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Spatial structure of anomalously localized states in disordered conductors
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We study the spatial structure of wave functions with exceptionally high local amplitudes in the Anderson
model of localization. By means of exact diagonalisations of finite systems, we obtain and analyze images of
these wave functions: we compare the spatial structure of such anomalously localized states in quasi-one-
dimensional samples to that in three-dimensional samples. In both cases the average wave-function intensity
exhibits a very narrow peak. The background intensity, however, is found to be very different in these two
cases: in three dimensions, it is constant, independent of the distance to the localization center~as expected for
extended states!. In quasi-one-dimensional samples, on the other hand, it is redistributed towards the localiza-
tion center and approaches a characteristic form predicted by Mirlin@Phys. Rep.326, 249 ~2000!#.
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Statistical properties of physical observables in disorde
electronic quantum systems have attracted considerable
terest in the last decade. In such systems, quantum inte
ence may cause the~noninteracting! conduction electrons to
localize.1 In three dimensions, this Anderson localization o
curs when the disorder strength exceeds a critical value.
yond this value~which depends on the Fermi energy and t
symmetries of the system!, electron wave functions are con
fined to a limited spatial region of the sample.

In the metallic regime, in contrast, wave functions typ
cally spread over the whole sample, and they contribute
electron transport. However, some wave functions show
calized behavior even in this weakly disordered regime@so-
called anomalously localized states,~ALS’s!#. This leads to a
nonzero, albeit small, probability of observing exceptiona
large wave-function amplitudes~rare events!, often in the
form of a log-normal distribution function of amplitude
ALS’s in electronic conductors have been studied intensiv
in recent years, using the so-called diffusive nonlinears
model ~DNLSM!.2–4 An overview of the main results an
predictions based on the DNLSM is given in Ref. 6. Mor
over, possible complications due to nondiffusive, so-cal
ballistic effects on length scales smaller than the mean
path are discussed. As was pointed out in Ref. 8, these
modify the predictions of the DNLSM~see also Refs. 9 an
10!. ALS’s are expected to occur in lower-dimensional d
ordered systems, too, when the disorder is weak.

These interesting analytical results have motivated a n
ber of numerical studies: in Ref. 7, for example, log-norm
statistics of wave-function amplitudes in two-dimension
~2D! conductors near the delocalization-localization tran
tion was observed. In Ref. 11 it was confirmed that as
disorder is reduced to reach the weakly disordered regi
the distribution function remains log-normal. It has, ho
ever, not been possible to resolve a discrepancy~between the
DNLSM5,6 and the so-called direct optimal fluctuatio
method8! in the prediction of the parameters of this distrib
tion. As far as the numerical work is concerned, the situat
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may be summarized as follows. While it can be conclud
that the DNLSM appears to be adequate in the quasi-o
dimensional ~Q1D! Anderson model under certai
conditions,11,10 the DNLSM may not correctly describ
ALS’s in two and three dimensions,10,12 at least for the pa-
rameter values considered in these studies. On the o
hand, it was found recently14 that the DNLSM appears to
describe the statistics of rare events adequately in a
kicked rotor.

A reason for the possible failure of the DNLSM to d
scribe ALS’s in the three-dimensional~3D! Anderson model
may be the importance of short length scales,8,9 ~see also
Ref. 10!. The DNLSM is based on the semiclassical pictu
of a diffusing electron in a random potential. In this pictu
the smallest relevant length scale is the electronic mean
pathl between elastic collisions. Therefore the DNLSM ca
not describe situations where length scales smaller thanl are
important. Such a situation could occur if ALS’s were cr
ated not through semiclassical diffusion, but through lo
potential wells trapping the electrons.8,15 The mechanism
giving rise to ALS’s is expected6,8,16 to crucially depend on
the dimensionality of the system and may determine th
spatial structure.

Finally, within the DNLSM, it is possible to obtain th
wave-function statistics directly in Q1D, using a transfe
matrix technique. In two and three dimensions, on the ot
hand, a further saddle-point approximation is necess
Given this situation, further numerical work describin
ALS’s in disordered conductors is called for. In the follow
ing, we describe results of exact diagonalizations of fin
Anderson models of localization, yielding averages of t
spatial structureof ALS’s. While this spatial structure ha
been studied in detail within the DNLSM,6,16 numerical im-
aging of wave functions with anomalously amplitudes h
not yet been performed.13

The Anderson model is defined by the tight-bindin
Hamiltonian
©2002 The American Physical Society04-1
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Ĥ5(
r ,r8

t rr 8cr
†cr81(

r
y rcr

†cr ~1!

on a hypercubic lattice. Herecr
† andcr are the creation and

annihilation operators at siter , the hopping amplitudes ar
ut rr 8u51 for nearest-neighbor sites and zero otherwise. T
on-site potentialsy r are Gaussian distributed with zero me
and ^y ry r8&5(W2/12)d rr 8 . As usual, the parameterW char-
acterizes the strength of the disorder and^•••& denotes the
disorder average. We study finite Q1D and 3D lattices.

It has been suggested in Ref. 3 to characterize the sp
structure of ALS’s by means of conditional averages of
form ^Vquc(r )u2q& t . Here^•••& t denotes an average over a
wave functions witht5Vuc(0)u2, q51,2, . . . , andV is the
volume of the system@wave functions are normalized so th
^uc j (r )u2&5V21]. For large values of t, the average
^Vquc(r )u2q& t describes how wave functions decay, on av
age, away from the localization center.

In the metallic regime, typical wave functions fluctuate
described by random matrix theory17,18 ~RMT!. Depending
on the symmetries of Eq.~1!, Dyson’s Gaussian orthogona
or unitary ensembles are appropriate.18 We refer to these two
cases by assigning, as usual, the parameterb51 to the
former andb52 to the latter. Within RMT, forrÞ0,

^Vquc~r !u2q& t5H 1 if q51,

3 if q52 andb51,

2 if q52 and b52.

~2!

This reflects the fact that in a metallic system, wave fu
tions spread uniformly over the whole sample with spatia
short-ranged correlations.3,9 In the presence of ALS’s, the
conditional averageŝVquc(r )u2q& t are expected to differ
from Eq. ~2!.

In order to characterize the spatial structure of ALS’s
the weakly disordered Anderson model, the conditional
erageŝ •••& t were calculated within the DNLSM in Refs.
and 16. Forq51 the authors write

^Vuc~r !u2& t5g~E,t;r !/ f ~E,t !, ~3!

where f (E,t) is defined as

f ~E,t !5DK (
j

d„t2Vuc j~0!u2
…L

Ej .E

. ~4!

HereD is the mean energy level spacing and^•••& denotes a
combined disorder and energy average~over a small interval
of width h centered aroundE). The functiong(E,t;r ) is
defined as

g~E,t;r !5DK (
j

Vuc j~r !u2d„t2Vuc j~0!u2…L
Ej .E

. ~5!

Below, we take thed-functions in Eqs.~4! and ~5! to be
slightly broadened with small but finite widthg.0.

In close vicinity of the localization center, ALS’s ar
found to exhibit a very narrow peak~of width less thanl ).
The expressions below apply forr . l and thus describe th
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smooth background intensity, but not the sharp peak itse16

For b52 one obtains for a Q1D conductor3,16

f ~E,t !5
d2

dt2
@W (1)~ t/X,t1!W (1)~ t/X,t2!# ~6!

and ~assumingur u[r . l )

g~E,t;r !52X
d

dt FW
(2)~ t/X,t1 ,t2!W (1)~ t/X,t2!

t G ,
~7!

where t15(L2x)/j, t25x/j, t15r /j, and t25(L2x
2r )/j. Here,X5L/j, L is the length of the sample, andj is
the localization length. Moreover,x is the distance of the
observation point from the edge of the sample~cf. Refs. 3
and 16!. The functionW (1)(z,t) obeys the differential equa
tion

]

]t
W (1)~z,t!5S z2

]2

]z2
2zDW (1)~z,t! ~8!

with initial condition W (1)(z,0)51. The function
W (2)(z,t,t8) obeys the same differential equation, but wi
the initial conditionW (2)(z,0,t)5zW (1)(z,t).

For large values oft, it is suggested in Ref. 16 that th
background intensity should be given by

^Vuc~r !u2& t'
1

2
AtX@11rAt/~Lj!#22, ~9!

where in accordance with the abover . l is assumed, and
also r !j. Corresponding expressions may be obtained
higher values ofq. One expects16 ~for l ,r !j)

^Vquc~r !u2q& t.q! @^Vuc~r !u2& t#
q. ~10!

In three-dimensions, by contrast, results correspondin
Eqs. ~8!–~10! are not known,16 but it is expected that the
background intensity of ALS’s is characteristically differe
from that in Q1D samples: ALS’s in 3D systems a
expected8,6 to exhibit a very narrow maximum near the lo
calization center~the width of this peak is a matter of curren
debate8,6!. The background, however, is expected16,6 to decay
very quickly to ^Vuc(r )u2& t.1. Furthermore, fluctuations
around this average are expected16 to be described by RMT
@see Eq.~2!#.

In the following we describe and discuss results
exact-diagonalizations19 of the Anderson Hamiltonian~1!
and compare to the results of the previous section. We
phasise that at least in three dimensions it is important to
a Gaussian distribution for the on-site potentials in order
be able to compare to the analytical predictions: ALS’s
possiblynon-universal, their spatial structure may depend o
the properties of the random potential.

Our numerical results for̂Vuc(r )u2& t and ^V2uc(r )u4& t
are summarized in Figs. 1–4. Figures 1 and 3 show res
for Q1D samples withb52, while Figs. 2 and 4 show re
sults for 3D samples andb51.
4-2
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In all cases we see a very narrow peak at the localiza
center. Our main results, however, concern characteristic
ferences between the distribution of background intensi
in Q1D and 3D samples. In the Q1D case we observ
global redistribution of background intensity towards the
calization center~as compared with uniformly spread RM
wave functions!. The numerical results are very well de
scribed by Eqs.~6!–~8!. The asymptotic formula~9! consid-
erably underestimateŝVuc(r )u2& t for the values oft used in
Fig. 1. In the 3D case, by contrast, the background inten
is roughly constant~Fig. 2!. This is consistent with the quali
tative picture summarized above.

Figures 3 and 4 show the second moments, i.e., the
q52. In Q1D samples, Eq.~10! appears to be valid for larg

FIG. 1. Spatial structure of anomalously localized wave fu
tions with t5uc(0)u2V. Solid lines: Numerical results forV5128
3434 ~Q1D case!, disorderW51.6, and energyE.21.7, aver-
aged over 40 000 wave functions. Dashed lines: Analytical pre
tions with X50.97 @full formula ~Ref. 21!, with Eqs.~6! and ~7!#.
The dash-dotted line shows the asymptotic formula, Eq.~9!, for t
525.

FIG. 2. Spatial structure of anomalously localized wave fu
tions with t5uc(0)u2V. Numerical results forV548348348 ~3D
case!, disorder strengthW52, and energyE.21.7, averaged ove
88 wave functions. The symbols show the numerically calcula
values fort51 (s), t510 (h), t520 (1), and t530 (*). The
line shows the constant RMT average intensity^uc(r )u2V& t51.
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t, as expected. In 3D samples, the fluctuations of the ba
ground intensity appear to be consistent with the RMT s
tistics~although the scatter is large!. That is, they are roughly
constant as a function ofr, as predicted in Ref. 16. Howeve
a closer inspection shows~inset of Fig. 4! that the second
moment is somewhat higher than expected according
RMT. This is possibly due to the finite conductance in t
system.3,16 The dip atr;7 with t530 could be due to insuf-
ficient averaging. Our current data do not permit to draw
definite conclusion here, it could also represent a system
effect.

Summarizing our results forr . l , we have made the fol-
lowing observations. First, in our simulations, the spat
structure of ALS’s depends on the dimension. In Q1
samples, we have observed a global redistribution of
background intensity towards the localization center~as
compared with typical, uniformly spread extended states!. In
3D samples, on the other hand, the background intensit
roughly constant; the wave-function intensity is significan

-

-

-

d

FIG. 3. Solid lines: The function̂V2uc(r )u4& t in the Q1D case
averaged over the same wave functions as in Fig. 1. The da
lines show the function 2@^uVc(r )u2& t#

2, where ^uVc(r )u2& t was
calculated from Eqs.~8!–~10!.

FIG. 4. The function̂ V2uc(r )u4& t in the 3D case. The symbol
show the numerically calculated values. The parameters and s
bols are the same as in Fig. 2. The line shows the constant R
fluctuations,̂ V2uc(r )u4& t53.
4-3
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increased only in the very narrow vicinity of the localizatio
center.

Second, the DNLSM appears to describe the spatial st
ture of background intensity of ALS’s adequately in the Q1
Anderson model. The agreement is good for all valuest
studied here. This verifies the assumption that the semic
sical picture of a diffusive electron accounts for the origin
ALS’s in the Q1D Anderson model.

Third, we must emphasise that at least in the Q1D cas
appears to be difficult to reach the asymptotic regime wh
Eq. ~9! is valid. We have thus not been able to observe
line shape suggested16 to be characteristic of ALS’s in Q1D
samples. We expect, however, that this characteristic sha
approached further ast is increased.

Fourth, fluctuations around the average ALS’s, in Q1
are consistent with Eq.~10!. The agreement is the better th
larger thet, as seen in Fig. 3. This is so because Eq.~10! was
derived in Ref. 16 using asymptotic expressions.

Fifth, in 3D samples the fluctuations around the avera
ALS’s appear to be consistent with RMT, although the s
ond moment is somewhat larger than expected accordin
RMT.

Finally, we briefly consider the regionr , l . In the 3D
case, the central peak is found to be very narrow. It is p
sibly narrower than the electronic mean free pathl, which is
of the order of several lattice spacings in the meta
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regime.12 This may indicate that the DNLSM is not appl
cable in this case, sincel is the shortest relevant length sca
in the DNLSM. It may also point towards the conjecture
Refs. 8 and 6 where high wave-function amplitudes w
suggested to arise from partial trapping of electrons in r
local potential cavities. Such features are not included in
DNLSM. At this, point, however, we cannot offer quantit
tive results concerning the parametric dependence of
width of the central peak.

In conclusion, we have studied the spatial structure a
statistics of anomalously localized states in the Ander
model. Our results indicate20 that the spatial structure o
ALS’s in Q1D and 3D samples is very different, as surmis
in Refs. 16,8, and 6. Our results are consistent with the i
that that the origin of ALS’s is different in quasi-one
dimension Q1D and in three dimensions. In order to dec
to which extent local potential traps are relevant in 3D,
would be of great interest to study the parametric dep
dence of the width of the local maximum seen in Fig. 2.
this context, a continuous model would probably be mo
suitable than the discrete lattice Hamiltonian~1! studied in
the present paper.
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