxation method.³⁰ As the O_i -N(2)_O defect turns into a peroxy linkage structure with the N atom incorporated in the Si-O-Si bond [see Fig. 3(b)], the energy increases gradually by 0.77 eV , while the energy of a threefold configuration, where N is directly bonded to the O atom, is much higher by 2.97 eV. In the peroxy linkage structure, the N interstitial migrates to a neighboring Si-O-Si bridge site and forms a new peroxy linkage, with an energy barrier of 2.47 eV. At the saddle point of this diffusion process, the N atom is only bonded to the neighboring Si atom [see Fig. 3 (c)], very similar to the concerted exchange of O interstitial, 31 and eventually diffuses into the interface along the $SiO₂$ network. Since the kick-out diffusion of N by O_i occur with energies much lower than that of isolated $N(2)_{O}$ and O_i , it is very likely for the $N(2)_{\Omega}$ defect to be depleted in the oxide by reaction with atomic O. Similarly, for other N-related defects involving a single N atom, we find the formation of $O_i-N(2)$ _O via exthothermic reactions with interstitial O, which results in a similar O-assisted diffusion of N; the reactions of $N(3)_O + O_i$, $N(3)_{\Omega}$ - V_{Ω} +2O_{*i*}, and $N(2)_{\Omega}$ - V_{Ω} +2O_{*i*} are exthothermic by 5.74, 10.26, and 12.00 eV, respectively. Our results indicate that the O-assisted diffusion of N is highly likely to occur in the RTO process using N_2O , where atomic O is supplied from the decomposition of N_2O .⁸ When the N atom diffuses into the interface, where O vacancies are piled up, O vacancies will be annihilated by the reaction, $O_i-N(2)_O+3V_O$ \rightarrow N(3)_O-V_O-N(3)_O, which is exothermic by 14.41 eV. Since the oxynitridization or annealing process induces the formation of the inactive $N(3)_O-V_O-N(3)_O$ complex, the charge traps associated with O vacancies near the interface are deactivated.

We also find that the $N(2)$ ^O defect is easily removed by reaction with an interstitial NO molecule, as suggested by Saks and co-workers.²⁹ When $N(2)_{\Omega}$ forms a complex with NO, the binding energy is calculated to be 4.51 eV, and the newly formed N_2 molecule can be dissociated into the empty region of the six-member ring with an energy barrier of 1.27 eV, recovering a Si-O-Si bridge. The removal of $N(2)_O$ by NO is energetically favorable because the energy of the dissociated N_2 is much lower by 6.60 eV than that of isolated $N(2)$ ^O and NO. The interstitial N_2 is an electrically inactive center, with no defect level in the band gap.

Finally, we discuss the electrical improvement of Si oxynitrides, which exhibit a significant reduction of charge traps. Experiments suggested that dominant hole traps in the oxide are attributed to oxygen vacancies.²⁶ Theoretical calculations 32 also indicated that O vacancies are responsible for the stress-induced leakage current (SILC), while there has been other model involving a complex of O vacancy with hydrogen.³³ The replacement of O vacancies by our inactive N-related complexes in the O-deficient layer will eventually lead to the suppression of the SILC. On the other hand, $NH₃$ -nitrided oxides exhibited a high density of electron traps, which were attributed to $N(2)_{\Omega}$, while the density of hole traps is lowered.^{26,34} When these oxides are thermally reoxidized in O_2 , the density of N(2)_O was shown to be greatly reduced, 34 which may result from the deactivation of $N(2)$ _O by reaction with O, based on our calculations. The removal of $N(2)_{\text{O}}$ by O or NO can also explain other experimental findings that the defect densities of $N(2)_{\text{O}}$ are reduced in oxynitrides grown in N_2O or NO ambient, which supplies the source of atomic O or NO. Thus, we suggest that it is an important procedure to supply O or NO interstitials BRIEF REPORTS **PHYSICAL REVIEW B 66**, 233205 (2002)

for suppressing N-related charge traps and enhancing the electrical reliability of oxinitrides.

In conclusion, we find that incorporated N forms the stable defect complex that consists of two N atoms and one O vacancy, especially in Si-rich layers near the $Si/SiO₂$ interface, where the level of N incorporation is of an order of atomic %. Since this N complex is an electrically inactive center involving O vacancies, the suppression of the electrical activity of O vacancies piled up near the interface would lead to the improvement of the MOS device performance.

- ¹T. Aoyama *et al.*, J. Electrochem. Soc. **140**, 3624 (1993).
- 2 D. Mathiot *et al.*, J. Appl. Phys. **73**, 8215 (1993).
- ³D. Misra, Appl. Phys. Lett. **75**, 2283 (1999).
- ⁴E. Cartier *et al.*, Appl. Phys. Lett. **64**, 901 (1994).
- 5 J. Ahn *et al.*, Appl. Phys. Lett. **60**, 2809 (1992).
- 6 D. Bouvet *et al.*, J. Appl. Phys. **79**, 7114 (1996).
- ${}^{7}Z.H.$ Lu *et al.*, Appl. Phys. Lett. **67**, 2836 (1995).
- 8 E.C. Carr *et al.*, Appl. Phys. Lett. **66**, 1492 (1995).
- 9 G.-M. Rignanese *et al.*, Phys. Rev. Lett. **79**, 5174 (1997).
- 10 G.F. Cerofolini *et al.*, Phys. Rev. B 61, 14 157 (2000).
- 11 Y. Miura *et al.*, Appl. Phys. Lett. **77**, 220 (2000).
- 12 S. Jeong and A. Oshiyama, Phys. Rev. Lett. **86**, 3574 (2001) .
- ¹³M. Yasuda *et al.*, Jpn. J. Appl. Phys. **30**, 3597 (1991).
- 14 H. Fukuda *et al.*, J. Appl. Phys. **81**, 1825 (1997).
- 15 J.P. Perdew *et al.*, Phys. Rev. Lett. **77**, 3865 (1996).
- 16Y.-G. Jin, J.-W. Jeong, and K.J. Chang, Physica B **273-274**, 1003 ~1999!; Y.-G. Jin and K.J. Chang, J. Korean Phys. Soc. **40**, 406 $(2002).$
- 17 Y.-G. Jin and K.J. Chang, Phys. Rev. Lett. **86**, 1793 (2001).

We further find that $N(2)_{\Omega}$ behaving as a charge trap in the the pure oxide can be easily deactivated by reaction with O or NO interstitial, and the subsequent kick-out diffusion of N into the interface leads to the formation of the inactive N complex, suppressing the electrical degradation caused by N incorporation.

We would like to thank Dr. Y.-G. Jin and Y.-S. Kim for helpful discussions. This work was supported by Samsung Electronics and the supercomputing center in KISTI.

- 18 E.-C. Lee *et al.*, Phys. Rev. B **64**, 085120 (2001).
- ¹⁹ J.R. Chelikowsky *et al.*, Phys. Rev. Lett. **72**, 1240 (1994).
- 20 J.E. Northrup and S.B. Zhang, Phys. Rev. B 47, 6791 (1993).
- 21 P.J. Tobin *et al.*, J. Appl. Phys. **75**, 1811 (1994).
- 22M. Ramamoorthy and S.T. Pantelides, Phys. Rev. Lett. **76**, 4753 $(1996).$
- ²³ I.J.R. Baumvol *et al.*, Appl. Phys. Lett. **72**, 2999 (1998).
- ²⁴R. Baierle *et al.*, Physica B **273-274**, 260 (1999).
- ²⁵ V.A. Gritsenko *et al.*, Phys. Rev. Lett. **81**, 1054 (1998).
- ²⁶ J.T. Yount *et al.*, IEEE Trans. Nucl. Sci. **39**, 2211 (1992).
- 27 M. Boero *et al.*, Phys. Rev. Lett. **78**, 887 (1998).
- 28 E.P. Gusev *et al.*, IBM J. Res. Dev. 43, 265 (1999).
- ²⁹N.S. Saks *et al.*, Appl. Phys. Lett. **67**, 374 (1995).
- ³⁰M. Kaukonen *et al.*, Phys. Rev. B **57**, 9965 (1998).
- ³¹ D.R. Hamann, Phys. Rev. Lett. **81**, 3447 (1998).
- ³² A. Oshiyama, Jpn. J. Appl. Phys. **37**, L232 (1998).
- ³³ P.E. Blchl and J.H. Stathis, Phys. Rev. Lett. **83**, 372 (1999); P.E. BlcH. Phys. Rev. B 62, 6158 (2000).
- 34 J.T. Yount *et al.*, J. Appl. Phys. **76**, 1754 (1994).