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Spatial structure of anomalously localized states in disordered conductors
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We study the spatial structure of wave functions with exceptionally high local amplitudes in the Anderson
model of localization. By means of exact diagonalisations of finite systems, we obtain and analyze images of
these wave functions: we compare the spatial structure of such anomalously localized states in quasi-one-
dimensional samples to that in three-dimensional samples. In both cases the average wave-function intensity
exhibits a very narrow peak. The background intensity, however, is found to be very different in these two
cases: in three dimensions, it is constant, independent of the distance to the localizatiofeses#pected for
extended statesln quasi-one-dimensional samples, on the other hand, it is redistributed towards the localiza-
tion center and approaches a characteristic form predicted by NiRligs. Rep326, 249 (2000].
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Statistical properties of physical observables in disorderednay be summarized as follows. While it can be concluded
electronic quantum systems have attracted considerable ithat the DNLSM appears to be adequate in the quasi-one-
terest in the last decade. In such systems, quantum interfegimensional (Q1D) Anderson model under certain
ence may cause th@oninteracting conduction electrons to  conditions'*° the DNLSM may not correctly describe
localize! In three dimensions, this Anderson localization oc-ALS’s in two and three dimensiort&;'? at least for the pa-
curs when the disorder strength exceeds a critical value. Bgameter values considered in these studies. On the other
yond this valugwhich depends on the Fermi energy and thepang, it was found recentl{ that the DNLSM appears to
symmetries of the systemelectron wave functions are con- gescripe the statistics of rare events adequately in a 2D
fined to a limited spatial region of the sample. kicked rotor.

In the metallic regime, in contrast, wave functions typi- A reason for the possible failure of the DNLSM to de-

cally spread over the whole sample, and they contribute t%cribe ALS's in the three-dimensione@D) Anderson model
electron transport. However, some wave functions show lo-

calized behavior even in this weakly disordered regjse g;‘]}’ 1b§ ?ﬁelgﬁigan\;‘?se t?;ssego(r)tnI?r:legtgesqélt%s{s_eel al_sct)
called anomalously localized staté8].S’s)]. This leads to a C miclassical picture

nonzero, albeit small, probability of observing exceptionallyor: a d|ffL|J|smg ellectronl n ahrand?m_ p%tentllal. In t.h's plctu;e
large wave-function amplitude§are events often in the the smallest relevant length scale is the electronic mean free

form of a log-normal distribution function of amplitudes. pathl between elastic collisions. Therefore the DNLSM can-

ALS's in electronic conductors have been studied intensively’ot describe situations where length scales smallertizaa
in recent years, using the so-called diffusive nonlinear important. Such a situation could occur if ALS’s were cre-
model (DNLSM).2~* An overview of the main results and ated not through semiclassical diffusion, but through local
predictions based on the DNLSM is given in Ref. 6. More-potential wells trapping the electrohs” The mechanism
over, possible complications due to nondiffusive, so-calledyiving rise to ALS's is expectéd®to crucially depend on
ballistic effects on length scales smaller than the mean frethe dimensionality of the system and may determine their
path are discussed. As was pointed out in Ref. 8, these magpatial structure.
modify the predictions of the DNLSNMsee also Refs. 9 and Finally, within the DNLSM, it is possible to obtain the
10). ALS’s are expected to occur in lower-dimensional dis-wave-function statistics directly in Q1D, using a transfer-
ordered systems, too, when the disorder is weak. matrix technique. In two and three dimensions, on the other
These interesting analytical results have motivated a numhand, a further saddle-point approximation is necessary.
ber of numerical studies: in Ref. 7, for example, log-normalGiven this situation, further numerical work describing
statistics of wave-function amplitudes in two-dimensionalALS’s in disordered conductors is called for. In the follow-
(2D) conductors near the delocalization-localization transiing, we describe results of exact diagonalizations of finite
tion was observed. In Ref. 11 it was confirmed that as thédnderson models of localization, yielding averages of the
disorder is reduced to reach the weakly disordered regimespatial structureof ALS’s. While this spatial structure has
the distribution function remains log-normal. It has, how-been studied in detail within the DNLSRE® numerical im-
ever, not been possible to resolve a discrepdhejween the aging of wave functions with anomalously amplitudes has
DNLSM®>® and the so-called direct optimal fluctuation not yet been performet.
method) in the prediction of the parameters of this distribu- The Anderson model is defined by the tight-binding
tion. As far as the numerical work is concerned, the situatiorHamiltonian
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smooth background intensity, but not the sharp peak it§elf.

H=2> trr’C;rCr"l'Er v clc, (1) For =2 one obtains for a Q1D conductdf
rr’
on a hypercubic lattice. Here! andc, are the creation and 2 ) W
annihilation operators at site the hopping amplitudes are f(E,D)= @[W (UX, 7 )WIH(UX,7-) ] ©)
[t,,/|=1 for nearest-neighbor sites and zero otherwise. The

on-site potential, are Gaussian distributed with zero meanand (assumingr|=r>1)
and (v, v,/ )= (W?/12)5,, . As usual, the paramet&V char-

acterizes the strength of the disorder dnd-) denotes the d (WX, 71, 7)) WDIX, 72)
disorder average. We study finite Q1D and 3D lattices. 9(E.tir)= Xt i ,
It has been suggested in Ref. 3 to characterize the spatial (7)

structure of ALS’s by means of conditional averages of the
form (V9] (r)|?9),. Here(- - - ), denotes an average over all where 7, =(L—X)/§, 7_=x/§, m=r/§, and 7,=(L—X
wave functions witht=V|¢(0)|2, q=1,2,..., andVisthe  —r)/& Here X=L/§, L is the length of the sample, agds
volume of the systerfwave functions are normalized so that the localization length. Moreovex is the distance of the
<|¢j(r)|2>zv—1]_ For large values oft, the average Observation point from the edge of the samfié Refs. 3
(V9] y(r)|?%, describes how wave functions decay, on aver-and 16. The function*)(z,7) obeys the differential equa-
age, away from the localization center. tion

In the metallic regime, typical wave functions fluctuate as
described by random matrix thedfy® (RMT). Depending J
on the symmetries of Eq1), Dyson’s Gaussian orthogonal a_TW (zm)=
or unitary ensembles are appropridtéVe refer to these two
cases by assigning, as usual, the paramgterl to the with initial conditon W®)(z,0)=1. The function

az
22—2—2 W(l)(Z,T) (8
0z

former andB=2 to the latter. Within RMT, for #0, W®(z,7,7") obeys the same differential equation, but with
, the initial conditionV(®)(z,0,7)=z2W®(z,7).
1 ifq=1, For large values of, it is suggested in Ref. 16 that the
(V9| gp(r)|?9),=4{ 3 ifg=2 andB=1, (2)  background intensity should be given by
2 ifg=2 and g=2. 1
2 = -2
This reflects the fact that in a metallic system, wave func- (VIg(n)]%) = 2\/t_X[1+r\/t/(L§)] : )

tions spread uniformly over the whole sample with spatially
short-ranged correlatioris. In the presence of ALS's, the Where in accordance with the above-| is assumed, and
conditional average€V9|y(r)|2%), are expected to differ alsor<¢. Corresponding expressions may be obtained for
from Eq. (2). higher values ofy. One expect$ (for | <r<¢)

In order to characterize the spatial structure of ALS’s in
the weakly disordered Anderson model, the conditional av- (VAL () [29y =t [(V]g(r)[3) ]9 (10

eragey - - - ); were calculated within the DNLSM in Refs. 3 . . _
and 16. Fom=1 the authors write In three-dimensions, by contrast, results corresponding to

Egs. (8)—(10) are not knowrt® but it is expected that the
(V| g(r)|?)=9g(E,t;r)/f(E,t), (3)  background intensity of ALS’s is characteristically different
from that in Q1D samples: ALS's in 3D systems are
expectelt® to exhibit a very narrow maximum near the lo-
calization centefthe width of this peak is a matter of current
f(E,t) =A< > s(t—V] wj(0)|2)> . (4)  debat@®). The background, however, is expecfetto decay
]

E,~E very quickly to (V|(r)|?);=1. Furthermore, fluctuations

wheref(E,t) is defined as

) ) around this average are expedfeth be described by RMT
HereA is the mean energy level spacing and-) denotes a  [see Eq(2)].

combined disorder and energy averageer a small interval In the following we describe and discuss results of
of width » centered around). The functiong(E,t;r) is  exact-diagonalizatiod of the Anderson Hamiltoniar(1)
defined as and compare to the results of the previous section. We em-
phasise that at least in three dimensions it is important to use
g(E,t;r)=A< > V|¢/;j(r)|26(t—V|zpj(0)|2)> . (5) & Gaussian distribution for the on-site potentials in orqer to
j E-g be able to compare to the analytical predictions: ALS'’s are

! possiblynon-universaltheir spatial structure may depend on

Below, we take thed-functions in Egs.(4) and (5) to be the properties of the random potential.
slightly broadened with small but finite widtp>0. Our numerical results fotV|y(r)|?); and (V2| y(r)|*)

In close vicinity of the localization center, ALS’s are are summarized in Figs. 1-4. Figures 1 and 3 show results
found to exhibit a very narrow pealof width less tharl). for Q1D samples with3=2, while Figs. 2 and 4 show re-
The expressions below apply for-1 and thus describe the sults for 3D samples and@=1.
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FIG. 1. Spatial structure of anomalously localized wave func-  FIG. 3. Solid lines: The functioV?|#(r)|*), in the Q1D case
tions with t=|¢(0)|?V. Solid lines: Numerical results fo¥=128  averaged over the same wave functions as in Fig. 1. The dashed
X 4X4 (Q1D casg, disorderW=1.6, and energf=—1.7, aver-  lines show the function [2|V(r)|?)]%, where(|Vy(r)|?), was
aged over 40 000 wave functions. Dashed lines: Analytical predicealculated from Eqs(8)—(10).
tions with X=0.97[full formula (Ref. 21, with Egs.(6) and (7)].

The dash-dotted line shows the asymptotic formula, @y.for t t, as expected. In 3D samples, the fluctuations of the back-
=25. ground intensity appear to be consistent with the RMT sta-
tistics (although the scatter is largélhat is, they are roughly

In all cases we see a very narrow peak at the localizatiowonstant as a function of as predicted in Ref. 16. However,
center. Our main results, however, concern characteristic difa closer inspection showsnset of Fig. 4 that the second
ferences between the distribution of background intensitiesnoment is somewhat higher than expected according to
in Q1D and 3D samples. In the Q1D case we observe &MT. This is possibly due to the finite conductance in the
global redistribution of background intensity towards the lo-systent® The dip atr ~7 with t=230 could be due to insuf-
calization centefas compared with uniformly spread RMT ficient averaging. Our current data do not permit to draw a
wave functiong The numerical results are very well de- definite conclusion here, it could also represent a systematic
scribed by Eqs(6)—(8). The asymptotic formul&9) consid-  effect.
erably underestimatd®/|#(r)|?); for the values ot used in Summarizing our results far>1, we have made the fol-
Fig. 1. In the 3D case, by contrast, the background intensityowing observations. First, in our simulations, the spatial
is roughly constantFig. 2). This is consistent with the quali- structure of ALS's depends on the dimension. In Q1D
tative picture summarized above. samples, we have observed a global redistribution of the

Figures 3 and 4 show the second moments, i.e., the casmckground intensity towards the localization centas
g=2. In Q1D samples, Eq10) appears to be valid for large compared with typical, uniformly spread extended staties

3D samples, on the other hand, the background intensity is

roughly constant; the wave-function intensity is significantly
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FIG. 2. Spatial structure of anomalously localized wave func-
tions witht=1¢(0)|?V. Numerical results fol/ = 48X 48x 48 (3D
case, disorder strengthV=2, and energf=—1.7, averaged over FIG. 4. The function{ V| y(r)|*), in the 3D case. The symbols
88 wave functions. The symbols show the numerically calculatedshow the numerically calculated values. The parameters and sym-
values fort=1 (O), t=10 (d), t=20 (+), andt=30 (*). The bols are the same as in Fig. 2. The line shows the constant RMT
line shows the constant RMT average inteng|y(r)|?V)=1. fluctuations (V2| 4(r)|4)=3.

233104-3



BRIEF REPORTS PHYSICAL REVIEW B56, 233104 (2002

increased only in the very narrow vicinity of the localization regime'? This may indicate that the DNLSM is not appli-
center. cable in this case, sindds the shortest relevant length scale
Second, the DNLSM appears to describe the spatial struén the DNLSM. It may also point towards the conjecture of
ture of background intensity of ALS’s adequately in the Q1DRefs. 8 and 6 where high wave-function amplitudes were
Anderson model. The agreement is good for all values of suggested to arise from partial trapping of electrons in rare
studied here. This verifies the assumption that the semiclagocal potential cavities. Such features are not included in the
sical picture of a diffusive electron accounts for the origin of pn_SM. At this, point, however, we cannot offer quantita-

ALS's in the Q1D Anderson model. _ tive results concerning the parametric dependence of the
Third, we must emphasise that at least in the Q1D case {igih of the central peak.

appears to be difficult to reach the asymptotic regime where |, conclusion, we have studied the spatial structure and
Eq. (9) is valid. Wetbgc:we thus not been able to observe theyagistics of anomalously localized states in the Anderson
line shape suggestetio be characteristic of ALS'S in Q1D model. Our results indicat® that the spatial structure of
samples. We expect, hpvyever, that this characteristic shape g s's in Q1D and 3D samples is very different, as surmised
approached furthgr asis increased. o in Refs. 16,8, and 6. Our results are consistent with the idea
Fourth, fluctuations around the average ALS's, in Q1D,iat that the origin of ALS’s is different in quasi-one-
are consistent with Eq10). The agreement is the better the gimension Q1D and in three dimensions. In order to decide
larger thet, as seen in Fig. 3. This is so because @@) was o which extent local potential traps are relevant in 3D, it
derived in Ref. 16 using asymptotic expressions. would be of great interest to study the parametric depen-
Fifth, in 3D samples the fluctuations around the averaggience of the width of the local maximum seen in Fig. 2. In
ALS'’s appear to be consistent with RMT, although the secypjs context, a continuous model would probably be more

ond moment is somewhat larger than expected according tgitaple than the discrete lattice Hamiltoniél) studied in

RMT. . . ) the present paper.
Finally, we briefly consider the region<I. In the 3D

case, the central peak is found to be very narrow. It is pos- This work was supported by a grant from the Swedish
sibly narrower than the electronic mean free pativhich is  Science Council, by the DFGSFB 393, and by the Euro-
of the order of several lattice spacings in the metallicpean Research Training Network QTRANS.
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