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The thermal disordering of thé-density wave, proposed to be the origin of the pseudogap state of high-
temperature superconductors, is suggested to be the same as that of the statistical mechanical model known as
the six-vertex model. The low-temperature phase consists of a staggered order parameter of circulating cur-
rents, while the disordered high-temperature phase is a power-law phase with no order. A special feature of this
transition is the complete lack of an observable specific heat anomaly at the transition. There is also a transition
at a even higher temperature at which the magnitude of the order parameter collapses. These results are due to
classical thermal fluctuations and are entirely unrelated to a quantum critical point in the ground state. The
guantum-mechanical ground state can be explored by incorporating processes that causes transitions between
the vertices, allowing us to discuss the quantum phase transition in the ground state as well as the effect of
guantum criticality at a finite temperature as distinct from the power-law fluctuations in the classical regime. A
generalization of the model on a triangular lattice that leads to a 20-vertex model may shed light on the Wigner
glass picture of the metal-insulator transition in a two-dimensional electron gas. The power-law ordered
high-temperature phase may be generic to a class of constrained systems, and its relation to recent advances in
the quantum dimer models is noted.
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I. INTRODUCTION fluctuations of the order parameter.
A natural modification that | shall describe, involving the

A motivating factor for the present paper is the specificsix-vertex modet®! leads to striking consequences for the
suggestion that a broken symmetry can explain thepseudogap phasél) As the d-density wave disorders with
pseudogap phase of high-temperature superconddctors.increasing temperature, the system exits to a power-law
The corresponding order is a particle-hole condensate gfhase that is not due to any underlying quantum critical
“angular momentum” 2, termed thed-density wave points.(2) The pseudogap transition does not have any spe-
(DDW).? There is some telltale evidence of this unusual or-cific heat anomaly? (3) Because of the power-law nature of
der parametéiinvolving circulating orbital currents arranged the orbital current correlations of the disordered state, it is
in a staggered pattern, which is directly detected as a Braggkely that the electron spectral function exhibits a cut spec-
scattering signal in neutron measurements. The second mgym, unlike a Fermi liquid(4) As the temperature is raised,
tivating factor is to place this proposal in a wider context of 5 second transition takes place at a higher temperature, where
many-body theory, where a strongly correlated electronighe |ocal amplitude of the pseudogap vanishes. It is unusual,
system can have unconventional broken symmetries in thgyt true, that the two-dimensional classical statistical me-
ground state. In this respect, | shall briefly touch upon theshanics of the pseudogap state viewed as a DDW allows for
topic of two-dimensional electron gas in Si-MOSFET g power-law phase with an infinite correlation length in the

devices’ . high-temperature regime, while the low-temperature phase is
The building blocks of the low-energy theory correspond-grdered with a finite correlation length.

ing to DDW are bond currents whose arrangements define The outline of the paper is as follows. In Sec. II, | intro-

the VariOUS Order pal’ameters that reﬂect particle-hol%uce and discuss the six-vertex model for the pseudogap
condensate$.The idea is clearly similar to resonating va- phase, and, in Sec. Ill, | discuss its quantum generalization.
lence bondgRVB's),” where the building blocks are valence section IV is a brief analysis of the relation with the quan-
bonds that can be described in terms of particle-particle conym dimer model. In Sec. V, | introduce the 20-vertex model
densates. These may order in the ground state, or they M@ a triangular lattice and discuss its relevance to the Wigner
not, in which case one has a spin liqliidn either case, glass picture of the in metal-insulator transition. Finally, the
strong correlation effects are believed to play an importanggnclusions are summarized in Sec. VI.

role. The parallel goes further: while a tractable RVB Hamil-

tonian is the quantum dimer modeh tractable model for

bond currents will be seen to be a vertex model known in, oy ERTEX MODEL FOR THE PSEUDOGAP PHASE
statistical mechanics and its suitable quantum generalization.

The actual statistical mechanics of the DDW transition is The ordered singlet DDW state consists of a staggered
richer than the mean-fiel(Hartree-Fock picture, in which  circulating pattern of currents flowing on the square planar
the ordered pattern is frozen, until the magnitude of the cirCuO lattice, as shown in Fig. 1. The configuration is a result
culating currents vanishes, which is the simplest possible desf juxtaposing two sets of vertices, shown in Fig. 2, centered
scription of the broken symmetry phase. While this is rea-on the Cu atoms in a current-conserving manner. There are
sonable deep in the ordered state, it does not allow foonly two possible choices, resulting in two distinct broken
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o > O < @ > o of the order parameter, which is a highly restrictive mecha-
nism because it does not allow for fluctuations. The system

A v )\ v may disorder long before the m{;\gnitude of the order' param-
eter collapses. To build fluctuation effects, we consider the
basic building blocks that are bond currents between the

® < ® > @ < ® nearest neighbor sitesandy=x=x, ory=x=y, defined by

& A v A jxy=—i€Po(ylgy—H. c), 2
where e=*+1 determines the direction of the current flow.

® > @ < @ > @ The status of the bond currents is identical to the local order
parameter in the Ginzburg-Landau-Wilson formalism, in
which the partition function is a sum over all complexions of

i 1 0 Y the order parameter weighted by the effective coarse-grained
action. To include quantum fluctuations, one must supple-

Y < ® > ® < ® ment the theory with a suitable dynamics, which | shall dis-
cuss in Sec. Il A.
FIG. 1. Asegment of the circulating current pattern in the DDW | shall assume that there is a regime of coupling constant
ordered state. and temperature such that the bond current order is well de-
veloped, and the fluctuations of the magnitudes of the bond
symmetry states, which are related by time reversal and aurrents can be neglected. If this is the case, there should be
lattice translation. a second transition at which the magnitude of the bond cur-
More mathematically, the order paramede is given by rent itself vanishes. This would imply a second pseudogap
® transition at a higher temperature. The existence of a
ot _:-Q _ specific-heat anomaly at this upper pseudogap transition is
(W7 (k+ QU (k)= 2 (cosky—cosky) &y, () not entirely clear, as it will be seen to be a transition from a
power-law ordered phase. However, in any case, the tem-
perature may be too large to extract it from the large phonon

lattice constant has been set to unity, and the opelalds o backgrounds. | shall therefore ignore this transition
the electron destruction operator. The order parameter 'ﬁltogether

cal[led a detr;lsny Kvavr:e tbgcautse Illt IS adp?rilctlje_-hole cortlden— It is easy to convince oneself that low-lying thermal or
sate, even though what IS actually modulated IS CUrrent, Noj, . q1ym fluctuations can be expected to reverse a set of

density. The order parametdry, is a spin singlet; there is bond currentgwithout changing their magnitudeprovided

als?j "’ll ttrlgt[)e;hversgn n Wh'Cht t1s thﬁ ZF;'” curr(ta)nt that is 5 sources or sinks are generated, thaWig,= 0. Given that
modulatead. The order parameter IS callediavave beCause nqre gre two incoming and two outgoing currents at a vertex

of the internal form factor of the particle and the hole, wh|chOf a square lattice, there are altogether 41/2:8l possible

IS (COSkX_CQSkV)' Of course, on a crystalline Ia.tt|9e, angular vertices. Thus there are four additional allowed vertices, be-
momentum is not a good quantum number. This is the close§}0nd the two shown in Fig. 2. These are shown below in Fig.

we can come to the angular momentum 2_ al,a_y2 wave 3. In general, each of the six local arrangements can have a
function in free space. Note that f(_)r particle-hole C.onden'distinct energy;, but if we impose the restriction that there
sates there are no exchange requirements governing ord&re no net external currents. then
parameter symmetries that enslave the orbital wave function '
to the spin wave function, in contrast to superconductivity

where the condensate is of particle-particle type. Thus, one €172, 83784, &5™ %6 )

can have a DDW that is either a spin singlet, or a spin triplet.l_h delis th h db . lth F
In a mean fieldHartree-Fock picture, the only way the e model Is then unchanged by reversing all the arrows. For
state can disorder is by the thermal collapse of the magnitudtgtragon"’lI symmetry, there are only two mdepgndent energy
scaless; andeg, because ;= g3, but for generality we shall
assume that they are distinct.
From a Hartree-Fock analydist can be argued that
A Y and g5 are close in energy. This is because vertices 1-4

correspond to f§,+ p,)-density wave(PDW) states in the

where o and p are the spin indices, an@= (7, 7). The

> < < > order parameter language, and the energetics of both the sin-
v i gle_t p—den_sity wave and the DDW are controlled by small
pair-hopping matrix elements, smaller than the scale of the
antiferromagnetic exchange constdnfA singlet p,-density
wave state has the ordering
(5) (6)
FIG. 2. Vertices 5 and 6. (wUT(k+Q’,t)zpp(k,t)>=¢>é,sinkxé‘;, (4)
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b/c
A Y
> > < <
A Y
1
(1) 2)
Y A
A A < <
7 (gl ) Y
A 4 A FIG. 4. The phase diagram. Regions | and Il are orbital ferro-
magnetgOF). Region Il is the power-law phase and region IV is
the orbital antiferromagnet with DDW order. The arrow marks a
(3) (4) path (tetragonal symmetry assumedrom the low-temperature
phase to the high-temperature phase, with the pseudogap transition
FIG. 3. Vertices 1, 2, 3, and 4. atT=T".

where Q' =(0,7). Note that in this cas@(’g, is real, but and correspond ta>b+c andb>a+c, respectively. Re-
because of the form factor sk, a Fourier transform to the gion Il is disordered, corresponding ta,b,c<z(a+b
real space brings out the pattern of currents shown in vertices €), but the current-current correlation function exhibits a
in Fig. 3, when it is superposed with the correspondingPower law. It includes the infinite-temperature caseb
p,~density wave. The order parametef, is the closest ana- —C~1. This entire h|gh—temperatU£$l{eg|on is on the the
log on a lattice of angular momentum 1, the wave func- critical line of the eight-vertex modet.** Region IV is the

tion in free space. Note, as before, that it is the current that iPOW phase, which is an orbital antiferromagnet anq corre-
modulated, not the density. sponds tc>a+ b. The phase boundary between regions 1]

I shall first consider thermal fluctuations and take intof"md_l\_/ IS given byb/c=—_(_a/c)+l, or c=a+b, which
account quantum fluctuations in the following section. A ba_|mpI|C|tIy defme; the transition temperatuif
sic assumption | shall make is that the energy of a given state Cc_)nS|der agiven set valugs mf_b, andc. As the tempera-
is a simple sum of energies associated with the configuratiof!e increases from 0 te, this point follows a path always
at each vertex. This is a reasonable assumption because afyding at (1,1). This path may or not cross a phase bound-
long-ranged interaction between the vertices are unlikely, a8y- The path followed in the phase diagram wizenb is
the thermal smearing will cause any interactions mediated b§0Wn &s an arrow. On this path,Tat=T*, there is a phase
the nodal quasiparticles to be exponentially decaying. Folfransition from the ordered DDW phase to the disordered

lowing the conventional notation, | shall define high temperature phasg with a power-law correlation _in the
current-current correlation function. The temperatiite is
a=w1=w,;, b=w3z=w,;, C=ws=ws, (5)  given by

where the Boltzmann factors are defined by=e %',
where the Boltzmann constakg is set to unity. The parti- T
tion function is

€17 €5

In2 ’

()

determining, phenomenologically, the energy differedee
Z:E anitN2pna*Naghs+ng, (6) =g,—&s.
In region 1V, the correlation lengtl is'®'3

wheren, is the number of vertices of tyde The sum is over

all arrangements that fit together continuously without gen- o - 1+x4m

. . " A . g=—1In[ 2x2]] | ——||, (8)
erating sources and sinks. The partition function is precisely M1 | 14 xAm—2
the partition of the six-vertex model for which many exact

0,11 _
results are knowr?’ wherex=e ™" and —coshh=(a?+b?—c?)/2ab. As T—T, ,
. A= (T.—T)¥2 and it can be seen by applying Poisson sum-
A. Phase diagram mation formula that
The phase diagram is shown in Fig. 4. Regions | and Il )

have orbital ferromagnetic order due to macroscopic currents £1=8e" " \-0. 9
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C/Nkg this entropy by a specific-heat hump clustered around a defi-
nite temperature, which is significantly belolif . The spe-

0.6 | cific heat per vertex is also a universal function TofT*.
| That it vanishes at high tempeartures—true for many statis-
0-5¢ | tical mechanical models such as the Ising model—simply
0.4 | reflects the bounded energy spectrum on the high-energy side
|

and must not be taken seriously. The high energy spectrum is
03f not modeled correctly by such low-energy effective models.
| As a result of the boundedness of the energy spectrum, the
0.2 | entire passage from complete order to complete disorder
| takes place over a limited range of temperature. However, we
0.1 [ should probably take seriously the fact that the DDW transi-
| tion results in a specific heat of order0.5kg per vertex
] 15 > considerably below th'e' DDW transition, and may be mis-
T taken as the _pretransmonal effect as the system enters the
superconducting state from the pseudogap phase. The
FIG. 5. The specific heat of the six-vertex model as a function ofspecific-heat peaks at the superconducting transition in the
T/T* for a=b. Note that there are no observable anomalies at theinderdoped regime indeed appear to be anomalous and very
transition atT*, and the peak of the specific, which is entirely due broad. The low-temperature behavior of the specific heat is
to the analytic part of the free energy, is significantly below thegiven by
transition.

0.5

B. Free energy and specific heat C (T* In2
B

2
= )e(T*’T)'”Z, T—0. (1D

The exact free energy of the six-vertex model was ob- Nk
tained by Lieb'® and it is quite remarkable. If we denote the
free energy density in region Il bi;, (T>T,), then its ana-
lytic continuation to T<T. is complex, equal tof, (T C. Floating power-law phase
<T.)+ifgng The singular part of the free energy has only

ing: . R How does the coupling between the two-dimensional
an essential singularity at=T., which is given by Ping

CuO planes change the behavior of the system? Since the
s low-temperature phase is ordered with a finite correlation
fsing™ & (10 length, a small coupling between the planes will in general
L ._have a small effect, except close to the critical region where
In fact, all temperature derivatives of the free energy exisihg cqrrelation length diverges and a crossover to three di-
and are identical on both sides of the transition. Anmansions should take place. This can be checked explicitly
asymptotic expansion &, which is the same above and o a mean field analysis. The coupling between the planes
below the transition, was given in Ref. 11. due to the orbital currents is indeed very small, as the mag-
The essential singularity implies that there are no observpqtic field at the center of a plaquette generated by the cir-
able specific-heat anomalies, as any derivative of the frégaing currents can be estimated to be of order 10 G from
energy vanishes at this infinite order transition. The situation,q magnitude of the pseudogaphere is some experimen-

is exactly the same as that of the Kosterlitz-Thouless phasg,| sypport to this fact,as the correlation length in the per-
transition of the two-dimension{Y model. The transition pendicular direction does not extend much beyond a unit

of the six-vertex model is inverted, however, as the low-.q
temperature phase has a finite correlation length, while the |, contrast, the effect of three-dimensioriaD) coupling
the high-temperature phase is a power-law phase with a cofj; the high-temperature power-law phase is much more in-
tinuously varying cri.tical exponent. The an_alytic part of theteresting. In principle, the 2D power-law phase can be de-
free energy results in a broad heat capacity peak above thgroyed by an arbitrarily weak coupling between the planes.
transitiort* for the XY model, but below the transition in the o vever. because of the miniscule coupling between the
six-vertex model. _ _ planes due to an estimated 10-G magnetic field of a
The specific heat of the six-vertex model was also dispaquetté? the crossover to 3D order is likely to take place at
cussed in Ref. 11, but it is |Ilym|nat|ng to plot it hgre. In Fig. very long length scales. Thus this is effectively a floating
5, we showC/Nkg, whereN is the number of vertices, as a phase in which the system behaves as a stack of decoupled
function of T/T*, where we have seh=b. There is N0 2p power-law phases. The argument, in principle, is the
o.b_servable. anomaly &t* despite the thermodynamic tran- sgme as that of Josephson coupled 2D systems in a di-
sition at this temperature to the ordered DDW phase. Non€raction perpendicular to the planEsalthough the details are
theless, since this is an order-disorder transition, the highgifferent.
temperature entropy must disappearfas0. At T==, a Consider the current-current coupling of a given lager
=b=c=1, and the entropy is that of square ice, which wasyjth a neighboring layer (+1), in the continuum limit,
calculated by Lielf to be S=(3kg/2)In . The system loses which is
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d2r the free energy to remain invariant, it follows that
Hc[n]:gj —zjn(r)-jnﬂ(r), (12 —\27%g; note thatd=2. Therefore, afT=T*, where x
S =1, the 3D coupling is strongly relevant. As the tempera-

wheres is a short distance cutoff of the order of the lattice {Uré T—2, the unfiorm exponentx=2) takes over ang
spacing. It is sufficient to consider the coupling between th€Comes marginal.

nearest-neighbor planes for our purposes. We wish to deter-

mine the relevancy of the couplingg under the ll. QUANTUM VERTEX MODEL

renormalization-group transformation. Let It is interesting to ask what a quantum generalization of

1 this model could be. At the very least, we must allow the
() - ina2(Din(0) jns1(0))~ — (13 bond currents to flip as a result of quantum fluctuations. The
" " " 3 r2x most local move is to flip the currents around an elementary

) . . . plaguette of the square lattice. But it is easy to see that such
where the average is taken with respect to the fixed-poing hrocess can create sources and sinks, if we do not impose

Hamiltonians of the uncoupled planes. Since every point inyny constraints. From a path integral description, the con-

the power-law phase corresponds to a fixed point with & Configyration at an intermediatémaginary time slice may con-
tinuously varying critical exponent, we merely need to detery,in 5 source or a sink even though the states at the initial and
mine the critical exponentof the current-current correlation e final time slices at 0 and do not.

function. . ) | start by considering the eight-vertex model written in
The exponent of the arrow-arrow correlation function of orms of Ising spin variables, and then incorporate quantum

the six-vertex modefor the current-current correlation func- echanics by introducing a transverse field on a dual lattice
tion in the present problemin the power-law phase can be gjie The advantage is that the description is in terms of the
obtained from the exponent of the eight-vertex model alongmiliar Ising basi€® One must then explicitly introduce

the critical line, which in turn can be obtained from 8eS;,  ojection operators to eliminate the unwanted sources and
correlation function of the 1D quantusXZ Hamiltonian.  gjks.

The correspondence can also be seen by considering the The eight-vertex modehllowing only an even number of
Trotter-Suzuki decomposition of the 1RXZ Hamiltonian,  grrows into and out of each Sitean be written as two
in which the arrow correlations along a row of the six-vertexcoypled Ising models on interpenetrating square lattices with
model_(or along a colum)wcor(eqund to gorrelatlons a!ong an additional four spin coupling, as is well kno#i? The
the diagonal of the space-imaginary time latfifeThis  gpins are situated on a dual lattice consisting of the sites at
subtlety is of no consequence, as we are interested in th@e center of the plaquettes of the original square lattice of
exponent along a critical line at which the correlation lengthyong currents. An arrow to the righir upward represents
is infinite. . ~adjacent parallel spins; similarly, an arrow to the l&t
The S,-S, correlation has a staggered part and a uniformyownward corresponds to adjacent antiparallel spins. The
part. The exponent f_or the uniform part is 2, independent Ofnapping is shown explicitly in Figs. 6 and 7. The additional
the temperature, whsnl% the exponent of the staggered part {grtices shown in Fig. 7 are assigned energigs £g, and
given by 18, wheré* the number of such vertices must satisfy=ng=ny. We
shall denote these vertices as of typddowever, ultimately,
9=1— ﬁ. (14y ~ We must impose an additional constraint on the Hamiltonian
in which the vertex configurations shown in Fig. 7 are re-
moved from the Hilbert space of states.

Assuming a tetragonal symmetra<b), Quantum fluctuations are incorporated by a transverse

1 T+ field h. The resulting model, the quantum six-vertex model,
=_el2n2)4_ is then defined by the partition function
cosu 2e T—1. (15 y p
Zo=Tre APHP (16)

Therefore, the exponent dAaries monotonically from 1 at
T=T* to 3 atT=<. The exponent of the uniform part fol- \where the Hamiltoniam is given by

lows from a local conservation law combined with the con-

formal invariance in two dimensiort8.Clearly, the slowest « . , ,

decay will determine the 3D crossover. At, it is deter- H=—h2k O'j,k_zk (o k01 11T 0741107 1)

mined by the staggered part since its exponent is less than . .

the exponent of the the uniform part. As the temperature , , , ,

increases, the exponent of the staggered part increase and —J 2; O kOj+1k+19 )+ 1k k+1- (17)
crosses the uniform exponent. We therefore define the expo- .

nentx to be either the exponent of the uniform part, or that of The operatorg™ and¢* are the standard Pauli matrices, and
the staggered part of the current-current correlation functionP?= P is the projection operator that projects out the sources
whichever is smaller. Under a renormalization group transand sinks. It is easy to check that a single spin flip at a dual
formation, for whichs—\s, wherex>1 is a scale factor, lattice site flips the bond currents on the surrounding
Pn(r)  ine1(r)=N5a(r) -jne1(r) from Eqg. (13). Thus, for  plaquette, which causes transitions between the vertices on
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+ A + + v -
» » < Y o -( _
+ A + - Y + < » ——f
) ) I '
+ YA+ — -YA -
|
Yy - S > I < —>
> > < < ke
Ly . + Y - A -
3) (4)

FIG. 8. The flip of the central spin from-— — flips the sur-
+ A + + v - rounding bound currents around the plaquette. The flipped currents
are denoted by dashed arrows.

Y
A
A
Y

rection 7 between 0 angB, with a periodic boundary condi-
tion. The constraint can be enforced by including a delta
(5) (6) functional 5[ V -j(x, 7) ] at each space-time point. In the clas-
sical limit, we are left with a single time slice, because quan-
FIG. 6. The mapping of the first six vertices to equivalent spinstum spin flips due to the transverse field are punished. The
on the dual lattice. partition function is now a sum over all spin configurations
o ] ~ subject to the condition that there are no sources or sinks. Of
the four corners, as shown in Fig. 8. The previously define¢qyrse, at any finite temperature, the effective parameters of
vertex weightsa, b, andc are given by the model will be renormalized by quantum fluctuations at
short distances, but that cannot change the universality class

a=el I, (18 of the finite-temperature phase transition.
CayeyT At T=0, the model is somewhat complex because of the
b=e ; (19 projection operators. At=0, the ground state is the ordered
o DDW state with no quantum fluctuations, if the vertices
c=elT I, (20) have the lowest possible energy. As the transverse field
; ; increases from zero, quantum fluctuations increase and
The vertex weightl is nucleate PDW vertices. It is not clear what the ultimate fate
d=eld—3 -3 1) of the system is. There are four distinct possibiliti€s: a

quantum phase transition to a gapped quantum disordered

o state, which | find unlikely because of the constraints. If this
temperature phase transition is unchanged because there #€he case, the constraints have to be somehow irrele@nt,

no quantum-mechar_]ical spin flips. Sin_ce the trace s a SUM transition to a PDW state, which | also find unlikely be-
over states from which sources apd sinks are projected OUWause there are no flippable plaguettes, and hence the state is
the model is clearly the classical six-vertex model—the nUM<istavored from kinetic-energy consideratior®) A transi-

ber of vertices of ty_pej, _nd=0. We can arrive at the SaAME tionto a power-law phase since a local deformation may not
conclusion by considering an imaginary-time path integraly, ahie to heal sufficiently fast4) There is also a remote

from a Trotter decomposition along the imaginary-time di- oty that the system does not lose its DDW order. In

any case, the model is sufficiently complex that at present |
cannot provide a quantitative analysis. It is probably best

The classical statistical mechanics that controls the finite

+ v - + A + studied by quantum Monte Carlo methods involving loop
algorithms?*
> < < > | shall assume that it is the third possibility discussed

above that is realized. If this is correct, such a quantum criti-
+ A+ - Yy + cal point is unusual from the conventional perspectr/€o
(7) @) illustrate this point, cons_ider a phase diagra}m in which a
system undergoes a continuous phase transition as a function
FIG. 7. The mapping of the vertices involving sinks and sourcesf tuning parameters, temperatufeand a couplingh such
to spins on the dual lattice. as the transverse field. This is shown in Fig. 9, where the
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T tirely eliminated the quantum fluctuations, which are, strictly
speaking, cut off by the thermal length, while the classical
power-law correlations have no such long-distance cutoff.
Within the ordered phase, there is a classical critical region,
but otherwise the ordered phase is under the influence of the
broken symmetry fixed point. Of course, we are assuming
that the magnitude of the order parameter can be assumed to
be fixed. If not, there will be a further transition at a higher
temperature where its magnitude collapses. The region above
this transition can now be influenced by the quantum critical
point. Nonetheless, there may be a sizable region of the
phase diagram in which the classical power-law phase domi-
nates.

~ Disordered

IV. RELATION TO THE QUANTUM DIMER MODEL

h As remarked upon in Sec. |, there are some similarities
with the RVB ideas, particularly with the recent develop-
FIG. 9. Conventional phase diagram in which a finite temperaments involving quantum dimer modété® but the distinc-
ture phase transition exists—the solid curve. The shaded region Bons are equally important. At high temperatures, the quan-
the domain of classical critical fluctuations. The influence of thetum dimer model on a square lattice maps on to the classical
quantum critical pointi;, atT=0, has to lie outside this domain. dimer model with power-law correlatiod$,which is ac
=1 (conformal chargetheory, equivalent to two massless
shaded region is the domain of classical critical fluctuationdMajorana fermions. It is also the fully frustrated Ising model
extending all the way to zero energy. Any influence of theat T=0.
guantum critical point ah. has to be outside this domain.  This critical phase arises from the Rokhsar-Kivelson
Thus we may argue that, on some scale, the disordered phagaantum critical point:?® Instead, in the present case, the
at a finite temperature could be influenced by the quantunguantum vertex model maps on to the classical six-vertex
critical point. model, which undergoes a phase transition with an essential
The phase diagram shown in Fig. 10, pertinent to oursingularity from an ordered region IV to the power-law re-
present problem, is strikingly different. Here the existence ofgion IIl. But this power-law phase does not stem from a
a classical power-law phase of the six-vertex model has erguantum critical point, instead the entire region is situated on
the critical line of the classical 8-vertex model.
T A recent thrust in quantum dimer models focused on the
existence of a spin liquid phase, which is made plausible by
the fact that the classical dimer model on a triangular lattice

: is noncritical, with exponentially decaying dimer
Disordered correlations Thus the ground state of the triangular case has
T classical power-law phase no gapless collective excitations, only deconfined, gapped
C

spinons for a finite range of parameters. In contrast, we have
focused on the existence of a power-law phase above the
DDW phase and the nonexistence of the specific-heat
anomaly at the transition. We have also argued that it is also
possible to have a quantum phase transition in the ground
state, which is induced by a sufficiently large transverse field

mimicking the actual pseudogap transition in the ground-

state. There are also interesting resemblances of our work
with the quantum and sliding ice pictures of Ref. 26.

V. VERTEX MODELS ON A TRIANGULAR LATTICE

c h Vertex models may be useful in other contexts. For ex-
FIG. 10. The phase diagram in which the entire finite- @MPle, consider the ideas that were put forward recently re-
temperature disordered phase is a classical power-law phase—t§&rding the metal-insulator transition in two-dimensional
shaded region. The dashed curve is the crossover scale for the cl&€ctron systems in which the transition is identified as a
sical critical fluctuations within the ordered phase. The quanturfluantum phase transition in a disordered Wigner crystal
critical regime is entirely eliminated, except preciselfTat0. The  state?®®° The chain of reasoning is as follows: extensive
ordered regime is under the influence of the stable broken symmetgalculations of multiparticle exchange Hamiltonians in
fixed point. pure®~3and disordered Wigner crystilsuggest that there
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which, in the conventional picture, is an ordered state with at
most small zero-point oscillations of an electron about a lat-
tice site; see, however, Refs. 29 and 30.

/\ VI. CONCLUSIONS

| have argued that the natural generalization of the
(1) 2) _Hartreje-Fock model of the DDW are certain vertex mo_d_els
involving bond currents. The finite-temperature transition
from the ordered DDW phase to the disordered phase be-
longs to the universality class of the six-vertex model and is
striking because of the absence of any observable specific-
heat anomalies. | have also shown that the disordered phase
is a power-law phase of the bond current correlations. These
power-law correlations do not arise from any quantum criti-
cal point, but this entire phase is poised on the critical line of
another hidden model, the eight-vertex model. The origin of
the power-law correlations is the constraints that the configu-

(3) (3) rations of the six-vertex model must satisfy. Thus a local
deformation cannot heal within a finite correlation length. In
FIG. 11. Examples of three types of allowed vertices. this respect, there is a strong Slmllarlty with the RVB dimer

models on a square lattice, where the constraints in the dimer

exist ground states with well-defined bond currents. Thesenodel are once again responsible for the high-temperature
bond currents can be represented by vertex models on a tgpower-law correlations.
angular lattice. It is notable that recent studies revealed that a It is important to note that the mere knowledge of the
metal-insulator transition could occur in such models. A pro-nature of the order parameter does not necessarily determine
typical example is provided by a two-dimensional tight- the universality class of the phase transition. For this, it is
binding Hamiltonian in a random magnetic field and on-sitealso necessary to know the nature of the possible excitations
disorder>®1t is in this context that it is useful to consider a that can be thermally populated. Thus labeling the DDW
vertex model of bond currents on a triangular lattice andransition as an Ising transition is an oversimplified view.
study its quantum dynamics. Although, even in the classical | was also able to construct a quantum generalization in-
limit, such models are unsolved in genefaf***some exact volving a eight-vertex model in a transverse field, but with
results, known for certain special cases, are sufficiently enprojection operators that ultimately project out the sources
couraging and similar to the six-vertex model to pursueand the sinks of the eight-vertex model. The model is suffi-
further. ciently complex to present any in-depth discussion at this

If we restrict ourselves to three incoming currents andtime, but it is not difficult to motivate a quantum phase tran-
three outgoing currents at a site of a triangular lattice, thissition as a function of the transverse field. Nonetheless, it is
generates a 6!/3!34 20 vertex model. If the vertices which remarkable that the effect of the quantum critical point is
differ only by rotation and reflection are treated alike, theycompletely swamped by the classical power-law correlations
may be classified as followsi) six vertices in which the at any finite temperature. This is a strict departure from the
incoming arrows are adjacerti) two vertices in which the conventional theory of quantum critical poffit.
incoming and the outgoing arrows alternate round the vertex, | have also speculated on the possible application of a
and(iii) 12 vertices containing two incoming arrows directly similar vertex model to the Wigner crystal, and its implica-
opposite each other. Examples are shown in Fig. 11. tions to the metal-insulator transition in the two-dimensional

Unlike the eight-vertex or six-vertex model on a squareelectron systems. Similarly, a zoo of density wave thebries
lattice, the solution to the 20-vertex model is not known incan be usefully formulated in terms of vertex models open-
general. It is only solved for certain values of the vertexing up a whole class of questions in the theory of quantum
configuration probabilities. As with the six-vertex model, this statistical mechanics. Some of these would correspond to
model undergoes a phase transition to a power-law orderemodulations of the bond kinetic energ¥ In fact, it is quite
phase, with an essential singularity in the free energy, frompossible that certain regions of the cuprate phase diagram are
an ordered state with finite correlation length in which thedescribed by these modeiSput the aim here was to con-
arrows alternate along a row. Since the exact solution is nagider only those models that are natural generalizations of the
known in general, it would be extremely useful explore thisproposed DDW state.
model numerically? The present analysis is incomplete in one important re-

The quantum dynamics of this model can once again bspect. | have been unable to make firm statements regarding
implemented by going over to a Ising spin model on the duathe quasiparticle excitations and doping in the present model,
lattice with a transverse field at a site. It would be interestingalthough it is clear that power-law bond current correlations
to explore this model, which could provide us with an inter-in the disordered phase probably leads to a non-Fermi-liquid
esting perspective on the old problem of a Wigner crystalpehavior of the electronic excitations. Since we have consid-
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ered models of the spin-singlet variety, there cannot be anyerse field, as discussed above, but without any complica-
spin-charge separation by definition. The non-Fermi-liquidtions of the projection operators.
behavior must then be akin to that of the spinless Luttinger
model in one dimension. One should note that a rigorous
description of electronic excitations are also unavailable for
the RVB quantum dimer model. This work was supported by a grant from the National
In the future, it may also be interesting to allow for Science Foundation: NSF-DMR-9971138. | thank E. Demler,
sources and sinks, as they may represent an effective meahsFjaerestad, C. L. Henley, J. P. Hu, H. -Y. Kee, J. B. Mar-
of incorporating decay of collective excitations involving the ston, C. Nayak, C. Panagopoulos, S. Sachdev, S. L. Sondhi,
order parameter into low-lying nodal quasiparticles in theand S. Tewari for many interesting comments. | am espe-
actual physical systerf. From this perspective, the correct cially grateful to S. Kivelson for his insightful comments on
guantum model is actually an eight-vertex model in a transall aspects of this work.
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