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Theory of the d-density wave from a vertex model and its implications

Sudip Chakravarty*
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~Received 18 June 2002; published 12 December 2002!

The thermal disordering of thed-density wave, proposed to be the origin of the pseudogap state of high-
temperature superconductors, is suggested to be the same as that of the statistical mechanical model known as
the six-vertex model. The low-temperature phase consists of a staggered order parameter of circulating cur-
rents, while the disordered high-temperature phase is a power-law phase with no order. A special feature of this
transition is the complete lack of an observable specific heat anomaly at the transition. There is also a transition
at a even higher temperature at which the magnitude of the order parameter collapses. These results are due to
classical thermal fluctuations and are entirely unrelated to a quantum critical point in the ground state. The
quantum-mechanical ground state can be explored by incorporating processes that causes transitions between
the vertices, allowing us to discuss the quantum phase transition in the ground state as well as the effect of
quantum criticality at a finite temperature as distinct from the power-law fluctuations in the classical regime. A
generalization of the model on a triangular lattice that leads to a 20-vertex model may shed light on the Wigner
glass picture of the metal-insulator transition in a two-dimensional electron gas. The power-law ordered
high-temperature phase may be generic to a class of constrained systems, and its relation to recent advances in
the quantum dimer models is noted.

DOI: 10.1103/PhysRevB.66.224505 PACS number~s!: 74.20.2z, 71.10.Hf, 74.25.Dw, 74.10.1v
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I. INTRODUCTION

A motivating factor for the present paper is the spec
suggestion that a broken symmetry can explain
pseudogap phase of high-temperature superconducto1,2

The corresponding order is a particle-hole condensate
‘‘angular momentum’’ 2, termed thed-density wave
~DDW!.3 There is some telltale evidence of this unusual
der parameter4 involving circulating orbital currents arrange
in a staggered pattern, which is directly detected as a Br
scattering signal in neutron measurements. The second
tivating factor is to place this proposal in a wider context
many-body theory, where a strongly correlated electro
system can have unconventional broken symmetries in
ground state. In this respect, I shall briefly touch upon
topic of two-dimensional electron gas in Si-MOSFE
devices.5

The building blocks of the low-energy theory correspon
ing to DDW are bond currents whose arrangements de
the various order parameters that reflect particle-h
condensates.6 The idea is clearly similar to resonating v
lence bonds~RVB’s!,7 where the building blocks are valenc
bonds that can be described in terms of particle-particle c
densates. These may order in the ground state, or they
not, in which case one has a spin liquid.8 In either case,
strong correlation effects are believed to play an import
role. The parallel goes further: while a tractable RVB Ham
tonian is the quantum dimer model,9 a tractable model for
bond currents will be seen to be a vertex model known
statistical mechanics and its suitable quantum generaliza

The actual statistical mechanics of the DDW transition
richer than the mean-field~Hartree-Fock! picture, in which
the ordered pattern is frozen, until the magnitude of the
culating currents vanishes, which is the simplest possible
scription of the broken symmetry phase. While this is re
sonable deep in the ordered state, it does not allow
0163-1829/2002/66~22!/224505~9!/$20.00 66 2245
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fluctuations of the order parameter.
A natural modification that I shall describe, involving th

six-vertex model,10,11 leads to striking consequences for th
pseudogap phase:~1! As the d-density wave disorders with
increasing temperature, the system exits to a power-
phase that is not due to any underlying quantum criti
points.~2! The pseudogap transition does not have any s
cific heat anomaly.12 ~3! Because of the power-law nature o
the orbital current correlations of the disordered state, i
likely that the electron spectral function exhibits a cut sp
trum, unlike a Fermi liquid.~4! As the temperature is raised
a second transition takes place at a higher temperature, w
the local amplitude of the pseudogap vanishes. It is unus
but true, that the two-dimensional classical statistical m
chanics of the pseudogap state viewed as a DDW allows
a power-law phase with an infinite correlation length in t
high-temperature regime, while the low-temperature phas
ordered with a finite correlation length.

The outline of the paper is as follows. In Sec. II, I intro
duce and discuss the six-vertex model for the pseudo
phase, and, in Sec. III, I discuss its quantum generalizat
Section IV is a brief analysis of the relation with the qua
tum dimer model. In Sec. V, I introduce the 20-vertex mod
on a triangular lattice and discuss its relevance to the Wig
glass picture of the in metal-insulator transition. Finally, t
conclusions are summarized in Sec. VI.

II. SIX-VERTEX MODEL FOR THE PSEUDOGAP PHASE

The ordered singlet DDW state consists of a stagge
circulating pattern of currents flowing on the square pla
CuO lattice, as shown in Fig. 1. The configuration is a res
of juxtaposing two sets of vertices, shown in Fig. 2, cente
on the Cu atoms in a current-conserving manner. There
only two possible choices, resulting in two distinct brok
©2002 The American Physical Society05-1
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symmetry states, which are related by time reversal an
lattice translation.

More mathematically, the order parameterFQ is given by

^cs†~k1Q,t !cr~k,t !&5 i
FQ

2
~coskx2cosky!dr

s , ~1!

where s and r are the spin indices, andQ5(p,p). The
lattice constant has been set to unity, and the operatorcr is
the electron destruction operator. The order paramete
called a density wave because it is a particle-hole cond
sate, even though what is actually modulated is current,
density. The order parameterFQ is a spin singlet; there is
also a triplet version in which it is the spin current that
modulated.6 The order parameter is called ad wave because
of the internal form factor of the particle and the hole, whi
is (coskx2cosky). Of course, on a crystalline lattice, angul
momentum is not a good quantum number. This is the clo
we can come to the angular momentum 2 of adx22y2 wave
function in free space. Note that for particle-hole conde
sates there are no exchange requirements governing o
parameter symmetries that enslave the orbital wave func
to the spin wave function, in contrast to superconductiv
where the condensate is of particle-particle type. Thus,
can have a DDW that is either a spin singlet, or a spin trip

In a mean field~Hartree-Fock! picture, the only way the
state can disorder is by the thermal collapse of the magni

FIG. 1. A segment of the circulating current pattern in the DD
ordered state.

FIG. 2. Vertices 5 and 6.
22450
a

is
n-
ot

st

-
der
n

y
e

t.

de

of the order parameter, which is a highly restrictive mech
nism because it does not allow for fluctuations. The syst
may disorder long before the magnitude of the order para
eter collapses. To build fluctuation effects, we consider
basic building blocks that are bond currents between
nearest neighbor sitesx andy5x6 x̂, or y5x6 ŷ, defined by

j x,y52 i eFQ^cx
†cy2H. c.&, ~2!

wheree561 determines the direction of the current flow
The status of the bond currents is identical to the local or
parameter in the Ginzburg-Landau-Wilson formalism,
which the partition function is a sum over all complexions
the order parameter weighted by the effective coarse-gra
action. To include quantum fluctuations, one must supp
ment the theory with a suitable dynamics, which I shall d
cuss in Sec. II A.

I shall assume that there is a regime of coupling cons
and temperature such that the bond current order is well
veloped, and the fluctuations of the magnitudes of the b
currents can be neglected. If this is the case, there shoul
a second transition at which the magnitude of the bond c
rent itself vanishes. This would imply a second pseudog
transition at a higher temperature. The existence o
specific-heat anomaly at this upper pseudogap transitio
not entirely clear, as it will be seen to be a transition from
power-law ordered phase. However, in any case, the t
perature may be too large to extract it from the large phon
or other backgrounds. I shall therefore ignore this transit
altogether.

It is easy to convince oneself that low-lying thermal
quantum fluctuations can be expected to reverse a se
bond currents~without changing their magnitudes! provided
no sources or sinks are generated, that is,“• j50. Given that
there are two incoming and two outgoing currents at a ver
of a square lattice, there are altogether 4!/2!2!56 possible
vertices. Thus there are four additional allowed vertices,
yond the two shown in Fig. 2. These are shown below in F
3. In general, each of the six local arrangements can ha
distinct energy« i , but if we impose the restriction that ther
are no net external currents, then

«15«2 , «35«4 , «55«6 . ~3!

The model is then unchanged by reversing all the arrows.
tetragonal symmetry, there are only two independent ene
scales«1 and«5, because«15«3, but for generality we shall
assume that they are distinct.

From a Hartree-Fock analysis,6 it can be argued that«1
and «5 are close in energy. This is because vertices 1
correspond to (px1py)-density wave~PDW! states in the
order parameter language, and the energetics of both the
glet p-density wave and the DDW are controlled by sm
pair-hopping matrix elements, smaller than the scale of
antiferromagnetic exchange constantJ. A singlet px-density
wave state has the ordering

^cs†~k1Q8,t !cr~k,t !&5FQ8
8 sinkxdr

s , ~4!
5-2
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where Q85(0,p). Note that in this caseFQ8
8 is real, but

because of the form factor sinkx , a Fourier transform to the
real space brings out the pattern of currents shown in vert
in Fig. 3, when it is superposed with the correspond
py-density wave. The order parameterFQ8

8 is the closest ana
log on a lattice of angular momentum 1, thepx wave func-
tion in free space. Note, as before, that it is the current tha
modulated, not the density.

I shall first consider thermal fluctuations and take in
account quantum fluctuations in the following section. A b
sic assumption I shall make is that the energy of a given s
is a simple sum of energies associated with the configura
at each vertex. This is a reasonable assumption because
long-ranged interaction between the vertices are unlikely
the thermal smearing will cause any interactions mediated
the nodal quasiparticles to be exponentially decaying. F
lowing the conventional notation, I shall define

a5v15v2 , b5v35v4 , c5v55v6 , ~5!

where the Boltzmann factors are defined byv i5e2« i /T,
where the Boltzmann constantkB is set to unity. The parti-
tion function is

Z5( an11n2bn31n4cn51n6, ~6!

wherenk is the number of vertices of typek. The sum is over
all arrangements that fit together continuously without g
erating sources and sinks. The partition function is precis
the partition of the six-vertex model for which many exa
results are known.10,11

A. Phase diagram

The phase diagram is shown in Fig. 4. Regions I and
have orbital ferromagnetic order due to macroscopic curre

FIG. 3. Vertices 1, 2, 3, and 4.
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and correspond toa.b1c and b.a1c, respectively. Re-
gion III is disordered, corresponding toa,b,c, 1

2 (a1b
1c), but the current-current correlation function exhibits
power law. It includes the infinite-temperature casea5b
5c51. This entire high-temperature region is on the t
critical line of the eight-vertex model.10,11 Region IV is the
DDW phase, which is an orbital antiferromagnet and cor
sponds toc.a1b. The phase boundary between regions
and IV is given byb/c52(a/c)11, or c5a1b, which
implicitly defines the transition temperatureTc .

Consider a given set values ofa, b, andc. As the tempera-
ture increases from 0 tò , this point follows a path always
ending at (1,1). This path may or not cross a phase bou
ary. The path followed in the phase diagram whena5b is
shown as an arrow. On this path, atTc5T* , there is a phase
transition from the ordered DDW phase to the disorde
high temperature phase with a power-law correlation in
current-current correlation function. The temperatureT* is
given by

T* 5
«12«5

ln 2
, ~7!

determining, phenomenologically, the energy differenceD«
5«12«5.

In region IV, the correlation lengthj is10,13

j52 lnF2x1/2)
m51

` S 11x4m

11x4m22D G , ~8!

wherex5e2l and2coshl5(a21b22c2)/2ab. As T→Tc
2 ,

l}(Tc2T)1/2, and it can be seen by applying Poisson su
mation formula that

j2158e2p2/2l, l→0. ~9!

FIG. 4. The phase diagram. Regions I and II are orbital fer
magnets~OF!. Region III is the power-law phase and region IV
the orbital antiferromagnet with DDW order. The arrow marks
path ~tetragonal symmetry assumed! from the low-temperature
phase to the high-temperature phase, with the pseudogap tran
at Tc5T* .
5-3



ob
e

ly

is
An
d

r
fre
io
a

w
th

co
he

t
e

is
g.
a

-
n
ig

a

efi-

tis-
ply
side
m is
ls.
the

rder
we
si-

is-
the

The
the
very
t is

nal
the

ion
ral
ere
di-
itly
nes
ag-
cir-
om
-
r-
nit

in-
de-
es.
the

a
at
ng
pled

the

o
th

ue
he

SUDIP CHAKRAVARTY PHYSICAL REVIEW B 66, 224505 ~2002!
B. Free energy and specific heat

The exact free energy of the six-vertex model was
tained by Lieb,15 and it is quite remarkable. If we denote th
free energy density in region III byf III (T.Tc), then its ana-
lytic continuation to T,Tc is complex, equal tof IV(T
,Tc)1 i f sing. The singular part of the free energy has on
an essential singularity atT5Tc , which is given by

f sing}j22. ~10!

In fact, all temperature derivatives of the free energy ex
and are identical on both sides of the transition.
asymptotic expansion atTc , which is the same above an
below the transition, was given in Ref. 11.

The essential singularity implies that there are no obse
able specific-heat anomalies, as any derivative of the
energy vanishes at this infinite order transition. The situat
is exactly the same as that of the Kosterlitz-Thouless ph
transition of the two-dimensionalXY model. The transition
of the six-vertex model is inverted, however, as the lo
temperature phase has a finite correlation length, while
the high-temperature phase is a power-law phase with a
tinuously varying critical exponent. The analytic part of t
free energy results in a broad heat capacity peak above
transition14 for theXY model, but below the transition in th
six-vertex model.

The specific heat of the six-vertex model was also d
cussed in Ref. 11, but it is illuminating to plot it here. In Fi
5, we showC/NkB , whereN is the number of vertices, as
function of T/T* , where we have seta5b. There is no
observable anomaly atT* despite the thermodynamic tran
sition at this temperature to the ordered DDW phase. No
theless, since this is an order-disorder transition, the h
temperature entropy must disappear asT→0. At T5`, a
5b5c51, and the entropy is that of square ice, which w

calculated by Lieb16 to beS5(3kB/2)ln 4
3. The system loses

FIG. 5. The specific heat of the six-vertex model as a function
T/T* for a5b. Note that there are no observable anomalies at
transition atT* , and the peak of the specific, which is entirely d
to the analytic part of the free energy, is significantly below t
transition.
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this entropy by a specific-heat hump clustered around a d
nite temperature, which is significantly belowT* . The spe-
cific heat per vertex is also a universal function ofT/T* .
That it vanishes at high tempeartures—true for many sta
tical mechanical models such as the Ising model—sim
reflects the bounded energy spectrum on the high-energy
and must not be taken seriously. The high energy spectru
not modeled correctly by such low-energy effective mode
As a result of the boundedness of the energy spectrum,
entire passage from complete order to complete diso
takes place over a limited range of temperature. However,
should probably take seriously the fact that the DDW tran
tion results in a specific heat of order;0.5kB per vertex
considerably below the DDW transition, and may be m
taken as the pretransitional effect as the system enters
superconducting state from the pseudogap phase.
specific-heat peaks at the superconducting transition in
underdoped regime indeed appear to be anomalous and
broad. The low-temperature behavior of the specific hea
given by

C

NkB
52S T* ln 2

T D 2

e2(T* /T)ln 2, T→0. ~11!

C. Floating power-law phase

How does the coupling between the two-dimensio
CuO planes change the behavior of the system? Since
low-temperature phase is ordered with a finite correlat
length, a small coupling between the planes will in gene
have a small effect, except close to the critical region wh
the correlation length diverges and a crossover to three
mensions should take place. This can be checked explic
from a mean field analysis. The coupling between the pla
due to the orbital currents is indeed very small, as the m
netic field at the center of a plaquette generated by the
culating currents can be estimated to be of order 10 G fr
the magnitude of the pseudogap.2 There is some experimen
tal support to this fact,4 as the correlation length in the pe
pendicular direction does not extend much beyond a u
cell.

In contrast, the effect of three-dimensional~3D! coupling
in the high-temperature power-law phase is much more
teresting. In principle, the 2D power-law phase can be
stroyed by an arbitrarily weak coupling between the plan
However, because of the miniscule coupling between
planes due to an estimated 10-G magnetic field of
plaquette,2 the crossover to 3D order is likely to take place
very long length scales. Thus this is effectively a floati
phase in which the system behaves as a stack of decou
2D power-law phases. The argument, in principle, is
same as that of Josephson coupled 2DXY systems in a di-
rection perpendicular to the planes,17 although the details are
different.

Consider the current-current coupling of a given layern,
with a neighboring layer (n11), in the continuum limit,
which is

f
e

5-4
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Hc@n#5gE d2r

s2
jn~r !• jn11~r !, ~12!

wheres is a short distance cutoff of the order of the latti
spacing. It is sufficient to consider the coupling between
nearest-neighbor planes for our purposes. We wish to de
mine the relevancy of the couplingg under the
renormalization-group transformation. Let

^ jn~r !• jn11~r !jn~0!• jn11~0!&;
1

r 2x
, ~13!

where the average is taken with respect to the fixed-p
Hamiltonians of the uncoupled planes. Since every poin
the power-law phase corresponds to a fixed point with a c
tinuously varying critical exponent, we merely need to det
mine the critical exponentx of the current-current correlatio
function.

The exponent of the arrow-arrow correlation function
the six-vertex model~or the current-current correlation func
tion in the present problem! in the power-law phase can b
obtained from the exponent of the eight-vertex model alo
the critical line, which in turn can be obtained from theSz-Sz
correlation function of the 1D quantumXXZ Hamiltonian.
The correspondence can also be seen by considering
Trotter-Suzuki decomposition of the 1DXXZ Hamiltonian,
in which the arrow correlations along a row of the six-vert
model ~or along a column! correspond to correlations alon
the diagonal of the space-imaginary time lattice.18 This
subtlety is of no consequence, as we are interested in
exponent along a critical line at which the correlation leng
is infinite.

The Sz-Sz correlation has a staggered part and a unifo
part. The exponent for the uniform part is 2, independen
the temperature, while the exponent of the staggered pa
given by 1/u, where13,19

u512
m

p
. ~14!

Assuming a tetragonal symmetry (a5b),

cosm5
1

2
e(2 ln 2)

T*
T 21. ~15!

Therefore, the exponent 1/u varies monotonically from 1 a
T5T* to 3 atT5`. The exponent of the uniform part fol
lows from a local conservation law combined with the co
formal invariance in two dimensions.20 Clearly, the slowest
decay will determine the 3D crossover. AtT* , it is deter-
mined by the staggered part since its exponent is less
the exponent of the the uniform part. As the temperat
increases, the exponent of the staggered part increase
crosses the uniform exponent. We therefore define the e
nentx to be either the exponent of the uniform part, or that
the staggered part of the current-current correlation funct
whichever is smaller. Under a renormalization group tra
formation, for whichs→ls, wherel.1 is a scale factor,
jn(r )• jn11(r )→lxjn(r )• jn11(r ) from Eq. ~13!. Thus, for
22450
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the free energy to remain invariant, it follows thatg
→l22xg; note thatd52. Therefore, atT5T* , where x
51, the 3D couplingg is strongly relevant. As the tempera
ture T→`, the unfiorm exponent (x52) takes over andg
becomes marginal.

III. QUANTUM VERTEX MODEL

It is interesting to ask what a quantum generalization
this model could be. At the very least, we must allow t
bond currents to flip as a result of quantum fluctuations. T
most local move is to flip the currents around an element
plaquette of the square lattice. But it is easy to see that s
a process can create sources and sinks, if we do not im
any constraints. From a path integral description, the c
figuration at an intermediate~imaginary! time slice may con-
tain a source or a sink even though the states at the initial
the final time slices at 0 andb do not.

I start by considering the eight-vertex model written
terms of Ising spin variables, and then incorporate quan
mechanics by introducing a transverse field on a dual lat
site. The advantage is that the description is in terms of
familiar Ising basis.21 One must then explicitly introduce
projection operators to eliminate the unwanted sources
sinks.

The eight-vertex model~allowing only an even number o
arrows into and out of each site! can be written as two
coupled Ising models on interpenetrating square lattices w
an additional four spin coupling, as is well known.22,23 The
spins are situated on a dual lattice consisting of the site
the center of the plaquettes of the original square lattice
bond currents. An arrow to the right~or upward! represents
adjacent parallel spins; similarly, an arrow to the left~or
downward! corresponds to adjacent antiparallel spins. T
mapping is shown explicitly in Figs. 6 and 7. The addition
vertices shown in Fig. 7 are assigned energies«75«8, and
the number of such vertices must satisfyn75n85nd . We
shall denote these vertices as of typed. However, ultimately,
we must impose an additional constraint on the Hamilton
in which the vertex configurations shown in Fig. 7 are r
moved from the Hilbert space of states.

Quantum fluctuations are incorporated by a transve
field h. The resulting model, the quantum six-vertex mod
is then defined by the partition function

ZQ5Tr e2bPHP, ~16!

where the HamiltonianH is given by

H52h(
j ,k

s j ,k
x 2(

j ,k
~Js j ,k

z s j 11,k11
z 1J8s j 11,k

z s j ,k11
z !

2J9(
j ,k

s j ,k
z s j 11,k11

z s j 11,k
z s j ,k11

z . ~17!

The operatorssx andsz are the standard Pauli matrices, a
P25P is the projection operator that projects out the sour
and sinks. It is easy to check that a single spin flip at a d
lattice site flips the bond currents on the surround
plaquette, which causes transitions between the vertice
5-5
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SUDIP CHAKRAVARTY PHYSICAL REVIEW B 66, 224505 ~2002!
the four corners, as shown in Fig. 8. The previously defin
vertex weightsa, b, andc are given by

a5e(J1J81J9)/T, ~18!

b5e(2J2J81J9)/T, ~19!

c5e(2J1J82J9)/T. ~20!

The vertex weightd is

d5e(J2J82J9)/T. ~21!

The classical statistical mechanics that controls the fin
temperature phase transition is unchanged because ther
no quantum-mechanical spin flips. Since the trace is a s
over states from which sources and sinks are projected
the model is clearly the classical six-vertex model—the nu
ber of vertices of typed, nd50. We can arrive at the sam
conclusion by considering an imaginary-time path integ
from a Trotter decomposition along the imaginary-time

FIG. 6. The mapping of the first six vertices to equivalent sp
on the dual lattice.

FIG. 7. The mapping of the vertices involving sinks and sour
to spins on the dual lattice.
22450
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rectiont between 0 andb, with a periodic boundary condi
tion. The constraint can be enforced by including a de
functionald@“• j (x,t)# at each space-time point. In the cla
sical limit, we are left with a single time slice, because qua
tum spin flips due to the transverse field are punished.
partition function is now a sum over all spin configuratio
subject to the condition that there are no sources or sinks
course, at any finite temperature, the effective parameter
the model will be renormalized by quantum fluctuations
short distances, but that cannot change the universality c
of the finite-temperature phase transition.

At T50, the model is somewhat complex because of
projection operators. Ath50, the ground state is the ordere
DDW state with no quantum fluctuations, if the verticesc
have the lowest possible energy. As the transverse fieh
increases from zero, quantum fluctuations increase
nucleate PDW vertices. It is not clear what the ultimate f
of the system is. There are four distinct possibilities:~1! a
quantum phase transition to a gapped quantum disord
state, which I find unlikely because of the constraints. If t
is the case, the constraints have to be somehow irrelevan~2!
A transition to a PDW state, which I also find unlikely be
cause there are no flippable plaquettes, and hence the st
disfavored from kinetic-energy considerations.~3! A transi-
tion to a power-law phase since a local deformation may
be able to heal sufficiently fast.~4! There is also a remote
possibility that the system does not lose its DDW order.
any case, the model is sufficiently complex that at prese
cannot provide a quantitative analysis. It is probably b
studied by quantum Monte Carlo methods involving lo
algorithms.24

I shall assume that it is the third possibility discuss
above that is realized. If this is correct, such a quantum c
cal point is unusual from the conventional perspective.25 To
illustrate this point, consider a phase diagram in which
system undergoes a continuous phase transition as a fun
of tuning parameters, temperatureT, and a couplingh such
as the transverse field. This is shown in Fig. 9, where

s

s

FIG. 8. The flip of the central spin from1→2 flips the sur-
rounding bound currents around the plaquette. The flipped curr
are denoted by dashed arrows.
5-6
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shaded region is the domain of classical critical fluctuatio
extending all the way to zero energy. Any influence of t
quantum critical point athc has to be outside this domain
Thus we may argue that, on some scale, the disordered p
at a finite temperature could be influenced by the quan
critical point.

The phase diagram shown in Fig. 10, pertinent to
present problem, is strikingly different. Here the existence
a classical power-law phase of the six-vertex model has

FIG. 9. Conventional phase diagram in which a finite tempe
ture phase transition exists—the solid curve. The shaded regio
the domain of classical critical fluctuations. The influence of
quantum critical pointhc , at T50, has to lie outside this domain

FIG. 10. The phase diagram in which the entire fini
temperature disordered phase is a classical power-law phase
shaded region. The dashed curve is the crossover scale for the
sical critical fluctuations within the ordered phase. The quant
critical regime is entirely eliminated, except precisely atT50. The
ordered regime is under the influence of the stable broken symm
fixed point.
22450
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tirely eliminated the quantum fluctuations, which are, stric
speaking, cut off by the thermal length, while the classi
power-law correlations have no such long-distance cut
Within the ordered phase, there is a classical critical reg
but otherwise the ordered phase is under the influence of
broken symmetry fixed point. Of course, we are assum
that the magnitude of the order parameter can be assum
be fixed. If not, there will be a further transition at a high
temperature where its magnitude collapses. The region ab
this transition can now be influenced by the quantum criti
point. Nonetheless, there may be a sizable region of
phase diagram in which the classical power-law phase do
nates.

IV. RELATION TO THE QUANTUM DIMER MODEL

As remarked upon in Sec. I, there are some similarit
with the RVB ideas, particularly with the recent develo
ments involving quantum dimer models,8,26 but the distinc-
tions are equally important. At high temperatures, the qu
tum dimer model on a square lattice maps on to the class
dimer model with power-law correlations,27 which is a c
51 ~conformal charge! theory, equivalent to two massles
Majorana fermions. It is also the fully frustrated Ising mod
at T50.

This critical phase arises from the Rokhsar-Kivels
quantum critical point.9,28 Instead, in the present case, th
quantum vertex model maps on to the classical six-ver
model, which undergoes a phase transition with an esse
singularity from an ordered region IV to the power-law r
gion III. But this power-law phase does not stem from
quantum critical point, instead the entire region is situated
the critical line of the classical 8-vertex model.

A recent thrust in quantum dimer models focused on
existence of a spin liquid phase, which is made plausible
the fact that the classical dimer model on a triangular latt
is noncritical, with exponentially decaying dime
correlations.8 Thus the ground state of the triangular case h
no gapless collective excitations, only deconfined, gap
spinons for a finite range of parameters. In contrast, we h
focused on the existence of a power-law phase above
DDW phase and the nonexistence of the specific-h
anomaly at the transition. We have also argued that it is a
possible to have a quantum phase transition in the gro
state, which is induced by a sufficiently large transverse fi
mimicking the actual pseudogap transition in the groun
state. There are also interesting resemblances of our w
with the quantum and sliding ice pictures of Ref. 26.

V. VERTEX MODELS ON A TRIANGULAR LATTICE

Vertex models may be useful in other contexts. For e
ample, consider the ideas that were put forward recently
garding the metal-insulator transition in two-dimension
electron systems in which the transition is identified as
quantum phase transition in a disordered Wigner cry
state.29,30 The chain of reasoning is as follows: extensi
calculations of multiparticle exchange Hamiltonians
pure29–31and disordered Wigner crystals30 suggest that there
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exist ground states with well-defined bond currents. Th
bond currents can be represented by vertex models on a
angular lattice. It is notable that recent studies revealed th
metal-insulator transition could occur in such models. A p
typical example is provided by a two-dimensional tigh
binding Hamiltonian in a random magnetic field and on-s
disorder.32,33 It is in this context that it is useful to consider
vertex model of bond currents on a triangular lattice a
study its quantum dynamics. Although, even in the class
limit, such models are unsolved in general,10,34,35some exact
results, known for certain special cases, are sufficiently
couraging and similar to the six-vertex model to purs
further.

If we restrict ourselves to three incoming currents a
three outgoing currents at a site of a triangular lattice, t
generates a 6!/3!3!520 vertex model. If the vertices whic
differ only by rotation and reflection are treated alike, th
may be classified as follows:~i! six vertices in which the
incoming arrows are adjacent,~ii ! two vertices in which the
incoming and the outgoing arrows alternate round the ver
and~iii ! 12 vertices containing two incoming arrows direct
opposite each other. Examples are shown in Fig. 11.

Unlike the eight-vertex or six-vertex model on a squa
lattice, the solution to the 20-vertex model is not known
general. It is only solved for certain values of the vert
configuration probabilities. As with the six-vertex model, th
model undergoes a phase transition to a power-law ord
phase, with an essential singularity in the free energy, fr
an ordered state with finite correlation length in which t
arrows alternate along a row. Since the exact solution is
known in general, it would be extremely useful explore th
model numerically.24

The quantum dynamics of this model can once again
implemented by going over to a Ising spin model on the d
lattice with a transverse field at a site. It would be interest
to explore this model, which could provide us with an inte
esting perspective on the old problem of a Wigner crys

FIG. 11. Examples of three types of allowed vertices.
22450
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which, in the conventional picture, is an ordered state with
most small zero-point oscillations of an electron about a
tice site; see, however, Refs. 29 and 30.

VI. CONCLUSIONS

I have argued that the natural generalization of
Hartree-Fock model of the DDW are certain vertex mod
involving bond currents. The finite-temperature transiti
from the ordered DDW phase to the disordered phase
longs to the universality class of the six-vertex model and
striking because of the absence of any observable spec
heat anomalies. I have also shown that the disordered p
is a power-law phase of the bond current correlations. Th
power-law correlations do not arise from any quantum cr
cal point, but this entire phase is poised on the critical line
another hidden model, the eight-vertex model. The origin
the power-law correlations is the constraints that the confi
rations of the six-vertex model must satisfy. Thus a lo
deformation cannot heal within a finite correlation length.
this respect, there is a strong similarity with the RVB dim
models on a square lattice, where the constraints in the di
model are once again responsible for the high-tempera
power-law correlations.

It is important to note that the mere knowledge of t
nature of the order parameter does not necessarily deter
the universality class of the phase transition. For this, it
also necessary to know the nature of the possible excitat
that can be thermally populated. Thus labeling the DD
transition as an Ising transition is an oversimplified view.

I was also able to construct a quantum generalization
volving a eight-vertex model in a transverse field, but w
projection operators that ultimately project out the sour
and the sinks of the eight-vertex model. The model is su
ciently complex to present any in-depth discussion at t
time, but it is not difficult to motivate a quantum phase tra
sition as a function of the transverse field. Nonetheless,
remarkable that the effect of the quantum critical point
completely swamped by the classical power-law correlati
at any finite temperature. This is a strict departure from
conventional theory of quantum critical point.25

I have also speculated on the possible application o
similar vertex model to the Wigner crystal, and its implic
tions to the metal-insulator transition in the two-dimension
electron systems. Similarly, a zoo of density wave theori6

can be usefully formulated in terms of vertex models op
ing up a whole class of questions in the theory of quant
statistical mechanics. Some of these would correspond
modulations of the bond kinetic energy.6,36 In fact, it is quite
possible that certain regions of the cuprate phase diagram
described by these models,37 but the aim here was to con
sider only those models that are natural generalizations of
proposed DDW state.

The present analysis is incomplete in one important
spect. I have been unable to make firm statements regar
the quasiparticle excitations and doping in the present mo
although it is clear that power-law bond current correlatio
in the disordered phase probably leads to a non-Fermi-liq
behavior of the electronic excitations. Since we have con
5-8
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THEORY OF THEd-DENSITY WAVE FROM A VERTEX . . . PHYSICAL REVIEW B66, 224505 ~2002!
ered models of the spin-singlet variety, there cannot be
spin-charge separation by definition. The non-Fermi-liq
behavior must then be akin to that of the spinless Luttin
model in one dimension. One should note that a rigor
description of electronic excitations are also unavailable
the RVB quantum dimer model.

In the future, it may also be interesting to allow fo
sources and sinks, as they may represent an effective m
of incorporating decay of collective excitations involving th
order parameter into low-lying nodal quasiparticles in t
actual physical system.38 From this perspective, the corre
quantum model is actually an eight-vertex model in a tra
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