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Unconventional vortices and phase transitions in rapidly rotating superfluid *He
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This paper studies vortex-lattice phases of rapidly rotating superfidisl based on the Ginzburg-Landau
free-energy functional, where strong-coupling effects are included in the pressure dependence of the fourth-
order B parameters. To identify stable phases in th€) plane (= pressure,)=angular velocity), the
functional is minimized with the Landau-level expansion method using up to 3000 Landau levels. With nine
complex order parameters, this system can sustain various exotic vortices by(igigtafting vortex cores
among different components @) filling in cores with components not used in the bulk. In addition, the phase
near the upper critical angular veloc#y,, is neither the Balian-Werthamer state nor the Anderson-Brinkman-
Morel state, but the polar state with the smallest superfluid density, as already shown by Schopohl. Thus,
multiple phases are anticipated to exist in ghe) plane. Six different phases are found in the present
calculation performed over 0.00Q1,<Q<(,, whereQ,, is of order (1-T/T.) X 10’ rad/s. It is shown
that the double-core vortex experimentally found in the B phase originates from the conventional hexagonal
lattice of the polar state nedl, via (i) a phase composed of interpenetrating polar and Scharnberg-Klemm
sublattices,(ii) the A-phase mixed-twist lattice with polar cord§i) the normal-core lattice found in the
isolated-vortex calculation by Ohmi, Tsuneto, and Fujita, éndl the A-phase-core vortex discovered in
another isolated-vortex calculation by Salomaa and Volovik. It is predicted that the double-core vortex will
disappear completely in the experimerpal phase diagram to be replaced by the A-phase-core vortex in the
angular velocity of order 18-10* rad/s.
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. INTRODUCTION the B phas¥*11°2%r within a constant amplitude in the A
phaset?1517:21.22h0th of which are justified neaf).;, and
Rotating superfluid®He with nine complex order param- not much is known about the phases realized in rapid rota-
eters can sustain various exotic vortices not observable ition. On the other hand, the polar state should be stable near
superfluid “He. This system can be a textbook case of un{)_, at all pressures, as shown by Schopdland later by
conventional vortices realized in multicomponent superfluidsscharnberg and Klem#in a different context ofp-wave
and superconductors. | here report the richness and diversiyperconductivity. This is because the line node of the polar
of the vortex phase diagram in the unexplored region Oktate is most effective in reducing the kinetic energy domi-
rapid rotation, Wishipg to stimulate experiments in the fron-nam near).,. Thus, the phase nefl., is completely dif-
tiers as well as to give hints to what may be expected in thgs et from the experimentally observed A and B phases at
vortex phases of multicomponent superconductors: —0, and there should be novel phases betw@ep and
Extensive efforts have been made both theoretically an 2. Although Q,~ (1—T/T.) X 10’ rad/s may not be at-

experimentally to clarify vortices of superfluidHe; see ; . o .
Refs. 17 for a review. With multicomponent order param_talnable in the near future, clarifying the whole phase dia

eters, this system can be a rich source of unconventiondl @M onc_ls(_2$QC2 V\.’OUId S'Fimulate e_xperiment_al efforts
vortices. Those already observed in rotation up to 3 radlgowards this dlrec_t!on; it certainly remains as an |r_1tellect_ual
include superfluid-core vortices in the B phase, i.e., thethallenge. In addition, such a study will be useful in provid-
A-phase-core and double-core vortiée&! vortices due to N9 an insight into the vortices of multl_component supercon-
textures of thd vector in the A phase, i.e., the locked vortex ductors whered, can be reached easily.
1’12113 the continuous unlocked Vorté%’lS the Singu'ar FO”OWing a preViOUS WOFl%,S | pl’esent a more extensive
vortex516 and the vortex sheéf.The superfluid cores are study of vortices in superfluidHe. To this end, | adopt the
possible in the B phase because the components not usedstandard Ginzburg-LanddL) free-energy functional valid
the bulk are available to fill in them. On the other hand the AnearT ., as most calculations performed so far. To clarify the
phase has a unique property that it can sustain vortices bywrtex phase diagram, however, | take an alternative ap-
spatial variation of without any amplitude reduction, as first proach to start fron{)., proceeding down toward€.; as
pointed out by Mermin and HY Thus, experiments have close as possible. A powerful way to carry out this program
already revealed rich structures. is the Landau-level expansiofLLX) method, developed
Although Q~ 3 rad/s is three orders of magnitude fasterrecenth?®?’ and applied successfully to several other
than the lower critical angular veloci.,~10"° rad/s for  systemg2~° Combining the obtained results with those
a typical experimental cell of diameter5 mm, it is still far ~ around().; will provide a rough idea about the whole phase
below the upper critical angular velocitQ.,~(1—T/T,;) diagram oveK) ;<O =<Q,. It should also be noted that the
X 10’ rad/s. Thus, theoretical calculations have been perresults from the GL functional are expected to provide quali-
formed mostly within the isolated-vortex approximation in tatively correct results over9T<T,., as supported by a
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recent isolated-vortex calculation on the B ptisssing the  whereV is the volume of the system. Important quantities in
quasiclassical theori. the functional are

This paper is organized as follows. Section Il presents the
GL functional. Section IIl explains the LLX method to mini- E=(Kla)?=£0)/(1-TITy), (83
mize the GL functional. Section IV provides a group-
theoretical consideration of the classification of vortex lat- £4=(Klgg™?, (8b)
tices and the phase transitions between them. Section V
presents the obtaingut() phase diagram over 0.04,<0 He=(9a/gm"? (80
=), together with detailed explanations of the phases a
pearing in it. Section VI discusses a phase transition betwe
the A-phase-core and double-core lattices, extending the cal- The coefficients, f3;, K, g, andgy are fixed by ex-

culation down to 0.000Q.,. Section VII summarizes the actly following Thuneberg’s procedureused in identifying

paper. The Appendix presents basic properties of the bas{ﬁe B-phase-core structures as follows. The weak-coupling
functions used in the LLX method.

Pihich define the GL coherence length, the dipole length, and
e characteristic magnetic dipole field, respectively.

theory yields$
Il. GINZBURG-LANDAU FUNCTIONAL N(0)
a=——(1-TIT,), (92
Superfluid ®He is characterized by nine complex order 3
parameterd ,; (u,i=x,y,z) inherent in thep-wave pairing
(L=1) with spinS=1, whereu andi denote rectangular 7Z(3)N(0)

W_ oW_ pW_ _ pW_ W__
coordinates of the spin and orbital spaces, respectively. The B2 =Bz =k Bs 2P, = m (9b)
GL free-energy functional nedf. is given with respect to Ble
the second- and fourth-order terms Af; . Using the nota-
tion of Fetter* the bulk energy density reads

< TEBINO)(hvp)?

240 mkgT)? (%0

fo=— aA% A i+ B AR AT A A+ B AT ARA A

0= = ARt BRI+ B B whereN(0) andv are the density of states per spin and the
+ BaALATA LA, T BaALATA LA, Fermi velocity, respectively. The coefficients and K are
. nx estimated by Eqs(9b) and (9¢) using the values oN(0),
+BsALALAAL @) T., and ve determined experimentally by Greywaf.In

where & and B; are coefficients, and summations over re-COﬂtraStﬁ}N cannot account for the stability of the A phase at
peated indices are implied. The gradient energy density i§2=0. Strong-coupling corrections are includeddnby (i)
well approximated using a single coefficieftas using the Sauls-Serene values for 1.2 MRe<3.44 MPa}®
(i) adopting the weak-coupling reSlﬁgN atp=0 MPa, and
f =K (AL G A+ 7 AL AL+ AL0AL),  (2) (i) interpolating the region 0 MRap=<1.2 MPa. With this

whered is defined in terms of the angular veloci€y as procedure, the A-B transition fd2 =0 is predicted at

om, Ppcp=2.85 MPa. (10
0EV—iTQXT. (3)

In addition, there are tiny contributions from the dipole and
Zeeman energies:

It thus yields a qualitatively correct result that the A phase is
stabilized on the high-pressure side, although the value is
slightly higher than the measured 2.1 MPa. The valueg,of
have been studied extensively in a recent paper by
2 Thuneberg? It is shown that the following formula nicely
fq=0q4 AZ#AWJF AZVAVM_ §AZVAMV , (4) reproduces the values extracted from various experiments:

140 1.1339< 0.45T¢|?

=G AL HLA 5) 0u='gg| YAN(O)In =" . (1

i

respectively. Given the coefficients in Eg$)—(5), the stable

state can be found by minimizing where ug and y denote the permeability of vacuum and the

gyromagnetic ratio, respectively, aig is the Fermi tem-

F—F.+F 6) perature defined by g=3n/4N(0)kg with n denoting the
ot b density. As forg,,, the following weak-coupling expression
with is sufficient:
1 7Z(3)N(0)(yh)?
Fomy | (fo+foar, (7a o OO (11b
49 (1+F3) mkgT.]?
F zif (4. )dr (7b) with F§ the Landau parameter. The valuesk§f are taken
1=y vdr mE from Wheatley® but corrected for the newly determiné&d
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TABLE I. Numerical values for the parameters of the GL theory at different pressures. See text for details of the calculations.

p al(1-TITy) Bs K EA-TITYY? &q Hyq Qe /(1-TIT,)
[10° P4 [10°0 ' m™3]  [10°J3°3m 3] [10%*J 'm Y [10 8 m] [10°m] [10°3T] [10° rad/g
0.0 1.68 21.7 41.8 5.00 4.91 0.803 2.10
0.4 2.03 11.5 17.8 2.96 2.85 1.09 5.98
0.8 2.33 8.55 11.2 2.19 2.05 1.32 10.9
1.2 2.59 7.29 8.32 1.79 1.64 1.48 16.4
1.6 2.85 6.71 6.71 1.54 1.38 1.60 22.3
2.0 3.09 6.43 5.70 1.36 1.19 1.73 28.5
2.4 3.33 6.33 5.02 1.23 1.05 1.85 34.9
2.8 3.57 6.39 4.54 1.13 0.949 1.96 41.3
3.2 3.81 6.56 4.19 1.05 0.864 2.04 47.8
3.44 3.96 6.69 4.02 1.01 0.821 2.10 51.7

by Greywall?? this F5(p) was tabulated conveniently in Ref. below in Eq. (14) for the relevant range 0.000%,<Q
4. Table | summarizes the pressure dependences of basf(l., considered here. It hence follows tHRy, is virtually
quantities thus calculated. kept constant in space. It can be fixed by EZp) after ob-

It should be noted finally that, although Thuneberg's pro-tainingA,; from Eq.(7a). This is due to the smallness of Eq.
cedure is adopted here, qualitative features of the phase digzh) relative to Eq.(7a).
gram (Fig. 1) obtained below are expected to be the same To minimize Eq.(78 with respect toA
among the models fg8; = gB;(p), which yields the A-B tran-
sition at 1=0. This has been checked for the spin-
fluctuation-feedback model of Anderson and Brinkmi&#.

i » | @assume uni-

formity along | z. | then define creation and annihilation
operators 4',a) satisfyingaa'™—a'a=1 as

ll. METHOD al

le . e .
E(—ax‘f'l(?y), a= E(ﬂx'ﬂﬁy), (13
To minimize Eq.(6), let us first rewrite the order param-

eters as with
| = (7/4mzQ) Y2, (14)

A,ui = R,LwAvi ’ (12) . X . .
5 It is also convenient to introduce the quantities

where R, denotes the spin-space rotation afg is the
order parameter of the restricted space where the spin coor- ~(0) %
dinates are fixed conveniently relative to the orbital ones. We Au=Auz,s
then find that the gradients &,; and R, do not couple in . R
Eq. (2) due to the orthonormalityR,,\R,, =5, . The char- ~ which denote the expansion coefficients lkof and (
acteristic lengths foR,; andR,, are given by and &g of ~ +ik,)/\2, respectively. Now, Eq(2) can be rewritten in
Table |, respectively, where we observe thatis much terms of Eqs(13)—(15) as
longer than both¢ and the intervortex distande defined

ACV= L (R Tk 15
© \/E( uxFIA L),

K o - -
f":|_2{(1+ ImDIAG*AM 4 2(aA™)* aAl™]
C

1.00 T T T T T T
0.90 ! A1) TACD L AL qTAG-D

L 4 _ * - - *

- 2[(aA)*a'A, P +aA (@A, T)* ] (16)
S 0.80L I _ Equations(1), (4), and (5) are transformed similarly using
g 0.15T A%A, =AM A andA A, =AMAC™.

L I From Eq.(16) and the bilinear term in Eq(1), we find
0.10r \\\ i that the p-wave superfluid transition is split, due to the
0.05F IV S—_ . uniaxial anisotropy(2, essentially into those of differemn
Ve Tt s channels as

00 05 10 15 20 25 3.0 344
a ha
»(MPe) Q(C%)=4m < =0Qc, :polar,
FIG. 1. Thep-Q phase diagram for 0.84Q/Q,=<1.0. There 3
are five different phases 1-V. The IlI-IV transition is first order \/—
corresponding to the A-B boundary in finif®, whereas the others Q(fl)_S 6

+
- Q. :ABM ~(SK),
are second order. 2 6 c2 (SK)
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1 Nil2
Q(c%)ziﬂcz - ABM *, (17) Ing(r) = 2 ei[qy(y+|§qx/2)+nalx(y+|§qx—na1y/2)/|§]
n=-N{2+1
in agreement with the results of SchopShand Scharnberg o, 5 - 27l Ja,
and Klemm?* Here the first and third ones correspond to the R A 2N v

polar state ¢k,) and the Anderson-Brinkman-MoréABM)
state écRx+iﬁy) with 1,=1, respectively, both in thdl=0
Landau level. In contrast, the ABM (also called as XHy
Scharnberg-Klemm or SK states not a pure ABM state; it
is made up of thé, — ik, state in theN=0 Landau level and
the k,+ik, state in theN=2 Landau level. Equatiofil7)
tells us that it is the polar sta®{?)+0 which is realized at
Q,. Its stability is due to the line node in they plane o
perpendicular td2 which works favorably to reduce the ki- Al (ry=\V 2 E ™ Png(r). (23)
netic energy dominant ne& .,. Indeed, given the condition N=0
that the average gap amplitude on the Fermi surface be cothen substitute Eq23) into Eq. (7a), perform a change of
stant, the superfluid density,, of the polar statepfs™  variables &,y)=(ay,s, a;yS+a,t), and carry out the inte-
«3[d0k%k2=3/15 is half that of the ABM state,c™  gration in Eq.(7a) with respect to ,t). Now, Eq.(7a is
2fkok2(k2+ k2) 6/15. This explalns the difference of transformed into a functional of the expansion coefficients
the factor of 2 betweerﬂcz—Q( and Q). As seen in 1€ cilq”} and a couple of lattice parameters:
Table |, thisQ, is of order (1— T/Tc)><107 rad/s.
With these preparations, Eq47a is minimized by the
LLX method?® In the end, it can be performed quite effi-

2
X_Icqy_nalx

le

: (22

where N denotes the Landau level art is the Hermite

polynomial™ Useful properties of/, are summarized in

the Appendix. Let us exparfélitm) in {¥ngt as

B=cos *(a;,/a;) :apexangle,

! . ; i o p=a,/a; :length ratio, (24
ciently, especially nedf .,, with the Ritz variational method
of expandingﬁ&m) in some basis functions and carrying out @S
the minimization with respect to the expansion coefficients. F— [{C(,um)} 8.p] (25)
Convenient basis functions for periodic vortex lattices are 0=Fo Pl
obtained using the magnetic translation operator For a given(), this Fy is minimized directly.

Numerical minimizations have been performed as fol-
Tr=exd —R-(V+2im;QXr/h)], (18 lows: (i) Cut the series in Eq23) at someN,,,,x and substi-

tute it into Eq.(7a. The convergence can be checked by
whereR denotes a lattice point spanned by two basic vecincreasingN,,.«, as increasindN,., is guaranteed to yield a

tors: better solution with a loweF,. (i) Numerical integrations
in Eq. (7a) are performed using the trapezoidal rule which is
ay=(a;x,a1y,0), known to be very powerful for periodic functions. To this
end, the basis functions df< N5, 0n the discrete points are
2,=(0,a,,0) alxa2=277I§. (19) tabulated at the beginning of the calculations. Equatis)

is thereby evaluated for each set of arguments. It has been
necessary to increasM ., from 6 near(Q., to 360 at
0.010,, and the integration points in the basic cell frorh 6
to 36" accordingly to obtain the relative accuracy of order
108 for F,. (iii) Equation(25) is minimized first with re-
spect to{c{“™} by Powell's method or the conjugate gradi-
ent method)’ and then, if necessary, with respect g1 4) by
Powell's method. The conjugate gradient method is about 10
bzz(ix al)/|§_ (20) times faster, although the programming is far more cumber-
some. Powell's method is fast enough o= 0.05) 5. (iv)
The magnetic Bloch vector is defined in the Brillouin zone of Second-order transitions are identified carefully by combin-
the reciprocal lattice as ing group-theoretical considerations of Sec. IV with signals
of the relative change in the slope &fF /4. Its analytic

Hence those lattices have a unit circulation quantem
=h/2m; per every basic cellas required. The basic vectors
of the corresponding reciprocal lattice are given by

b,=(a,x2)/12,

“1 iy N N expression is obtained &¢°
q=-—+b;+—=b, (——<,ujs—), (21
i Al 2 2 dFg 1
0 :5J ficdr, (26)

where; is an even integer With2 denoting the number of
x in the system. Using these quantities, the basis functionso that it can be calculated quite accurately without recourse
are obtained as simultaneous eigenstates'afand T a$®  to any numerical differentiation.
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Once"Aﬂi are fixed as above, E12) is substituted into "AMi(r)H"AEL‘?(r)ESM"AVJ.(S—lr)Sj—il, (319
Eq. (7b). ConsideringR,,, constant in space, as mentioned -
before, the three independent parameters of the mRtexe 9i— =89,/ , (31b
then determined by minimizing E@7b). B

Some phases encountered below have a common feature Sijkﬁgfﬂ)z‘sﬁ 'Sij 1 Sekr€ivjrkr (310

that all the components other than A
where 5),,=S,, denotes a matrix representation &f
Now, symmetry of a vortex lattice is specified by those op-

erations{S} which keep the physical quantities invariant as

d=(R,Ryz,R.), A=(A,AL AL (27)

can be put equal to zero. For those stakesis given by

~ N2 fo(r)+ i (N =F(r)+ £ (r),
Fi=g4 d,M,,d,~ 3(A*-A) |, 29) p(F) + Fi(r) =157 (r)+£i7(r)
p(N=pAr),
where(---)=(1NV)[---dr, andM ,, is defined by
A*A,+A* A =i,
M, =(2A%A,+A*-A H,H,/HE). (29)
I(n)=11(r), (32

It hence follows that points parallel to the eigenvector cor-
responding to the smallest eigenvaluehdf wherej(®, for example, denotes the expression obtained by

substituting Eq(31) into Eg. (30b). The collection of these
operations{S} forms a group, which characterize the rel-
evant vortex lattice.

Since Tr of Eq. (18) commutes withd of Eq. (3), the

As in the case of ordinary solidé;*! various vortex lat- operatorTg plays exactly the same role as the translation
tices can be classified according to their symmetry. It turn®perator of the ordinary space group. This is one of the main
out that the operatofl18), the basis function$22), and the reasons why the basis functiof2), which are eigenstates
expansion(23) are quite useful for this purpose. of Tg, are advantageous in expanding the order parameters

Classification of isolated vortices in superfludtHe has as Eq.(23).
been carried out by Salomaa and Voldvik and As an example, let us specifically consider phase IV of
Thuneberd! Such classification for vortex lattices has beenFig. 1. It corresponds to the hexagonal lattice of the normal-
performed recently by Karink& and Thuneberd? without  core vortex in the B phase which was discovered in the
recourse to Eqg18)—(23), however. It is shown below that isolated-vortex calculation by Ohmi, Tsuneto, and Fdiita.
making use of Eqs(18)—(23) provides a transparent classi- The present calculation with the LLX method shows that
fication scheme. nonzero order parameters can be expressed as

To start with it is necessary to define “symmetry opera-

IV. GROUP-THEORETICAL CONSIDERATIONS

A. Classification of vortices

tions” unambiguously, since we are considering a phenom-
enological GL functional rather than a microscopic Hamil-
tonian. In the case of a Hamiltonian, “symmetry operations”
mean those operations which commute with the Hamil-
tonian. In the present case of a GL functional, “symmetry
operations” are defined as those operations which keep all
the physical(i.e., observablequantities invariant. Let us re-
strict ourselves to orbital degrees of freedom, as appropriate
when Eq.(7b) can be regarded as a tiny perturbation. Then,
besidesf,+ f,, of Egs. (1) and (2), there are three relevant
physical quantities

p(r)=A%A.i, (309
i AamgK - o S ~ o
Jl(r)ETIm(A#IaJA#J+A#J(9|A#J+A#JaJA#|),
(30b)
Li(r)=—ieijARAlp(r), (300

AD=W 2 cld, e, (339
AV=\V 2 Lo, e, + Chid g, ¥na o)
(33b
Ay D=V 2 [olg, ¥, ~ hid gy ¥na o)
(330

A=W 3 el dne, iz o 0ne2 ], (339

A= 1V S (e cfle g o
(33¢

where the summations run ovlr=6n (n=0,1,2 ...), q,
which denote the density, current, and normalized orbital aniS @ magnetic Bloch vector which can be chosen arbitrarily

gular momentum of Cooper pairs, respectively. A generaflue to the broken translational symmetry, andcgj's are

operators transformsA ,;,

d;, ande;;, in these expressions real. It is convenient to fixy;=3(b;+b,) so that a core is

as located at the origin, i.eA{™(0)=0. Then, with the prop-
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TABLE Il. Properties of phases I1-V. The notation of Ref. 42 is used for the point-group operations with
i=1,2,3, m=Xx,y, ands=a,b, and 6 denotes the time-reversal operation. The point-group operations of
phases | and IV-VI are defined with respect to the origin. In contrast, those of phases Il and Ill are about the
point (a; +a,)/2 where a core of the SK sublattice is located, witandy axes taken along; +a, anda;

—a,, respectively. The operatdt|a,}, for example, denotes successive operations of the inversion and a
magnetic translation bgy, i.e.,{l|a;}=T,!.

Phase Unit cell B p Symmetry operations
[ a, a wl3 1 ECS),cl), Cyl 1S, S, an, 6C,
BCIZ’I y B(Tdi, Bo-ui .
I qtay, y—a T gl 1 E, Co. {llai}, {onlar}, {Conlay}, Oo.
3 2 + +
n ytay, a—a w/2 1 E, C;), Cop, {l[aa}, {S; las}, {onlas},
6{Comlar}, #{Codlay}, oy, Bogs.
v a, & i3 1 E, C), cy), Co, 1, S, S, o, 6CY;,
0C’2', , (90'[”, ea-vi .
V al, a2 7T/3 1 E, ng), Cgf), CZZ! GO'di, GUUi.
VI al, a2 ~ /3 ~1 E, C227 B(Tdm.

erties of yq, given by Eq.(A8), one can show that the quantumx. (b) The hexagonalsquarg lattice is made up of
N=6n (4n) Landau levelsi{=0,1,2 . ..), and theexpan-

sion coeﬁ‘ic:ientscNql can be chosen realc) More general
(343 structures are described by~ 2n levels. OddN basis func-

order-parameter matrixA() ,,;=A ,; satisfies

A -1 —1_ ,—i¢p
E‘P é (E‘P r)E‘P € é(r), tions, some of which have finite amplitudes at the cores of
- _1 s evenN basis functiongsee the Appendix never participate
ax A*(0y 1) oy =Y TEA(T, (34D in forming the order parameter, because such mixing is en-
ergetically unfavorable.
oy K*(aglr) Uglze*iﬂ/ﬁ(r), (340 _With multicompor_]ent ordgr parameters, Fhere_can be a
- = = — — wide variety of vortices, which may be divided into two
- K(ah_lr) ah‘lzﬁ(r), (340) categories. | call the first category “fill-core” states with a

single circulation quantum per unit cell; i.e., only a single
g=gq; is relevant. Here the cores of the conventional Abri-
kosov lattice are filled in by some superfluid components
using the oddN wave functions of Eq(22). The second

category may be called “shift-core” states, where core loca-

four operations of Eq(34). Similar considerations show that tions are not identical among different order-parameter com-
besidesTg, there are symmetry operations in phase IV Iistedpc.mems' _The (_:orrespondlng lattice has an enlarged L.m't cell
in the fourth row of Table Il. Here the primitive cell is with multiple circulation quanta. General structures with

spanned by the basic vectais9), thus containing a single gl_;;:ulatlton, quar;tr:\hper l.Jtn't ITeb" can be t(_jescrlbe? using
circulation quantum. IfTg is identified with the usual trans- merentgs, and the unit ce becomas, imes as large as

lation operator, this space group can be labeled aghat of the conventional Abrikosov lattice. For example,

P6/mm’ m’ .42 sthrl(;gtsl;rzzs with two quanta per unit cell can be described by

The same consideration is performed for every stable vor®
tex phase found numerically. The results are summarized be- b.tb
1 2

low in Table II. Op 5 g,=0, (35

where R, and o; (i=x,y) denote, respectively, a rotation
around thez axis by o=n=/3 and the mirror reflection with
respect to the plane perpendicular to thaxis. Using Eg.
(34) in Eq. (31, one can show that Eq32) holds for the

B. Phase transitions whereb, andb, are reciprocal lattice vectors defined by Eq.

The expansion(23) is also useful for enumerating pos- (20).
sible transitions in vortex-lattice phases. Indeed, we can use With these observations, we now realize that following
the known results from the space gr8tipsing the corre- second-order transitions are possible in a two-component
spondence exp{R- V)« T and(Bloch states—(magnetic  system.(i) Deformation of a hexagonal or square lattice
Bloch states within a singleq lattice. This accompanies entry of new
We first summarize basic features of the conventionabvenN basis functions, and the coefficierftsy,} become
Abrikosov lattices with a single order parameter within theintrinsically complexdii) The entry of oddN basis functions
framework of the LLX methotf: (a) Any singleq=gq, suf-  within a singleq lattice, i.e., a transition into a fill-core lat-
fices to describe them, due to broken translational symmetriice. Here, cores of eveN-basis functions are filled in by
of the vortex lattice. Each unit cell has a single circulationsome superfluid components not used in the bulk phase. The
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TABLE lll. Critical angular velocities of the phase transitions in unit<(hf,.

p (MPa) 0 0.4 0.8 12 1.6 2.0 2.4 2.85 3.2 3.44
Il 0.8527 0.8548 0.8569 0.8588 0.8605 0.8624 0.8644 0.8671 0.8696 0.8716
11-111 0.8388 0.8411 0.8433 0.8454 0.8473 0.8493 0.8515 0.8544 0.8572 0.8594

n-1v 1.18x10°' 9.00x10°2 6.54<10°2 4.56x10°2 3.16<10°2 1.89x10°2 8.32x10°° 0.0 — —
IV-V 2.23x107%2 1.78<1072 1.44x10°%> 1.20<10°2 1.05x10°% 9.08x10°% 7.78x10°° 0.0 — —

transition occurs below some critical angular velocity -
smaller thar).,/3. (iii ) Mixing of another wave numbef,, Al V=V % C(N_q;) gy (373
i.e., a transition into a shift-core lattice. When applied to this
system, the Lifshitz conditidi concludes exclusively that
d,—d; should be half a basic vectds (j=1,2) of the re- _
ciprocal lattice; i.e., the only possibility is doubling of the A§1)=\/V % cf\llq)z g, (37b
unit cell.
Though not complete for the present nine-component sys-
tem, the above list covers most of the transitions found beThe N's in Egs.(36) and(37) are even numbers, and all the
low. Case(ii) corresponds to superfluid-core states such agoefficients are essentially complex exce&ﬁﬁl which can be
the A-phase-core and double-core vortices in the B phasgy, o, req) using a gauge transformation. The |-l transition
wheread(iii) will be shown to describe a unit cell with two is second order corresponding to the SK line of ELf).
circulation quanta like the continuous unlocked vortex of thelndeed,N=0 andN=2 Landau levels are dominant in Egs.
A phgse? Sane no odd-order couplings exist betwe@ﬁﬁ) (378 and (37b), respectively. Due the presence A,
and A5, A{Y) in Egs.(1)—(5), we also realize that a state however, the critical angular velocit =" is somewhat
of Al"D%0 or A{+#0 accompanies a second-order transi-lowered fromQ{, Y=0.9082), of Eq. (17), as seen in Fig.
tion as we decreas@ from (;,. 1. The vectom; is shifted fromg; by half a basic vectob; ,
so that the unit cell is doubled carrying two circulation
quanta. Thus, phase Il is composed of interpenetrating polar
V. PHASE DIAGRAM FOR 0.01Q,<Q<Q, and SK sublattices. This superposition with shifted core lo-
Figure 1 displays the obtaineg-Q phase diagram for patio_ns is energeti_cally more favorable than thr_;lt_with the
0.010,<0<0,,, where five different phases |-V are identical core locations, becausé;A bec%nes finite ev-
present. Symmetry properties of each phase, which ha/@Ywhere. It is convenient to choosg=0." Then p=1
been clarified by group-theoretical considerations similar td'0lds throughout, and as seen in Fig. 2 calculated pfor

that given around E¢34), are summarized in Table II. Also, =2.0 MPa, the apex angjeé changes continuously through-
critical values of the transitions are listed in Table 1ll. EachOut the phase betwee#/3 and#/2. This is a centered rect-

phase is explained below in detail. angular lattice with the primitive vectors given lay = a,.
According to Eq.(17), the normasuperfluid transition ~Figure 3 displays the order-parameter amplitudes pat
in rotation occurs af.,= 09 into AQ#0. Thus, in phase - 20 MPa over—a,<x,y=a, for (@) 0=0.863)c, with

| just below(),, the polar state is realized to form the con- p=ml3 (still in polar state, (b) 920'85m_02 with 3
ventional hexagonal lattice as =0.414r (phase 1), and (c) 2=0.849)., with B=x/2

(just below the 1I-11l boundary We observe that the SK state
~ 0.50
A=V % cﬁ,ogl g, (36
0.450 1
with N=6n (n=0,1,2...), B=m/3, andp=1. All C(Noq)1 "
can be put real, and; is conveniently chosen as E@5) so a 0.400 .

that a core is located at the origin. As already discussed
below Eq.(17), the stability of the polar state nefx;, can
be attributed to its line node in the plane perpendiculaf2to 035
which works favorably to reduce the kinetic energy dominant
near().,. It follows from Eq. (28) that thed vector of Eq.
(27) atH=0 lies along an arbitrary direction in the plane

0.850 0.855 0.860 0.865
Q/Qco

which is fixed spontaneously. This degeneracy is lifted by & rig. 2 The apex anglgd as a function ofQ/Q, at p
field in the plane so thalL H is realized. =2.0 MPa. Phase transitions occur & ~'"=0.862%)., and
In phase I1LA"Y) also become finite 4% Q=" =0.8493) .
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phase III (p = 2.0 MPa; Q = 0.05Q,,)
0.0 0.5 1.0 -1.0 -0.5 0.0

/S
@)@
| Q=0.863Q, | Q=0.852Q Q=0 849§ T Q (\/_—) el

o ) Api(f)(z)pi(r) .at p=:.20MPa o : /) Q{L

{ \
(@) Aji(r) Ay(r) (b) L(r)

FIG. 3. The amplitudéA* A ,; normalized by the)=0 value
over —a,<x,y<a, at p=2.0 MPa. (a) At 2=0.863)., where
B=m/3 (polar stat¢ (b) At 1 =0.852)., where=0.414r (phase
1. (c) At 0=0.849)., where B=mx/2 (phase 1l). Below Q
=0.8623),, the SK sublattice grows gradually with the largest
amplitude at the cores of the polar sublattice. Thus, the amplitude
Z\Ziz\m is finite everywhere ir{b) and(c). The apex angle changes
continuously fromB==/3 at (1=0.8623),, to B=m/2 at O
=0.8493),.

tox bbb %

« Nt 22N} s -
bobox ottt ox

L I T T S A A

- N | LS e N}t s

t

grows gradually from{2 =0.8623) ., with the largest ampli-
tude at the cores of the polar state. Theector has the same
character as phase I.

In phase lll, the system remains in the square lattice with

B=m/2 and p=1. Only N=4n, 4n, _and Hh+2 (n FIG. 4. Characteristic quantities in phase Ill calculated over
=0,1,2...) Landau levels are relevant in Eq86), (378,  _ 5 <x y=<a, for 0=0.05),, at p=2.0 MPa. (3) A*A,; nor-

and (37b), respectively. Whereas aﬂ:l(Noo?l’S can be put real, malized by theQ=0 value.(b) I,(r). (c) 1(r). (d) Projegtion of

the Coeff|0|ent$§\l:ql) are Complex with a common phase |(r) onto thexy plane. The p|0t fOiy(r) is obtained by rotatin@:)
. (8) e by — /2. Thep and X sites in(d) correspond to the pure polar
— ml4 relative tocy, . The II-lIl transition is second order, giaie and the pure ABM state with=— 1, respectively.

as may be realized from the square-root behavior of Fig. 2.

As () is decreased from the boundary, the SK sublattice withyate|y different from the vortex-sheet-like structure found in
the coefficients{, ) grows rapidly. Also within the SK sub- 5 two-component systef.The d vector has the same char-
lattice, the ABM™*) component with the coefficients|j) ~ acter as phase I.

Phase IV is a hexagonal lattice of the B-phase normal-
core vortex oro vortex, which was found in the isolated-
vortex calculation by Ohmi, Tsuneto, and FujitaHowever,
it was concluded later by another isolated-vortex
calculatiort® that this normal-core vortex is a metastable
state. Indeed, the vortex has never been observed experimen-
tally. The present calculation shows, however, that it will be
stabilized as we increas®. The nonzero components be-
sides Eq.(36) are given by

t
+
t

—_—— T = = = T e
-/ ) N> 2t N -
—- > R e — — T — —
-2t N -/} N

bl

() I(r) (d) (Lr), L(r) )

becomes less important at low€l so that the sublattice
approaches to the pure ABM state with=—1. Figures
4(a)—4(d) display the order-parameter amplitu¢®0a and
the orbital angular momenturt80¢ calculated over—a,
=x,y=a, for =0.0%)., at p=2.0 MPa. We realize from
these figures that phase Ill at lowé€ is essentially the
A-phase mixed-twist lattice with polar cores and double cir-
culation quanta per unit celi* Indeed, as seen in Fig(d),
thel vector rotates from downward at the origin to horizon-
tally outward or inward towards polar cores. A group-
theoretical consideration, similar to that given around Eq.

(34), clarifies that this phase is characterized by the symme- ACY= v > [Cfxn_qi)‘//quJf ey qUnsaq), (383
try operations given in the third row of Table II; they are N

defined with respect to a polar core, i.e., fheite of Fig.

4(d). It is worth comparing Fig. 4 with Fig. (8) at Q

=0.849),. The cores af) =0.849) ., now acquire a large Ao NV c=1) —ch
ABM amplitude withl,= —1, and the points with the maxi- y W EN: [CNay ¥nay ~ CNvd g ¥ivea .,
mum polar amplitude af)=0.849), turn into cores, i.e., (38b

singular points of the vector fiell{r) where the amplitude

A*A,i is also smallest. Notice that this phase is stable at all
pressures. It is also worth pointing out that, although both A= N c(®) +cm 38¢
carrying double quanta per unit cell, this structure is com- W= W EN: [CNa, ¥, ¥ Oz g2 o] (38O
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01— tof '
: Re AZZ Re gxx phase IV Re AZZ Re Zm phase V
7 p=0.0 MPa @ Re A p=0.0MPa
3 T Q=0.025Q g 05f » Q=0.01Q, 1
05Ff ReA,, - C2 | g "~
g [ g‘j ~\ \~\“‘\‘\-\ReAz,x
ﬂ,: I 5 0.0 ImAyx lm\AZl T e
2 L/ ImAy, E VS P ———
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R S —— —_ _=£::¥-/‘ U Xz
| e - .
Im ny 05 Im Ay, Imley
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0 > 10 X/
X/E

FIG. 7. Order parameters of phase V along thexis atp
FIG. 5. Order parameters of phase IV along thaxis atp =0.0 MPa and)=0.01,. The amplitudes are normalized by the
=0.0 MPa and(2=0.029),. The amplitudes are normalized by (=0 value Of Ay, and the common phase/8 is subtracted from
the Q=0 value ofA,,, and the common phase/8 is subtracted A, . The equalities RAZX Im AZy and ReA,,=Im AyZ hold atx

from A, . =0.

Phase V continuously fills in phase-IV core regions with
A= —i Vv E [CRa,¥ng, ~ SN2 g ¥z q,); the superfluid components not used in phase IV. Besides
(380 those of pr;]gsr(]e IV, the 3oluti0n i?defed Qgine\élv nolnzelro com-
ponents which are made up only of o andau levels as
whereN=6n, B=u/3, p=1, and all coefficients are real.
Figure 5 plots the order-parameter amplitudes alongxthe (0)_ (0)
direction calculated fof)=0.025)., at p=0.0 MPa. They A=WV E (R 10,1+ 20, €Y 0, 5, ]
already display the same features as those obtained by the (409
isolated-vortex calculation$:**° The I1lI-IV boundary in
Fig. 1 is a first-order-transition line, approaching towapds (0)_| W 2 [c©@. —c@ .y ]
=Ppep @t Q=0 and vanishing forp>p,,, as expected. N+1q, PN+1ay  “N+5q, ¥N+5a, 0
Thus, this line may be regarded as the A-B phase boundary (40b)
in finite Q). It is convenient here to parametrize the rotation

matrix R of Eq. (12) as ~ ~
- Ag l):\/v % C§\|+l&‘2qll/fN+5qlv (400)
R,,=06,,c080+n,n,(1—cosh)—¢,,\nsind, (39

wheren is a unit vector. Then it is found that, &% is de- A=V > c® U1, (400)
creased, the rotation angteapproaches from below to the N !
bulk value cos!(—1/4), as seen in Fig. 6. The vector at whereN=6n, g=m/3, p=1, and all coefficients are real.
H=0 lies along an arbitrary direction in they plane which Figure 7 plots the order-parameter amplitudes alonrec-
is fixed spontaneously. Upon applying the magnetic field 'nt|on calculated forQ=0.010.., at 0.0 MPa. The core
the plane, the statel|H is realized. c2 & P=

superfluid components satisfy I;'l&gx—lmAZy and ReA,,

T - T = Im:&yZ at the origin. As may be realized from this figure,
0.580 \*\\ 1 cos-1(-1/4) - this §tate corresponds to the A—phase—core vortex or axisym-
oy R metric v vortex found theoretically by Salomaa and
Volovik,'° which also has been observed experimentaily.
Indeed, using the properties @f,, given in Eq.(A8), one

g 057 can show that the order-parameter matkix (A ;) satisfies
R Eqgs.(349—(340 but not Eq.(34d). Thus, the present calcu-
0.570 1 S \\ lation has clarified for the first time that a vortex lattice with
S superfluid cores can be described by a superposition of odd
. , ) Landau levels. The IV-V phase boundary is a second-order
0.00 0.05 0.10 0.15 0.20 transition, as anticipated by Salomaa and Volovik based on a

single-vortex consideratiof?,which is driven mainly by the
N=1 Landau level. Due to the presence of finite order pa-
FIG. 6. Rotation angle defined by Eq(39) as a function of rameters composed of even Landau levels, however, the

Q/Q,. It is calculated beyond the III-IV boundary in Fig. 1 into critical angular velocity)V =¥ is lowered fromQ,/3 ex-
the metastable region. pected for the puréN=1 Landau level to become smaller

Q/Qq
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than~2x 10 2Q, rad/s, as seen in Fig. 1. Thevector has
the same character as phase IV.

VI. TRANSITION BETWEEN A-PHASE-CORE AND
DOUBLE-CORE LATTICES

Using the same parameters as those given in Table I,
Thuneberd' carried out an isolated-vortex calculation. He
thereby succeeded in identifying two kinds of vortices ex-
perimentally found in the B phase nefr;. According to
his calculation, the double-core vortex is stable below about
2.5 MPa over the A-phase-core vortex. Combining his result
with the phase diagram of Fig. 1, we naturally anticipate
another phase transition below 0(® from the A-phase-
core lattice to the double-core lattice at low pressures.

To find the transition, | have performed a variational cal-
culation down to)=0.000X)., at p=0.0 MPa usingN
<3000 Landau levels. The hexagonal lattice is assumed to
simplify the calculation, and | have takenX2Z2 integration
points of equal interval per unit cell. It has been checked that
increasing integration points further does not chakgee-
yond 10 8 order. Unfortunately, howeveN<3000 Landau
levels at 0.000Q., are still not enough to obtain enough
convergence. Indeed, it has been observed that including
more Landau levels akl<1800, 2400, 3000 changes the
amplitudes of the core superfluid components to a noticeable
level and lowers the critical angular velocity of the transi-

PHYSICAL REVIEW B 66, 224515 (2002

1.0} Re Ayy o
| Red phase V
§ T p=0.0 MPa
g 05 o ©2=0.00015Q,]
5 L/ . reiTm——
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2 00
S - -
ez : ImAyz Re _A/X_Z, --------
03¢ 5 10
phase V
E p=0.0MPa
E Q.=0.00015Q -
A
g I\ TU—me—
l-e ——————
@)

100

tion. Also, since the isolated double-core vortex has only a FIG. 8. Order parameters along theaxis atp=0.0 MPa and

discreterr-rotational symmetry about theaxis, the double-

0=0.0001%),. (8) 0=x/£<10. (b) 0=x/§{<100. The ampli-

core lattice is expected to deform spontaneously from theudes are normalized by tfe@ =0 value ofA,,, and the common
hexagonal structure. Thus, the present calculation is a var@hasew/s is subtracted fron1-\ . The relations Ré,=Im AZy
tional one to clarify the nature of the transition as well as toand ReA,,=Im Ayz still hold atx 0.

estimate an upper bound for the critic8l. It should be
noted, however, that assuming the hexagonal lattice hardl
changes the free energy in this IdW-region with a large
intervortex distance, and does not affect the critiQaif the
transition happens to be second order.

Figure 8 displays the order parameters alongxthgis at
p=0.0 MPa and(}=0.00018).,. The relations R&,,(0)
=ImA,,(0) and ReA,,(0)=Im A, ,(0) still hold; hence the
system remains in phase V of the A-phase-core lattice. Com-
paring Fig. &8a) with Fig. 7, we observe that the core super-
fluid components have grown substantially, and the bulk
components\,,, A, andA,, are somewhat depleted in the
core region. However, Fig.(B) shown over a larger scale
0<x/£<100 indicates that the requirement Rg(0)
=ImA,,(0) of the A-phase-core vortex is unfavorable for
further growth of Ré\,,. Thus, we see clearly that the sys-
tem wants to break the symmetry of the A-phase-core vortex
around()~0.0001%),.

Figure 9 shows the order parameters for a slightly lower
0 =0.000X), at p=0.0 MPa along théa) x axis and(b) y
axis. Here the symmetry of the A-phase-core vortex is mani-
festly broken as R#,,(0)#ImA,,(0) and REAZX(O)
#ImA,(0). Thus, the double-core lattice, also called phase
VI, is realized. Indeed, thes@ have the same qualitative
features as those of the |soIated double-core vortex calcu-
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Péted by Thuneberdt The order parameters are given explic-
itly by

AO= N > ) i, (413
N
A§71)=N % [Cg\lai-)qul"'C§\17+142q1wN+4q1]
+\V 2 [df, 1)¢Nq1+dN+4q1‘//N+4ql]
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@ X/
2(0)_ 0 0 — .
AP =V % [CF\IJ)rlqleJrlql—’_CF\IlSqll/’NJqul] 10r mA,, -
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(419 g Redon  ImAy, ~
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(419 FIG. 9. Order parameters at=0.0 MPa and()=0.000X),.
(a) Along the x axis over O<x/¢<10. (b) Along y axis over 0
Z(—l):\/v 2 [C(—l) Unass +d=D Uns1a ], <y/¢<10. The amplitudes are normalized by the=0 value of
z N NTea TNTRG T N LG TR G A,x, and the common phase/8 is subtracted fromA ;. Notice

(410 that ReA,,(0)#ImA,(0) and ReA(0)#ImA,(0), indicating
the double-core vortex.
AP=\V > [CF\IlJ)rlqle+lql+dg\lllSqlle+5q1]a o _ _ _
N _vanishing eventually in a rotation of 1010* rad/s. In addi-
(410) tion, the phase boundary between the double-core and
with N=6n, 8= 7/3, andp=1. All the coefficients are real, A-phase-core vortices may change its character from first

and terms withd{( , which are absent in the A-phase-core order to second order in increasiflg A systematic study for
. ~(m) ~(m) Q=10 rad/s may be able to detect this shrinkage of the
vortex, bring new Ellsymmetry betwea” andA™ as well 4o pje_core region as well as to provide an estimate for the
as new terms iA{" ). critical Q0 where the double-core vortex disappears.
It follows from Figs. 8 and 9 that a phase transition occurs
between (=0.0001%),, and 0=0.000)., at p
=0.0 MPa. As already noted, howeveM<3000 Landau VII. SUMMARY

Ie\(/\(/ef,w)are still not enough to i_d_entify the. critical value g on a new approach starting fray, down to-
Q¢ or the order of the transition. InCIl\J,fi'\r,‘lg more Lan- \argsq.,, the present calculation has revealed a rich phase
dau levels has been observed to decreaS&™", so that diagram of rapidly rotating superfluitHe. Six phases have
the present valu@ ('~ ~0.000X), should be considered peen found in the-Q plane, and we now have a complete
as an upper bound faR{’~") at p=0.0 MPa. It is also  story of how the polar hexagonal lattice neé@g, develops
expected from Fig. 1 tha®’ =Y (p) is a decreasing func- into the A-phase-core and double-core vortices experimen-
tion of p. As for the order of the transition, the isolated- tally observed in the B phase. Interestingly, the polar or the
vortex calculation by Thunebefyclarified that it is first or-  ABM state is favorable over the isotropic Balian-Werthamer
der near).;. However, it can be second order from a purely state forQQ=0.1Q,.
group-theoretical viewpoint. Therefore, it is possible that the The present study have also clarified prototypes of vorti-
transition atp=0.0 MPa is second order, changing its natureces expected in multicomponent superfluids and supercon-
into first order through a tricritical poifit as we increase. ductors. With multiple order parameters, it is possible, and
Experimentally, the present result implies that, as we inmay be energetically favorable, to fill cores of an existing
crease) above 3 rad/s, the double-core region will shrink in component with others not used yet. These unconventional
the p-T plane to be replaced by the A-phase-core regionyortices have been classified here into two categories, i.e.,
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“shift-core” and “fill-core” states. The former vortex lattices (iii ) The functionyyg is obtained from/y, by a magnetic
are composed of interpenetrating sublattices of differentranslation as

components which can be described by using multiple mag-

netic Bloch vectors q;,q,, ...). They have an enlarged Png(r) =Ti2gx2¢no(T).- (A3)
unit cell with multiple circulation quanta. This category in-

cludes phase Il of Fig. 1 where the mixed-twist lattice islt thus follows thatiyg and g are essentially the same
realized at low() and, also, the vortex sheet expected infunction, differing only in the location of zeros.
two-component systent&° In both cases, spatial variation (i) The basis functionjy,(r) vanishes at

of the | vector is the main origin of vorticity. The latter

vortex lattices, which may be realized fr<(,/3, can be nin;=odd; N:even,

R , .
r=—-—légxz for

described using odbtk Landau levels with the same mag- 2 nin,=even; N:odd. (A4)
netic Bloch vector. This includes the A-phase-core and
double-core lattices in the B phase. Thus, ¢iyg,(0) =0 for q,= (b, +b,)/2 andN=2n.

Superfluid®He is a unique system with nine order param- (V) Generally, g, () andgno(r) at least satisfy
eters without intrinsic anisotropies. In spite of every diffi-

culty to realizeQ,~ (1—T/T) X 107, the whole phase dia- g, (—1) =€ NTDT g (),

gram over Q=< , is worth establishing experimentally

to advance our knowledge of unconventional vortices. As a Ino(—1) =N Pno(r). (A5)
first step of this project, however, it may not be so difficult to

observe shrinkage of the double-core region inghE plane (vi) For centered rectangular lattices wjik 1, ¢yq(r)’s

in increasing{(). Observations of a vanishing double-core for g=0 andq, satisfy, in addition to Eq(A5), the following

region in thep-T plane and the appearance of the normal-equality corresponding to the mirror reflection with respect
core vortex will mark the next two stages. To reali2g,, it to the plane including anda; + ay:

will be necessary either to acquife~10°~10 rad/s at low

temperatures or to perform accurate experiments in the re- ng(—X CcosB+y singB,xsinB+y cosp)
gion 1-T/T,~103-10 8. In the former case, the sample _ .
size should be made adequately small to keep the pressure =exp—ieng) Png(XY), (A6)

constant over it; for example, Ap=0.1 MPa at Q
=10° rad/s for the sample radius &=5x10"° m.
Theoretically, it still remains a problem in the future to
establish a complete phase diagram of the A-phase region,
i.e., how the mixed-twist lattice of phase Il grows into either

where ¢yq is @ constant which does not dependron
(vii) For the square lattice witlB=#/2 andp=1, the
sis functionsﬂqu(r) and ¢no(r) satisfy

“1y=@i(N=-1)¢
of the locked vortex 1, the continuous unlocked vortex, the wah(Ew ry=e Inay (1),
singular vortex, or the vortex sheet, which have been estab- A
lished by low{) calculations. This fact also implies that g, (X, —y) =€ g, (% Y),
there may be multiple unknown phases waiting to be discov-
ered experimentally in moderafe. d/qu(y,X):eflw(N72)/2 i/fﬁql(X,Y),
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hence follows that szql(O) =0 except N=4n+1 and
APPENDIX: PROPERTIES OF Uno(0)=0 exceptN=4n.

(i) The basis functions satisfy the orthonormality: (viii ) For the hexagonal lattice wit= /3 andp=1, the
basis functloru,//qu(r) satisfies
<¢Nq| ¢N’q’>: é\NN’5qq’ )

Ung, (R, 1) =MDy (1),

2 [vng)(vngl=1. (A1) .
Na Png, (X, —Y) =€ PRg (XY),
(ii) Upon applying Eq(18) with R=n;a;+ n,a,, the ba- Ao .
sis functionyn, is transformed as g, (—X,y)=e TN R (xy), (A8)
Tr ¢Nq(r):e*iQ-R*i””1“2 Png(T). (A2)  whereg=nm/3. Thus,iyq,(0)=0 exceptN=6n+1.
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