# Infrared transmission study of crystal-field excitations in La<sub>2-x-v</sub>Nd<sub>x</sub>Sr<sub>v</sub>CuO<sub>4</sub>

G. Riou,\* S. Jandl, and M. Poirier

Centre de Recherche sur les Propriétés Électroniques des Matériaux Avancés, Département de Physique, Université de Sherbrooke, Sherbrooke, Canada J1K 2R1

V. Nekvasil, M. Maryško, J. Fábry, and K. Jurek

Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 53 Praha 6, Czech Republic

M. Diviš

Department of Electron Systems, Charles University, Ke Karlovu 2, 121 16 Praha 2, Czech Republic

J. Hölsä

Department of Chemistry, University of Turku, FIN-20014 Turku, Finland

I. M. Sutjahja<sup>†</sup> and A. A. Menovsky

Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands

S. N. Barilo, S. V. Shiryaev, and L. N. Kurnevich

Institute of Solid State and Semiconductors Physics, National Academy of Science, 17 P. Brovka street, Minsk 220072, Belarus (Received 6 June 2002; revised manuscript received 29 August 2002; published 16 December 2002)

We report an infrared crystal field study of  $La_{2-x-y}Nd_xSr_yCuO_4$  single crystals for (x=0.35, y=0), (x=0.34, y=0.14), and (x=0.42, y=0.19).  $Nd^{3+}$  crystal field excitations from the ground state multiplet  ${}^4I_{9/2}$  to the  ${}^4I_{11/2}$ ,  ${}^4I_{13/2}$ ,  ${}^4I_{15/2}$ , and  ${}^4F_{3/2}$  excited multiplets are observed. A precise set of crystal field parameters, that reproduces the Nd<sup>3+</sup> electronic levels in all the samples as well as the La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> susceptibility measurements as a function of temperature, is determined. A very strong Ising-like anisotropy of the low-temperature Nd<sup>3+</sup> magnetic moment is related to a large value of the second rank crystal field parameter  $B_{20}$ . In addition to the Nd<sup>3+</sup>  $C_{4v}$  symmetry regular site a second one, of lower symmetry, is detected and related to possible stripe formation.

DOI: 10.1103/PhysRevB.66.224508

PACS number(s): 74.72.Dn, 71.70.Ch, 71.70.Gm, 75.10.Dg

## I. INTRODUCTION

Ordered charges and spin domains (stripes and phase separations) in layered cuprates<sup>1</sup> and other oxides<sup>2,3</sup> could play a key role in the mechanism of high temperature superconductivity (HTSC).<sup>4</sup> Probing locally these charge and spin inhomogeneities has recently become an important issue.<sup>5,6</sup>

Rare-earth (RE) crystal field (CF) excitations, to which the electronic and magnetic properties are very sensitive, have been successfully used to study various physical properties of the HTSC and their parent compounds.<sup>7</sup> Particularly, Raman scattering and infrared transmission spectroscopies have proven to be valuable techniques in the determination of the rare-earth CF excitations in both electron<sup>8–11</sup> and hole doped cuprates.<sup>12,13</sup> Since the rare-earth ions are located in the vicinity of the copper-oxygen planes, the presence of doped charge carriers in inhomogeneous structures such as stripes or clusters affects their CF energy levels.

The study of CF excitations in  $La_{2-x-y}Nd_xSr_yCuO_4$  compounds, which are known to exhibit passe separation and stripe formation,<sup>1</sup> would help to characterize the effect of charge redistribution on the Nd<sup>3+</sup> CF levels. Many phase transitions are observed in these materials involving rotations of the CuO<sub>6</sub> octahedra.<sup>14–16</sup> The high-temperature tetragonal (HTT) (*I4/mmm*), the low-temperature orthorhombic (LTO) (Bmab) and the low-temperature tetragonal (LTT)  $(P4_2/ncm)$  phases have been characterized by Raman spectroscopy<sup>17</sup> and neutron scattering,<sup>18,19</sup> while Lampakis *et al.*<sup>20</sup> have observed two broad Raman excitations around 150 and 380 cm<sup>-1</sup> in La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> compatible with stripe formation.

In this article, we study the  $Nd^{3+}$  CF excitations in  $La_{2-x-y}Nd_xSr_yCuO_4$ . The principal objectives are (i) to report the  $Nd^{3+}$  CF excitations in single crystals as detected by infrared transmission spectroscopy, (ii) to determine the CF parameters that describe the CF interaction and fit the measured magnetic susceptibility, (iii) to discuss the origin of the additional  $Nd^{3+}$  CF excitations.

### **II. EXPERIMENTS**

Infrared transmission spectra of  $La_{2-x-y}Nd_xSr_yCuO_4$  (x = 0.35, y=0) sample 1 as grown and reduced at 800 °C in Ar atmosphere, (x=0.34, y=0.14) sample 2, and (x = 0.42, y=0.19) sample 3 single crystals have been recorded as a function of temperature. Samples 1 and 3 were grown by the travelling solvent floating zone technique (image furnace)<sup>21</sup> while sample 2 was obtained by the flux method.<sup>22</sup> Considering their various phase transitions, samples 1 and 3 have been further characterized by specific heat measurements, carried out using the relaxation method

by means of a commercial Quantum Design PPMS magnetometer, and by Raman spectroscopy: sample 1 is in the LTO phase at room temperature and undergoes a LTO---LTT phase transition at 80 K, while sample 3 is in the HTT phase at room temperature and in the LTO phase below 275 K. Sample 2 is according to the phase diagram of Ref. 23 in the LTT phase below 60 K. A preliminary Raman study has enabled us to orient the samples and to characterize their inhomogeneities. For the infrared study, the samples were mounted on a helium closed cycle cryostat cold finger and  $0.5 \text{ cm}^{-1}$  resolution transmission spectra were obtained in the  $1800-15000 \text{ cm}^{-1}$  energy range with a Fourier transform interferometer (BOMEM DA3.002) equipped with InSb and Si detectors, quartz-halogen and globar sources as well as CaF<sub>2</sub> and quartz beamsplitters. The composition homogeneity of sample 1 was measured using an electron microprobe x-ray analyzer JXA 733 (JEOL) equipped with WD spectrometers. Experimental data were processed by the XPP correction program (SAMX). The oxygen concentration was estimated from stoichiometry.

In order to further characterize samples 1 and 3, microwave conductivity at 16.5 GHz was measured, in the 4.2– 300 K temperature range, using the standard cavity perturbation contactless technique which is well suited for the measurements of electrical conductivity in anisotropic materials.<sup>24,25</sup> The microwave conductivity measurements at 16.5 GHz show that sample 3 displays a superconducting transition around 20 K and the low *c*-axis plasma frequency ~150 cm<sup>-1</sup> (Ref. 26) renders its infrared transmission possible. Sample 1 magnetization and magnetic susceptibility parallel and perpendicular to the CuO<sub>2</sub> planes were measured using a superconducting quantum interference device magnetometer Quantum Design MPM-5S in the temperature range from 4.5 to 300 K.

#### **III. RESULTS AND DISCUSSION**

Sample 1, which is in the LTO phase at room temperature, undergoes a gradual LTO-LTT phase transition around 80 K.<sup>14</sup> The temperature evolution of the sample 1 five Raman active phonons, in the  $x(zz)\overline{x}$  configuration, confirms its orientation [Fig. 1(a)]; hardening of the 120  $\text{cm}^{-1}$  phonon between 300 and 100 K [inset of Fig. 1(a)] is followed by a softening at lower temperature indicating the occurrence of the LTO $\rightarrow$ LTT transition.<sup>17</sup> This phase transition appears in the specific heat measurements around 80 K (Fig. 2). Raman active excitations that are not predicted by group theory are observed around 150 and 380 cm<sup>-1</sup> [Fig. 1(b)]. The  $C_{4v}$  symmetry crystal field at the Nd<sup>3+</sup> site lifts the (2J+1)-fold degeneracy of the  $4f^3$  state J multiplets. Assuming a perfect orientation of the crystal and the absence of depolarization effects as well as of disorder,  $\Gamma_6{\rightarrow}\Gamma_6$  and  $\Gamma_7{\rightarrow}\Gamma_7$  transitions are observed for  $\mathbf{E} \| \mathbf{z}$  while  $\Gamma_6 \rightarrow \Gamma_7$  transitions are observed for  $\mathbf{E} \perp \mathbf{z}$ .

Similarly to as grown cerium doped  $Nd_2CuO_4$  and  $Pr_2CuO_4$ ,<sup>8,10</sup> more infrared absorption bands than expected from the  $Nd^{3+}$  regular sites, are observed. They are due to nonregular  $Nd^{3+}$  sites which frequencies are influenced by reduction, Sr doping, local charge fluctuations, and/or distor-



FIG. 1. (a) Temperature evolution of the Raman-active phonons of  $La_{1.65}Nd_{0.35}CuO_4$  in the  $x(zz)\overline{x}$  configuration. Inset: A zoom around 120 cm<sup>-1</sup>. (b)  $La_{1.65}Nd_{0.35}CuO_4$  (1),  $La_{1.52}Nd_{0.34}Sr_{0.14}CuO_4$ (2), and  $La_{1.49}Nd_{0.42}Sr_{0.19}CuO_4$  (3) Raman-active phonons in the  $y(xx)\overline{y}$  configuration at 78 K.

sions. CF absorption bands are shown in Figs. 3,4,5. In order to determine the parameters that describe the CF interactions at the regular sites, the less affected absorption bands by doping are considered.



FIG. 2.  $La_{1.65}Nd_{0.35}CuO_4$  specific heat measurement as a function of temperature from 65 to 100 K.



FIG. 3. (a) Temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{11/2}$  transitions in La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> for **E**||**z**. Inset: Fitting of the 1932 cm<sup>-1</sup> absorption band at 9 K. (b) Low-temperature spectra at 9 K of the as grown (1) and reduced (1R) La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub>, La<sub>1.52</sub>Nd<sub>0.34</sub>Sr<sub>0.14</sub>CuO<sub>4</sub> (2) and La<sub>1.49</sub>Nd<sub>0.42</sub>Sr<sub>0.19</sub>CuO<sub>4</sub> (3). Asterisks indicate absorptions associated with the regular Nd<sup>3+</sup> sites.

The temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{11/2}$  transitions is presented in Fig. 3(a). The absorption bands at (1932 cm<sup>-1</sup>) and (1980, 2241 cm<sup>-1</sup>) are associated with ( $\Gamma_{6} \rightarrow \Gamma_{7}$ ) and ( $\Gamma_{6} \rightarrow \Gamma_{6}$ ) transitions, respectively. The bands at 1910 and 2170 cm<sup>-1</sup> correspond to transitions from the thermally populated 70 cm<sup>-1</sup>  $\Gamma_{7}$  level to  $\Gamma_{6}$  levels. The selection rules are not rigorously respected due to depolarization effects. The presence of strontium induces a broadening and a shift of the absorption bands indicated by dashed lines in Fig. 3(b). The additional bands, detected at 1996, 2054, 2113 and 2203 cm<sup>-1</sup>, are associated with nonregular Nd<sup>3+</sup> sites.

The temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$  transitions is presented in Fig. 4(a). The absorption bands at (3883,



FIG. 4. (a) Temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{13/2}$  transitions in La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> for **E**||**z**. (b) Low-temperature spectra at 9 K of the as grown (1) and reduced (1R) La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub>, La<sub>1.52</sub>Nd<sub>0.34</sub>Sr<sub>0.14</sub>CuO<sub>4</sub> (2), and La<sub>1.49</sub>Nd<sub>0.42</sub>Sr<sub>0.19</sub>CuO<sub>4</sub> (3). Asterisks indicate absorptions associated with the regular Nd<sup>3+</sup> sites.



FIG. 5. (a) Temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$  transitions in La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> for **E**||**z**. (b) Low-temperature spectra at 9 K of La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> (1), La<sub>1.52</sub>Nd<sub>0.34</sub>Sr<sub>0.14</sub>CuO<sub>4</sub> (2), and La<sub>1.49</sub>Nd<sub>0.42</sub>Sr<sub>0.19</sub>CuO<sub>4</sub> (3). Asterisks indicate absorptions associated with the regular Nd<sup>3+</sup> sites.

4101, 4204 cm<sup>-1</sup>) and (4006 cm<sup>-1</sup>) are associated with ( $\Gamma_6 \rightarrow \Gamma_7$ ) and ( $\Gamma_6 \rightarrow \Gamma_6$ ) transitions, respectively. The band at 3813 cm<sup>-1</sup> corresponds to a transition from the thermally populated 70 cm<sup>-1</sup>  $\Gamma_7$  level to a  $\Gamma_7$  level while the absorption at 3876 cm<sup>-1</sup> is associated with a transition from the 130 cm<sup>-1</sup>  $\Gamma_6$  level to a  $\Gamma_7$  level. Broadenings and small shifts of the absorption bands are observed with the increase of the strontium content [Fig. 4(b)]. The additional absorptions at 3946, 4065, and 4261 cm<sup>-1</sup> are associated with the nonregular Nd<sup>3+</sup> sites.

Finally, the temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$  transition is presented in Fig. 5(a). The absorption bands at (5827, 6003, 6144, 6365 cm<sup>-1</sup>) and (5875, 6201 cm<sup>-1</sup>) are associated with ( $\Gamma_6 \rightarrow \Gamma_6$ ) and ( $\Gamma_6 \rightarrow \Gamma_7$ ) transitions, respectively. The band at 5805 cm<sup>-1</sup> corresponds to a transition from the thermally populated 70 cm<sup>-1</sup>  $\Gamma_7$  level to a  $\Gamma_7$  level. Broadenings and small shifts of the absorption bands are also observed with the increase of strontium content [Fig. 5(b)]. Additional absorptions at 6073 and 6092 cm<sup>-1</sup> are associated with the nonregular Nd<sup>3+</sup> sites.

In the following, we analyze the optical data using the CF Hamiltonian written as

$$H_{\rm CF} = \sum_{k,q} B_{kq} C_q^k, \qquad (1)$$

where  $C_q^k$  is the *q*th component of a spherical tensor operator of rank *k*, and  $B_{kq}$  the corresponding CF parameter. In the  $C_{4v}$  symmetry Nd<sup>3+</sup> sites only five CF parameters  $B_{20}$ ,  $B_{40}$ ,  $B_{44}$ ,  $B_{60}$ , and  $B_{64}$ , are nonzero. These parameters are determined by solving numerically the inverse secular problem where the CF levels deduced from the optical spectra are taken to be the eigenvalues of the secular equation of  $H_{CF}$ . However, as mentioned previously, the large number of observed bands indicates the presence of at least one additional Nd<sup>3+</sup> site. Moreover, to our knowledge, no data, which

TABLE I.  $Nd^{3+}$  ion CF parameters (in  $cm^{-1}$ ) in  $La_{1.65}Nd_{0.35}CuO_4$ . Given in brackets are the mean errors associated with the fitting parameters.

| $\overline{B_{kq}}$    | Theory | Fit      |  |  |  |
|------------------------|--------|----------|--|--|--|
| B <sub>20</sub>        | 1123   | 1518 (5) |  |  |  |
| $B_{40}$               | 675    | -863 (6) |  |  |  |
| $B_{44}$               | -238   | -200 (6) |  |  |  |
| <i>B</i> <sub>60</sub> | 381    | 372 (4)  |  |  |  |
| B <sub>64</sub>        | 866    | 914 (3)  |  |  |  |
| <i>B</i> <sub>64</sub> | 866    | 914 (3)  |  |  |  |

could serve as an initial estimate for the parameters  $B_{kq}$  in the studied compounds, are available. Therefore, our CF analysis was made in several steps.

In the first step, in analogy with Ce-doped Nd<sub>2</sub>CuO<sub>4</sub>,<sup>10</sup> we ascribed the experimental CF levels, which do not depend on the Sr doping, to the regular Nd<sup>3+</sup> site. The corresponding levels at 0, 70, 130, 1932, 2241, 4101, 5827, 5875,  $6003, 6201, \text{ and } 6365 \text{ cm}^{-1}$  were fitted by the least-squares method in which the calculations using a semiphenomenological superposition model (SM) and an ab initio method based on the density functional theory (for details see Ref. 13) provided an initial estimate for the CF parameters. The structure parameters available for the ideal tetragonal I4/mmm (HTT) crystallographic structure of La<sub>2</sub>CuO<sub>4</sub> (socalled T structure)<sup>27</sup> have been considered in these calculations. In the following steps we have also included, among the input data, the levels that match the calculated ones  $(1980, 3883, 4006, 4204, and 6144 \text{ cm}^{-1})$  and obtained the CF parameters given in Table I.

The resulting best-fit values are compared with the theoretical ones in Table I, the free-ion energies of the  ${}^{4}I_{J}$  multiplets, varied along the CF parameters in fitting the data, are 0 (J=9/2), 1872 (J=11/2), 3833 (J=13/2), and 5880 (J= 15/2) cm<sup>-1</sup>. It is to be noted that both sets of the CF parameters in Table I are rather similar except for the  $B_{40}$ parameter sign.

Our SM calculations indicate that the  $B_{40}$  parameter sign changes at the transition from the undistorted HTT structure to the low-temperature distorted structures. In the LTO and LTT phases, this tendency is associated with the tilting of the apical oxygen from the z axis as well as with the displace-



FIG. 6. Temperature evolution of the  ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$  transitions in La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> for **E**||**z**.

ment of the two next nearest oxygen ligands closer to the  $Nd^{3+}$  ion (see, e.g., Refs. 14,28). The remaining CF parameters are not influenced significantly by this distortion.

The CF levels, calculated using the best-fit set of the  $B_{ka}$ parameters, are compared with the experimental ones in Table II confirming that the crystal field at the regular Nd<sup>3+</sup> sites can be well described by the  $C_{4v}$  symmetry Hamiltonian. We note that we have detected several transitions in the 10000 to  $15000 \text{ cm}^{-1}$  energy range. These lines are particularly difficult to assign mainly due to the scarcity of the data and the overlap of the J multiplets. The only exceptions are the levels at 11243 and 11444 (11374+70 =11 444) cm<sup>-1</sup> ascribed to the CF splitting of the  ${}^{4}F_{3/2}$  multiplet (Fig. 6). The observed splitting (201  $\text{cm}^{-1}$ ) of the  ${}^{4}F_{3/2}$  multiplet compares favorably with the theoretical value of  $181 \text{ cm}^{-1}$  as obtained by diagonalization of the free-ion Hamiltonian<sup>29</sup> together with the CF Hamiltonian [Eq. (1)], using the best-fit parameters of Table I. This agreement provides an independent test of the reliability of these parameters,  $B_{20}$  in particular.

The inelastic neutron scattering study, performed by Rœpke *et al.* in  $La_{2-x-y}Nd_xSr_yCuO_4$  for  $y \neq 0$ , <sup>30</sup> shows that the observed quasielastic Lorentzian line above 80 K transforms into a mixed quasielastic Lorentzian-Gaussian line below 80 K, which is considered as a direct indication for

TABLE II. Energies (in cm<sup>-1</sup>) and symmetries of Nd<sup>3+ 4</sup>*I* term levels in La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> associated with the regular and the nonregular sites, respectively ( $\pm 1$  cm<sup>-1</sup>).

| <sup>4</sup> <i>I</i> <sub>9/2</sub> |     |         | <sup>4</sup> <i>I</i> <sub>11/2</sub> |      |                                | ${}^{4}I_{13/2}$ |            |      | ${}^{4}I_{15/2}$ |            |            |      |         |            |
|--------------------------------------|-----|---------|---------------------------------------|------|--------------------------------|------------------|------------|------|------------------|------------|------------|------|---------|------------|
| Fit re                               |     | regular |                                       | Fit  | regular                        | nonregular       | Fit        |      | regular          | nonregular | Fit        |      | regular | nonregular |
| $\Gamma_6$                           | -2  | 0       | $\Gamma_7$                            | 1940 | 1932                           |                  | $\Gamma_7$ | 3882 | 3883             |            | $\Gamma_6$ | 5824 | 5827    |            |
| $\Gamma_7$                           | 70  | 70      | $\Gamma_6$                            | 1972 | $1980 (\pm 5 \text{ cm}^{-1})$ | 1996             | $\Gamma_7$ | 3919 |                  |            | $\Gamma_7$ | 5876 | 5875    |            |
| $\Gamma_6$                           | 132 | 130     | $\Gamma_6$                            | 2035 |                                | 2054             | $\Gamma_6$ | 3961 |                  | 3946       | $\Gamma_7$ | 5965 |         |            |
| $\Gamma_7$                           | 309 |         | $\Gamma_7$                            | 2091 |                                | 2113             | $\Gamma_6$ | 4007 | 4006             |            | $\Gamma_6$ | 6005 | 6003    | 6073       |
| $\Gamma_6$                           | 444 |         | $\Gamma_7$                            | 2188 |                                | 2203             | $\Gamma_7$ | 4098 | 4101             | 4065       | $\Gamma_6$ | 6146 | 6144    | 6092       |
|                                      |     |         | $\Gamma_6$                            | 2240 | 2241                           |                  | $\Gamma_7$ | 4208 | 4204             |            | $\Gamma_7$ | 6200 | 6201    |            |
|                                      |     |         |                                       |      |                                |                  | $\Gamma_6$ | 4217 |                  | 4261       | $\Gamma_6$ | 6368 | 6365    |            |
|                                      |     |         |                                       |      |                                |                  |            |      |                  |            | $\Gamma_7$ | 6429 |         |            |



FIG. 7. xy plane La<sub>1.65</sub>Nd<sub>0.35</sub>CuO<sub>4</sub> microwave conductivity at 16.5 GHz as a function of temperature on a log-log scale.

spatial inhomogeneities in the CuO<sub>2</sub> planes. The detection of Raman active excitations at 150 and 380 cm<sup>-1</sup> [Fig. 1(b)] confirms the expected phase separation in the studied samples,<sup>20</sup> which translates in Nd<sup>3+</sup> nonregular sites. We tentatively associate the regular sites with hole-free antiferromagnetic regions and the nonregular sites with hole-rich regions in the samples. The atomic scale charge inhomogeneities, forming stripes in some cuprates, provoke local structural deformations (see, e.g., Refs. 17,31-33). The extra charge and the local deformations in the vicinity of the nonregular  $R^{3+}$  sites were considered in several point-charge model CF calculations.<sup>6,34,35</sup> Sufficiently detailed structural data based on the atomic pair distribution function (PDF) are available only for Nd<sub>2-r</sub>Ce<sub>r</sub>CuO<sub>4</sub>.<sup>33</sup> Using this data, a SMbased modeling of the CF interaction at the nonregular Nd<sup>3+</sup> sites has shown that the charge-transfer induced structural deformation, rather than the transferred charge itself, provokes the observed  $\leq 50 \text{ cm}^{-1}$  shifts of the Nd<sup>3+</sup> CF levels with respect to the regular sites.<sup>10,36</sup> Similarly to the  $Nd_{2-r}Ce_rCuO_4$  study, the observed  $\leq 40 \text{ cm}^{-1}$  Sr-doping induced shifts of CF transitions (Figs. 3,4,5, Table II) are ascribed partially to local structural deformations. While PDF.<sup>32</sup> EXAFS.<sup>37</sup> and Raman<sup>17</sup> studies of  $La_{2-x-y}Nd_xSr_yCuO_4$  indicate such a deformation, they do not provide the crucial precise information, about the relative positions of oxygen ions with respect to the Nd<sup>3+</sup> ions, for the theoretical modeling. Moreover, the dependance of these nonregular sites CF excitations on reduction and Sr doping proves that they are also sensitive to charge density since their shift to higher energies increases with hole doping. Sample 1, if stoichiometric, is expected to exhibit an insulating behavior as in Pr<sub>2</sub>CuO<sub>4</sub> (Ref. 8) and Nd<sub>2</sub>CuO<sub>4</sub>.<sup>25</sup> However, the sample 1 xy plane conductivity is quite high at low temperature as shown in Fig. 7. As observed in other compounds, the microwave conductivity decreases with temperature in a semiconducting fashion, and the structure appearing around 150 K, whose origin is still unknown, appears also in Nd<sub>2</sub>CuO<sub>4</sub> microwave conductivity data.<sup>25</sup> Despite the fact that the temperature profile is very similar to what is found in other compounds, the high microwave conductivity is consistent with the presence of some impurity band. This implies



FIG. 8. Magnetic hysteresis curve for  $La_{1.65}Nd_{0.35}CuO_4$ . The arrows indicate the direction in which the magnetic field was changed during the experiment.

free charges in the CuO<sub>2</sub> plane as confirmed by a microprobe analysis which revealed an overall nonstoichiometric composition described by the chemical formula La<sub>1.69</sub>Nd<sub>0.336</sub>Cu<sub>0.954</sub>O<sub>4</sub> (equivalent to  $\delta \approx 0.007$ in  $La_2CuO_{4+\delta}$ ). Actually, many recent studies have reported that  $La_2CuO_{4+\delta}$  exhibits phase separation for  $\delta$  down to 0.003.38

The magnetization measurements in fields applied along the c axis show that sample 1 is a weak ferromagnet at low temperatures (Fig. 8). The temperature variation of the remanent magnetization indicates that the weak ferromagnetism induced by the antisymmetric Dzyaloshinskii-Moriya (DM) interaction between the Cu spins<sup>39</sup> persists at H=0 T up to a temperature of about 15 K, in good agreement with available data.<sup>14</sup> We note that a metamagnetic transition, revealed in fields from 0.03 to 0.3 T by magnetization measurements, indicates a finite ferromagnetic moment vanishing at 20-25 K. The temperature dependence of the ferromagnetic component follows roughly the Curie-Weiss law, which is indicative of the essential contribution of the Nd<sup>3+</sup> sublattice, magnetically polarized by the Nd-Cu coupling. The lifting of the degeneracy of the Nd<sup>3+</sup> Kramers doublets due to this coupling is illustrated by the  $\sim 3.2 \text{ cm}^{-1}$  splitting of the 1932  $cm^{-1}$  absorption band at 9 K, shown in the inset of Fig. 3(a). To obtain the paramagnetic susceptibility anisotropy of sample 1 in an applied field of 0.15 T, displayed in Fig. 9, we have corrected the experimental susceptibility ( $\chi$ ) data in the perpendicular orientation for the ferromagnetic contribution.



FIG. 9. Magnetic susceptibility measurements of  $La_{1.65}Nd_{0.35}CuO_4$  (dots) and calculations (lines) parallel and perpendicular to the CuO<sub>2</sub> planes. Inset: inverse magnetic susceptibility.

In comparison to other Nd cuprates: Nd<sub>2</sub>CuO<sub>4</sub> (Ref. 40) and NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>,<sup>41</sup> the anisotropy, imprinted by the CF interaction at the  $Nd^{3+}$  sites, is much more pronounced and persists until room temperature. The theoretical  $\chi$  vs T curve calculated using the best-fit CF parameters (Table I) is shown to compare well with the experimental data (Fig. 9). At 20 K, the susceptibility in parallel orientation is more than 20 times smaller than in the perpendicular orientation. The difference between these two directions further increases with decreasing temperature. We ascribe the nonobservation of the minimum in  $\chi(T)$  [or the maximum in  $\chi^{-1}(T)$ ] to an admixture of the perpendicular component into the parallel data due to the imperfect orientation of the applied magnetic field with respect to the crystal *a-b* plane. The calculated ground-state g-tensor values of Nd<sup>3+</sup> in sample 1:  $g_a = 0.373$ ,  $g_c = 5.796$ indicate a very large Ising-like (Ref. 42) anisotropy of the low-temperature magnetic moment, much stronger than in any known Nd<sup>3+</sup>-compound. This remarkably strong anisotropy is related to the high value of the 2<sup>nd</sup> rank CF parameter  $B_{20}$ : e.g., its respective theoretical and best-fit values of 1123 and 1518  $\text{cm}^{-1}$  (Table I) are three to four times larger than the corresponding values of 412  $\text{cm}^{-1}$  (Ref. 43) and 380 cm<sup>-1</sup> (Ref. 12) in NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>. The difference between the theoretical  $B_{20}$  values in these two compounds is connected with a difference in the occupation of the  $p_x$ ,  $p_y$ , and  $p_z$  orbitals in the 5*p* and 6*p* valence states as well as of the  $d_{z^2}$ ,  $d_{x^2-y^2}$ ,  $d_{xy}$ ,  $d_{xz}$ , and  $d_{yz}$  orbitals in the valence 5*d* states of Nd<sup>3+</sup> ion. Significant contribution to  $B_{20}$  from charges within the atomic sphere is proportional to the quantities  $\Delta N_p$  and  $\Delta N_d$  which are functions of the orbital occupation numbers.<sup>44</sup> We have obtained  $\Delta N_p$  equal to -0.021and -0.009 electrons and  $\Delta N_d$  equal to -0.097 and -0.021 electrons for the Nd<sup>3+</sup> ion in sample 1 and NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub> compounds, respectively. Therefore, the extraordinary anisotropy of the Nd<sup>3+</sup> magnetic moment in sample 1 is directly related to the anisotropy of the Nd-*p* and Nd-5*d* occupied states in the close proximity of the maximum of the radial charge density distribution of the localized Nd-4*f* states.

#### **IV. CONCLUSIONS**

We have reported on an Nd<sup>3+</sup> CF infrared absorption study in  $La_{2-x-y}Nd_xSr_yCuO_4$ . 16 CF levels of the four first excited multiplets have been observed. The determination of the CF parameters for the  $C_{4v}$  symmetry site, using both *ab* initio and SM calculations, indicates a good agreement between the observed and calculated CF levels. A comparison between the theoretical model (calculated for the ideal  $La_2CuO_4$  I4/mmm structure) and the fit shows a fairly good agreement, excepted for the  $B_{40}$  CF parameter which is very sensitive to the apical oxygen position. As previously reported,<sup>14</sup> the magnetic susceptibility measurements display a weak ferromagnetic component below 15 K induced by an antisymmetric DM interaction. The measured paramagnetic susceptibility, which anisotropy is more pronounced than in any other Nd compound, compares well with the predictions of the CF parameters. Many additional absorption bands are associated with the presence of at least one nonregular  $Nd^{3+}$ site due to possible charge fluctuations and stripes.

#### ACKNOWLEDGMENTS

We thank J. Rousseau and M. Castonguay for technical assistance and P. Richard for fitting the data. G.R., S.J., and M.P acknowledge support from the National Science and Engineering Research Council of Canada (NSERC) and from le Fonds de Formation de Chercheurs et l'aide à la Recherche du Gouvernement du Québec. Also gratefully acknowledged are the Grant Agency of the Czech Republic for its Grants No. 202/00/1602 (V.N., M.M., and M.D.) and 203/02/0436 (J.F.) and the Grant Agency of Charles University for its Grant No. 145/2000/B-FYZ (M.D.). The work in Prague was also supported by institutional projects AV0Z1-010-914 and MSM113200002. Single crystal growth by means of the TSFZ method have been supported by the FOM-ALMOS. The work in Minsk was supported in part by NATO linkage Grant No. PST.CLG. 977766 and by INTAS in frame of Grant Nos. 96-0410 and 01-0278.

- <sup>†</sup>Also at Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- <sup>1</sup>J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature (London) **375**, 561 (1995).
- <sup>2</sup>S. H. Lee, S. W. Cheong, K. Yamada, and C. F. Majkrzak, Phys. Rev. B 63, 060405(R) (2001).
- <sup>3</sup>Yu. G. Pashkevich, V. A. Blinkin, V. P. Gnezdilov, V. V. Tsapenko, V. V. Eremenko, P. Lemmens, M. Fischer, M. Grove, G. Güntherodt, L. Degiorgi, P. Wachter, J. M. Tranquada, and D. J. Buttrey, Phys. Rev. Lett. 84, 3919 (2000).
- <sup>4</sup>V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120 (1997).
- <sup>5</sup>S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Science **403**, 746 (2000).
- <sup>6</sup>C. Howald, P. Fournier, and A. Kapitulnik, Phys. Rev. B 64, 100504 (2001).
- <sup>7</sup>U. Staub and L. Soderholm, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Schneidner, Jr., L. Eyring, and M. B. Maple (Elsevier, Amsterdam, 2000), Vol. 30, p. 491.
- <sup>8</sup>G. Riou, S. Jandl, M. Poirier, V. Nekvasil, M. Diviš, P. Fournier, R. L. Greene, D. I. Zhigunov, and S. N. Barilo, Eur. Phys. J. B 23, 179 (2001).
- <sup>9</sup>S. Jandl, T. Strach, T. Ruf, M. Cardona, V. Nekvasil, D. I. Zhigunov, S. N. Barilo, and S. V. Shiryaev, Physica C **322**, 87 (1999).
- <sup>10</sup>S. Jandl, P. Richard, M. Poirier, V. Nekvasil, A. A. Nugroho, A. A. Menovsky, D. I. Zhigunov, S. N. Barilo, and S. V. Shiryaev, Phys. Rev. B **61**, 12 882 (2000).
- <sup>11</sup>S. Jandl, T. Strach, T. Ruf, M. Cardona, V. Nekvasil, M. Iliev, D. I. Zhigunov, S. N. Barilo, and S. V. Shiryaev, Phys. Rev. B 56, 5049 (1997).
- <sup>12</sup>A. A. Martin, T. Ruf, M. Cardona, S. Jandl, D. Barba, V. Nekvasil, M. Diviš, and T. Wolf, Phys. Rev. B **59**, 6528 (1999).
- <sup>13</sup>D. Barba, S. Jandl, V. Nekvasil, M. Maryško, M. Diviš, A. A. Martin, C. T. Lin, M. Cardona, and T. Wolf, Phys. Rev. B 63, 054528 (2001).
- <sup>14</sup>M. K. Crawford, R. L. Harlow, E. M. McCarron, W. E. Farneth, N. Herron, H. Chou, and D. E. Cox, Phys. Rev. B 47, 11 623 (1993).
- <sup>15</sup>J. D. Axe, A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Youwen Xu, Phys. Rev. Lett. 62, 2751 (1989).
- <sup>16</sup>M. K. Crawford, R. L. Harlow, E. M. McCarron, W. E. Farneth, J. D. Axe, H. Chou, and Q. Huang, Phys. Rev. B 44, 7749 (1991).
- <sup>17</sup>B. Nachumi, N. Ichikawa, Y. Nakamura, and S. Uchida, Phys. Rev. B **63**, 092103 (2001).
- <sup>18</sup>J. M. Tranquada, N. Ichikawa, and S. Uchida, Phys. Rev. B 59, 14712 (1999).
- <sup>19</sup>J. M. Tranquada, J. D. Axe, N. Ichikawa, Y. Nakamura, S. Uchida, and B. Nachumi, Phys. Rev. B 54, 7489 (1996).
- <sup>20</sup>D. Lampakis, D. Palles, E. Liarokapis, C. Panagopoulos, J. R. Cooper, H. Ehrenberg, and T. Hartmann, Phys. Rev. B **62**, 8811 (2000).
- <sup>21</sup>T. Kimura, K. Kishio, T. Kobayashi, Y. Nakayama, N. Motohira, K. Kitazawa, and K. Yamafuji, Physica C **192**, 247 (1992).
- <sup>22</sup>S. N. Barilo, A. R. Ges, S. A. Guretskii, A. N. Luginets, A. I.

Igumentsev, and V. N. Shambalev, J. Adv. Cryog. Eng. A **36**, 627 (1989).

- <sup>23</sup>B. Nachumi, Y. Fudamoto, A. Keren, K. M. Kojima, M. Larkin, G. M. Luke, J. Merrin, O. Tchernyshyov, Y. J. Uemura, N. Ichikawa, M. Goto, H. Takagi, S. Uchida, M. K. Crawford, E. M. McCarron, D. E. MacLaughlin, and R. H. Heffner, Phys. Rev. B 58, 8760 (1998).
- <sup>24</sup>L. I. Buranov and I. F. Schegolev, Prib. Tekh. Eksp. 2, 171 (1971).
- <sup>25</sup>S. Jandl, P. Richard, J. Trottier, K. Frikach, M. Poirier, D. I. Zhigunov, S. N. Barilo, and S. V. Shiryaev, Physica C 297, 64 (1998).
- <sup>26</sup>K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. **69**, 1455 (1992).
- <sup>27</sup>W. E. Pickett, Rev. Mod. Phys. **61**, 433 (1989).
- <sup>28</sup>A. W. Mombru, A. Lappas, and K. Prassides, J. Solid State Chem. 140, 345 (1998).
- <sup>29</sup>C. Görller-Walrand and K. Binnemans, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (Elsevier, Amsterdam, 1996), Vol. 23, p. 168.
- <sup>30</sup> M. Roepke, E. Holland-Moritz, B. Büchner, H. Berg, R. E. Lechner, S. Longeville, J. Fitter, R. Kahn, G. Coddens, and M. Ferrand, Phys. Rev. B **60**, 9793 (1999).
- <sup>31</sup>E. S. Bozin, G. H. Kwei, H. Takagi, and S. J. L. Billinge, Phys. Rev. Lett. 84, 5856 (2000).
- <sup>32</sup>M. Guttman, S. J. L. Billinge, E. Brosha, and G. H. Kwei, Physica C 341-348, 2143 (2000).
- <sup>33</sup>S. J. L. Billinge and T. Egami, Phys. Rev. B 47, 14 386 (1993).
- <sup>34</sup>A. Mirmelstein, A. Podlesnyak, V. Bobrovskii, and I. Zhdakhin, J. Phys.: Condens. Matter **11**, 7155 (1999).
- <sup>35</sup> J. Mesot and A. Furrer, J. Supercond. **10**, 623 (1997); D. Rubio, J. Mesot, K. Conder, S. Janssen, H. Mutka, and A. Furrer, *ibid.* **13**, 727 (2000).
- <sup>36</sup> V. Nekvasil, S. Jandl, T. Strach, T. Ruf, and M. Cardona, J. Magn. Magn. Mater. **177-181**, 535 (1998).
- <sup>37</sup>N. L. Saini, H. Oyanagi, A. Lanzara, D. Di Castro, S. Agrestini, A. Bianconi, F. Nakamura, and T. Fujita, Phys. Rev. B 64, 132510 (2001).
- <sup>38</sup>X. L. Dong, Z. F. Dong, Z. X. Zhao, X. F. Duan, L.-M. Peng, W. W. Huang, B. Xu, Y. Z. Zhang, S. Q. Guo, L. H. Zhao, and L. Li, Phys. Rev. Lett. **80**, 2701 (1998); C. Chen, F. R. Wondre, and J. Ryan, Int. J. Mod. Phys. B **14**, 3406 (2000); Y. S. Lee, R. J. Birgeneau, M. A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R. W. Erwin, S. H. Lee, and G. Shirane, Phys. Rev. B **60**, 3643 (1999).
- <sup>39</sup>I. Dzyialoshinskii, J. Phys. Chem. Solids 4, 241 (1958); T. Moriya, Phys. Rev. 120, 91 (1960).
- <sup>40</sup>Y. U. Muzichka, E. A. Goremychkin, I. V. Sashin, M. Diviš, V. Nekvasil, M. Nevriva, and G. Fillion, Solid State Commun. 82, 461 (1992).
- <sup>41</sup> V. Nekvasil, S. Jandl, D. Barba, A. A. Martin, M. Cardona, M. Diviš, M. Maryško, and T. Wolf, J. Magn. Magn. Mater. **226-230**, 985 (2001).
- <sup>42</sup> W. P. Wolf, Braz. J. Phys. **30**, 794 (2000); V. Nekvasil, M. Diviš, G. Hilscher, and E. Holland-Moritz, J. Alloys Compd. **225**, 578 (1995).
- <sup>43</sup> V. Nekvasil, S. Jandl, M. Cardona, M. Diviš, and A. A. Nugroho, J. Alloys Compd. **323-324**, 549 (2001).
- <sup>44</sup>R. Coehorn and K. H. J. Buschow, J. Appl. Phys. **69**, 5590 (1991).

<sup>\*</sup>Electronic address: griou@physique.usherb.ca