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Unconventional vortices and phase transitions in rapidly rotating superfluid 3He

Takafumi Kita*
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

~Received 28 July 2002; published 31 December 2002!

This paper studies vortex-lattice phases of rapidly rotating superfluid3He based on the Ginzburg-Landau
free-energy functional, where strong-coupling effects are included in the pressure dependence of the fourth-
order b parameters. To identify stable phases in thep-V plane (p5pressure,V5angular velocity), the
functional is minimized with the Landau-level expansion method using up to 3000 Landau levels. With nine
complex order parameters, this system can sustain various exotic vortices by either~i! shifting vortex cores
among different components or~ii ! filling in cores with components not used in the bulk. In addition, the phase
near the upper critical angular velocityVc2 is neither the Balian-Werthamer state nor the Anderson-Brinkman-
Morel state, but the polar state with the smallest superfluid density, as already shown by Schopohl. Thus,
multiple phases are anticipated to exist in thep-V plane. Six different phases are found in the present
calculation performed over 0.0001Vc2<V<Vc2, whereVc2 is of order (12T/Tc)3107 rad/s. It is shown
that the double-core vortex experimentally found in the B phase originates from the conventional hexagonal
lattice of the polar state nearVc2 via ~i! a phase composed of interpenetrating polar and Scharnberg-Klemm
sublattices,~ii ! the A-phase mixed-twist lattice with polar cores,~iii ! the normal-core lattice found in the
isolated-vortex calculation by Ohmi, Tsuneto, and Fujita, and~iv! the A-phase-core vortex discovered in
another isolated-vortex calculation by Salomaa and Volovik. It is predicted that the double-core vortex will
disappear completely in the experimentalp-T phase diagram to be replaced by the A-phase-core vortex in the
angular velocity of order 103–104 rad/s.

DOI: 10.1103/PhysRevB.66.224515 PACS number~s!: 67.57.Fg, 74.25.2q
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I. INTRODUCTION

Rotating superfluid3He with nine complex order param
eters can sustain various exotic vortices not observabl
superfluid 4He. This system can be a textbook case of u
conventional vortices realized in multicomponent superflu
and superconductors. I here report the richness and dive
of the vortex phase diagram in the unexplored region
rapid rotation, wishing to stimulate experiments in the fro
tiers as well as to give hints to what may be expected in
vortex phases of multicomponent superconductors.

Extensive efforts have been made both theoretically
experimentally to clarify vortices of superfluid3He; see
Refs. 1–7 for a review. With multicomponent order para
eters, this system can be a rich source of unconventio
vortices. Those already observed in rotation up to 3 ra
include superfluid-core vortices in the B phase, i.e.,
A-phase-core and double-core vortices,8–11 vortices due to
textures of thel vector in the A phase, i.e., the locked vorte
1,12,13 the continuous unlocked vortex,14,15 the singular
vortex,15,16 and the vortex sheet.17 The superfluid cores ar
possible in the B phase because the components not us
the bulk are available to fill in them. On the other hand the
phase has a unique property that it can sustain vortices
spatial variation ofl without any amplitude reduction, as firs
pointed out by Mermin and Ho.18 Thus, experiments hav
already revealed rich structures.

Although V;3 rad/s is three orders of magnitude fas
than the lower critical angular velocityVc1;1023 rad/s for
a typical experimental cell of diameter;5 mm, it is still far
below the upper critical angular velocityVc2;(12T/Tc)
3107 rad/s. Thus, theoretical calculations have been p
formed mostly within the isolated-vortex approximation
0163-1829/2002/66~22!/224515~13!/$20.00 66 2245
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the B phase10,11,19,20or within a constant amplitude in the A
phase,12,15,17,21,22both of which are justified nearVc1, and
not much is known about the phases realized in rapid ro
tion. On the other hand, the polar state should be stable
Vc2 at all pressures, as shown by Schopohl23 and later by
Scharnberg and Klemm24 in a different context ofp-wave
superconductivity. This is because the line node of the po
state is most effective in reducing the kinetic energy dom
nant nearVc2. Thus, the phase nearVc2 is completely dif-
ferent from the experimentally observed A and B phases
V50, and there should be novel phases betweenVc1 and
Vc2. Although Vc2;(12T/Tc)3107 rad/s may not be at-
tainable in the near future, clarifying the whole phase d
gram ofVc1<V<Vc2 would stimulate experimental effort
towards this direction; it certainly remains as an intellect
challenge. In addition, such a study will be useful in prov
ing an insight into the vortices of multicomponent superco
ductors whereHc2 can be reached easily.

Following a previous work,25 I present a more extensiv
study of vortices in superfluid3He. To this end, I adopt the
standard Ginzburg-Landau~GL! free-energy functional valid
nearTc , as most calculations performed so far. To clarify t
vortex phase diagram, however, I take an alternative
proach to start fromVc2 proceeding down towardsVc1 as
close as possible. A powerful way to carry out this progra
is the Landau-level expansion~LLX ! method, developed
recently26,27 and applied successfully to several oth
systems.28–30 Combining the obtained results with thos
aroundVc1 will provide a rough idea about the whole pha
diagram overVc1<V<Vc2. It should also be noted that th
results from the GL functional are expected to provide qu
tatively correct results over 0<T<Tc , as supported by a
©2002 The American Physical Society15-1
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recent isolated-vortex calculation on the B phase20 using the
quasiclassical theory.31

This paper is organized as follows. Section II presents
GL functional. Section III explains the LLX method to min
mize the GL functional. Section IV provides a grou
theoretical consideration of the classification of vortex l
tices and the phase transitions between them. Sectio
presents the obtainedp-V phase diagram over 0.01Vc2<V
<Vc2 together with detailed explanations of the phases
pearing in it. Section VI discusses a phase transition betw
the A-phase-core and double-core lattices, extending the
culation down to 0.0001Vc2. Section VII summarizes the
paper. The Appendix presents basic properties of the b
functions used in the LLX method.

II. GINZBURG-LANDAU FUNCTIONAL

Superfluid 3He is characterized by nine complex ord
parametersAm i (m,i 5x,y,z) inherent in thep-wave pairing
(L51) with spin S51, wherem and i denote rectangula
coordinates of the spin and orbital spaces, respectively.
GL free-energy functional nearTc is given with respect to
the second- and fourth-order terms ofAm i . Using the nota-
tion of Fetter,1 the bulk energy density reads

f b52aAm i* Am i1b1Am i* Am i* An jAn j1b2Am i* An j* Am iAn j

1b3Am i* An i* Am jAn j1b4Am i* An j* Am jAn i

1b5Am i* Am j* An iAn j , ~1!

where a and b j are coefficients, and summations over r
peated indices are implied. The gradient energy densit
well approximated using a single coefficientK as

f k5K~] i* Am i* ] jAm j1] i* Am j* ] iAm j1] i* Am j* ] jAm i !, ~2!

where­ is defined in terms of the angular velocityV as

­[“2 i
2m3

\
V3r . ~3!

In addition, there are tiny contributions from the dipole a
Zeeman energies:

f d5gd S Amm* Ann1Amn* Anm2
2

3
Amn* AmnD , ~4!

f m5gmHmAm i* HnAn i , ~5!

respectively. Given the coefficients in Eqs.~1!–~5!, the stable
state can be found by minimizing

F5F01F1 , ~6!

with

F0[
1

VE ~ f b1 f k!dr , ~7a!

F1[
1

VE ~ f d1 f m!dr , ~7b!
22451
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whereV is the volume of the system. Important quantities
the functional are

j[~K/a!1/25j~0!/~12T/Tc!
1/2, ~8a!

jd[~K/gd!
1/2, ~8b!

Hd[~gd /gm!1/2, ~8c!

which define the GL coherence length, the dipole length,
the characteristic magnetic dipole field, respectively.

The coefficientsa, b j , K, gm, and gd are fixed by ex-
actly following Thuneberg’s procedure11 used in identifying
the B-phase-core structures as follows. The weak-coup
theory yields1

a5
N~0!

3
~12T/Tc!, ~9a!

b2
W5b3

W5b4
W52b5

W522b1
W5

7z~3!N~0!

120~pkBTc!
2

, ~9b!

K5
7z~3!N~0!~\vF!2

240~pkBTc!
2

, ~9c!

whereN(0) andvF are the density of states per spin and t
Fermi velocity, respectively. The coefficientsa and K are
estimated by Eqs.~9b! and ~9c! using the values ofN(0),
Tc , and vF determined experimentally by Greywall.32 In
contrast,b j

W cannot account for the stability of the A phase
V50. Strong-coupling corrections are included inb j by ~i!
using the Sauls-Serene values for 1.2 MPa<p<3.44 MPa,33

~ii ! adopting the weak-coupling resultb j
W at p50 MPa, and

~iii ! interpolating the region 0 MPa<p<1.2 MPa. With this
procedure, the A-B transition forV50 is predicted at

ppcp52.85 MPa. ~10!

It thus yields a qualitatively correct result that the A phase
stabilized on the high-pressure side, although the valu
slightly higher than the measured 2.1 MPa. The values ogd
have been studied extensively in a recent paper
Thuneberg.34 It is shown that the following formula nicely
reproduces the values extracted from various experimen

gd5
m0

40 Fg\N~0!ln
1.133930.45TF

Tc
G2

, ~11a!

wherem0 andg denote the permeability of vacuum and th
gyromagnetic ratio, respectively, andTF is the Fermi tem-
perature defined byTF[3n/4N(0)kB with n denoting the
density. As forgm, the following weak-coupling expressio
is sufficient:

gm5
7z~3!N~0!~g\!2

48@~11F0
a!pkBTc#

2
, ~11b!

with F0
a the Landau parameter. The values ofF0

a are taken
from Wheatley35 but corrected for the newly determinedF1

s
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TABLE I. Numerical values for the parameters of the GL theory at different pressures. See text for details of the calculations.

p a/(12T/Tc) b3 K j(12T/Tc)
1/2 jd Hd Vc2 /(12T/Tc)

@106 Pa# @1050 J21m23# @1099 J23m23# @1034 J21m21# @1028 m# @1025 m# @1023 T# @106 rad/s#

0.0 1.68 21.7 41.8 5.00 4.91 0.803 2.10
0.4 2.03 11.5 17.8 2.96 2.85 1.09 5.98
0.8 2.33 8.55 11.2 2.19 2.05 1.32 10.9
1.2 2.59 7.29 8.32 1.79 1.64 1.48 16.4
1.6 2.85 6.71 6.71 1.54 1.38 1.60 22.3
2.0 3.09 6.43 5.70 1.36 1.19 1.73 28.5
2.4 3.33 6.33 5.02 1.23 1.05 1.85 34.9
2.8 3.57 6.39 4.54 1.13 0.949 1.96 41.3
3.2 3.81 6.56 4.19 1.05 0.864 2.04 47.8
3.44 3.96 6.69 4.02 1.01 0.821 2.10 51.7
f.
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by Greywall;32 this F1
s(p) was tabulated conveniently in Re

4. Table I summarizes the pressure dependences of b
quantities thus calculated.

It should be noted finally that, although Thuneberg’s p
cedure is adopted here, qualitative features of the phase
gram ~Fig. 1! obtained below are expected to be the sa
among the models forb j5b j (p), which yields the A-B tran-
sition at V50. This has been checked for the spi
fluctuation-feedback model of Anderson and Brinkman.36,37

III. METHOD

To minimize Eq.~6!, let us first rewrite the order param
eters as

Am i5RmnÃn i , ~12!

where Rmn denotes the spin-space rotation andÃn i is the
order parameter of the restricted space where the spin c
dinates are fixed conveniently relative to the orbital ones.
then find that the gradients ofÃn i andRmn do not couple in
Eq. ~2! due to the orthonormality:RmlRnl5dmn . The char-
acteristic lengths forÃn i and Rmn are given byj and jd of
Table I, respectively, where we observe thatjd is much
longer than bothj and the intervortex distancel c defined

FIG. 1. Thep-V phase diagram for 0.01<V/Vc2<1.0. There
are five different phases I–V. The III-IV transition is first ord
corresponding to the A-B boundary in finiteV, whereas the others
are second order.
22451
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below in Eq. ~14! for the relevant range 0.0001Vc2<V
<Vc2 considered here. It hence follows thatRmn is virtually
kept constant in space. It can be fixed by Eq.~7b! after ob-
taining Ãn i from Eq.~7a!. This is due to the smallness of Eq
~7b! relative to Eq.~7a!.

To minimize Eq.~7a! with respect toÃn i , I assume uni-
formity along Vi ẑ. I then define creation and annihilatio
operators (a†,a) satisfyingaa†2a†a51 as

a†[
l c

A2
~2]x1 i ]y!, a[

l c

A2
~]x1 i ]y!, ~13!

with

l c[~\/4m3V!1/2. ~14!

It is also convenient to introduce the quantities

Ãm
(0)[Ãmz , Ãm

(61)[
1

A2
~Ãmx7 iÃmy!, ~15!

which denote the expansion coefficients ofk̂z and (k̂x

6 i k̂y)/A2, respectively. Now, Eq.~2! can be rewritten in
terms of Eqs.~13!–~15! as

f k5
K

l c
2 $~11umu!@Ãm

(m)* Ãm
(m)12~aÃm

(m)!* aÃm
(m)#

22@~aÃm
(1)!* a†Ãm

(21)1aÃm
(1)~a†Ãm

(21)!* #%. ~16!

Equations~1!, ~4!, and ~5! are transformed similarly using
Am i* An i5Am

(m)* An
(m) andAm iAn i5Am

(m)An
(2m) .

From Eq.~16! and the bilinear term in Eq.~1!, we find
that the p-wave superfluid transition is split, due to th
uniaxial anisotropyV, essentially into those of differentm
channels as

Vc2
(0)5

\a

4m3K
[Vc2 : polar,

Vc2
(21)5

31A6

6
Vc2 : ABM 2~SK!,
5-3
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Vc2
(1)5

1

2
Vc2 : ABM 1, ~17!

in agreement with the results of Schopohl23 and Scharnberg
and Klemm.24 Here the first and third ones correspond to t
polar state (} k̂z) and the Anderson-Brinkman-Morel~ABM !

state (} k̂x1 i k̂y) with l z51, respectively, both in theN50
Landau level. In contrast, the ABM2 ~also called as
Scharnberg-Klemm or SK state! is not a pure ABM state; it
is made up of thek̂x2 i k̂y state in theN50 Landau level and
the k̂x1 i k̂y state in theN52 Landau level. Equation~17!

tells us that it is the polar stateÃm
(0)Þ0 which is realized at

Vc2. Its stability is due to the line node in thexy plane
perpendicular toV which works favorably to reduce the k
netic energy dominant nearVc2. Indeed, given the condition
that the average gap amplitude on the Fermi surface be
stant, the superfluid densityrxx of the polar staterxx

polar

}3*dVkk̂x
2k̂z

253/15 is half that of the ABM staterxx
ABM

} 3
2 *dVkk̂x

2( k̂x
21 k̂y

2)56/15. This explains the difference o
the factor of 2 betweenVc25Vc2

(0) and Vc2
(1) . As seen in

Table I, thisVc2 is of order (12T/Tc)3107 rad/s.
With these preparations, Eq.~7a! is minimized by the

LLX method.26 In the end, it can be performed quite effi
ciently, especially nearVc2, with the Ritz variational method
of expandingÃm

(m) in some basis functions and carrying o
the minimization with respect to the expansion coefficien
Convenient basis functions for periodic vortex lattices
obtained using the magnetic translation operator

TR[exp@2R•~“12im3V3r /\!#, ~18!

whereR denotes a lattice point spanned by two basic v
tors:

a1[~a1x ,a1y,0!,

a2[~0,a2,0!, a1xa252p l c
2. ~19!

Hence those lattices have a unit circulation quantumk
[h/2m3 per every basic cell,1 as required. The basic vecto
of the corresponding reciprocal lattice are given by

b1[~a23 ẑ!/ l c
2,

b2[~ ẑ3a1!/ l c
2. ~20!

The magnetic Bloch vector is defined in the Brillouin zone
the reciprocal lattice as

q[
m1

Nf
b11

m2

Nf
b2 S 2

Nf

2
,m j<

Nf

2 D , ~21!

whereNf is an even integer withNf
2 denoting the number o

k in the system. Using these quantities, the basis funct
are obtained as simultaneous eigenstates ofa†a andTR as26
22451
n-
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cNq~r !5 (
n52Nf/211

Nf/2

ei [qy(y1 l c
2qx/2)1na1x(y1 l c

2qx2na1y/2)/l c
2]

3e2 ixy/2l c
2
2(x2 l c

2qy2na1x)2/2l c
2A 2p l c /a2

2NN!Ap V

3HNS x2 l c
2qy2na1x

l c
D , ~22!

where N denotes the Landau level andHN is the Hermite
polynomial.38 Useful properties ofcNq are summarized in
the Appendix. Let us expandÃm

(m) in $cNq% as

Ãm
(m)~r !5AV (

N50

`

(
q

cNq
(mm) cNq~r !. ~23!

Then substitute Eq.~23! into Eq. ~7a!, perform a change of
variables (x,y)5(a1xs,a1ys1a2t), and carry out the inte-
gration in Eq.~7a! with respect to (s,t). Now, Eq. ~7a! is
transformed into a functional of the expansion coefficie
$cNq

(mm)% and a couple of lattice parameters:

b[cos21~a1y /a1! : apex angle,

r[a2 /a1 : length ratio, ~24!

as

F05F0@$cNq
(mm)%,b,r#. ~25!

For a givenV, this F0 is minimized directly.
Numerical minimizations have been performed as f

lows: ~i! Cut the series in Eq.~23! at someNmax and substi-
tute it into Eq. ~7a!. The convergence can be checked
increasingNmax, as increasingNmax is guaranteed to yield a
better solution with a lowerF0. ~ii ! Numerical integrations
in Eq. ~7a! are performed using the trapezoidal rule which
known to be very powerful for periodic functions. To th
end, the basis functions ofN<Nmax on the discrete points ar
tabulated at the beginning of the calculations. Equation~25!
is thereby evaluated for each set of arguments. It has b
necessary to increaseNmax from 6 near Vc2 to 360 at
0.01Vc2 and the integration points in the basic cell from 62

to 362 accordingly to obtain the relative accuracy of ord
1028 for F0. ~iii ! Equation~25! is minimized first with re-
spect to$cNq

(mm)% by Powell’s method or the conjugate grad
ent method,39 and then, if necessary, with respect to (b,r) by
Powell’s method. The conjugate gradient method is abou
times faster, although the programming is far more cumb
some. Powell’s method is fast enough forV*0.05Vc2. ~iv!
Second-order transitions are identified carefully by comb
ing group-theoretical considerations of Sec. IV with sign
of the relative change in the slope of]F0 /]V. Its analytic
expression is obtained as26,40

]F0

]V
5

1

VE f k dr , ~26!

so that it can be calculated quite accurately without recou
to any numerical differentiation.
5-4
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OnceÃm i are fixed as above, Eq.~12! is substituted into
Eq. ~7b!. ConsideringRmn constant in space, as mentione
before, the three independent parameters of the matrixR are
then determined by minimizing Eq.~7b!.

Some phases encountered below have a common fe
that all the components other than

d[~Rxz ,Ryz ,Rzz!, Ã[~Ãzx ,Ãzy ,Ãzz! ~27!

can be put equal to zero. For those states,F1 is given by

F15gdS d̂mMmnd̂n2
2

3
^Ã* •Ã& D , ~28!

where^•••&[(1/V)*•••dr , andMmn is defined by

Mmn[^2Ãm* Ãn1Ã* •Ã HmHn /Hd
2&. ~29!

It hence follows thatd points parallel to the eigenvector co
responding to the smallest eigenvalue ofM .

IV. GROUP-THEORETICAL CONSIDERATIONS

A. Classification of vortices

As in the case of ordinary solids,42,41 various vortex lat-
tices can be classified according to their symmetry. It tu
out that the operator~18!, the basis functions~22!, and the
expansion~23! are quite useful for this purpose.

Classification of isolated vortices in superfluid3He has
been carried out by Salomaa and Volovik2,10 and
Thuneberg.11 Such classification for vortex lattices has be
performed recently by Karima¨ki and Thuneberg,22 without
recourse to Eqs.~18!–~23!, however. It is shown below tha
making use of Eqs.~18!–~23! provides a transparent class
fication scheme.

To start with it is necessary to define ‘‘symmetry ope
tions’’ unambiguously, since we are considering a pheno
enological GL functional rather than a microscopic Ham
tonian. In the case of a Hamiltonian, ‘‘symmetry operation
mean those operations which commute with the Ham
tonian. In the present case of a GL functional, ‘‘symme
operations’’ are defined as those operations which keep
the physical~i.e., observable! quantities invariant. Let us re
strict ourselves to orbital degrees of freedom, as appropr
when Eq.~7b! can be regarded as a tiny perturbation. Th
besidesf b1 f k of Eqs. ~1! and ~2!, there are three relevan
physical quantities

r~r ![Ãm i* Ãm i , ~30a!

j i~r ![
4m3K

\
Im~Ãm i* ] j Ãm j1Ãm j* ] i Ãm j1Ãm j* ] j Ãm i !,

~30b!

l i~r ![2 i« i jk Ãm j* Ãmk /r~r !, ~30c!

which denote the density, current, and normalized orbital
gular momentum of Cooper pairs, respectively. A gene
operatorŜ transformsÃm i , ] i , and« i jk in these expression
as
22451
ure

s

-
-
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all

te
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-
l

Ãm i~r !→Ãm i
(S)~r ![SmnÃn j~S21r !S j i

21 , ~31a!

] i→] i
(S)[Si i 8] i 8 , ~31b!

« i jk→« i jk
(S)[Si i 8Sj j 8Skk8« i 8 j 8k8 , ~31c!

where (S)mn5Smn denotes a matrix representation ofŜ.
Now, symmetry of a vortex lattice is specified by those o
erations$Ŝ% which keep the physical quantities invariant a

f b~r !1 f k~r !5 f b
(S)~r !1 f k

(S)~r !,

r~r !5r (S)~r !,

j ~r !5 j (S)~r !,

l~r !5 l(S)~r !, ~32!

wherej (S), for example, denotes the expression obtained
substituting Eq.~31! into Eq. ~30b!. The collection of these
operations$Ŝ% forms a group, which characterize the re
evant vortex lattice.

Since TR of Eq. ~18! commutes with­ of Eq. ~3!, the
operatorTR plays exactly the same role as the translat
operator of the ordinary space group. This is one of the m
reasons why the basis functions~22!, which are eigenstate
of TR , are advantageous in expanding the order parame
as Eq.~23!.

As an example, let us specifically consider phase IV
Fig. 1. It corresponds to the hexagonal lattice of the norm
core vortex in the B phase which was discovered in
isolated-vortex calculation by Ohmi, Tsuneto, and Fujita19

The present calculation with the LLX method shows th
nonzero order parameters can be expressed as

Ãz
(0)5AV (

N
cNq1

(0) cNq1
, ~33a!

Ãx
(21)5AV (

N
@cNq1

(21)cNq1
1cN14 q1

(21) cN14 q1
#,

~33b!

Ãy
(21)5 iAV (

N
@cNq1

(21)cNq1
2cN14 q1

(21) cN14 q1
#,

~33c!

Ãx
(1)5AV (

N
@cNq1

(1) cNq1
1cN12 q1

(1) cN12 q1
#, ~33d!

Ãy
(1)52 iAV (

N
@cNq1

(1) cNq1
2cN12 q1

(1) cN12 q1
#,

~33e!

where the summations run overN56n (n50,1,2, . . . ), q1
is a magnetic Bloch vector which can be chosen arbitra
due to the broken translational symmetry, and allcNq1

(m) ’s are

real. It is convenient to fixq15 1
2 (b11b2) so that a core is

located at the origin, i.e.,Ãi
(m)(0)50. Then, with the prop-
5-5
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TABLE II. Properties of phases I–V. The notation of Ref. 42 is used for the point-group operations
i 51,2,3, m5x,y, and s5a,b, and u denotes the time-reversal operation. The point-group operation
phases I and IV-VI are defined with respect to the origin. In contrast, those of phases II and III are ab
point (a11a2)/2 where a core of the SK sublattice is located, withx andy axes taken alonga11a2 anda1

2a2, respectively. The operator$I ua1%, for example, denotes successive operations of the inversion a
magnetic translation bya1, i.e., $I ua1%[Ta1

I .

Phase Unit cell b r Symmetry operations

I a1 , a2 p/3 1 E, C6z
(6) , C3z

(6) , C2z , I, S6z
(6) , S3z

(6) , sh , uC2i8 ,
uC2i9 , usdi , usv i .

II a11a2 , a12a2 p

3
,b,

p

2
1 E, C2z , $I ua1%, $shua1%, u$C2mua1%, usm .

III a11a2 , a12a2 p/2 1 E, C4z
(6) , C2z , $I ua1%, $S4z

(6)ua1%, $shua1%,
u$C2mua1%, u$C2sua1%, usm , usds .

IV a1 , a2 p/3 1 E, C6z
(6) , C3z

(6) , C2 , I, S6z
(6) , S3z

(6) , sh , uC2i8 ,
uC2i9 , usdi , usv i .

V a1 , a2 p/3 1 E, C6z
(6) , C3z

(6) , C2z , usdi , usv i .
VI a1 , a2 ;p/3 ;1 E, C2z , usdm .
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The
erties of cNq1
given by Eq. ~A8!, one can show that the

order-parameter matrix (Ã)m i[Ãm i satisfies

Rw Ã ~Rw
21r !Rw

215e2 iwÃ~r !, ~34a!

sx Ã* ~sx
21r ! sx

215e25ip/4Ã~r !, ~34b!

sy Ã* ~sy
21r ! sy

215e2 ip/4Ã~r !, ~34c!

sh Ã~sh
21r ! sh

215Ã~r !, ~34d!

where Rw and s i ( i 5x,y) denote, respectively, a rotatio
around thez axis byw5np/3 and the mirror reflection with
respect to the plane perpendicular to thei axis. Using Eq.
~34! in Eq. ~31!, one can show that Eq.~32! holds for the
four operations of Eq.~34!. Similar considerations show tha
besidesTR , there are symmetry operations in phase IV list
in the fourth row of Table II. Here the primitive cell i
spanned by the basic vectors~19!, thus containing a single
circulation quantum. IfTR is identified with the usual trans
lation operator, this space group can be labeled
P6/mm8m8.42

The same consideration is performed for every stable v
tex phase found numerically. The results are summarized
low in Table II.

B. Phase transitions

The expansion~23! is also useful for enumerating pos
sible transitions in vortex-lattice phases. Indeed, we can
the known results from the space group43 using the corre-
spondence exp(2R•“)↔TR and~Bloch states!↔~magnetic
Bloch states!.

We first summarize basic features of the conventio
Abrikosov lattices with a single order parameter within t
framework of the LLX method26: ~a! Any singleq5q1 suf-
fices to describe them, due to broken translational symm
of the vortex lattice. Each unit cell has a single circulati
22451
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quantumk. ~b! The hexagonal~square! lattice is made up of
N56n (4n) Landau levels (n50,1,2, . . . ), and theexpan-
sion coefficientscNq1

can be chosen real.~c! More general

structures are described byN52n levels. Odd-N basis func-
tions, some of which have finite amplitudes at the cores
even-N basis functions~see the Appendix!, never participate
in forming the order parameter, because such mixing is
ergetically unfavorable.

With multicomponent order parameters, there can b
wide variety of vortices, which may be divided into tw
categories. I call the first category ‘‘fill-core’’ states with
single circulation quantum per unit cell; i.e., only a sing
q5q1 is relevant. Here the cores of the conventional Ab
kosov lattice are filled in by some superfluid compone
using the odd-N wave functions of Eq.~22!. The second
category may be called ‘‘shift-core’’ states, where core loc
tions are not identical among different order-parameter co
ponents. The corresponding lattice has an enlarged unit
with multiple circulation quanta. General structures withnk
circulation quanta per unit cell can be described usingnk
different q’s, and the unit cell becomesnk times as large as
that of the conventional Abrikosov lattice. For examp
structures with two quanta per unit cell can be described
choosing

q15
b11b2

2
, q250, ~35!

whereb1 andb2 are reciprocal lattice vectors defined by E
~20!.

With these observations, we now realize that followi
second-order transitions are possible in a two-compon
system. ~i! Deformation of a hexagonal or square latti
within a single-q lattice. This accompanies entry of ne
even-N basis functions, and the coefficients$cNq% become
intrinsically complex.~ii ! The entry of odd-N basis functions
within a single-q lattice, i.e., a transition into a fill-core lat
tice. Here, cores of even-N basis functions are filled in by
some superfluid components not used in the bulk phase.
5-6
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TABLE III. Critical angular velocities of the phase transitions in units ofVc2.

p ~MPa! 0 0.4 0.8 1.2 1.6 2.0 2.4 2.85 3.2 3.44

I-II 0.8527 0.8548 0.8569 0.8588 0.8605 0.8624 0.8644 0.8671 0.8696 0.
II-III 0.8388 0.8411 0.8433 0.8454 0.8473 0.8493 0.8515 0.8544 0.8572 0.8
III-IV 1.1831021 9.0031022 6.5431022 4.5631022 3.1631022 1.8931022 8.3231023 0.0 — —
IV-V 2.2331022 1.7831022 1.4431022 1.2031022 1.0531022 9.0831023 7.7831023 0.0 — —
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transition occurs below some critical angular veloc
smaller thanVc2/3. ~iii ! Mixing of another wave numberq2,
i.e., a transition into a shift-core lattice. When applied to t
system, the Lifshitz condition43 concludes exclusively tha
q22q1 should be half a basic vectorbj ( j 51,2) of the re-
ciprocal lattice; i.e., the only possibility is doubling of th
unit cell.

Though not complete for the present nine-component s
tem, the above list covers most of the transitions found
low. Case~ii ! corresponds to superfluid-core states such
the A-phase-core and double-core vortices in the B ph
whereas~iii ! will be shown to describe a unit cell with tw
circulation quanta like the continuous unlocked vortex of
A phase.7 Since no odd-order couplings exist betweenÃm

(0)

and (Ãn
(21) ,Ãl

(1)) in Eqs.~1!–~5!, we also realize that a stat

of Ãn
(21)Þ0 or Ãl

(1)Þ0 accompanies a second-order tran
tion as we decreaseV from Vc2.

V. PHASE DIAGRAM FOR 0.01Vc2ÏVÏVc2

Figure 1 displays the obtainedp-V phase diagram for
0.01Vc2<V<Vc2, where five different phases I–V ar
present. Symmetry properties of each phase, which h
been clarified by group-theoretical considerations similar
that given around Eq.~34!, are summarized in Table II. Also
critical values of the transitions are listed in Table III. Ea
phase is explained below in detail.

According to Eq.~17!, the normal→superfluid transition
in rotation occurs atVc25Vc2

(0) into Ãz
(0)Þ0. Thus, in phase

I just belowVc2, the polar state is realized to form the co
ventional hexagonal lattice as

Ãz
(0)5AV (

N
cNq1

(0) cNq1
, ~36!

with N56n (n50,1,2, . . . ), b5p/3, andr51. All cNq1

(0)

can be put real, andq1 is conveniently chosen as Eq.~35! so
that a core is located at the origin. As already discus
below Eq.~17!, the stability of the polar state nearVc2 can
be attributed to its line node in the plane perpendicular toV
which works favorably to reduce the kinetic energy domin
nearVc2. It follows from Eq. ~28! that thed vector of Eq.
~27! at H50 lies along an arbitrary direction in thexy plane
which is fixed spontaneously. This degeneracy is lifted b
field in the plane so thatd'H is realized.

In phase II,Ãz
(61) also become finite as44
22451
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Ãz
(21)5AV (

N
cNq2

(21) cNq2
, ~37a!

Ãz
(1)5AV (

N
cNq2

(1) cNq2
. ~37b!

The N’s in Eqs.~36! and~37! are even numbers, and all th
coefficients are essentially complex exceptc0q1

(0) which can be

chosen real using a gauge transformation. The I-II transit
is second order corresponding to the SK line of Eq.~17!.
Indeed,N50 andN52 Landau levels are dominant in Eq
~37a! and ~37b!, respectively. Due the presence ofÃz

(0) ,
however, the critical angular velocityVc

(I↔II) is somewhat
lowered fromVc2

(21)50.9082Vc2 of Eq. ~17!, as seen in Fig.
1. The vectorq2 is shifted fromq1 by half a basic vectorbj ,
so that the unit cell is doubled carrying two circulatio
quanta. Thus, phase II is composed of interpenetrating p
and SK sublattices. This superposition with shifted core
cations is energetically more favorable than that with
identical core locations, becauseAm i* Am i becomes finite ev-
erywhere. It is convenient to chooseq250.45 Then r51
holds throughout, and as seen in Fig. 2 calculated fop
52.0 MPa, the apex angleb changes continuously through
out the phase betweenp/3 andp/2. This is a centered rect
angular lattice with the primitive vectors given bya16a2.
Figure 3 displays the order-parameter amplitudes atp
52.0 MPa over2a2<x,y<a2 for ~a! V50.863Vc2 with
b5p/3 ~still in polar state!, ~b! V50.852Vc2 with b
50.414p ~phase II!, and ~c! V50.849Vc2 with b5p/2
~just below the II-III boundary!. We observe that the SK stat

FIG. 2. The apex angleb as a function ofV/Vc2 at p
52.0 MPa. Phase transitions occur atVc

(I↔II) 50.8623Vc2 and
Vc

(II↔III) 50.8493Vc2.
5-7
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grows gradually fromV50.8623Vc2 with the largest ampli-
tude at the cores of the polar state. Thed vector has the sam
character as phase I.

In phase III, the system remains in the square lattice w
b5p/2 and r51. Only N54n, 4n, and 4n12 (n
50,1,2, . . . ) Landau levels are relevant in Eqs.~36!, ~37a!,
and ~37b!, respectively. Whereas allcNq1

(0) ’s can be put real,

the coefficientscNq2

(71) are complex with a common phase

2p/4 relative toc0q1

(0) . The II-III transition is second order

as may be realized from the square-root behavior of Fig
As V is decreased from the boundary, the SK sublattice w
the coefficientscNq2

(71) grows rapidly. Also within the SK sub

lattice, the ABM(1) component with the coefficientscNq2

(1)

becomes less important at lowerV so that the sublattice
approaches to the pure ABM state withl z521. Figures
4~a!–4~d! display the order-parameter amplitude~30a! and
the orbital angular momentum~30c! calculated over2a2
<x,y<a2 for V50.05Vc2 at p52.0 MPa. We realize from
these figures that phase III at lowerV is essentially the
A-phase mixed-twist lattice with polar cores and double c
culation quanta per unit cell.1,46 Indeed, as seen in Fig. 4~d!,
the l vector rotates from downward at the origin to horizo
tally outward or inward towards polar cores. A grou
theoretical consideration, similar to that given around E
~34!, clarifies that this phase is characterized by the sym
try operations given in the third row of Table II; they a
defined with respect to a polar core, i.e., thep site of Fig.
4~d!. It is worth comparing Fig. 4 with Fig. 3~c! at V
50.849Vc2. The cores atV50.849Vc2 now acquire a large
ABM amplitude with l z521, and the points with the maxi
mum polar amplitude atV50.849Vc2 turn into cores, i.e.,
singular points of the vector fieldl(r ) where the amplitude
Ãm i* Ãm i is also smallest. Notice that this phase is stable a
pressures. It is also worth pointing out that, although b
carrying double quanta per unit cell, this structure is co

FIG. 3. The amplitudeÃm i* Ãm i normalized by theV50 value
over 2a2<x,y<a2 at p52.0 MPa. ~a! At V50.863Vc2 where
b5p/3 ~polar state!. ~b! At V50.852Vc2 whereb50.414p ~phase
II !. ~c! At V50.849Vc2 where b5p/2 ~phase III!. Below V
50.8623Vc2, the SK sublattice grows gradually with the large
amplitude at the cores of the polar sublattice. Thus, the amplit

Ãm i* Ãm i is finite everywhere in~b! and~c!. The apex angle change
continuously from b5p/3 at V50.8623Vc2 to b5p/2 at V
50.8493Vc2.
22451
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pletely different from the vortex-sheet-like structure found
a two-component system.28 The d vector has the same cha
acter as phase I.

Phase IV is a hexagonal lattice of the B-phase norm
core vortex oro vortex, which was found in the isolated
vortex calculation by Ohmi, Tsuneto, and Fujita.19 However,
it was concluded later by another isolated-vort
calculation10 that this normal-core vortex is a metastab
state. Indeed, the vortex has never been observed experi
tally. The present calculation shows, however, that it will
stabilized as we increaseV. The nonzero components be
sides Eq.~36! are given by

Ãx
(21)5AV (

N
@cNq1

(21)cNq1
1cN14 q1

(21) cN14 q1
#, ~38a!

Ãy
(21)5 iAV (

N
@cNq1

(21)cNq1
2cN14 q1

(21) cN14 q1
#,

~38b!

Ãx
(1)5AV (

N
@cNq1

(1) cNq1
1cN12 q1

(1) cN12 q1
#, ~38c!

e

FIG. 4. Characteristic quantities in phase III calculated ov

2a2<x,y<a2 for V50.05Vc2 at p52.0 MPa. ~a! Ãm i* Ãm i nor-
malized by theV50 value.~b! l z(r ). ~c! l x(r ). ~d! Projection of
l(r ) onto thexy plane. The plot forl y(r ) is obtained by rotating~c!
by 2p/2. The p and 3 sites in ~d! correspond to the pure pola
state and the pure ABM state withl z521, respectively.
5-8
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Ãy
(1)52 iAV (

N
@cNq1

(1) cNq1
2cN12 q1

(1) cN12 q1
#,

~38d!

whereN56n, b5p/3, r51, and all coefficients are rea
Figure 5 plots the order-parameter amplitudes along thx
direction calculated forV50.025Vc2 at p50.0 MPa. They
already display the same features as those obtained by
isolated-vortex calculations.10,11,19 The III-IV boundary in
Fig. 1 is a first-order-transition line, approaching towardsp
5ppcp at V50 and vanishing forp.ppcp, as expected
Thus, this line may be regarded as the A-B phase bound
in finite V. It is convenient here to parametrize the rotati
matrix R of Eq. ~12! as1

Rmn5dmncosu1nmnn~12cosu!2«mnlnlsinu, ~39!

wheren is a unit vector. Then it is found that, asV is de-
creased, the rotation angleu approaches from below to th
bulk value cos21(21/4), as seen in Fig. 6. Then vector at
H50 lies along an arbitrary direction in thexy plane which
is fixed spontaneously. Upon applying the magnetic field
the plane, the stateniH is realized.

FIG. 5. Order parameters of phase IV along thex axis at p
50.0 MPa andV50.025Vc2. The amplitudes are normalized b

the V50 value ofÃxx , and the common phasep/8 is subtracted

from Ãm i .

FIG. 6. Rotation angleu defined by Eq.~39! as a function of
V/Vc2. It is calculated beyond the III-IV boundary in Fig. 1 int
the metastable region.
22451
the
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n

Phase V continuously fills in phase-IV core regions w
the superfluid components not used in phase IV. Besi
those of phase IV, the solution indeed has new nonzero c
ponents which are made up only of odd Landau levels a

Ãx
(0)5AV (

N
@cN11q1

(0) cN11q1
1cN15q1

(0) cN15q1
#,

~40a!

Ãy
(0)5 iAV (

N
@cN11q1

(0) cN11q1
2cN15q1

(0) cN15q1
#,

~40b!

Ãz
(21)5AV (

N
cN15q1

(21) cN15q1
, ~40c!

Ãz
(1)5AV (

N
cN11q1

(1) cN11q1
, ~40d!

whereN56n, b5p/3, r51, and all coefficients are rea
Figure 7 plots the order-parameter amplitudes alongx direc-
tion calculated forV50.01Vc2 at p50.0 MPa. The core
superfluid components satisfy ReÃzx5Im Ãzy and ReÃxz

5Im Ãyz at the origin. As may be realized from this figur
this state corresponds to the A-phase-core vortex or axis
metric v vortex found theoretically by Salomaa an
Volovik,10 which also has been observed experimentally8,9

Indeed, using the properties ofcNq1
given in Eq.~A8!, one

can show that the order-parameter matrixÃ[(Ãm i) satisfies
Eqs.~34a!–~34c! but not Eq.~34d!. Thus, the present calcu
lation has clarified for the first time that a vortex lattice wi
superfluid cores can be described by a superposition of
Landau levels. The IV-V phase boundary is a second-or
transition, as anticipated by Salomaa and Volovik based o
single-vortex consideration,10 which is driven mainly by the
N51 Landau level. Due to the presence of finite order p
rameters composed of even Landau levels, however,
critical angular velocityVc

(IV↔V) is lowered fromVc2/3 ex-
pected for the pureN51 Landau level to become smalle

FIG. 7. Order parameters of phase V along thex axis at p
50.0 MPa andV50.01Vc2. The amplitudes are normalized by th
V50 value ofÃxx , and the common phasep/8 is subtracted from
Ãm i . The equalities ReÃzx5Im Ãzy and ReÃxz5Im Ãyz hold at x
50.
5-9
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than;231022Vc2 rad/s, as seen in Fig. 1. Then vector has
the same character as phase IV.

VI. TRANSITION BETWEEN A-PHASE-CORE AND
DOUBLE-CORE LATTICES

Using the same parameters as those given in Tabl
Thuneberg11 carried out an isolated-vortex calculation. H
thereby succeeded in identifying two kinds of vortices e
perimentally found in the B phase nearVc1. According to
his calculation, the double-core vortex is stable below ab
2.5 MPa over the A-phase-core vortex. Combining his re
with the phase diagram of Fig. 1, we naturally anticipa
another phase transition below 0.01Vc2 from the A-phase-
core lattice to the double-core lattice at low pressures.

To find the transition, I have performed a variational c
culation down toV50.0001Vc2 at p50.0 MPa usingN
<3000 Landau levels. The hexagonal lattice is assume
simplify the calculation, and I have taken 72372 integration
points of equal interval per unit cell. It has been checked t
increasing integration points further does not changeF be-
yond 1028 order. Unfortunately, however,N<3000 Landau
levels at 0.0001Vc2 are still not enough to obtain enoug
convergence. Indeed, it has been observed that inclu
more Landau levels asN<1800, 2400, 3000 changes th
amplitudes of the core superfluid components to a notice
level and lowers the critical angular velocity of the tran
tion. Also, since the isolated double-core vortex has onl
discretep-rotational symmetry about thez axis, the double-
core lattice is expected to deform spontaneously from
hexagonal structure. Thus, the present calculation is a va
tional one to clarify the nature of the transition as well as
estimate an upper bound for the criticalV. It should be
noted, however, that assuming the hexagonal lattice ha
changes the free energy in this low-V region with a large
intervortex distance, and does not affect the criticalV if the
transition happens to be second order.

Figure 8 displays the order parameters along thex axis at
p50.0 MPa andV50.00015Vc2. The relations ReÃzx(0)
5Im Ãzy(0) and ReÃxz(0)5Im Ãyz(0) still hold; hence the
system remains in phase V of the A-phase-core lattice. C
paring Fig. 8~a! with Fig. 7, we observe that the core supe
fluid components have grown substantially, and the b
componentsÃxx , Ãyy , andÃzz are somewhat depleted in th
core region. However, Fig. 8~b! shown over a larger scal
0<x/j<100 indicates that the requirement ReÃxz(0)
5Im Ãyz(0) of the A-phase-core vortex is unfavorable f
further growth of ReÃxz . Thus, we see clearly that the sy
tem wants to break the symmetry of the A-phase-core vo
aroundV;0.00015Vc2.

Figure 9 shows the order parameters for a slightly low
V50.0001Vc2 at p50.0 MPa along the~a! x axis and~b! y
axis. Here the symmetry of the A-phase-core vortex is ma
festly broken as ReÃxz(0)ÞIm Ãyz(0) and ReÃzx(0)
ÞIm Ãzy(0). Thus, the double-core lattice, also called pha
VI, is realized. Indeed, theseÃm i have the same qualitativ
features as those of the isolated double-core vortex ca
22451
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lated by Thuneberg.11 The order parameters are given expli
itly by

Ãz
(0)5AV (

N
cNq1

(0) cNq1
, ~41a!

Ãx
(21)5AV (

N
@cNq1

(21)cNq1
1cN14q1

(21) cN14q1
#

1AV (
N

@dNq1

(21)cNq1
1dN14q1

(21) cN14q1
#,

~41b!

Ãy
(21)5 iAV (

N
@cNq1

(21)cNq1
2cN14q1

(21) cN14q1
#

2 iAV (
N

@dNq1

(21)cNq1
2dN14q1

(21) cN14q1
#,

~41c!

FIG. 8. Order parameters along thex axis atp50.0 MPa and
V50.00015Vc2. ~a! 0<x/j<10. ~b! 0<x/j<100. The ampli-
tudes are normalized by theV50 value ofÃxx , and the common
phasep/8 is subtracted fromÃm i . The relations ReÃzx5Im Ãzy

and ReÃxz5Im Ãyz still hold at x50.
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Ãx
(1)5AV (

N
@cNq1

(1) cNq1
1cN12q1

(1) cN12q1
#

1AV (
N

@dNq1

(1) cNq1
1dN12q1

(1) cN12q1
#, ~41d!

Ãy
(1)52 iAV (

N
@cNq1

(1) cNq1
2cN12q1

(1) cN12q1
#

1 iAV (
N

@dNq1

(1) cNq1
2dN12q1

(1) cN12q1
#, ~41e!

Ãx
(0)5AV (

N
@cN11q1

(0) cN11q1
1cN15q1

(0) cN15q1
#

1AV (
N

@dN11q1

(0) cN11q1
1dN15q1

(0) cN15q1
#,

~41f!

Ãy
(0)5 iAV (

N
@cN11q1

(0) cN11q1
2cN15q1

(0) cN15q1
#

2 iAV (
N

@dN11q1

(0) cN11q1
2dN15q1

(0) cN15q1
#,

~41g!

Ãz
(21)5AV (

N
@cN15q1

(21) cN15q1
1dN11q1

(21) cN11q1
#,

~41h!

Ãz
(1)5AV (

N
@cN11q1

(1) cN11q1
1dN15q1

(1) cN15q1
#,

~41i!

with N56n, b5p/3, andr51. All the coefficients are real
and terms withdNq1

(m) , which are absent in the A-phase-co

vortex, bring new asymmetry betweenÃx
(m) andÃy

(m) as well
as new terms inÃz

(71) .
It follows from Figs. 8 and 9 that a phase transition occ

between V50.00015Vc2 and V50.0001Vc2 at p
50.0 MPa. As already noted, however,N<3000 Landau
levels are still not enough to identify the critical valu
Vc

(V↔VI) or the order of the transition. Including more La
dau levels has been observed to decreaseVc

(V↔VI) , so that
the present valueVc

(V↔VI) '0.0001Vc2 should be considered
as an upper bound forVc

(V↔VI) at p50.0 MPa. It is also
expected from Fig. 1 thatVc

(V↔VI) (p) is a decreasing func
tion of p. As for the order of the transition, the isolate
vortex calculation by Thuneberg11 clarified that it is first or-
der nearVc1. However, it can be second order from a pure
group-theoretical viewpoint. Therefore, it is possible that
transition atp50.0 MPa is second order, changing its natu
into first order through a tricritical point43 as we increasep.

Experimentally, the present result implies that, as we
creaseV above 3 rad/s, the double-core region will shrink
the p-T plane to be replaced by the A-phase-core regi
22451
s

e

-

,

vanishing eventually in a rotation of 103–104 rad/s. In addi-
tion, the phase boundary between the double-core
A-phase-core vortices may change its character from
order to second order in increasingV. A systematic study for
V&102 rad/s may be able to detect this shrinkage of
double-core region as well as to provide an estimate for
critical V where the double-core vortex disappears.

VII. SUMMARY

Based on a new approach starting fromVc2 down to-
wardsVc1, the present calculation has revealed a rich ph
diagram of rapidly rotating superfluid3He. Six phases have
been found in thep-V plane, and we now have a comple
story of how the polar hexagonal lattice nearVc2 develops
into the A-phase-core and double-core vortices experim
tally observed in the B phase. Interestingly, the polar or
ABM state is favorable over the isotropic Balian-Wertham
state forV*0.1Vc2.

The present study have also clarified prototypes of vo
ces expected in multicomponent superfluids and superc
ductors. With multiple order parameters, it is possible, a
may be energetically favorable, to fill cores of an existi
component with others not used yet. These unconventio
vortices have been classified here into two categories,

FIG. 9. Order parameters atp50.0 MPa andV50.0001Vc2.
~a! Along the x axis over 0<x/j<10. ~b! Along y axis over 0
<y/j<10. The amplitudes are normalized by theV50 value of
Ãxx , and the common phasep/8 is subtracted fromÃm i . Notice
that ReÃzx(0)ÞIm Ãzy(0) and ReÃxz(0)ÞIm Ãyz(0), indicating
the double-core vortex.
5-11
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‘‘shift-core’’ and ‘‘fill-core’’ states. The former vortex lattices
are composed of interpenetrating sublattices of differ
components which can be described by using multiple m
netic Bloch vectors (q1 ,q2 , . . . ). They have an enlarge
unit cell with multiple circulation quanta. This category in
cludes phase III of Fig. 1 where the mixed-twist lattice
realized at lowV and, also, the vortex sheet expected
two-component systems.28,30 In both cases, spatial variatio
of the l vector is the main origin of vorticity. The latte
vortex lattices, which may be realized forV&Vc2/3, can be
described using odd-N Landau levels with the same mag
netic Bloch vector. This includes the A-phase-core a
double-core lattices in the B phase.

Superfluid3He is a unique system with nine order para
eters without intrinsic anisotropies. In spite of every dif
culty to realizeVc2;(12T/Tc)3107, the whole phase dia
gram over 0<V<Vc2 is worth establishing experimentall
to advance our knowledge of unconventional vortices. A
first step of this project, however, it may not be so difficult
observe shrinkage of the double-core region in thep-T plane
in increasingV. Observations of a vanishing double-co
region in thep-T plane and the appearance of the norm
core vortex will mark the next two stages. To realizeVc2, it
will be necessary either to acquireV;103–107 rad/s at low
temperatures or to perform accurate experiments in the
gion 12T/Tc;1023–1028. In the former case, the samp
size should be made adequately small to keep the pres
constant over it; for example,Dp50.1 MPa at V
5106 rad/s for the sample radius ofR5531025 m.

Theoretically, it still remains a problem in the future
establish a complete phase diagram of the A-phase reg
i.e., how the mixed-twist lattice of phase III grows into eith
of the locked vortex 1, the continuous unlocked vortex,
singular vortex, or the vortex sheet, which have been es
lished by low-V calculations.7 This fact also implies tha
there may be multiple unknown phases waiting to be disc
ered experimentally in moderateV.
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APPENDIX: PROPERTIES OF cNq

~i! The basis functions satisfy the orthonormality:

^cNqucN8q8&5dNN8dqq8 ,

(
Nq

ucNq&^cNqu51. ~A1!

~ii ! Upon applying Eq.~18! with R[n1a11n2a2, the ba-
sis functioncNq is transformed as

TR cNq~r !5e2 iq•R2 ipn1n2 cNq~r !. ~A2!
22451
t
g-

d

-

a

-

e-

ure

n,

e
b-

-

e-
-
,

~iii ! The functioncNq is obtained fromcN0 by a magnetic
translation as

cNq~r !5Tl
c
2q3 ẑcN0~r !. ~A3!

It thus follows thatcNq and cNq8 are essentially the sam
function, differing only in the location of zeros.

~iv! The basis functioncNq(r ) vanishes at

r5
R

2
2 l c

2q3 ẑ for H n1n25odd; N: even,

n1n25even; N: odd.
~A4!

Thus,cNq1
(0)50 for q1[(b11b2)/2 andN52n.

~v! Generally,cNq1
(r ) andcN0(r ) at least satisfy

cNq1
~2r !5ei (N21)p cNq1

~r !,

cN0~2r !5eiNp cN0~r !. ~A5!

~vi! For centered rectangular lattices withr51, cNq(r )’s
for q50 andq1 satisfy, in addition to Eq.~A5!, the following
equality corresponding to the mirror reflection with respe
to the plane includingz anda11a2:

cNq~2x cosb1y sinb,x sinb1y cosb!

5exp~2 iwNq! cNq* ~x,y!, ~A6!

wherewNq is a constant which does not depend onr .
~vii ! For the square lattice withb5p/2 and r51, the

basis functionscNq1
(r ) andcN0(r ) satisfy

cNq1
~Rw

21r !5ei (N21)w cNq1
~r !,

cNq1
~x,2y!5eip/2 cNq1

* ~x,y!,

cNq1
~y,x!5e2 ip(N22)/2 cNq1

* ~x,y!,

cN0~Rw
21r !5eiNwcN0~r !,

cN0~x,2y!5cN0* ~x,y!,

cN0~y,x!5e2 ipN/2 cN0* ~x,y!, ~A7!

whereRw denotes a rotation aroundz axis by w5np/2. It
hence follows that cNq1

(0)50 except N54n11 and

cN0(0)50 exceptN54n.
~viii ! For the hexagonal lattice withb5p/3 andr51, the

basis functioncNq1
(r ) satisfies

cNq1
~Rw

21r !5ei (N21)w cNq1
~r !,

cNq1
~x,2y!5eip/4 cNq1

* ~x,y!,

cNq1
~2x,y!5eip/41 i (N21)p cNq1

* ~x,y!, ~A8!

wherew5np/3. Thus,cNq1
(0)50 exceptN56n11.
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(61)Þ0 (m5x or y) is degenerate with the state of Eq
~37!.

45Any choice fromq22q156b1/2, 6b2/2, and (6b16b2)/2 pro-
vides essentially an identical result.

46T.-L. Ho, Ph.D. thesis, Cornell University, 1978.
5-13


